vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu might be problematic. Click here for more details.

Files changed (1103) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1536 -0
  4. vllm/_ipex_ops.py +241 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +38 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +31 -0
  16. vllm/assets/video.py +103 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +303 -0
  22. vllm/attention/backends/flash_attn.py +999 -0
  23. vllm/attention/backends/flashinfer.py +1092 -0
  24. vllm/attention/backends/flashmla.py +242 -0
  25. vllm/attention/backends/hpu_attn.py +301 -0
  26. vllm/attention/backends/ipex_attn.py +396 -0
  27. vllm/attention/backends/mla/__init__.py +0 -0
  28. vllm/attention/backends/mla/common.py +1444 -0
  29. vllm/attention/backends/pallas.py +346 -0
  30. vllm/attention/backends/placeholder_attn.py +399 -0
  31. vllm/attention/backends/rocm_aiter_mla.py +412 -0
  32. vllm/attention/backends/rocm_flash_attn.py +969 -0
  33. vllm/attention/backends/torch_sdpa.py +691 -0
  34. vllm/attention/backends/triton_mla.py +113 -0
  35. vllm/attention/backends/utils.py +609 -0
  36. vllm/attention/backends/xformers.py +798 -0
  37. vllm/attention/layer.py +443 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  41. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  42. vllm/attention/ops/blocksparse_attention/utils.py +244 -0
  43. vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
  44. vllm/attention/ops/flashmla.py +115 -0
  45. vllm/attention/ops/hpu_paged_attn.py +105 -0
  46. vllm/attention/ops/ipex_attn.py +193 -0
  47. vllm/attention/ops/merge_attn_states.py +42 -0
  48. vllm/attention/ops/nki_flash_attn.py +905 -0
  49. vllm/attention/ops/paged_attn.py +255 -0
  50. vllm/attention/ops/prefix_prefill.py +902 -0
  51. vllm/attention/ops/rocm_aiter_mla.py +42 -0
  52. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  53. vllm/attention/ops/triton_decode_attention.py +675 -0
  54. vllm/attention/ops/triton_flash_attention.py +1375 -0
  55. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  56. vllm/attention/selector.py +186 -0
  57. vllm/attention/utils/fa_utils.py +54 -0
  58. vllm/beam_search.py +82 -0
  59. vllm/benchmarks/__init__.py +0 -0
  60. vllm/benchmarks/datasets.py +831 -0
  61. vllm/benchmarks/endpoint_request_func.py +160 -0
  62. vllm/benchmarks/latency.py +181 -0
  63. vllm/benchmarks/serve.py +925 -0
  64. vllm/benchmarks/throughput.py +608 -0
  65. vllm/benchmarks/utils.py +69 -0
  66. vllm/collect_env.py +795 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/backends.py +715 -0
  69. vllm/compilation/compiler_interface.py +437 -0
  70. vllm/compilation/counter.py +33 -0
  71. vllm/compilation/decorators.py +249 -0
  72. vllm/compilation/fix_functionalization.py +182 -0
  73. vllm/compilation/fusion.py +617 -0
  74. vllm/compilation/fx_utils.py +60 -0
  75. vllm/compilation/inductor_pass.py +114 -0
  76. vllm/compilation/monitor.py +38 -0
  77. vllm/compilation/multi_output_match.py +108 -0
  78. vllm/compilation/noop_elimination.py +135 -0
  79. vllm/compilation/pass_manager.py +74 -0
  80. vllm/compilation/sequence_parallelism.py +266 -0
  81. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  82. vllm/compilation/vllm_inductor_pass.py +68 -0
  83. vllm/compilation/wrapper.py +129 -0
  84. vllm/config.py +4179 -0
  85. vllm/connections.py +170 -0
  86. vllm/core/__init__.py +0 -0
  87. vllm/core/block/__init__.py +0 -0
  88. vllm/core/block/block_table.py +398 -0
  89. vllm/core/block/common.py +370 -0
  90. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  91. vllm/core/block/interfaces.py +318 -0
  92. vllm/core/block/naive_block.py +465 -0
  93. vllm/core/block/prefix_caching_block.py +1134 -0
  94. vllm/core/block/utils.py +27 -0
  95. vllm/core/block_manager.py +520 -0
  96. vllm/core/evictor.py +156 -0
  97. vllm/core/interfaces.py +134 -0
  98. vllm/core/placeholder_block_space_manager.py +99 -0
  99. vllm/core/scheduler.py +2060 -0
  100. vllm/device_allocator/__init__.py +0 -0
  101. vllm/device_allocator/cumem.py +280 -0
  102. vllm/distributed/__init__.py +5 -0
  103. vllm/distributed/communication_op.py +40 -0
  104. vllm/distributed/device_communicators/__init__.py +0 -0
  105. vllm/distributed/device_communicators/base_device_communicator.py +151 -0
  106. vllm/distributed/device_communicators/cpu_communicator.py +139 -0
  107. vllm/distributed/device_communicators/cuda_communicator.py +131 -0
  108. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  109. vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
  110. vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
  111. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  112. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  113. vllm/distributed/device_communicators/pynccl.py +217 -0
  114. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  115. vllm/distributed/device_communicators/shm_broadcast.py +557 -0
  116. vllm/distributed/device_communicators/tpu_communicator.py +93 -0
  117. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  118. vllm/distributed/kv_transfer/README.md +29 -0
  119. vllm/distributed/kv_transfer/__init__.py +11 -0
  120. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  121. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  122. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  123. vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
  124. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  125. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
  126. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  132. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  133. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  134. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  135. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  136. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  137. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  138. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  139. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  140. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  141. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  142. vllm/distributed/parallel_state.py +1209 -0
  143. vllm/distributed/utils.py +366 -0
  144. vllm/engine/__init__.py +0 -0
  145. vllm/engine/arg_utils.py +1724 -0
  146. vllm/engine/async_llm_engine.py +1261 -0
  147. vllm/engine/async_timeout.py +191 -0
  148. vllm/engine/llm_engine.py +2150 -0
  149. vllm/engine/metrics.py +717 -0
  150. vllm/engine/metrics_types.py +96 -0
  151. vllm/engine/multiprocessing/__init__.py +183 -0
  152. vllm/engine/multiprocessing/client.py +745 -0
  153. vllm/engine/multiprocessing/engine.py +450 -0
  154. vllm/engine/output_processor/__init__.py +0 -0
  155. vllm/engine/output_processor/interfaces.py +74 -0
  156. vllm/engine/output_processor/multi_step.py +210 -0
  157. vllm/engine/output_processor/single_step.py +136 -0
  158. vllm/engine/output_processor/stop_checker.py +130 -0
  159. vllm/engine/output_processor/util.py +27 -0
  160. vllm/engine/protocol.py +302 -0
  161. vllm/entrypoints/__init__.py +0 -0
  162. vllm/entrypoints/api_server.py +177 -0
  163. vllm/entrypoints/chat_utils.py +1259 -0
  164. vllm/entrypoints/cli/__init__.py +0 -0
  165. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  166. vllm/entrypoints/cli/benchmark/base.py +38 -0
  167. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  168. vllm/entrypoints/cli/benchmark/main.py +53 -0
  169. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  170. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  171. vllm/entrypoints/cli/collect_env.py +35 -0
  172. vllm/entrypoints/cli/main.py +59 -0
  173. vllm/entrypoints/cli/openai.py +175 -0
  174. vllm/entrypoints/cli/serve.py +59 -0
  175. vllm/entrypoints/cli/types.py +24 -0
  176. vllm/entrypoints/launcher.py +146 -0
  177. vllm/entrypoints/llm.py +1450 -0
  178. vllm/entrypoints/logger.py +44 -0
  179. vllm/entrypoints/openai/__init__.py +0 -0
  180. vllm/entrypoints/openai/api_server.py +1130 -0
  181. vllm/entrypoints/openai/cli_args.py +296 -0
  182. vllm/entrypoints/openai/logits_processors.py +89 -0
  183. vllm/entrypoints/openai/protocol.py +1806 -0
  184. vllm/entrypoints/openai/run_batch.py +439 -0
  185. vllm/entrypoints/openai/serving_chat.py +1210 -0
  186. vllm/entrypoints/openai/serving_completion.py +557 -0
  187. vllm/entrypoints/openai/serving_embedding.py +245 -0
  188. vllm/entrypoints/openai/serving_engine.py +569 -0
  189. vllm/entrypoints/openai/serving_models.py +314 -0
  190. vllm/entrypoints/openai/serving_pooling.py +237 -0
  191. vllm/entrypoints/openai/serving_score.py +439 -0
  192. vllm/entrypoints/openai/serving_tokenization.py +147 -0
  193. vllm/entrypoints/openai/serving_transcription.py +421 -0
  194. vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
  195. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  196. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
  197. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
  198. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  199. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
  200. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
  201. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
  202. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  203. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
  204. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
  205. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  206. vllm/entrypoints/score_utils.py +49 -0
  207. vllm/entrypoints/ssl.py +74 -0
  208. vllm/entrypoints/utils.py +136 -0
  209. vllm/env_override.py +34 -0
  210. vllm/envs.py +800 -0
  211. vllm/executor/__init__.py +0 -0
  212. vllm/executor/executor_base.py +400 -0
  213. vllm/executor/mp_distributed_executor.py +243 -0
  214. vllm/executor/msgspec_utils.py +29 -0
  215. vllm/executor/multiproc_worker_utils.py +312 -0
  216. vllm/executor/ray_distributed_executor.py +700 -0
  217. vllm/executor/ray_utils.py +400 -0
  218. vllm/executor/uniproc_executor.py +141 -0
  219. vllm/forward_context.py +159 -0
  220. vllm/inputs/__init__.py +37 -0
  221. vllm/inputs/data.py +248 -0
  222. vllm/inputs/parse.py +121 -0
  223. vllm/inputs/preprocess.py +745 -0
  224. vllm/inputs/registry.py +212 -0
  225. vllm/jsontree.py +79 -0
  226. vllm/logger.py +210 -0
  227. vllm/logging_utils/__init__.py +7 -0
  228. vllm/logging_utils/formatter.py +17 -0
  229. vllm/logits_process.py +121 -0
  230. vllm/lora/__init__.py +0 -0
  231. vllm/lora/fully_sharded_layers.py +335 -0
  232. vllm/lora/layers.py +1263 -0
  233. vllm/lora/lora.py +198 -0
  234. vllm/lora/models.py +802 -0
  235. vllm/lora/ops/__init__.py +0 -0
  236. vllm/lora/ops/torch_ops/__init__.py +15 -0
  237. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  238. vllm/lora/ops/triton_ops/__init__.py +11 -0
  239. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  240. vllm/lora/ops/triton_ops/lora_expand.py +293 -0
  241. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  242. vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
  243. vllm/lora/ops/triton_ops/utils.py +121 -0
  244. vllm/lora/peft_helper.py +115 -0
  245. vllm/lora/punica_wrapper/__init__.py +9 -0
  246. vllm/lora/punica_wrapper/punica_base.py +483 -0
  247. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  248. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  249. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  250. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  251. vllm/lora/punica_wrapper/utils.py +161 -0
  252. vllm/lora/request.py +97 -0
  253. vllm/lora/resolver.py +83 -0
  254. vllm/lora/utils.py +237 -0
  255. vllm/lora/worker_manager.py +251 -0
  256. vllm/model_executor/__init__.py +15 -0
  257. vllm/model_executor/custom_op.py +153 -0
  258. vllm/model_executor/guided_decoding/__init__.py +180 -0
  259. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  260. vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
  261. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  262. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  263. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  264. vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
  265. vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
  266. vllm/model_executor/guided_decoding/utils.py +241 -0
  267. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  268. vllm/model_executor/layers/__init__.py +0 -0
  269. vllm/model_executor/layers/activation.py +368 -0
  270. vllm/model_executor/layers/fused_moe/__init__.py +51 -0
  271. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  272. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  273. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  274. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  275. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  276. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  277. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  278. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  279. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  280. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  281. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  282. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  283. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  284. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  285. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  286. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  287. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  426. vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
  427. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
  428. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
