vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu might be problematic. Click here for more details.

Files changed (1103) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1536 -0
  4. vllm/_ipex_ops.py +241 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +38 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +31 -0
  16. vllm/assets/video.py +103 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +303 -0
  22. vllm/attention/backends/flash_attn.py +999 -0
  23. vllm/attention/backends/flashinfer.py +1092 -0
  24. vllm/attention/backends/flashmla.py +242 -0
  25. vllm/attention/backends/hpu_attn.py +301 -0
  26. vllm/attention/backends/ipex_attn.py +396 -0
  27. vllm/attention/backends/mla/__init__.py +0 -0
  28. vllm/attention/backends/mla/common.py +1444 -0
  29. vllm/attention/backends/pallas.py +346 -0
  30. vllm/attention/backends/placeholder_attn.py +399 -0
  31. vllm/attention/backends/rocm_aiter_mla.py +412 -0
  32. vllm/attention/backends/rocm_flash_attn.py +969 -0
  33. vllm/attention/backends/torch_sdpa.py +691 -0
  34. vllm/attention/backends/triton_mla.py +113 -0
  35. vllm/attention/backends/utils.py +609 -0
  36. vllm/attention/backends/xformers.py +798 -0
  37. vllm/attention/layer.py +443 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  41. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  42. vllm/attention/ops/blocksparse_attention/utils.py +244 -0
  43. vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
  44. vllm/attention/ops/flashmla.py +115 -0
  45. vllm/attention/ops/hpu_paged_attn.py +105 -0
  46. vllm/attention/ops/ipex_attn.py +193 -0
  47. vllm/attention/ops/merge_attn_states.py +42 -0
  48. vllm/attention/ops/nki_flash_attn.py +905 -0
  49. vllm/attention/ops/paged_attn.py +255 -0
  50. vllm/attention/ops/prefix_prefill.py +902 -0
  51. vllm/attention/ops/rocm_aiter_mla.py +42 -0
  52. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  53. vllm/attention/ops/triton_decode_attention.py +675 -0
  54. vllm/attention/ops/triton_flash_attention.py +1375 -0
  55. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  56. vllm/attention/selector.py +186 -0
  57. vllm/attention/utils/fa_utils.py +54 -0
  58. vllm/beam_search.py +82 -0
  59. vllm/benchmarks/__init__.py +0 -0
  60. vllm/benchmarks/datasets.py +831 -0
  61. vllm/benchmarks/endpoint_request_func.py +160 -0
  62. vllm/benchmarks/latency.py +181 -0
  63. vllm/benchmarks/serve.py +925 -0
  64. vllm/benchmarks/throughput.py +608 -0
  65. vllm/benchmarks/utils.py +69 -0
  66. vllm/collect_env.py +795 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/backends.py +715 -0
  69. vllm/compilation/compiler_interface.py +437 -0
  70. vllm/compilation/counter.py +33 -0
  71. vllm/compilation/decorators.py +249 -0
  72. vllm/compilation/fix_functionalization.py +182 -0
  73. vllm/compilation/fusion.py +617 -0
  74. vllm/compilation/fx_utils.py +60 -0
  75. vllm/compilation/inductor_pass.py +114 -0
  76. vllm/compilation/monitor.py +38 -0
  77. vllm/compilation/multi_output_match.py +108 -0
  78. vllm/compilation/noop_elimination.py +135 -0
  79. vllm/compilation/pass_manager.py +74 -0
  80. vllm/compilation/sequence_parallelism.py +266 -0
  81. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  82. vllm/compilation/vllm_inductor_pass.py +68 -0
  83. vllm/compilation/wrapper.py +129 -0
  84. vllm/config.py +4179 -0
  85. vllm/connections.py +170 -0
  86. vllm/core/__init__.py +0 -0
  87. vllm/core/block/__init__.py +0 -0
  88. vllm/core/block/block_table.py +398 -0
  89. vllm/core/block/common.py +370 -0
  90. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  91. vllm/core/block/interfaces.py +318 -0
  92. vllm/core/block/naive_block.py +465 -0
  93. vllm/core/block/prefix_caching_block.py +1134 -0
  94. vllm/core/block/utils.py +27 -0
  95. vllm/core/block_manager.py +520 -0
  96. vllm/core/evictor.py +156 -0
  97. vllm/core/interfaces.py +134 -0
  98. vllm/core/placeholder_block_space_manager.py +99 -0
  99. vllm/core/scheduler.py +2060 -0
  100. vllm/device_allocator/__init__.py +0 -0
  101. vllm/device_allocator/cumem.py +280 -0
  102. vllm/distributed/__init__.py +5 -0
  103. vllm/distributed/communication_op.py +40 -0
  104. vllm/distributed/device_communicators/__init__.py +0 -0
  105. vllm/distributed/device_communicators/base_device_communicator.py +151 -0
  106. vllm/distributed/device_communicators/cpu_communicator.py +139 -0
  107. vllm/distributed/device_communicators/cuda_communicator.py +131 -0
  108. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  109. vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
  110. vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
  111. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  112. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  113. vllm/distributed/device_communicators/pynccl.py +217 -0