  429. vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
  430. vllm/model_executor/layers/fused_moe/layer.py +949 -0
  431. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  432. vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
  433. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  434. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
  435. vllm/model_executor/layers/fused_moe/utils.py +48 -0
  436. vllm/model_executor/layers/layernorm.py +277 -0
  437. vllm/model_executor/layers/lightning_attn.py +651 -0
  438. vllm/model_executor/layers/linear.py +1518 -0
  439. vllm/model_executor/layers/logits_processor.py +196 -0
  440. vllm/model_executor/layers/mamba/__init__.py +0 -0
  441. vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
  442. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  443. vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
  444. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  445. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  446. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
  447. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  448. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  449. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  450. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  451. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  452. vllm/model_executor/layers/pooler.py +336 -0
  453. vllm/model_executor/layers/quantization/__init__.py +153 -0
  454. vllm/model_executor/layers/quantization/aqlm.py +374 -0
  455. vllm/model_executor/layers/quantization/awq.py +184 -0
  456. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  457. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  458. vllm/model_executor/layers/quantization/base_config.py +145 -0
  459. vllm/model_executor/layers/quantization/bitblas.py +459 -0
  460. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  461. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  462. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
  463. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
  464. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
  465. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  466. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  467. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  468. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
  469. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  470. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  471. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  472. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  473. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
  474. vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
  475. vllm/model_executor/layers/quantization/experts_int8.py +194 -0
  476. vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
  477. vllm/model_executor/layers/quantization/fp8.py +832 -0
  478. vllm/model_executor/layers/quantization/gguf.py +408 -0
  479. vllm/model_executor/layers/quantization/gptq.py +276 -0
  480. vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
  481. vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
  482. vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
  483. vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
  484. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  485. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  486. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  487. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  488. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  489. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  490. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  491. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  492. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
  493. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  494. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  495. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  496. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  497. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  498. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  499. vllm/model_executor/layers/quantization/kv_cache.py +137 -0
  500. vllm/model_executor/layers/quantization/marlin.py +259 -0
  501. vllm/model_executor/layers/quantization/modelopt.py +410 -0
  502. vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
  503. vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
  504. vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
  505. vllm/model_executor/layers/quantization/qqq.py +273 -0
  506. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  507. vllm/model_executor/layers/quantization/quark/quark.py +385 -0
  508. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  509. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
  510. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  511. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
  512. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  513. vllm/model_executor/layers/quantization/quark/utils.py +102 -0
  514. vllm/model_executor/layers/quantization/schema.py +85 -0
  515. vllm/model_executor/layers/quantization/torchao.py +127 -0
  516. vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
  517. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  518. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  519. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
  520. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  521. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  522. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  523. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  524. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  525. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  526. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  527. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  528. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  529. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  530. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  531. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  532. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  533. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  534. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  535. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  536. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  537. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  538. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  539. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  540. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  541. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  542. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  543. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  544. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  545. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  546. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  547. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  548. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  549. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  550. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  551. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
  723. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  724. vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
  725. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  726. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  727. vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
  728. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
  729. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  730. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  731. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
  732. vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
  733. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  734. vllm/model_executor/layers/rejection_sampler.py +400 -0
  735. vllm/model_executor/layers/resampler.py +269 -0
  736. vllm/model_executor/layers/rotary_embedding.py +1598 -0
  737. vllm/model_executor/layers/sampler.py +1221 -0
  738. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  739. vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
  740. vllm/model_executor/layers/utils.py +99 -0
  741. vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
  742. vllm/model_executor/model_loader/__init__.py +20 -0
  743. vllm/model_executor/model_loader/loader.py +1542 -0
  744. vllm/model_executor/model_loader/neuron.py +243 -0
  745. vllm/model_executor/model_loader/tensorizer.py +468 -0
  746. vllm/model_executor/model_loader/utils.py +171 -0
  747. vllm/model_executor/model_loader/weight_utils.py +749 -0
  748. vllm/model_executor/models/__init__.py +27 -0
  749. vllm/model_executor/models/adapters.py +247 -0
  750. vllm/model_executor/models/arctic.py +559 -0
  751. vllm/model_executor/models/aria.py +656 -0
  752. vllm/model_executor/models/aya_vision.py +461 -0
  753. vllm/model_executor/models/baichuan.py +469 -0
  754. vllm/model_executor/models/bamba.py +542 -0
  755. vllm/model_executor/models/bart.py +936 -0
  756. vllm/model_executor/models/bert.py +725 -0
  757. vllm/model_executor/models/blip.py +337 -0
  758. vllm/model_executor/models/blip2.py +717 -0
  759. vllm/model_executor/models/bloom.py +358 -0
  760. vllm/model_executor/models/chameleon.py +1135 -0
  761. vllm/model_executor/models/chatglm.py +476 -0
  762. vllm/model_executor/models/clip.py +410 -0
  763. vllm/model_executor/models/commandr.py +466 -0
  764. vllm/model_executor/models/constant_size_cache.py +136 -0
  765. vllm/model_executor/models/dbrx.py +469 -0
  766. vllm/model_executor/models/deepseek.py +484 -0
  767. vllm/model_executor/models/deepseek_mtp.py +266 -0
  768. vllm/model_executor/models/deepseek_v2.py +830 -0
  769. vllm/model_executor/models/deepseek_vl2.py +647 -0
  770. vllm/model_executor/models/eagle.py +247 -0
  771. vllm/model_executor/models/exaone.py +548 -0
  772. vllm/model_executor/models/fairseq2_llama.py +153 -0
  773. vllm/model_executor/models/falcon.py +508 -0
  774. vllm/model_executor/models/florence2.py +1102 -0
  775. vllm/model_executor/models/fuyu.py +388 -0
  776. vllm/model_executor/models/gemma.py +423 -0
  777. vllm/model_executor/models/gemma2.py +423 -0
  778. vllm/model_executor/models/gemma3.py +531 -0
  779. vllm/model_executor/models/gemma3_mm.py +716 -0
  780. vllm/model_executor/models/glm.py +22 -0
  781. vllm/model_executor/models/glm4.py +303 -0
  782. vllm/model_executor/models/glm4v.py +647 -0
  783. vllm/model_executor/models/gpt2.py +313 -0
  784. vllm/model_executor/models/gpt_bigcode.py +336 -0
  785. vllm/model_executor/models/gpt_j.py +337 -0
  786. vllm/model_executor/models/gpt_neox.py +330 -0
  787. vllm/model_executor/models/granite.py +494 -0
  788. vllm/model_executor/models/granite_speech.py +777 -0
  789. vllm/model_executor/models/granitemoe.py +435 -0
  790. vllm/model_executor/models/granitemoeshared.py +339 -0
  791. vllm/model_executor/models/gritlm.py +245 -0
  792. vllm/model_executor/models/grok1.py +560 -0
  793. vllm/model_executor/models/h2ovl.py +542 -0
  794. vllm/model_executor/models/idefics2_vision_model.py +387 -0
  795. vllm/model_executor/models/idefics3.py +767 -0
  796. vllm/model_executor/models/interfaces.py +569 -0
  797. vllm/model_executor/models/interfaces_base.py +163 -0
  798. vllm/model_executor/models/intern_vit.py +476 -0
  799. vllm/model_executor/models/internlm2.py +453 -0
  800. vllm/model_executor/models/internlm2_ve.py +146 -0
  801. vllm/model_executor/models/internvl.py +945 -0
  802. vllm/model_executor/models/jais.py +371 -0
  803. vllm/model_executor/models/jamba.py +590 -0
  804. vllm/model_executor/models/kimi_vl.py +577 -0
  805. vllm/model_executor/models/llama.py +619 -0
  806. vllm/model_executor/models/llama4.py +530 -0
  807. vllm/model_executor/models/llama_eagle.py +152 -0
  808. vllm/model_executor/models/llama_eagle3.py +232 -0
  809. vllm/model_executor/models/llava.py +869 -0
  810. vllm/model_executor/models/llava_next.py +582 -0
  811. vllm/model_executor/models/llava_next_video.py +470 -0
  812. vllm/model_executor/models/llava_onevision.py +954 -0
  813. vllm/model_executor/models/mamba.py +271 -0
  814. vllm/model_executor/models/mamba2.py +302 -0
  815. vllm/model_executor/models/mamba_cache.py +76 -0
  816. vllm/model_executor/models/medusa.py +210 -0
  817. vllm/model_executor/models/minicpm.py +592 -0
  818. vllm/model_executor/models/minicpm3.py +229 -0
  819. vllm/model_executor/models/minicpmo.py +725 -0
  820. vllm/model_executor/models/minicpmv.py +1287 -0
  821. vllm/model_executor/models/minimax_cache.py +35 -0
  822. vllm/model_executor/models/minimax_text_01.py +1261 -0
  823. vllm/model_executor/models/mistral3.py +598 -0
  824. vllm/model_executor/models/mixtral.py +485 -0
  825. vllm/model_executor/models/mixtral_quant.py +447 -0
  826. vllm/model_executor/models/mllama.py +1623 -0
  827. vllm/model_executor/models/mllama4.py +838 -0
  828. vllm/model_executor/models/mlp_speculator.py +205 -0
  829. vllm/model_executor/models/modernbert.py +325 -0
  830. vllm/model_executor/models/module_mapping.py +71 -0
  831. vllm/model_executor/models/molmo.py +1567 -0
  832. vllm/model_executor/models/moonvit.py +628 -0
  833. vllm/model_executor/models/mpt.py +329 -0
  834. vllm/model_executor/models/nemotron.py +506 -0
  835. vllm/model_executor/models/nemotron_nas.py +446 -0
  836. vllm/model_executor/models/nvlm_d.py +212 -0
  837. vllm/model_executor/models/olmo.py +390 -0
  838. vllm/model_executor/models/olmo2.py +412 -0
  839. vllm/model_executor/models/olmoe.py +449 -0
  840. vllm/model_executor/models/opt.py +410 -0