  114. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  115. vllm/distributed/device_communicators/shm_broadcast.py +557 -0
  116. vllm/distributed/device_communicators/tpu_communicator.py +93 -0
  117. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  118. vllm/distributed/kv_transfer/README.md +29 -0
  119. vllm/distributed/kv_transfer/__init__.py +11 -0
  120. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  121. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  122. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  123. vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
  124. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  125. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
  126. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  132. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  133. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  134. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  135. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  136. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  137. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  138. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  139. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  140. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  141. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  142. vllm/distributed/parallel_state.py +1209 -0
  143. vllm/distributed/utils.py +366 -0
  144. vllm/engine/__init__.py +0 -0
  145. vllm/engine/arg_utils.py +1724 -0
  146. vllm/engine/async_llm_engine.py +1261 -0
  147. vllm/engine/async_timeout.py +191 -0
  148. vllm/engine/llm_engine.py +2150 -0
  149. vllm/engine/metrics.py +717 -0
  150. vllm/engine/metrics_types.py +96 -0
  151. vllm/engine/multiprocessing/__init__.py +183 -0
  152. vllm/engine/multiprocessing/client.py +745 -0
  153. vllm/engine/multiprocessing/engine.py +450 -0
  154. vllm/engine/output_processor/__init__.py +0 -0
  155. vllm/engine/output_processor/interfaces.py +74 -0
  156. vllm/engine/output_processor/multi_step.py +210 -0
  157. vllm/engine/output_processor/single_step.py +136 -0
  158. vllm/engine/output_processor/stop_checker.py +130 -0
  159. vllm/engine/output_processor/util.py +27 -0
  160. vllm/engine/protocol.py +302 -0
  161. vllm/entrypoints/__init__.py +0 -0
  162. vllm/entrypoints/api_server.py +177 -0
  163. vllm/entrypoints/chat_utils.py +1259 -0
  164. vllm/entrypoints/cli/__init__.py +0 -0
  165. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  166. vllm/entrypoints/cli/benchmark/base.py +38 -0
  167. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  168. vllm/entrypoints/cli/benchmark/main.py +53 -0
  169. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  170. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  171. vllm/entrypoints/cli/collect_env.py +35 -0
  172. vllm/entrypoints/cli/main.py +59 -0
  173. vllm/entrypoints/cli/openai.py +175 -0
  174. vllm/entrypoints/cli/serve.py +59 -0
  175. vllm/entrypoints/cli/types.py +24 -0
  176. vllm/entrypoints/launcher.py +146 -0
  177. vllm/entrypoints/llm.py +1450 -0
  178. vllm/entrypoints/logger.py +44 -0
  179. vllm/entrypoints/openai/__init__.py +0 -0
  180. vllm/entrypoints/openai/api_server.py +1130 -0
  181. vllm/entrypoints/openai/cli_args.py +296 -0
  182. vllm/entrypoints/openai/logits_processors.py +89 -0
  183. vllm/entrypoints/openai/protocol.py +1806 -0
  184. vllm/entrypoints/openai/run_batch.py +439 -0
  185. vllm/entrypoints/openai/serving_chat.py +1210 -0
  186. vllm/entrypoints/openai/serving_completion.py +557 -0
  187. vllm/entrypoints/openai/serving_embedding.py +245 -0
  188. vllm/entrypoints/openai/serving_engine.py +569 -0
  189. vllm/entrypoints/openai/serving_models.py +314 -0
  190. vllm/entrypoints/openai/serving_pooling.py +237 -0
  191. vllm/entrypoints/openai/serving_score.py +439 -0
  192. vllm/entrypoints/openai/serving_tokenization.py +147 -0
  193. vllm/entrypoints/openai/serving_transcription.py +421 -0
  194. vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
  195. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  196. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
  197. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
  198. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  199. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
  200. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
  201. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
  202. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  203. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
  204. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
  205. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  206. vllm/entrypoints/score_utils.py +49 -0
  207. vllm/entrypoints/ssl.py +74 -0
  208. vllm/entrypoints/utils.py +136 -0
  209. vllm/env_override.py +34 -0
  210. vllm/envs.py +800 -0
  211. vllm/executor/__init__.py +0 -0
  212. vllm/executor/executor_base.py +400 -0
  213. vllm/executor/mp_distributed_executor.py +243 -0
  214. vllm/executor/msgspec_utils.py +29 -0
  215. vllm/executor/multiproc_worker_utils.py +312 -0
  216. vllm/executor/ray_distributed_executor.py +700 -0
  217. vllm/executor/ray_utils.py +400 -0
  218. vllm/executor/uniproc_executor.py +141 -0
  219. vllm/forward_context.py +159 -0
  220. vllm/inputs/__init__.py +37 -0
  221. vllm/inputs/data.py +248 -0
  222. vllm/inputs/parse.py +121 -0
  223. vllm/inputs/preprocess.py +745 -0
  224. vllm/inputs/registry.py +212 -0
  225. vllm/jsontree.py +79 -0
  226. vllm/logger.py +210 -0
  227. vllm/logging_utils/__init__.py +7 -0
  228. vllm/logging_utils/formatter.py +17 -0
  229. vllm/logits_process.py +121 -0
  230. vllm/lora/__init__.py +0 -0
  231. vllm/lora/fully_sharded_layers.py +335 -0
  232. vllm/lora/layers.py +1263 -0
  233. vllm/lora/lora.py +198 -0
  234. vllm/lora/models.py +802 -0
  235. vllm/lora/ops/__init__.py +0 -0
  236. vllm/lora/ops/torch_ops/__init__.py +15 -0
  237. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  238. vllm/lora/ops/triton_ops/__init__.py +11 -0
  239. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  240. vllm/lora/ops/triton_ops/lora_expand.py +293 -0
  241. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  242. vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
  243. vllm/lora/ops/triton_ops/utils.py +121 -0
  244. vllm/lora/peft_helper.py +115 -0
  245. vllm/lora/punica_wrapper/__init__.py +9 -0
  246. vllm/lora/punica_wrapper/punica_base.py +483 -0
  247. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  248. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  249. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  250. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  251. vllm/lora/punica_wrapper/utils.py +161 -0
  252. vllm/lora/request.py +97 -0
  253. vllm/lora/resolver.py +83 -0
  254. vllm/lora/utils.py +237 -0
  255. vllm/lora/worker_manager.py +251 -0
  256. vllm/model_executor/__init__.py +15 -0
  257. vllm/model_executor/custom_op.py +153 -0
  258. vllm/model_executor/guided_decoding/__init__.py +180 -0
  259. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  260. vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
  261. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  262. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  263. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  264. vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
  265. vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
  266. vllm/model_executor/guided_decoding/utils.py +241 -0
  267. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  268. vllm/model_executor/layers/__init__.py +0 -0
  269. vllm/model_executor/layers/activation.py +368 -0
  270. vllm/model_executor/layers/fused_moe/__init__.py +51 -0
  271. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  272. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  273. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  274. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  275. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  276. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  277. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  278. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  279. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  280. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  281. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  282. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  283. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  284. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  285. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  286. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  287. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  426. vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
  427. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
  428. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
  429. vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
  430. vllm/model_executor/layers/fused_moe/layer.py +949 -0
  431. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  432. vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
  433. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  434. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
  435. vllm/model_executor/layers/fused_moe/utils.py +48 -0
  436. vllm/model_executor/layers/layernorm.py +277 -0
  437. vllm/model_executor/layers/lightning_attn.py +651 -0
  438. vllm/model_executor/layers/linear.py +1518 -0
  439. vllm/model_executor/layers/logits_processor.py +196 -0