  841. vllm/model_executor/models/orion.py +356 -0
  842. vllm/model_executor/models/paligemma.py +397 -0
  843. vllm/model_executor/models/persimmon.py +342 -0
  844. vllm/model_executor/models/phi.py +354 -0
  845. vllm/model_executor/models/phi3.py +18 -0
  846. vllm/model_executor/models/phi3_small.py +463 -0
  847. vllm/model_executor/models/phi3v.py +722 -0
  848. vllm/model_executor/models/phi4mm.py +1263 -0
  849. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  850. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  851. vllm/model_executor/models/phimoe.py +666 -0
  852. vllm/model_executor/models/pixtral.py +1281 -0
  853. vllm/model_executor/models/plamo2.py +736 -0
  854. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  855. vllm/model_executor/models/qwen.py +360 -0
  856. vllm/model_executor/models/qwen2.py +552 -0
  857. vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
  858. vllm/model_executor/models/qwen2_5_vl.py +1136 -0
  859. vllm/model_executor/models/qwen2_audio.py +402 -0
  860. vllm/model_executor/models/qwen2_moe.py +531 -0
  861. vllm/model_executor/models/qwen2_rm.py +130 -0
  862. vllm/model_executor/models/qwen2_vl.py +1409 -0
  863. vllm/model_executor/models/qwen3.py +319 -0
  864. vllm/model_executor/models/qwen3_moe.py +528 -0
  865. vllm/model_executor/models/qwen_vl.py +784 -0
  866. vllm/model_executor/models/registry.py +611 -0
  867. vllm/model_executor/models/roberta.py +332 -0
  868. vllm/model_executor/models/siglip.py +522 -0
  869. vllm/model_executor/models/skyworkr1v.py +949 -0
  870. vllm/model_executor/models/smolvlm.py +51 -0
  871. vllm/model_executor/models/solar.py +504 -0
  872. vllm/model_executor/models/stablelm.py +349 -0
  873. vllm/model_executor/models/starcoder2.py +355 -0
  874. vllm/model_executor/models/telechat2.py +139 -0
  875. vllm/model_executor/models/teleflm.py +78 -0
  876. vllm/model_executor/models/transformers.py +442 -0
  877. vllm/model_executor/models/ultravox.py +655 -0
  878. vllm/model_executor/models/utils.py +714 -0
  879. vllm/model_executor/models/vision.py +149 -0
  880. vllm/model_executor/models/whisper.py +746 -0
  881. vllm/model_executor/models/zamba2.py +1008 -0
  882. vllm/model_executor/parameter.py +458 -0
  883. vllm/model_executor/pooling_metadata.py +71 -0
  884. vllm/model_executor/sampling_metadata.py +596 -0
  885. vllm/model_executor/utils.py +53 -0
  886. vllm/multimodal/__init__.py +31 -0
  887. vllm/multimodal/audio.py +105 -0
  888. vllm/multimodal/base.py +218 -0
  889. vllm/multimodal/hasher.py +103 -0
  890. vllm/multimodal/image.py +77 -0
  891. vllm/multimodal/inputs.py +843 -0
  892. vllm/multimodal/parse.py +454 -0
  893. vllm/multimodal/processing.py +1760 -0
  894. vllm/multimodal/profiling.py +274 -0
  895. vllm/multimodal/registry.py +321 -0
  896. vllm/multimodal/utils.py +386 -0
  897. vllm/multimodal/video.py +166 -0
  898. vllm/outputs.py +521 -0
  899. vllm/platforms/__init__.py +286 -0
  900. vllm/platforms/cpu.py +182 -0
  901. vllm/platforms/cuda.py +463 -0
  902. vllm/platforms/hpu.py +94 -0
  903. vllm/platforms/interface.py +427 -0
  904. vllm/platforms/neuron.py +69 -0
  905. vllm/platforms/rocm.py +346 -0
  906. vllm/platforms/tpu.py +174 -0
  907. vllm/platforms/xpu.py +142 -0
  908. vllm/plugins/__init__.py +82 -0
  909. vllm/pooling_params.py +53 -0
  910. vllm/profiler/__init__.py +7 -0
  911. vllm/profiler/layerwise_profile.py +374 -0
  912. vllm/profiler/utils.py +147 -0
  913. vllm/prompt_adapter/__init__.py +0 -0
  914. vllm/prompt_adapter/layers.py +82 -0
  915. vllm/prompt_adapter/models.py +357 -0
  916. vllm/prompt_adapter/request.py +36 -0
  917. vllm/prompt_adapter/utils.py +97 -0
  918. vllm/prompt_adapter/worker_manager.py +178 -0
  919. vllm/py.typed +2 -0
  920. vllm/reasoning/__init__.py +12 -0
  921. vllm/reasoning/abs_reasoning_parsers.py +189 -0
  922. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  923. vllm/reasoning/granite_reasoning_parser.py +362 -0
  924. vllm/sampling_params.py +598 -0
  925. vllm/scalar_type.py +335 -0
  926. vllm/scripts.py +14 -0
  927. vllm/sequence.py +1486 -0
  928. vllm/spec_decode/__init__.py +0 -0
  929. vllm/spec_decode/batch_expansion.py +505 -0
  930. vllm/spec_decode/draft_model_runner.py +335 -0
  931. vllm/spec_decode/interfaces.py +98 -0
  932. vllm/spec_decode/medusa_worker.py +137 -0
  933. vllm/spec_decode/metrics.py +212 -0
  934. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  935. vllm/spec_decode/mqa_scorer.py +159 -0
  936. vllm/spec_decode/multi_step_worker.py +416 -0
  937. vllm/spec_decode/ngram_worker.py +195 -0
  938. vllm/spec_decode/proposer_worker_base.py +58 -0
  939. vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
  940. vllm/spec_decode/spec_decode_worker.py +1324 -0
  941. vllm/spec_decode/target_model_runner.py +44 -0
  942. vllm/spec_decode/top1_proposer.py +274 -0
  943. vllm/spec_decode/util.py +276 -0
  944. vllm/test_utils.py +129 -0
  945. vllm/third_party/__init__.py +0 -0
  946. vllm/third_party/pynvml.py +6139 -0
  947. vllm/tracing.py +130 -0
  948. vllm/transformers_utils/__init__.py +19 -0
  949. vllm/transformers_utils/config.py +813 -0
  950. vllm/transformers_utils/configs/__init__.py +52 -0
  951. vllm/transformers_utils/configs/arctic.py +206 -0
  952. vllm/transformers_utils/configs/chatglm.py +71 -0
  953. vllm/transformers_utils/configs/cohere2.py +194 -0
  954. vllm/transformers_utils/configs/dbrx.py +280 -0
  955. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  956. vllm/transformers_utils/configs/eagle.py +65 -0
  957. vllm/transformers_utils/configs/exaone.py +191 -0
  958. vllm/transformers_utils/configs/falcon.py +89 -0
  959. vllm/transformers_utils/configs/h2ovl.py +15 -0
  960. vllm/transformers_utils/configs/internvl.py +53 -0
  961. vllm/transformers_utils/configs/jais.py +237 -0
  962. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  963. vllm/transformers_utils/configs/medusa.py +62 -0
  964. vllm/transformers_utils/configs/mllama.py +30 -0
  965. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  966. vllm/transformers_utils/configs/moonvit.py +32 -0
  967. vllm/transformers_utils/configs/mpt.py +179 -0
  968. vllm/transformers_utils/configs/nemotron.py +204 -0
  969. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  970. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  971. vllm/transformers_utils/configs/solar.py +246 -0
  972. vllm/transformers_utils/configs/telechat2.py +63 -0
  973. vllm/transformers_utils/configs/ultravox.py +107 -0
  974. vllm/transformers_utils/detokenizer.py +167 -0
  975. vllm/transformers_utils/detokenizer_utils.py +188 -0
  976. vllm/transformers_utils/processor.py +210 -0
  977. vllm/transformers_utils/processors/__init__.py +6 -0
  978. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  979. vllm/transformers_utils/s3_utils.py +161 -0
  980. vllm/transformers_utils/tokenizer.py +291 -0
  981. vllm/transformers_utils/tokenizer_base.py +146 -0
  982. vllm/transformers_utils/tokenizer_group.py +110 -0
  983. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  984. vllm/transformers_utils/tokenizers/mistral.py +483 -0
  985. vllm/transformers_utils/utils.py +98 -0
  986. vllm/triton_utils/__init__.py +5 -0
  987. vllm/triton_utils/importing.py +53 -0
  988. vllm/usage/__init__.py +0 -0
  989. vllm/usage/usage_lib.py +255 -0
  990. vllm/utils.py +2692 -0
  991. vllm/v1/__init__.py +0 -0
  992. vllm/v1/attention/__init__.py +0 -0
  993. vllm/v1/attention/backends/__init__.py +0 -0
  994. vllm/v1/attention/backends/flash_attn.py +783 -0
  995. vllm/v1/attention/backends/flashinfer.py +638 -0
  996. vllm/v1/attention/backends/mla/__init__.py +0 -0
  997. vllm/v1/attention/backends/mla/common.py +974 -0
  998. vllm/v1/attention/backends/mla/flashmla.py +149 -0
  999. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1000. vllm/v1/attention/backends/pallas.py +221 -0
  1001. vllm/v1/attention/backends/triton_attn.py +198 -0
  1002. vllm/v1/core/__init__.py +0 -0
  1003. vllm/v1/core/block_pool.py +281 -0
  1004. vllm/v1/core/encoder_cache_manager.py +149 -0
  1005. vllm/v1/core/kv_cache_manager.py +385 -0
  1006. vllm/v1/core/kv_cache_utils.py +744 -0
  1007. vllm/v1/core/sched/__init__.py +0 -0
  1008. vllm/v1/core/sched/interface.py +134 -0
  1009. vllm/v1/core/sched/output.py +126 -0
  1010. vllm/v1/core/sched/scheduler.py +838 -0
  1011. vllm/v1/core/sched/utils.py +22 -0
  1012. vllm/v1/core/specialized_manager.py +161 -0
  1013. vllm/v1/engine/__init__.py +166 -0
  1014. vllm/v1/engine/async_llm.py +532 -0
  1015. vllm/v1/engine/core.py +701 -0
  1016. vllm/v1/engine/core_client.py +942 -0
  1017. vllm/v1/engine/detokenizer.py +260 -0
  1018. vllm/v1/engine/exceptions.py +16 -0
  1019. vllm/v1/engine/llm_engine.py +285 -0
  1020. vllm/v1/engine/logprobs.py +198 -0
  1021. vllm/v1/engine/mm_input_cache.py +82 -0
  1022. vllm/v1/engine/output_processor.py +420 -0
  1023. vllm/v1/engine/parallel_sampling.py +132 -0
  1024. vllm/v1/engine/processor.py +387 -0
  1025. vllm/v1/executor/__init__.py +0 -0
  1026. vllm/v1/executor/abstract.py +112 -0
  1027. vllm/v1/executor/multiproc_executor.py +480 -0
  1028. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1029. vllm/v1/kv_cache_interface.py +166 -0
  1030. vllm/v1/metrics/__init__.py +0 -0
  1031. vllm/v1/metrics/loggers.py +498 -0
  1032. vllm/v1/metrics/stats.py +238 -0
  1033. vllm/v1/outputs.py +111 -0
  1034. vllm/v1/request.py +178 -0
  1035. vllm/v1/sample/__init__.py +0 -0
  1036. vllm/v1/sample/metadata.py +43 -0
  1037. vllm/v1/sample/ops/__init__.py +0 -0
  1038. vllm/v1/sample/ops/bad_words.py +38 -0
  1039. vllm/v1/sample/ops/penalties.py +58 -0
  1040. vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
  1041. vllm/v1/sample/rejection_sampler.py +631 -0
  1042. vllm/v1/sample/sampler.py +270 -0
  1043. vllm/v1/sample/tpu/__init__.py +0 -0
  1044. vllm/v1/sample/tpu/metadata.py +118 -0
  1045. vllm/v1/sample/tpu/sampler.py +154 -0
  1046. vllm/v1/serial_utils.py +274 -0
  1047. vllm/v1/spec_decode/__init__.py +0 -0
  1048. vllm/v1/spec_decode/eagle.py +318 -0
  1049. vllm/v1/spec_decode/metadata.py +61 -0
  1050. vllm/v1/spec_decode/metrics.py +164 -0
  1051. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1052. vllm/v1/spec_decode/utils.py +18 -0
  1053. vllm/v1/stats/__init__.py +0 -0
  1054. vllm/v1/stats/common.py +453 -0
  1055. vllm/v1/structured_output/__init__.py +113 -0
  1056. vllm/v1/structured_output/backend_guidance.py +215 -0
  1057. vllm/v1/structured_output/backend_types.py +96 -0
  1058. vllm/v1/structured_output/backend_xgrammar.py +299 -0
  1059. vllm/v1/structured_output/request.py +84 -0
  1060. vllm/v1/structured_output/utils.py +174 -0
  1061. vllm/v1/utils.py +249 -0
  1062. vllm/v1/worker/__init__.py +0 -0
  1063. vllm/v1/worker/block_table.py +87 -0
  1064. vllm/v1/worker/gpu_input_batch.py +677 -0
  1065. vllm/v1/worker/gpu_model_runner.py +1776 -0
  1066. vllm/v1/worker/gpu_worker.py +349 -0
  1067. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1068. vllm/v1/worker/tpu_model_runner.py +1419 -0
  1069. vllm/v1/worker/tpu_worker.py +260 -0
  1070. vllm/v1/worker/utils.py +74 -0
  1071. vllm/v1/worker/worker_base.py +64 -0
  1072. vllm/version.py +40 -0
  1073. vllm/vllm_flash_attn/.gitkeep +0 -0
  1074. vllm/worker/__init__.py +0 -0
  1075. vllm/worker/cache_engine.py +144 -0
  1076. vllm/worker/cpu_enc_dec_model_runner.py +323 -0
  1077. vllm/worker/cpu_model_runner.py +668 -0
  1078. vllm/worker/cpu_pooling_model_runner.py +122 -0
  1079. vllm/worker/cpu_worker.py +400 -0
  1080. vllm/worker/enc_dec_model_runner.py +542 -0
  1081. vllm/worker/hpu_model_runner.py +2221 -0
  1082. vllm/worker/hpu_worker.py +483 -0
  1083. vllm/worker/model_runner.py +2056 -0
  1084. vllm/worker/model_runner_base.py +281 -0
  1085. vllm/worker/multi_step_hpu_worker.py +122 -0
  1086. vllm/worker/multi_step_model_runner.py +908 -0
  1087. vllm/worker/multi_step_tpu_worker.py +107 -0
  1088. vllm/worker/multi_step_worker.py +196 -0
  1089. vllm/worker/neuron_model_runner.py +336 -0
  1090. vllm/worker/neuron_worker.py +138 -0
  1091. vllm/worker/pooling_model_runner.py +200 -0
  1092. vllm/worker/tpu_model_runner.py +908 -0
  1093. vllm/worker/tpu_worker.py +332 -0
  1094. vllm/worker/utils.py +52 -0
  1095. vllm/worker/worker.py +570 -0
  1096. vllm/worker/worker_base.py +644 -0
  1097. vllm/worker/xpu_model_runner.py +603 -0
  1098. vllm/worker/xpu_worker.py +185 -0
  1099. vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
  1100. vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
  1101. vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
  1102. vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
  1103. vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
vllm/sequence.py ADDED
@@ -0,0 +1,1486 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ """Sequence and its related classes."""
3
+ import copy
4
+ import enum
5
+ from abc import ABC, abstractmethod
6
+ from array import array
7
+ from collections import defaultdict
8
+ from collections.abc import Mapping
9
+ from collections.abc import Sequence as GenericSequence
10
+ from dataclasses import dataclass, field
11
+ from functools import reduce
12
+ from typing import Any, Callable, Optional, Union
13
+
14
+ import msgspec
15
+ import torch
16
+
17
+ from vllm.inputs import SingletonInputs
18
+ from vllm.lora.request import LoRARequest
19
+ from vllm.multimodal import MultiModalKwargs, MultiModalPlaceholderDict
20
+ from vllm.pooling_params import PoolingParams
21
+ from vllm.prompt_adapter.request import PromptAdapterRequest
22
+ from vllm.sampling_params import RequestOutputKind, SamplingParams
23
+
24
+ VLLM_TOKEN_ID_ARRAY_TYPE = "l"
25
+
26
+ VLLM_INVALID_TOKEN_ID = -1
27
+
28
+
29
+ def array_full(token_id: int, count: int):
30
+ """:class:`array` equivalent of :func:`numpy.full`."""