  440. vllm/model_executor/layers/mamba/__init__.py +0 -0
  441. vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
  442. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  443. vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
  444. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  445. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  446. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
  447. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  448. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  449. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  450. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  451. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  452. vllm/model_executor/layers/pooler.py +336 -0
  453. vllm/model_executor/layers/quantization/__init__.py +153 -0
  454. vllm/model_executor/layers/quantization/aqlm.py +374 -0
  455. vllm/model_executor/layers/quantization/awq.py +184 -0
  456. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  457. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  458. vllm/model_executor/layers/quantization/base_config.py +145 -0
  459. vllm/model_executor/layers/quantization/bitblas.py +459 -0
  460. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  461. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  462. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
  463. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
  464. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
  465. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  466. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  467. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  468. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
  469. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  470. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  471. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  472. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  473. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
  474. vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
  475. vllm/model_executor/layers/quantization/experts_int8.py +194 -0
  476. vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
  477. vllm/model_executor/layers/quantization/fp8.py +832 -0
  478. vllm/model_executor/layers/quantization/gguf.py +408 -0
  479. vllm/model_executor/layers/quantization/gptq.py +276 -0
  480. vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
  481. vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
  482. vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
  483. vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
  484. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  485. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  486. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  487. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  488. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  489. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  490. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  491. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  492. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
  493. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  494. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  495. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  496. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  497. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  498. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  499. vllm/model_executor/layers/quantization/kv_cache.py +137 -0
  500. vllm/model_executor/layers/quantization/marlin.py +259 -0
  501. vllm/model_executor/layers/quantization/modelopt.py +410 -0
  502. vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
  503. vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
  504. vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
  505. vllm/model_executor/layers/quantization/qqq.py +273 -0
  506. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  507. vllm/model_executor/layers/quantization/quark/quark.py +385 -0
  508. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  509. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
  510. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  511. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
  512. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  513. vllm/model_executor/layers/quantization/quark/utils.py +102 -0
  514. vllm/model_executor/layers/quantization/schema.py +85 -0
  515. vllm/model_executor/layers/quantization/torchao.py +127 -0
  516. vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
  517. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  518. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  519. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
  520. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  521. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  522. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  523. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  524. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  525. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  526. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  527. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  528. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  529. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  530. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  531. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  532. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  533. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  534. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  535. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  536. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  537. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  538. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  539. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  540. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  541. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  542. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  543. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  544. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  545. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  546. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  547. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  548. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  549. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  550. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  551. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
  723. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  724. vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
  725. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  726. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  727. vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
  728. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
  729. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  730. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  731. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
  732. vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
  733. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  734. vllm/model_executor/layers/rejection_sampler.py +400 -0
  735. vllm/model_executor/layers/resampler.py +269 -0
  736. vllm/model_executor/layers/rotary_embedding.py +1598 -0
  737. vllm/model_executor/layers/sampler.py +1221 -0
  738. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  739. vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
  740. vllm/model_executor/layers/utils.py +99 -0
  741. vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
  742. vllm/model_executor/model_loader/__init__.py +20 -0
  743. vllm/model_executor/model_loader/loader.py +1542 -0
  744. vllm/model_executor/model_loader/neuron.py +243 -0
  745. vllm/model_executor/model_loader/tensorizer.py +468 -0
  746. vllm/model_executor/model_loader/utils.py +171 -0
  747. vllm/model_executor/model_loader/weight_utils.py +749 -0
  748. vllm/model_executor/models/__init__.py +27 -0
  749. vllm/model_executor/models/adapters.py +247 -0
  750. vllm/model_executor/models/arctic.py +559 -0
  751. vllm/model_executor/models/aria.py +656 -0
  752. vllm/model_executor/models/aya_vision.py +461 -0
  753. vllm/model_executor/models/baichuan.py +469 -0
  754. vllm/model_executor/models/bamba.py +542 -0
  755. vllm/model_executor/models/bart.py +936 -0
  756. vllm/model_executor/models/bert.py +725 -0
  757. vllm/model_executor/models/blip.py +337 -0
  758. vllm/model_executor/models/blip2.py +717 -0
  759. vllm/model_executor/models/bloom.py +358 -0
  760. vllm/model_executor/models/chameleon.py +1135 -0
  761. vllm/model_executor/models/chatglm.py +476 -0
  762. vllm/model_executor/models/clip.py +410 -0
  763. vllm/model_executor/models/commandr.py +466 -0
  764. vllm/model_executor/models/constant_size_cache.py +136 -0
  765. vllm/model_executor/models/dbrx.py +469 -0
  766. vllm/model_executor/models/deepseek.py +484 -0
  767. vllm/model_executor/models/deepseek_mtp.py +266 -0
  768. vllm/model_executor/models/deepseek_v2.py +830 -0
  769. vllm/model_executor/models/deepseek_vl2.py +647 -0
  770. vllm/model_executor/models/eagle.py +247 -0
  771. vllm/model_executor/models/exaone.py +548 -0
  772. vllm/model_executor/models/fairseq2_llama.py +153 -0
  773. vllm/model_executor/models/falcon.py +508 -0
  774. vllm/model_executor/models/florence2.py +1102 -0