31
+ return array(VLLM_TOKEN_ID_ARRAY_TYPE, [token_id]) * count
32
+
33
+
34
+ # We use dataclass for now because it is used for
35
+ # openai server output, and msgspec is not serializable.
36
+ # TODO(sang): Fix it.
37
+ @dataclass
38
+ class Logprob:
39
+ """Infos for supporting OpenAI compatible logprobs and token ranks.
40
+
41
+ Attributes:
42
+ logprob: The logprob of chosen token
43
+ rank: The vocab rank of chosen token (>=1)
44
+ decoded_token: The decoded chosen token index
45
+ """
46
+ logprob: float
47
+ rank: Optional[int] = None
48
+ decoded_token: Optional[str] = None
49
+
50
+
51
+ # {token_id -> logprob} per each sequence group. None if the corresponding
52
+ # sequence group doesn't require prompt logprob.
53
+ PromptLogprobs = list[Optional[dict[int, Logprob]]]
54
+ # {token_id -> logprob} for each sequence group.
55
+ SampleLogprobs = list[dict[int, Logprob]]
56
+
57
+
58
+ class SequenceStatus(enum.IntEnum):
59
+ """Status of a sequence."""
60
+ WAITING = 0
61
+ RUNNING = 1
62
+ SWAPPED = 2
63
+ # Note: anything after SWAPPED (2) will be considered
64
+ # as a finished status.
65
+ FINISHED_STOPPED = 3
66
+ FINISHED_LENGTH_CAPPED = 4
67
+ FINISHED_ABORTED = 5
68
+ FINISHED_IGNORED = 6
69
+
70
+ @staticmethod
71
+ def is_finished(status: "SequenceStatus") -> bool:
72
+ return status > SequenceStatus.SWAPPED
73
+
74
+ @staticmethod
75
+ def get_finished_reason(status: "SequenceStatus") -> Union[str, None]:
76
+ if status == SequenceStatus.FINISHED_STOPPED:
77
+ finish_reason = "stop"
78
+ elif status == SequenceStatus.FINISHED_LENGTH_CAPPED:
79
+ finish_reason = "length"
80
+ elif status == SequenceStatus.FINISHED_ABORTED:
81
+ finish_reason = "abort"
82
+ elif status == SequenceStatus.FINISHED_IGNORED:
83
+ # The ignored sequences are the sequences whose prompt lengths
84
+ # are longer than the model's length cap. Therefore, the stop
85
+ # reason should also be "length" as in OpenAI API.
86
+ finish_reason = "length"
87
+ else:
88
+ finish_reason = None
89
+ return finish_reason
90
+
91
+
92
+ class SequenceStage(enum.Enum):
93
+ PREFILL = enum.auto()
94
+ DECODE = enum.auto()
95
+
96
+
97
+ @dataclass
98
+ class RequestMetrics:
99
+ """Metrics associated with a request.
100
+
101
+ Attributes:
102
+ arrival_time: The time when the request arrived.
103
+ first_scheduled_time: The time when the request was first scheduled.
104
+ first_token_time: The time when the first token was generated.
105
+ time_in_queue: The time the request spent in the queue.
106
+ finished_time: The time when the request was finished.
107
+ scheduler_time: The time spent in the scheduler when this request was
108
+ being considered by the scheduler.
109
+ model_forward_time: The time spent in the model forward pass when this
110
+ request was in the batch.
111
+ model_execute_time: The time spent in the model execute function. This
112
+ will include model forward, block/sync across
113
+ workers, cpu-gpu sync time and sampling time.
114
+ spec_token_acceptance_counts: number of accepted speculative tokens at
115
+ each position; the first token is from
116
+ the target model and is always accepted;
117
+ e.g., when it's [10, 8, 4, 2] for a req,
118
+ it means there were 10 forward passes in
119
+ total, and there were 8, 4, 2 accepted
120
+ tokens at 1st, 2nd, 3rd speculation step.
121
+ """
122
+ arrival_time: float
123
+ last_token_time: float
124
+ first_scheduled_time: Optional[float]
125
+ first_token_time: Optional[float]
126
+ time_in_queue: Optional[float]
127
+ finished_time: Optional[float] = None
128
+ scheduler_time: Optional[float] = None
129
+ model_forward_time: Optional[float] = None
130
+ model_execute_time: Optional[float] = None
131
+ spec_token_acceptance_counts: Optional[list[int]] = None
132
+
133
+
134
+ class SequenceDataDelta(
135
+ msgspec.Struct,
136
+ array_like=True, # type: ignore[call-arg]
137
+ omit_defaults=True): # type: ignore[call-arg]
138
+ """Delta SequenceData to send to workers per step."""
139
+ # A new token to be appended to existing SequenceData.
140
+ new_output_token_ids: list[int]
141
+ # Overwriting existing `cumulative_logprob`
142
+ new_cumulative_logprob: float
143
+ # Overwriting existing `num_computed_tokens`.
144
+ new_num_computed_tokens: int
145
+ # Overwriting existing `stage`.
146
+ new_stage: SequenceStage
147
+
148
+
149
+ class SequenceData(msgspec.Struct,
150
+ omit_defaults=True): # type: ignore[call-arg]
151
+ """Data associated with a sequence.
152
+
153
+ Args:
154
+ prompt_token_ids: The token IDs of the prompt.
155
+ output_token_ids: The token IDs of the output. Set to an empty list if
156
+ None.
157
+
158
+ Attributes:
159
+ prompt_token_ids: The token IDs of the prompt.
160
+ output_token_ids: The token IDs of the output.
161
+ cumulative_logprob: The cumulative log probability of the output.
162
+ """
163
+ # NOTE: we cannot use Union[list, array] because msgspec cannot support
164
+ # union of 2 list types.
165
+ _prompt_token_ids: array
166
+ _output_token_ids: array = msgspec.field(
167
+ default_factory=lambda: array(VLLM_TOKEN_ID_ARRAY_TYPE, []))
168
+
169
+ ### The below fields should not be passed as an argument ###
170
+ _cumulative_logprob: float = 0.0
171
+ _prompt_token_ids_tuple: tuple[int,
172
+ ...] = msgspec.field(default_factory=tuple)
173
+ # The number of tokens that are computed (that run against the model).
174
+ _num_computed_tokens: int = 0
175
+ # The number of tokens with prefix cache hit.
176
+ _num_cached_tokens: int = 0
177
+ _stage: SequenceStage = SequenceStage.PREFILL
178
+ _cached_all_token_ids: list[int] = msgspec.field(default_factory=list)
179
+
180
+ # It is used to get delta input. It is reset when `get_delta_and_reset`
181
+ # is called.
182
+ _new_appended_tokens: list[int] = msgspec.field(default_factory=list)
183
+
184
+ # It is used to compute mrope_position_ids.
185
+ _mrope_position_delta: Optional[int] = None
186
+
187
+ @staticmethod
188
+ def from_prompt_token_counts(
189
+ *token_counts: tuple[int, int]) -> "SequenceData":
190
+ """
191
+ Construct a :class:`SequenceData` instance by concatenating
192
+ prompt token sequences.
193
+
194
+ Each tuple represents one token sequence, expressed in the form
195
+ :code:`(token_id, count)`.
196
+ """
197
+ if len(token_counts) == 0:
198
+ return SequenceData.from_seqs([])
199
+
200
+ prompt_token_ids_arr = reduce(
201
+ array.__iadd__,
202
+ (array_full(token_id, count) for token_id, count in token_counts),
203
+ )
204
+
205
+ return SequenceData(prompt_token_ids_arr)
206
+
207
+ @staticmethod
208
+ def from_seqs(
209
+ prompt_token_ids: GenericSequence[int],
210
+ output_token_ids: Optional[GenericSequence[int]] = None,
211
+ ) -> "SequenceData":
212
+ """
213
+ Construct a :class:`SequenceData` instance from prompt and output
214
+ token sequences.
215
+ """
216
+ prompt_token_ids_arr = array(VLLM_TOKEN_ID_ARRAY_TYPE,
217
+ prompt_token_ids)
218
+
219
+ if output_token_ids is None:
220
+ return SequenceData(prompt_token_ids_arr)
221
+
222
+ output_token_ids_arr = array(VLLM_TOKEN_ID_ARRAY_TYPE,
223
+ output_token_ids)
224
+
225
+ return SequenceData(prompt_token_ids_arr,
226
+ _output_token_ids=output_token_ids_arr)
227
+
228
+ def __post_init__(self) -> None:
229
+ assert self._prompt_token_ids.typecode == "l"
230
+ assert self._output_token_ids.typecode == "l"
231
+ self._prompt_token_ids_tuple: tuple[int, ...] = tuple(
232
+ self._prompt_token_ids)
233
+ self._update_cached_all_tokens()
234
+
235
+ def _update_cached_all_tokens(self):
236
+ assert isinstance(self._prompt_token_ids, array)
237
+ assert isinstance(self._output_token_ids, array)
238
+ self._cached_all_token_ids: list[int] = list(self._prompt_token_ids +
239
+ self._output_token_ids)
240
+
241
+ @property
242
+ def cumulative_logprob(self) -> float:
243
+ return self._cumulative_logprob
244
+
245
+ @property
246
+ def prompt_token_ids(self) -> tuple[int, ...]:
247
+ return self._prompt_token_ids_tuple
248
+
249
+ @prompt_token_ids.setter
250
+ def prompt_token_ids(self, new_prompt_token_ids) -> None:
251
+ raise NotImplementedError
252
+
253
+ @property
254
+ def prompt_token_ids_array(self) -> array:
255
+ """Return the prompt token ids in array type.
256
+
257
+ Note that the array is in "I" type, and it is not compatible
258
+ with torch.long (2 bytes vs 4 bytes). So beware of the usage.
259
+ """
260
+ return self._prompt_token_ids
261
+
262
+ @property
263
+ def output_token_ids(self) -> tuple[int, ...]:
264
+ return tuple(self._output_token_ids)
265
+
266
+ @output_token_ids.setter
267
+ def output_token_ids(self,
268
+ new_output_token_ids: GenericSequence[int]) -> None:
269
+ self._output_token_ids = array(VLLM_TOKEN_ID_ARRAY_TYPE,
270
+ new_output_token_ids)
271
+ self._update_cached_all_tokens()
272
+
273
+ @property
274
+ def output_token_ids_array(self) -> array:
275
+ """Return the prompt token ids in array type.
276
+
277
+ Note that the array is in "I" type, and it is not compatible
278
+ with torch.long (2 bytes vs 4 bytes). So beware of the usage.
279
+ """
280
+ assert isinstance(self._output_token_ids, array)
281
+ return self._output_token_ids
282
+
283
+ @property
284
+ def mrope_position_delta(self) -> Optional[int]:
285
+ return self._mrope_position_delta
286
+
287
+ @mrope_position_delta.setter
288
+ def mrope_position_delta(self, new_mrope_position_delta):
289
+ self._mrope_position_delta = new_mrope_position_delta
290
+
291
+ def append_token_id(self, token_id: int, logprob: float) -> None:
292
+ self._output_token_ids.append(token_id)
293
+ self._new_appended_tokens.append(token_id)
294
+ self._cached_all_token_ids.append(token_id)
295
+ self._cumulative_logprob += logprob
296
+
297
+ def get_len(self) -> int:
298
+ return len(self._output_token_ids) + len(self._prompt_token_ids)
299
+
300
+ def get_prompt_len(self) -> int:
301
+ return len(self._prompt_token_ids)
302
+
303
+ def get_output_len(self) -> int:
304
+ return len(self._output_token_ids)
305
+
306
+ def get_token_ids(self) -> list[int]:
307
+ return self._cached_all_token_ids
308
+
309
+ def get_prefix_token_ids(
310
+ self, num_tokens: int
311
+ ) -> tuple[tuple[int, ...], Optional[tuple[int, ...]]]:
312
+ """Get prefix tokens, and make the return value hashable"""
313
+ prompt_length = self.get_prompt_len()
314
+ if num_tokens > prompt_length:
315
+ return (self._prompt_token_ids_tuple,
316
+ tuple(self._output_token_ids[:num_tokens - prompt_length]))
317
+ else:
318
+ return (self._prompt_token_ids_tuple[:num_tokens], None)
319
+
320
+ def get_num_computed_tokens(self) -> int:
321
+ """Return the number of prefill tokens that are already computed."""
322
+ return self._num_computed_tokens
323
+
324
+ def update_num_computed_tokens(self, num_new_computed_tokens: int):
325
+ """Update number of tokens computed so far."""
326
+ self._num_computed_tokens += num_new_computed_tokens
327
+ assert self._num_computed_tokens <= self.get_len(), (
328
+ self._num_computed_tokens, self.get_len())
329
+ # If all tokens are computed, it means it is in decoding phase.