  775. vllm/model_executor/models/fuyu.py +388 -0
  776. vllm/model_executor/models/gemma.py +423 -0
  777. vllm/model_executor/models/gemma2.py +423 -0
  778. vllm/model_executor/models/gemma3.py +531 -0
  779. vllm/model_executor/models/gemma3_mm.py +716 -0
  780. vllm/model_executor/models/glm.py +22 -0
  781. vllm/model_executor/models/glm4.py +303 -0
  782. vllm/model_executor/models/glm4v.py +647 -0
  783. vllm/model_executor/models/gpt2.py +313 -0
  784. vllm/model_executor/models/gpt_bigcode.py +336 -0
  785. vllm/model_executor/models/gpt_j.py +337 -0
  786. vllm/model_executor/models/gpt_neox.py +330 -0
  787. vllm/model_executor/models/granite.py +494 -0
  788. vllm/model_executor/models/granite_speech.py +777 -0
  789. vllm/model_executor/models/granitemoe.py +435 -0
  790. vllm/model_executor/models/granitemoeshared.py +339 -0
  791. vllm/model_executor/models/gritlm.py +245 -0
  792. vllm/model_executor/models/grok1.py +560 -0
  793. vllm/model_executor/models/h2ovl.py +542 -0
  794. vllm/model_executor/models/idefics2_vision_model.py +387 -0
  795. vllm/model_executor/models/idefics3.py +767 -0
  796. vllm/model_executor/models/interfaces.py +569 -0
  797. vllm/model_executor/models/interfaces_base.py +163 -0
  798. vllm/model_executor/models/intern_vit.py +476 -0
  799. vllm/model_executor/models/internlm2.py +453 -0
  800. vllm/model_executor/models/internlm2_ve.py +146 -0
  801. vllm/model_executor/models/internvl.py +945 -0
  802. vllm/model_executor/models/jais.py +371 -0
  803. vllm/model_executor/models/jamba.py +590 -0
  804. vllm/model_executor/models/kimi_vl.py +577 -0
  805. vllm/model_executor/models/llama.py +619 -0
  806. vllm/model_executor/models/llama4.py +530 -0
  807. vllm/model_executor/models/llama_eagle.py +152 -0
  808. vllm/model_executor/models/llama_eagle3.py +232 -0
  809. vllm/model_executor/models/llava.py +869 -0
  810. vllm/model_executor/models/llava_next.py +582 -0
  811. vllm/model_executor/models/llava_next_video.py +470 -0
  812. vllm/model_executor/models/llava_onevision.py +954 -0
  813. vllm/model_executor/models/mamba.py +271 -0
  814. vllm/model_executor/models/mamba2.py +302 -0
  815. vllm/model_executor/models/mamba_cache.py +76 -0
  816. vllm/model_executor/models/medusa.py +210 -0
  817. vllm/model_executor/models/minicpm.py +592 -0
  818. vllm/model_executor/models/minicpm3.py +229 -0
  819. vllm/model_executor/models/minicpmo.py +725 -0
  820. vllm/model_executor/models/minicpmv.py +1287 -0
  821. vllm/model_executor/models/minimax_cache.py +35 -0
  822. vllm/model_executor/models/minimax_text_01.py +1261 -0
  823. vllm/model_executor/models/mistral3.py +598 -0
  824. vllm/model_executor/models/mixtral.py +485 -0
  825. vllm/model_executor/models/mixtral_quant.py +447 -0
  826. vllm/model_executor/models/mllama.py +1623 -0
  827. vllm/model_executor/models/mllama4.py +838 -0
  828. vllm/model_executor/models/mlp_speculator.py +205 -0
  829. vllm/model_executor/models/modernbert.py +325 -0
  830. vllm/model_executor/models/module_mapping.py +71 -0
  831. vllm/model_executor/models/molmo.py +1567 -0
  832. vllm/model_executor/models/moonvit.py +628 -0
  833. vllm/model_executor/models/mpt.py +329 -0
  834. vllm/model_executor/models/nemotron.py +506 -0
  835. vllm/model_executor/models/nemotron_nas.py +446 -0
  836. vllm/model_executor/models/nvlm_d.py +212 -0
  837. vllm/model_executor/models/olmo.py +390 -0
  838. vllm/model_executor/models/olmo2.py +412 -0
  839. vllm/model_executor/models/olmoe.py +449 -0
  840. vllm/model_executor/models/opt.py +410 -0
  841. vllm/model_executor/models/orion.py +356 -0
  842. vllm/model_executor/models/paligemma.py +397 -0
  843. vllm/model_executor/models/persimmon.py +342 -0
  844. vllm/model_executor/models/phi.py +354 -0
  845. vllm/model_executor/models/phi3.py +18 -0
  846. vllm/model_executor/models/phi3_small.py +463 -0
  847. vllm/model_executor/models/phi3v.py +722 -0
  848. vllm/model_executor/models/phi4mm.py +1263 -0
  849. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  850. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  851. vllm/model_executor/models/phimoe.py +666 -0
  852. vllm/model_executor/models/pixtral.py +1281 -0
  853. vllm/model_executor/models/plamo2.py +736 -0
  854. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  855. vllm/model_executor/models/qwen.py +360 -0
  856. vllm/model_executor/models/qwen2.py +552 -0
  857. vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
  858. vllm/model_executor/models/qwen2_5_vl.py +1136 -0
  859. vllm/model_executor/models/qwen2_audio.py +402 -0
  860. vllm/model_executor/models/qwen2_moe.py +531 -0
  861. vllm/model_executor/models/qwen2_rm.py +130 -0
  862. vllm/model_executor/models/qwen2_vl.py +1409 -0
  863. vllm/model_executor/models/qwen3.py +319 -0