330
+ if self.get_num_uncomputed_tokens() == 0:
331
+ self._stage = SequenceStage.DECODE
332
+
333
+ def get_num_cached_tokens(self) -> int:
334
+ """Return the number of tokens with prefix cache hit."""
335
+ return self._num_cached_tokens
336
+
337
+ def update_num_cached_tokens(self, num_cached_tokens: int):
338
+ """Update the number of tokens with prefix cache hit."""
339
+ self._num_cached_tokens = num_cached_tokens
340
+
341
+ def reset_state_for_recompute(self) -> None:
342
+ """Reset the number of computed tokens from this sequence. It is
343
+ supposed to be called when a sequence needs to be started from
344
+ the beginning again (e.g., sequence is preempted).
345
+ """
346
+ self._num_computed_tokens = 0
347
+ self._stage = SequenceStage.PREFILL
348
+ self._new_appended_tokens = []
349
+
350
+ def get_num_uncomputed_tokens(self) -> int:
351
+ """Return the number of prefill tokens that are not computed."""
352
+ # we use `get_len()` which includes prompt_len + output_len instead
353
+ # of prompt_len here. This is because during recompute we need to
354
+ # prefill for both prompt and output.
355
+ return self.get_len() - self.get_num_computed_tokens()
356
+
357
+ def get_last_token_id(self) -> int:
358
+ if not self._output_token_ids:
359
+ return self._prompt_token_ids[-1]
360
+ return self._output_token_ids[-1]
361
+
362
+ def get_prompt_token_ids(self) -> tuple[int, ...]:
363
+ return self.prompt_token_ids
364
+
365
+ def get_output_token_ids(self) -> tuple[int, ...]:
366
+ return self.output_token_ids
367
+
368
+ def get_delta_and_reset(self) -> SequenceDataDelta:
369
+ delta = SequenceDataDelta(self._new_appended_tokens,
370
+ self._cumulative_logprob,
371
+ self.get_num_computed_tokens(), self.stage)
372
+ # Reset delta state.
373
+ self._new_appended_tokens = []
374
+ return delta
375
+
376
+ def apply_delta(self, delta: SequenceDataDelta):
377
+ self._num_computed_tokens = delta.new_num_computed_tokens
378
+ self._cumulative_logprob = delta.new_cumulative_logprob
379
+ self._stage = delta.new_stage
380
+ self._output_token_ids.extend(delta.new_output_token_ids)
381
+ self._cached_all_token_ids.extend(delta.new_output_token_ids)
382
+
383
+ @property
384
+ def stage(self) -> SequenceStage:
385
+ return self._stage
386
+
387
+ def __repr__(self) -> str:
388
+ return (f"SequenceData("
389
+ f"prompt_token_ids={self._prompt_token_ids}, "
390
+ f"output_token_ids={self.output_token_ids}, "
391
+ f"cumulative_logprob={self.cumulative_logprob}, "
392
+ f"get_num_computed_tokens={self.get_num_computed_tokens()})")
393
+
394
+
395
+ class Sequence:
396
+ """Stores the data, status, and block information of a sequence.
397
+
398
+ The sequence is constructed from the :data:`DecoderOnlyInputs`
399
+ (for decoder-only) or :data:`EncoderDecoderInputs` (for encoder-decoder)
400
+ instance passed in through the :code:`inputs` constructor argument.
401
+
402
+ Args:
403
+ seq_id: The ID of the sequence.
404
+ inputs: The inputs of the sequence.
405
+ block_size: The block size of the sequence. Should be the same as the
406
+ block size used by the block manager and cache engine.
407
+ eos_token_id: The end-of-sequence (EOS) token id recognized by this LLM.
408
+ lora_request: LoRA request.
409
+ prompt_adapter_request: Prompt Adapter request.
410
+ """
411
+
412
+ def __init__(
413
+ self,
414
+ seq_id: int,
415
+ inputs: SingletonInputs,
416
+ block_size: int,
417
+ eos_token_id: Optional[int] = None,
418
+ lora_request: Optional[LoRARequest] = None,
419
+ prompt_adapter_request: Optional[PromptAdapterRequest] = None,
420
+ ) -> None:
421
+ self.seq_id = seq_id
422
+ self.inputs = inputs
423
+ self.block_size = block_size
424
+ self.eos_token_id = eos_token_id
425
+ self.lora_request = lora_request
426
+ self.prompt_adapter_request = prompt_adapter_request
427
+
428
+ self.data = SequenceData.from_seqs(self.prompt_token_ids)
429
+ self.output_logprobs: SampleLogprobs = []
430
+ self.output_text = ""
431
+
432
+ self.status = SequenceStatus.WAITING
433
+ self.stop_reason: Union[int, str, None] = None
434
+
435
+ # These are used to keep track of delta outputs
436
+ self._last_output_token_ids_offset: int = 0
437
+ self._last_output_text_offset: int = 0
438
+
439
+ # Used for incremental detokenization
440
+ self.prefix_offset = 0
441
+ self.read_offset = 0
442
+ # Input + output tokens
443
+ self.tokens: Optional[list[str]] = None
444
+
445
+ @property
446
+ def n_blocks(self) -> int:
447
+ return (self.get_len() + self.block_size - 1) // self.block_size
448
+
449
+ @property
450
+ def prompt(self) -> Optional[str]:
451
+ return self.inputs.get("prompt")
452
+
453
+ @property
454
+ def prompt_token_ids(self) -> list[int]:
455
+ return self.inputs["prompt_token_ids"]
456
+
457
+ @property
458
+ def token_type_ids(self) -> list[int]:
459
+ return self.inputs.get("token_type_ids", [])
460
+
461
+ @property
462
+ def multi_modal_data(self) -> MultiModalKwargs:
463
+ if self.inputs["type"] == "multimodal":
464
+ return self.inputs["mm_kwargs"]
465
+
466
+ return MultiModalKwargs({})
467
+
468
+ @property
469
+ def multi_modal_placeholders(self) -> MultiModalPlaceholderDict:
470
+ if self.inputs["type"] == "multimodal":
471
+ return self.inputs["mm_placeholders"]
472
+
473
+ return {}
474
+
475
+ @property
476
+ def lora_int_id(self) -> int:
477
+ return self.lora_request.lora_int_id if self.lora_request else 0
478
+
479
+ @property
480
+ def prompt_adapter_id(self) -> int:
481
+ return self.prompt_adapter_request.prompt_adapter_id \
482
+ if self.prompt_adapter_request else 0
483
+
484
+ def get_output_text_to_return(self, buffer_length: int,
485
+ delta: bool) -> str:
486
+ """If delta is True, only new text since the last call to
487
+ this method is returned"""
488
+
489
+ # We return the full output text if the sequence is finished.
490
+ truncate = buffer_length and not self.is_finished()
491
+ if not delta:
492
+ return self.output_text[:-buffer_length] if truncate else (
493
+ self.output_text)
494
+ length = len(self.output_text)
495
+ if truncate:
496
+ length -= buffer_length
497
+ last_offset = self._last_output_text_offset
498
+ if last_offset < length:
499
+ self._last_output_text_offset = length
500
+ return self.output_text[last_offset:length]
501
+ return ""
502
+
503
+ def get_output_token_ids_to_return(
504
+ self, delta: bool) -> Union[GenericSequence[int], int]:
505
+ """If delta is True, only new tokens since the last call to
506
+ this method are returned"""
507
+ if not delta:
508
+ return self.get_output_token_ids()
509
+
510
+ output_len = self.get_output_len()
511
+
512
+ # Get the number of new tokens
513
+ num_new_tokens = output_len - self._last_output_token_ids_offset
514
+ self._last_output_token_ids_offset = output_len
515
+
516
+ # Return new tokens
517
+ if num_new_tokens == 1:
518
+ # Optimization for single decode token case
519
+ # (which is what we have most of the time)
520
+ return self.data._cached_all_token_ids[-1]
521
+
522
+ if num_new_tokens == 0:
523
+ return []
524
+
525
+ return self.data._cached_all_token_ids[-num_new_tokens:]
526
+
527
+ def hash_of_block(self, logical_idx: int) -> int:
528
+ # TODO This can produce incorrect hash when block size > prompt size
529
+
530
+ # Compute the number of tokens in the sequence
531
+ # TODO: The current hashing function is O(L^2). We should optimize
532
+ # this in the future.
533
+ num_tokens = self.num_hashed_tokens_of_block(logical_idx)
534
+ hashed_tokens = self.data.get_prefix_token_ids(num_tokens)
535
+ return hash((hashed_tokens, self.lora_int_id))
536
+
537
+ def extra_hash(self) -> Optional[int]:
538
+ """
539
+ This function computes an extra hash for a sequence, specifically
540
+ designed for prefix caching mode. The final sequence hash is determined
541
+ by applying token_ids from the sequence's blocks.
542
+ """
543
+ if self.prompt_adapter_id == 0 and self.lora_int_id == 0:
544
+ return None
545
+
546
+ # NOTE: If there are additional factors influencing the block aside from
547
+ # token_ids, include them as input parameters to the hash.
548
+ return hash((self.prompt_adapter_id, self.lora_int_id))
549
+
550
+ def num_hashed_tokens_of_block(self, logical_idx: int):
551
+ return logical_idx * self.block_size + self.block_size
552
+
553
+ def reset_state_for_recompute(self):
554
+ """Reset the sequence states for recomputation."""
555
+ self.data.reset_state_for_recompute()
556
+
557
+ def append_token_id(self, token_id: int, logprobs: dict[int,
558
+ Logprob]) -> None:
559
+ assert token_id in logprobs
560
+ self.output_logprobs.append(logprobs)
561
+ self.data.append_token_id(token_id, logprobs[token_id].logprob)
562
+
563
+ def get_len(self) -> int:
564
+ return self.data.get_len()
565
+
566
+ def get_prompt_len(self) -> int:
567
+ return self.data.get_prompt_len()
568
+
569
+ def get_output_len(self) -> int:
570
+ return self.data.get_output_len()
571
+
572
+ def get_token_ids(self) -> list[int]:
573
+ return self.data.get_token_ids()
574
+
575
+ def get_prompt_token_ids(self) -> tuple[int, ...]:
576
+ return self.data.get_prompt_token_ids()
577
+
578
+ def get_last_token_id(self) -> int:
579
+ return self.data.get_last_token_id()
580
+
581
+ def get_output_token_ids(self) -> tuple[int, ...]:
582
+ return self.data.get_output_token_ids()
583
+
584
+ def get_cumulative_logprob(self) -> float:
585
+ return self.data.cumulative_logprob
586
+
587
+ def is_finished(self) -> bool:
588
+ return SequenceStatus.is_finished(self.status)
589
+
590
+ def fork(self, new_seq_id: int) -> "Sequence":
591
+ new_seq = copy.deepcopy(self)
592
+ new_seq.seq_id = new_seq_id
593
+ return new_seq
594
+
595
+ def get_num_new_tokens(self) -> int:
596
+ """Get the number of new tokens to be computed.
597
+
598
+ Returns:
599
+ The new number of tokens to be computed. I.e., 1 for decode, or
600
+ the remaining prompt size for prefill.
601
+ """
602
+ if self.data.stage == SequenceStage.DECODE:
603
+ return 1
604
+ return self.data.get_num_uncomputed_tokens()
605
+
606
+ def get_num_computed_tokens(self) -> int:
607
+ return self.data.get_num_computed_tokens()
608
+
609
+ def is_prefill(self) -> bool:
610
+ return self.data.stage == SequenceStage.PREFILL
611
+
612
+ def __repr__(self) -> str:
613
+ return (f"Sequence(seq_id={self.seq_id}, "
614
+ f"status={self.status.name}, "
615
+ f"num_blocks={self.n_blocks})")
616
+
617
+
618
+ class SequenceGroupState(msgspec.Struct,
619
+ omit_defaults=True): # type: ignore[call-arg]
620
+ """Mutable state tied to a specific sequence group"""
621
+
622
+ # for multi-step decoding
623
+ num_steps: int = 1
624
+ current_step: int = 0
625
+
626
+ @property
627
+ def remaining_steps(self) -> int:
628
+ return self.num_steps - self.current_step
629
+
630
+
631
+ class SequenceGroup:
632
+ """A group of sequences that are generated from the same prompt.
633
+
634
+ Args:
635
+ request_id: The ID of the request.
636
+ seqs: The list of sequences.
637
+ sampling_params: The sampling parameters used to generate the outputs.
638
+ arrival_time: The arrival time of the request.
639
+ lora_request: LoRA request.
640
+ pooling_params: The parameters used to generate the pooler
641
+ for a pooling model.
642
+ pooled_data: The extracted hidden states from a pooling model.
643
+ encoder_seq: Optional, the single encoder sequence. Should be None
644
+ unless you are working with an encoder/decoder model.
645
+ trace_headers: OpenTelemetry trace headers.
646
+ prompt_adapter_request: Prompt Adapter request.
647
+ priority: User-defined priority of the request.
648
+ draft_size: The number of speculative tokens plus one from the target
649
+ model; equal to max number of tokens a step can generate
650
+ for single-draft speculative decoding but larger than
651
+ that for multi-draft SD (currently not supported).
652
+ """
653
+
654
+ def __init__(self,
655
+ request_id: str,
656
+ seqs: list[Sequence],
657
+ arrival_time: float,
658
+ sampling_params: Optional[SamplingParams] = None,
659
+ lora_request: Optional[LoRARequest] = None,
660
+ pooling_params: Optional[PoolingParams] = None,
661
+ pooled_data: Optional[torch.Tensor] = None,
662
+ encoder_seq: Optional[Sequence] = None,
663
+ trace_headers: Optional[Mapping[str, str]] = None,
664
+ prompt_adapter_request: Optional[PromptAdapterRequest] = None,
665
+ priority: int = 0,
666
+ draft_size: int = 1) -> None:
667
+ self.request_id = request_id
668
+ self.seqs = seqs
669
+ self.first_seq = seqs[0]
670
+ self.arrival_time = arrival_time
671
+ self.is_single_seq = len(seqs) == 1
672
+ self.seqs_dict = {seq.seq_id: seq for seq in seqs}
673
+
674
+ self.sampling_params = sampling_params
675
+ self.metrics = RequestMetrics(arrival_time=arrival_time,
676
+ last_token_time=arrival_time,
677
+ first_scheduled_time=None,
678
+ first_token_time=None,
679
+ time_in_queue=None,
680
+ spec_token_acceptance_counts=[0] *
681
+ draft_size)
682
+ self.last_token_latency = 0.0
683
+ self.lora_request = lora_request
684
+ self.prompt_logprobs: Optional[PromptLogprobs] = None
685
+ self.state = SequenceGroupState()
686
+ self.pooling_params = pooling_params
687
+ self.pooled_data = pooled_data
688
+ self.prompt_adapter_request = prompt_adapter_request
689
+ self.encoder_seq = encoder_seq
690
+ self.trace_headers = trace_headers
691
+ self.priority = priority
692
+
693
+ self.cached_request_output = None
694
+
695
+ @property
696
+ def prompt(self) -> Optional[str]:
697
+ return self.first_seq.prompt
698
+
699
+ @property
700
+ def prompt_token_ids(self) -> list[int]:
701
+ return self.first_seq.prompt_token_ids
702
+
703
+ @property
704
+ def encoder_prompt(self) -> Optional[str]:
705
+ # There are either 0 or 1 encoder sequences
706
+ # If one is present, its prompt is distinct
707
+ # from the decoder's.
708
+ return (self.encoder_seq.prompt
709
+ if self.encoder_seq is not None else None)
710
+
711
+ @property
712
+ def encoder_prompt_token_ids(self) -> Optional[list[int]]:
713
+ # There are either 0 or 1 encoder sequences
714
+ # If one is present, its prompt token ids are
715
+ # distinct from the decoder's.
716
+ return (self.encoder_seq.prompt_token_ids
717
+ if self.encoder_seq is not None else None)
718
+
719
+ @property
720
+ def token_type_ids(self) -> Optional[list[int]]:
721
+ return self.first_seq.token_type_ids
722
+
723
+ @property
724
+ def multi_modal_data(self) -> MultiModalKwargs:
725
+ if self.first_seq.multi_modal_data:
726
+ return self.first_seq.multi_modal_data
727
+ elif self.encoder_seq is not None:
728
+ return self.encoder_seq.multi_modal_data
729
+ return MultiModalKwargs({})
730
+
731
+ @property
732
+ def multi_modal_placeholders(self) -> MultiModalPlaceholderDict:
733
+ if self.first_seq.multi_modal_data:
734
+ return self.first_seq.multi_modal_placeholders
735
+ elif self.encoder_seq is not None:
736
+ return self.encoder_seq.multi_modal_placeholders
737
+ return {}
738
+
739
+ @property
740
+ def lora_int_id(self) -> int:
741
+ return self.lora_request.lora_int_id if self.lora_request else 0
742
+
743
+ @property
744
+ def prompt_adapter_id(self) -> int:
745
+ return self.prompt_adapter_request.prompt_adapter_id \
746
+ if self.prompt_adapter_request else 0
747
+
748
+ @property
749
+ def prompt_adapter_num_virtual_tokens(self) -> int:
750
+ return self.prompt_adapter_request.prompt_adapter_num_virtual_tokens\
751
+ if self.prompt_adapter_request else 0
752
+
753
+ def init_multi_step(self, num_steps: int) -> None:
754
+ self.state.num_steps = num_steps
755
+ self.state.current_step = 0
756
+
757
+ def init_multi_step_from_lookahead_slots(self, num_lookahead_slots: int,
758
+ num_scheduler_steps: int,
759
+ is_multi_step: bool,
760
+ enable_chunking: bool) -> None:
761
+
762
+ if not is_multi_step:
763
+ self.init_multi_step(num_steps=num_scheduler_steps)
764
+ return
765
+
766
+ # Multi-Step case
767
+ is_prefill = self.is_prefill()
768
+
769
+ # The asserts below reflect the expectations of the current system.
770
+ if is_prefill and enable_chunking:
771
+ assert num_lookahead_slots == num_scheduler_steps
772
+ self.init_multi_step(num_steps=num_lookahead_slots)
773
+ else:
774
+ is_decode: bool = not is_prefill
775
+ # If it is a prefill, num_lookahead_slots must be 0
776
+ assert num_lookahead_slots == 0 or is_decode
777
+ # If it is a decode, num_lookahead_slots + 1 must match
778
+ # the scheduler steps.
779
+ assert num_lookahead_slots + 1 == num_scheduler_steps or is_prefill
780
+ self.init_multi_step(num_steps=num_lookahead_slots + 1)
781
+
782
+ def set_last_token_time(self, now: float) -> None:
783
+ """Sets the last token time for Request level timings."""
784
+ # If still in prefill phase, assertion fails.
785
+ assert not self.is_prefill(), (
786
+ "seq_group.set_last_token_time() should not be called "
787
+ "if the seq_group is in prefill phase.")
788
+ self.last_token_latency = now - self.metrics.last_token_time
789
+ self.metrics.last_token_time = now
790
+
791
+ def get_last_token_latency(self) -> float:
792
+ """Returns the latency of the last token."""
793
+ assert not self.is_prefill(), (
794
+ "seq_group.get_last_token_latency() should not be called "
795
+ "if the seq_group is in prefill phase.")
796
+ return self.last_token_latency
797
+
798
+ def maybe_set_first_token_time(self, time: float) -> None:
799
+ """Sets the first token time for Request level timings."""
800
+ # Note: in a case where a sequence_group is swapped and
801
+ # recomputed, the time between iterations is counted
802
+ # in TPOT, rather than recalculating TTFT (since from the )
803
+ # POV of the user, there is simply a long generation delay.
804
+ if (self.metrics.first_token_time is None
805
+ and self.first_seq.get_output_len() == 1):
806
+ self.metrics.first_token_time = time
807
+
808
+ def maybe_set_first_scheduled_time(self, time: float) -> None:
809
+ """Sets the first scheduled time and time in queue for Request
810
+ level timings."""
811
+ if self.metrics.first_scheduled_time is None:
812
+ self.metrics.first_scheduled_time = time
813
+ self.metrics.time_in_queue = time - self.metrics.arrival_time
814
+
815
+ def set_finished_time(self, time: Optional[float]) -> None:
816
+ """Sets the finished time for Request level timings."""
817
+ self.metrics.finished_time = time
818
+
819
+ def get_max_num_running_seqs(self) -> int:
820
+ """The maximum number of sequences running in parallel in the remaining
821
+ lifetime of the request."""
822
+ if self.is_single_seq:
823
+ return 0 if self.first_seq.is_finished() else 1
824
+ return self.num_seqs() - self.num_finished_seqs()
825
+
826
+ def get_seqs(
827
+ self,
828
+ status: Optional[SequenceStatus] = None,
829
+ ) -> list[Sequence]:
830
+ if status is None:
831
+ return self.seqs
832
+
833
+ if self.is_single_seq:
834
+ return self.seqs if self.first_seq.status == status else []
835
+
836
+ return [seq for seq in self.seqs if seq.status == status]
837
+
838
+ def is_encoder_decoder(self) -> bool:
839
+ return self.encoder_seq is not None
840
+
841
+ def get_encoder_seq(self) -> Optional[Sequence]:
842
+ return self.encoder_seq
843
+
844
+ def get_finished_seqs(self) -> list[Sequence]:
845
+ if self.is_single_seq:
846
+ return self.seqs if self.first_seq.is_finished() else []
847
+
848
+ return [seq for seq in self.seqs if seq.is_finished()]
849
+
850
+ def update_num_computed_tokens(self, num_new_computed_tokens: int):
851
+ """Update number of tokens computed so far."""
852
+ for seq in self.seqs:
853
+ if not seq.is_finished():
854
+ seq.data.update_num_computed_tokens(num_new_computed_tokens)
855
+
856
+ def get_num_uncomputed_tokens(self) -> int:
857
+ num_uncomputed_tokens = 0
858
+ for seq in self.seqs:
859
+ if not seq.is_finished():
860
+ num_uncomputed_tokens += seq.data.get_num_uncomputed_tokens()
861
+ return num_uncomputed_tokens
862
+
863
+ def num_seqs(self, status: Optional[SequenceStatus] = None) -> int:
864
+ # Optimization. We don't need to call get_seqs if we don't need to
865
+ # filter by states.
866
+ if status is None:
867
+ return len(self.seqs)
868
+
869
+ if self.is_single_seq:
870
+ return 1 if self.seqs[0].status == status else 0
871
+
872
+ return len(self.get_seqs(status))
873
+
874
+ def num_finished_seqs(self) -> int:
875
+ if self.is_single_seq:
876
+ return 1 if self.seqs[0].is_finished() else 0
877
+ return len(self.get_finished_seqs())
878
+
879
+ def is_finished(self) -> bool:
880
+ if self.is_single_seq:
881
+ return self.first_seq.is_finished()
882
+ return all(seq.is_finished() for seq in self.seqs)
883
+
884
+ def is_prefill(self) -> bool:
885
+ return self.first_seq.is_prefill()
886
+
887
+ def __repr__(self) -> str:
888
+ return (f"SequenceGroup(request_id={self.request_id}, "
889
+ f"sampling_params={self.sampling_params}, "
890
+ f"num_seqs={len(self.seqs)})")
891
+
892
+
893
+ class SequenceGroupMetadataDelta(
894
+ msgspec.Struct,
895
+ tag=True, # type: ignore[call-arg]
896
+ array_like=True, # type: ignore[call-arg]
897
+ omit_defaults=True): # type: ignore[call-arg]
898
+ """Delta of SequenceGroupMetadata.
899
+
900
+ After sending the first SequenceGroupMetadata, vLLM scheduler
901
+ only sends delta to reduce the data payload size.
902
+ """
903
+ seq_data_delta: dict[int, SequenceDataDelta]
904
+ request_id: str
905
+ block_tables: dict[int, list[int]]
906
+ is_prompt: bool
907
+ do_sample: bool = True
908
+ token_chunk_size: Optional[int] = None
909
+ computed_block_nums: Optional[list[int]] = None
910
+ state: Optional[SequenceGroupState] = msgspec.field(
911
+ default_factory=lambda: SequenceGroupState())
912
+
913
+
914
+ class SequenceGroupMetadata(
915
+ msgspec.Struct,
916
+ tag=True, # type: ignore[call-arg]
917
+ array_like=True, # type: ignore[call-arg]
918
+ omit_defaults=True): # type: ignore[call-arg]
919
+ """Metadata for a sequence group. Used to create `AttentionMetadata`.
920
+
921
+ Args:
922
+ request_id: The ID of the request.
923
+ is_prompt: Whether the request is at prompt stage.
924
+ seq_data: The sequence data. (Seq id -> sequence data)
925
+ sampling_params: The sampling parameters used to generate the outputs.
926
+ block_tables: The block tables. (Seq id -> list of physical block
927
+ numbers)
928
+ do_sample: True if sampling is required. Sampling is not required when
929
+ e.g., prefill is chunked, and the current iteration only computes
930
+ query tokens for prefill, we don't need sampling.
931
+ token_chunk_size: The number of tokens to be processed (per sequence).
932
+ None if chunking is not required.
933
+ lora_request: LoRA request.
934
+ computed_block_nums: The block numbers that are already computed,
935
+ used in prefix caching.
936
+ state: Internal state tied to this sequence group.
937
+ multi_modal_data: Multi modal data.
938
+ mm_processor_kwargs: Multimodal input processor / mapper overrides.
939
+ encoder_seq_data: Optional sequence data for encoder prompt
940
+ (SequenceGroup.encoder_seq). Should be None
941
+ unless you are working with an encoder/decoder
942
+ model.
943
+ cross_block_table: Optional cross-attention block table associated
944
+ with the encoder prompt
945
+ (SequenceGroup.encoder_seq). Should be None
946
+ unless you are working with an encoder/decoder
947
+ model.
948
+ prompt_adapter_request: Prompt Adapter request.
949
+ """
950
+
951
+ request_id: str
952
+ is_prompt: bool
953
+ seq_data: dict[int, SequenceData]
954
+ sampling_params: Optional[SamplingParams]
955
+ block_tables: dict[int, list[int]]
956
+ do_sample: bool = True
957
+ pooling_params: Optional[PoolingParams] = None
958
+ lora_request: Optional[LoRARequest] = None
959
+ computed_block_nums: Optional[list[int]] = None
960
+ state: Optional[SequenceGroupState] = msgspec.field(
961
+ default_factory=lambda: SequenceGroupState())
962
+ token_type_ids: Optional[list[int]] = None
963
+ multi_modal_data: Optional[MultiModalKwargs] = None
964
+ multi_modal_placeholders: Optional[MultiModalPlaceholderDict] = None
965
+ encoder_seq_data: Optional[SequenceData] = None
966
+ cross_block_table: Optional[list[int]] = None
967
+ prompt_adapter_request: Optional[PromptAdapterRequest] = None
968
+ token_chunk_size: Optional[int] = None
969
+
970
+ ### Stateful fields that are lazily defined. ###
971
+ # The number of speculative tokens adopted in this request.
972
+ # None means specuative decoding is not used.
973
+ # Zero means speculative decoding is disabled for some reasons.
974
+ # TODO: We should maintain this states out of the sequence group.
975
+ num_speculative_tokens: Optional[int] = None
976
+
977
+ def __post_init__(self):
978
+ if self.seq_data is not None and self.token_chunk_size is None:
979
+ if self.is_prompt:
980
+ self.token_chunk_size = next(iter(
981
+ self.seq_data.values())).get_len()
982
+ else:
983
+ self.token_chunk_size = 1
984
+
985
+ @property
986
+ def lora_int_id(self) -> int:
987
+ return self.lora_request.lora_int_id if self.lora_request else 0
988
+
989
+ @property
990
+ def prompt_adapter_id(self) -> int:
991
+ return self.prompt_adapter_request.prompt_adapter_id \
992
+ if self.prompt_adapter_request else 0
993
+
994
+ @property
995
+ def prompt_adapter_num_virtual_tokens(self) -> int:
996
+ return self.prompt_adapter_request.prompt_adapter_num_virtual_tokens \
997
+ if self.prompt_adapter_request else 0
998
+
999
+ # Multi-Step Chunked-Prefill property
1000
+ @property
1001
+ def is_single_step_prompt(self) -> bool:
1002
+ # do_sample is true, only when the token_chunk_size matches the
1003
+ # num_uncomputed_tokens of the sequence. This indicates that
1004
+ # the prompt will finish processing in a single `execute_model`
1005
+ # step.
1006
+ return self.is_prompt and self.do_sample
1007
+
1008
+ def get_first_seq_id(self) -> int:
1009
+ # This is an efficient way of fetching the seq_id when
1010
+ # we know this SequenceGroup has only one sequence.
1011
+ return next(iter(self.seq_data))
1012
+
1013
+ def apply_delta(self,
1014
+ sequence_group_metadata_delta: SequenceGroupMetadataDelta):
1015
+ for id, delta in sequence_group_metadata_delta.seq_data_delta.items():
1016
+ self.seq_data[id].apply_delta(delta)
1017
+ assert self.request_id == sequence_group_metadata_delta.request_id
1018
+ self.block_tables = sequence_group_metadata_delta.block_tables
1019
+ self.token_chunk_size = sequence_group_metadata_delta.token_chunk_size
1020
+ self.do_sample = sequence_group_metadata_delta.do_sample
1021
+ self.is_prompt = sequence_group_metadata_delta.is_prompt
1022
+
1023
+ def finish_step(self) -> None:
1024
+ assert self.state is not None
1025
+ assert self.state.current_step < self.state.num_steps, \
1026
+ f"current step {self.state.current_step}, num_steps {self.state.num_steps}" # noqa
1027
+ self.state.current_step += 1
1028
+
1029
+
1030
+ class SequenceOutput(
1031
+ msgspec.Struct,
1032
+ omit_defaults=True, # type: ignore[call-arg]
1033
+ array_like=True): # type: ignore[call-arg]
1034
+ """The model output associated with a sequence.
1035
+
1036
+ Args:
1037
+ parent_seq_id: The ID of the parent sequence (for forking in beam
1038
+ search).
1039
+ output_token: The output token ID.
1040
+ logprobs: The logprobs of the output token.
1041
+ (Token id -> logP(x_i+1 | x_0, ..., x_i))
1042
+ """
1043
+ parent_seq_id: int
1044
+ output_token: int
1045
+ logprobs: dict[int, Logprob]
1046
+
1047
+ def __repr__(self) -> str:
1048
+ return (f"SequenceOutput(parent_seq_id={self.parent_seq_id}, "
1049
+ f"output_token={self.output_token}, "
1050
+ f"logprobs={self.logprobs})")
1051
+
1052
+ def __eq__(self, other: object) -> bool:
1053
+ if not isinstance(other, SequenceOutput):
1054
+ raise NotImplementedError()
1055
+ equal = (self.parent_seq_id == other.parent_seq_id
1056
+ and self.output_token == other.output_token)
1057
+ log_probs_equal = other.logprobs == self.logprobs
1058
+ return equal and log_probs_equal
1059
+
1060
+
1061
+ class SequenceGroupOutput(ABC):
1062
+ """The base class for model outputs associated with a sequence group."""
1063
+
1064
+ @abstractmethod
1065
+ def __repr__(self) -> str:
1066
+ pass
1067
+
1068
+ @abstractmethod
1069
+ def __eq__(self, other: object) -> bool:
1070
+ pass
1071
+
1072
+
1073
+ class CompletionSequenceGroupOutput(
1074
+ msgspec.Struct,
1075
+ omit_defaults=True, # type: ignore[call-arg]
1076
+ array_like=True): # type: ignore[call-arg]
1077
+ """The model output associated with a completion sequence group."""
1078
+ __metaclass__ = SequenceGroupOutput
1079
+ samples: list[SequenceOutput]
1080
+ # Prompt logprob for each prompt query token.
1081
+ prompt_logprobs: Optional[PromptLogprobs]
1082
+ step_index: Optional[int] = 0
1083
+
1084
+ def __repr__(self) -> str:
1085
+ return (f"CompletionSequenceGroupOutput(samples={self.samples}, "
1086
+ f"prompt_logprobs={self.prompt_logprobs})")
1087
+
1088
+ def __eq__(self, other: object) -> bool:
1089
+ if not isinstance(other, CompletionSequenceGroupOutput):
1090
+ raise NotImplementedError()
1091
+ return (self.samples == other.samples
1092
+ and self.prompt_logprobs == other.prompt_logprobs)
1093
+
1094
+
1095
+ class PoolingSequenceGroupOutput(
1096
+ msgspec.Struct,
1097
+ omit_defaults=True, # type: ignore[call-arg]
1098
+ array_like=True, # type: ignore[call-arg]
1099
+ ):
1100
+ """The model output associated with a pooling sequence group."""
1101
+ __metaclass__ = SequenceGroupOutput
1102
+ # Annotated as Any to be compatible with msgspec
1103
+ # The actual type is in SequenceGroup.pooled_data
1104
+ data: Any
1105
+
1106
+ def __repr__(self) -> str:
1107
+ return f"PoolingSequenceGroupOutput(data={self.data}"
1108
+
1109
+ def __eq__(self, other: object) -> bool:
1110
+ if not isinstance(other, PoolingSequenceGroupOutput):
1111
+ raise NotImplementedError()
1112
+ return self.data == other.data
1113
+
1114
+
1115
+ # cannot use msgspec.Struct here because Dynamo does not support it
1116
+ @dataclass
1117
+ class IntermediateTensors:
1118
+ """For all pipeline stages except the last, we need to return the hidden
1119
+ states and residuals to be sent to the next stage. This data structure
1120
+ contains the hidden states and residuals for a request.
1121
+ """
1122
+
1123
+ tensors: dict[str, torch.Tensor]
1124
+
1125
+ def __init__(self, tensors):
1126
+ # manually define this function, so that
1127
+ # Dynamo knows `IntermediateTensors()` comes from this file.
1128
+ # Otherwise, dataclass will generate this function by evaluating
1129
+ # a string, and we will lose the information about the source file.
1130
+ self.tensors = tensors
1131
+
1132
+ def __getitem__(self, key: Union[str, slice]):
1133
+ if isinstance(key, str):
1134
+ return self.tensors[key]
1135
+ elif isinstance(key, slice):
1136
+ return self.__class__({k: v[key] for k, v in self.tensors.items()})
1137
+
1138
+ def __setitem__(self, key: str, value: torch.Tensor):
1139
+ self.tensors[key] = value
1140
+
1141
+ def items(self):
1142
+ return self.tensors.items()
1143
+
1144
+ def __len__(self):
1145
+ return len(self.tensors)
1146
+
1147
+ def __eq__(self, other: object):
1148
+ return isinstance(other, self.__class__) and self
1149
+
1150
+ def __repr__(self) -> str:
1151
+ return f"IntermediateTensors(tensors={self.tensors})"
1152
+
1153
+
1154
+ class PoolerOutput(
1155
+ msgspec.Struct,
1156
+ omit_defaults=True, # type: ignore[call-arg]
1157
+ array_like=True): # type: ignore[call-arg]
1158
+ """The output from a pooling operation in the pooling model."""
1159
+ outputs: list[PoolingSequenceGroupOutput]
1160
+
1161
+ def __getitem__(self, idx: int) -> PoolingSequenceGroupOutput:
1162
+ return self.outputs[idx]
1163
+
1164
+ def __setitem__(self, idx: int, value: PoolingSequenceGroupOutput):
1165
+ self.outputs[idx] = value
1166
+
1167
+ def __len__(self):
1168
+ return len(self.outputs)
1169
+
1170
+ def __eq__(self, other: object):
1171
+ return isinstance(other,
1172
+ self.__class__) and self.outputs == other.outputs
1173
+
1174
+
1175
+ def get_all_seq_ids(
1176
+ seq_group_metadata_list: list[SequenceGroupMetadata]) -> list[int]:
1177
+ """Given a list of SequenceGroupMetadata, create a list of all
1178
+ sequence ids.
1179
+ """
1180
+ return [seq_id for sg in seq_group_metadata_list for seq_id in sg.seq_data]
1181
+
1182
+
1183
+ def get_all_seq_ids_and_request_ids(
1184
+ seq_group_metadata_list: list[SequenceGroupMetadata]
1185
+ ) -> tuple[list[int], dict[str, set[int]]]:
1186
+ """Given a list of SequenceGroupMetadata, create a list of all
1187
+ sequence ids.
1188
+ """
1189
+ seq_ids: list[int] = []
1190
+ request_id_seq_ids_mapping: defaultdict[str, set[int]] = defaultdict(set)
1191
+ for sg in seq_group_metadata_list:
1192
+ for seq_id in sg.seq_data:
1193
+ seq_ids.append(seq_id)
1194
+ request_id_seq_ids_mapping[sg.request_id].add(seq_id)
1195
+ return seq_ids, request_id_seq_ids_mapping
1196
+
1197
+
1198
+ class HiddenStates(msgspec.Struct, array_like=True,
1199
+ omit_defaults=True): # type: ignore[call-arg]
1200
+ """Hidden states corresponding to in-progress sequences.
1201
+ Used in speculative decoding to pass hidden states from
1202
+ the target model to the proposer model.
1203
+
1204
+ seq_ids are the sequence ids of each entry of the batch
1205
+ dimension of the hidden_states tensor"""
1206
+ # Scorer hidden states. For prefill step, it is used for hidden states of
1207
+ # all tokens, whereas for decode step, it use used for last accepted tokens.
1208
+ hidden_states: torch.Tensor
1209
+ # The sequence group metadata list. Only needed for decode step.
1210
+ seq_group_metadata_list: Optional[list[SequenceGroupMetadata]] = None
1211
+ # Scorer hidden states of the 2nd last token proposed by the proposer (
1212
+ # irrespective of whether it was accepted or not). Only used for cases when
1213
+ # last proposed token is accepted (i.e., in case of bonus tokens). For the
1214
+ # case of no bonus tokens, these are ignored.
1215
+ second_last_token_hidden_states: Optional[torch.Tensor] = None
1216
+
1217
+ _seq_ids: list[int] = msgspec.field(default_factory=list)
1218
+
1219
+ def __post_init__(self):
1220
+ if self.seq_group_metadata_list is not None:
1221
+ assert len(self.seq_group_metadata_list) == len(self.hidden_states)
1222
+ self._seq_ids = get_all_seq_ids(self.seq_group_metadata_list)
1223
+
1224
+ @property
1225
+ def seq_ids(self) -> list[int]:
1226
+ return self._seq_ids
1227
+
1228
+ def update(self,
1229
+ hidden_states: torch.Tensor,
1230
+ seq_group_metadata_list: list[SequenceGroupMetadata],
1231
+ second_last_token_hidden_states: Optional[torch.Tensor] = None):
1232
+ """Update hidden states from target model invocation. Only used for
1233
+ decode steps"""
1234
+ assert len(seq_group_metadata_list) == len(hidden_states)
1235
+ self._seq_ids.extend(get_all_seq_ids(seq_group_metadata_list))
1236
+ self.hidden_states = torch.cat([self.hidden_states, hidden_states])
1237
+
1238
+ if self.second_last_token_hidden_states is not None:
1239
+ # Adding dummy hidden_states to this to maintain same shape
1240
+ self.second_last_token_hidden_states = torch.cat([
1241
+ self.second_last_token_hidden_states,
1242
+ torch.zeros_like(hidden_states)
1243
+ if second_last_token_hidden_states is None else
1244
+ second_last_token_hidden_states
1245
+ ])
1246
+
1247
+ def prune(self,
1248
+ seq_group_metadata_list: list[SequenceGroupMetadata]) -> None:
1249
+ """Prune to provided list of sequence ids. Only used for decode steps.
1250
+ """
1251
+ # Currently this prunes all seq_ids not present in
1252
+ # seq_group_metadata_list which might cause problems where a sequence
1253
+ # may be "paused" then "resumed" later. This should only prune sequences
1254
+ # which are confirmed to be aborted.
1255
+ seq_ids = get_all_seq_ids(seq_group_metadata_list)
1256
+ if seq_ids != self._seq_ids:
1257
+ # Batch contents changed - prune removed sequences.
1258
+ index = [self._seq_ids.index(seq_id) for seq_id in seq_ids]
1259
+ self.hidden_states = self.hidden_states[index]
1260
+ if self.second_last_token_hidden_states is not None:
1261
+ self.second_last_token_hidden_states = self\
1262
+ .second_last_token_hidden_states[index]
1263
+ self._seq_ids = seq_ids
1264
+
1265
+ def expand_with_bonus_tokens(
1266
+ self, seq_with_bonus_token_in_last_step: set) -> None:
1267
+ """Expand hidden states for sequences with bonus tokens. This is in
1268
+ alignment with `MultiStepWorker._expand_execute_model_request`."""
1269
+ if self.second_last_token_hidden_states is None \
1270
+ or not seq_with_bonus_token_in_last_step:
1271
+ return
1272
+
1273
+ index = []
1274
+ for seq_id in self._seq_ids:
1275
+ i = self._seq_ids.index(seq_id)
1276
+ if seq_id in seq_with_bonus_token_in_last_step:
1277
+ index.append(i + len(self._seq_ids))
1278
+ index.append(i)
1279
+
1280
+ self.hidden_states = torch.cat(
1281
+ [self.hidden_states, self.second_last_token_hidden_states])[index]
1282
+
1283
+
1284
+ class ExecuteModelRequest(
1285
+ msgspec.Struct,
1286
+ array_like=True, # type: ignore[call-arg]
1287
+ omit_defaults=True): # type: ignore[call-arg]
1288
+ """The model execution request, containing CPU metadata only. The LLM
1289
+ engine should create an instance of this class for each request batch."""
1290
+ # The sequence group metadata list.
1291
+ seq_group_metadata_list: list[Union[SequenceGroupMetadata,
1292
+ SequenceGroupMetadataDelta]]
1293
+ # Blocks to swap in. List of CPU -> GPU block number.
1294
+ blocks_to_swap_in: list[tuple[int,
1295
+ int]] = msgspec.field(default_factory=list)
1296
+ # Blocks to swap out. List of GPU -> CPU block number.
1297
+ blocks_to_swap_out: list[tuple[int,
1298
+ int]] = msgspec.field(default_factory=list)
1299
+ # Blocks to copy. Source to dest block.
1300
+ blocks_to_copy: list[tuple[int, int]] = msgspec.field(default_factory=list)
1301
+ # Virtual engine ID for pipeline parallel.
1302
+ virtual_engine: int = 0
1303
+ # The number of slots for lookahead decoding.
1304
+ num_lookahead_slots: int = 0
1305
+ # The number of requests in the running queue.
1306
+ running_queue_size: int = 0
1307
+ # Optional hidden states from prior step.
1308
+ previous_hidden_states: Optional[HiddenStates] = None
1309
+ # The number of forward steps to run.
1310
+ num_steps: int = 1
1311
+ # The step index for spec model input.
1312
+ spec_step_idx: Optional[int] = None
1313
+ # Finished request ids since last step.
1314
+ finished_requests_ids: list[str] = msgspec.field(default_factory=list)
1315
+ # The last sampled token ids for multi step decoding.
1316
+ last_sampled_token_ids: Optional[torch.Tensor] = None
1317
+ # Async callback
1318
+ async_callback: Optional[Callable] = None
1319
+
1320
+ @property
1321
+ def is_first_multi_step(self) -> bool:
1322
+ # TODO(will) make this be able to handle batches with variable number of
1323
+ # steps
1324
+ assert len(self.seq_group_metadata_list) > 0
1325
+ first_seq_group = self.seq_group_metadata_list[0]
1326
+ assert first_seq_group.state is not None
1327
+ return first_seq_group.state.current_step == 0
1328
+
1329
+ @property
1330
+ def is_last_step(self) -> bool:
1331
+ # TODO(will) make this be able to handle batches with variable number of
1332
+ # steps
1333
+ assert len(self.seq_group_metadata_list) > 0
1334
+ first_seq_group = self.seq_group_metadata_list[0]
1335
+ assert first_seq_group.state is not None
1336
+ return first_seq_group.state.remaining_steps == 1
1337
+
1338
+ @property
1339
+ def current_step(self) -> int:
1340
+ # TODO(will) make this be able to handle batches with variable number of
1341
+ # steps
1342
+ assert len(self.seq_group_metadata_list) > 0
1343
+ state = self.seq_group_metadata_list[0].state
1344
+ assert state is not None
1345
+ return state.current_step
1346
+
1347
+ def clone(
1348
+ self, seq_group_metadata_list: list[Union[SequenceGroupMetadata,
1349
+ SequenceGroupMetadataDelta]]
1350
+ ) -> "ExecuteModelRequest":
1351
+ """Clone the request with a new sequence group metadata list."""
1352
+ return ExecuteModelRequest(
1353
+ seq_group_metadata_list=seq_group_metadata_list,
1354
+ blocks_to_swap_in=self.blocks_to_swap_in.copy(),
1355
+ blocks_to_swap_out=self.blocks_to_swap_out.copy(),
1356
+ blocks_to_copy=self.blocks_to_copy.copy(),
1357
+ virtual_engine=self.virtual_engine,
1358
+ num_lookahead_slots=self.num_lookahead_slots,
1359
+ running_queue_size=self.running_queue_size,
1360
+ previous_hidden_states=self.previous_hidden_states,
1361
+ num_steps=self.num_steps,
1362
+ finished_requests_ids=self.finished_requests_ids,
1363
+ last_sampled_token_ids=self.last_sampled_token_ids.clone()
1364
+ if self.last_sampled_token_ids is not None else None,
1365
+ async_callback=self.async_callback)
1366
+
1367
+
1368
+ @dataclass
1369
+ class SequenceGroupBase:
1370
+ group_id: str # the original request id before splitting
1371
+
1372
+ assembled_seq_group: Optional[SequenceGroup] = None
1373
+
1374
+ # seq id to a unique index inside this group
1375
+ seq_id_to_index: dict[str, int] = field(default_factory=dict)
1376
+
1377
+ # seq ids to be finished
1378
+ to_be_finished: dict[str, SequenceGroup] = field(default_factory=dict)
1379
+
1380
+ # seq id to finished sequences
1381
+ finished_reqs: dict[str, SequenceGroup] = field(default_factory=dict)
1382
+
1383
+ streaming: bool = False
1384
+
1385
+ output_produced: bool = False
1386
+
1387
+ @staticmethod
1388
+ def add_request(request_id: str, engine, params, *args, **kwargs):
1389
+ """When we are ready to add a request with request_id and params
1390
+ into the engine, we can split the request into multiple requests.
1391
+ """
1392
+ raise NotImplementedError
1393
+
1394
+ def finish_seq(self, seq: SequenceGroup):
1395
+ """The sequence `seq` finishes, we should record the information.
1396
+ """
1397
+ del self.to_be_finished[seq.request_id]
1398
+ self.finished_reqs[seq.request_id] = seq
1399
+
1400
+ def maybe_assemble_group(
1401
+ self, seq_group: SequenceGroup) -> Optional[SequenceGroup]:
1402
+ """Assemble the sequence group, for producing the final
1403
+ output, or adding request in the engine again.
1404
+ """
1405
+ raise NotImplementedError
1406
+
1407
+
1408
+ class ParallelSampleSequenceGroup(SequenceGroupBase):
1409
+
1410
+ @staticmethod
1411
+ def add_request(request_id: str, engine, params, **kwargs):
1412
+ original_params = params
1413
+ group = ParallelSampleSequenceGroup(request_id)
1414
+ seqs = []
1415
+ for i in range(original_params.n):
1416
+ request_id_i = f"{request_id}_parallel_sample_{i}"
1417
+ group.seq_id_to_index[request_id_i] = i
1418
+ params = copy.deepcopy(original_params)
1419
+ params.n = 1
1420
+ if params.seed is not None:
1421
+ params.seed += i
1422
+ seq_group = engine._add_processed_request(
1423
+ request_id_i,
1424
+ params=params,
1425
+ **kwargs,
1426
+ ) # type: ignore
1427
+ assert seq_group is not None
1428
+ engine.seq_id_to_seq_group[request_id_i] = group
1429
+ group.to_be_finished[request_id_i] = seq_group
1430
+ seqs.append(seq_group.seqs[0])
1431
+
1432
+ # for parallel sampling, the `assembled_seq_group` is always
1433
+ # available, since we have all the sequences ready, and they
1434
+ # will not change.
1435
+ group.assembled_seq_group = SequenceGroup(
1436
+ request_id=request_id,
1437
+ seqs=seqs,
1438
+ arrival_time=seq_group.arrival_time,
1439
+ sampling_params=original_params,
1440
+ lora_request=seq_group.lora_request,
1441
+ pooling_params=seq_group.pooling_params,
1442
+ pooled_data=seq_group.pooled_data,
1443
+ encoder_seq=seq_group.encoder_seq,
1444
+ trace_headers=seq_group.trace_headers,
1445
+ prompt_adapter_request=seq_group.prompt_adapter_request,
1446
+ priority=seq_group.priority,
1447
+ )
1448
+
1449
+ group.streaming = params.output_kind == RequestOutputKind.DELTA
1450
+ group.output_produced = False
1451
+
1452
+ def maybe_assemble_group(
1453
+ self, seq_group: SequenceGroup) -> Optional[SequenceGroup]:
1454
+
1455
+ # in the streaming mode, we will return the assembled sequence
1456
+ # for the first remaining sequence, and then return None for the
1457
+ # rest of sequences
1458
+ if self.streaming:
1459
+ first_remaining_id = next(iter(self.to_be_finished))
1460
+ if seq_group.request_id == first_remaining_id:
1461
+ return self.assembled_seq_group
1462
+ return None
1463
+
1464
+ # in the non-streaming mode, we will return the assembled sequence
1465
+ # when the last sequences finishes, and then return None for the
1466
+ # rest of the time
1467
+ if (len(self.to_be_finished) == 1
1468
+ and seq_group.request_id in self.to_be_finished
1469
+ and seq_group.is_finished()):
1470
+ assert self.assembled_seq_group is not None
1471
+ params = self.assembled_seq_group.sampling_params
1472
+ assert isinstance(params, SamplingParams)
1473
+ if not self.output_produced:
1474
+ self.output_produced = True
1475
+ if params._real_n is not None:
1476
+ # Get the top-n sequences.
1477
+ n = params._real_n or params.n
1478
+ seqs = self.assembled_seq_group.seqs
1479
+ sorting_key = lambda seq: seq.get_cumulative_logprob()
1480
+ sorted_seqs = sorted(seqs, key=sorting_key, reverse=True)
1481
+ top_n_seqs = sorted_seqs[:n]
1482
+ self.assembled_seq_group.seqs = top_n_seqs
1483
+ return self.assembled_seq_group
1484
+ if self.output_produced:
1485
+ return None
1486
+ return None