  864. vllm/model_executor/models/qwen3_moe.py +528 -0
  865. vllm/model_executor/models/qwen_vl.py +784 -0
  866. vllm/model_executor/models/registry.py +611 -0
  867. vllm/model_executor/models/roberta.py +332 -0
  868. vllm/model_executor/models/siglip.py +522 -0
  869. vllm/model_executor/models/skyworkr1v.py +949 -0
  870. vllm/model_executor/models/smolvlm.py +51 -0
  871. vllm/model_executor/models/solar.py +504 -0
  872. vllm/model_executor/models/stablelm.py +349 -0
  873. vllm/model_executor/models/starcoder2.py +355 -0
  874. vllm/model_executor/models/telechat2.py +139 -0
  875. vllm/model_executor/models/teleflm.py +78 -0
  876. vllm/model_executor/models/transformers.py +442 -0
  877. vllm/model_executor/models/ultravox.py +655 -0
  878. vllm/model_executor/models/utils.py +714 -0
  879. vllm/model_executor/models/vision.py +149 -0
  880. vllm/model_executor/models/whisper.py +746 -0
  881. vllm/model_executor/models/zamba2.py +1008 -0
  882. vllm/model_executor/parameter.py +458 -0
  883. vllm/model_executor/pooling_metadata.py +71 -0
  884. vllm/model_executor/sampling_metadata.py +596 -0
  885. vllm/model_executor/utils.py +53 -0
  886. vllm/multimodal/__init__.py +31 -0
  887. vllm/multimodal/audio.py +105 -0
  888. vllm/multimodal/base.py +218 -0
  889. vllm/multimodal/hasher.py +103 -0
  890. vllm/multimodal/image.py +77 -0
  891. vllm/multimodal/inputs.py +843 -0
  892. vllm/multimodal/parse.py +454 -0
  893. vllm/multimodal/processing.py +1760 -0
  894. vllm/multimodal/profiling.py +274 -0
  895. vllm/multimodal/registry.py +321 -0
  896. vllm/multimodal/utils.py +386 -0
  897. vllm/multimodal/video.py +166 -0
  898. vllm/outputs.py +521 -0
  899. vllm/platforms/__init__.py +286 -0
  900. vllm/platforms/cpu.py +182 -0
  901. vllm/platforms/cuda.py +463 -0
  902. vllm/platforms/hpu.py +94 -0
  903. vllm/platforms/interface.py +427 -0
  904. vllm/platforms/neuron.py +69 -0
  905. vllm/platforms/rocm.py +346 -0
  906. vllm/platforms/tpu.py +174 -0
  907. vllm/platforms/xpu.py +142 -0
  908. vllm/plugins/__init__.py +82 -0
  909. vllm/pooling_params.py +53 -0
  910. vllm/profiler/__init__.py +7 -0
  911. vllm/profiler/layerwise_profile.py +374 -0
  912. vllm/profiler/utils.py +147 -0
  913. vllm/prompt_adapter/__init__.py +0 -0
  914. vllm/prompt_adapter/layers.py +82 -0
  915. vllm/prompt_adapter/models.py +357 -0
  916. vllm/prompt_adapter/request.py +36 -0
  917. vllm/prompt_adapter/utils.py +97 -0
  918. vllm/prompt_adapter/worker_manager.py +178 -0
  919. vllm/py.typed +2 -0
  920. vllm/reasoning/__init__.py +12 -0
  921. vllm/reasoning/abs_reasoning_parsers.py +189 -0
  922. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  923. vllm/reasoning/granite_reasoning_parser.py +362 -0
  924. vllm/sampling_params.py +598 -0
  925. vllm/scalar_type.py +335 -0
  926. vllm/scripts.py +14 -0
  927. vllm/sequence.py +1486 -0
  928. vllm/spec_decode/__init__.py +0 -0
  929. vllm/spec_decode/batch_expansion.py +505 -0
  930. vllm/spec_decode/draft_model_runner.py +335 -0
  931. vllm/spec_decode/interfaces.py +98 -0
  932. vllm/spec_decode/medusa_worker.py +137 -0
  933. vllm/spec_decode/metrics.py +212 -0
  934. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  935. vllm/spec_decode/mqa_scorer.py +159 -0
  936. vllm/spec_decode/multi_step_worker.py +416 -0
  937. vllm/spec_decode/ngram_worker.py +195 -0
  938. vllm/spec_decode/proposer_worker_base.py +58 -0
  939. vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
  940. vllm/spec_decode/spec_decode_worker.py +1324 -0
  941. vllm/spec_decode/target_model_runner.py +44 -0
  942. vllm/spec_decode/top1_proposer.py +274 -0
  943. vllm/spec_decode/util.py +276 -0
  944. vllm/test_utils.py +129 -0
  945. vllm/third_party/__init__.py +0 -0
  946. vllm/third_party/pynvml.py +6139 -0
  947. vllm/tracing.py +130 -0
  948. vllm/transformers_utils/__init__.py +19 -0
  949. vllm/transformers_utils/config.py +813 -0
  950. vllm/transformers_utils/configs/__init__.py +52 -0
  951. vllm/transformers_utils/configs/arctic.py +206 -0
  952. vllm/transformers_utils/configs/chatglm.py +71 -0
  953. vllm/transformers_utils/configs/cohere2.py +194 -0
  954. vllm/transformers_utils/configs/dbrx.py +280 -0
  955. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  956. vllm/transformers_utils/configs/eagle.py +65 -0
  957. vllm/transformers_utils/configs/exaone.py +191 -0
  958. vllm/transformers_utils/configs/falcon.py +89 -0
  959. vllm/transformers_utils/configs/h2ovl.py +15 -0
  960. vllm/transformers_utils/configs/internvl.py +53 -0
  961. vllm/transformers_utils/configs/jais.py +237 -0
  962. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  963. vllm/transformers_utils/configs/medusa.py +62 -0
  964. vllm/transformers_utils/configs/mllama.py +30 -0
  965. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  966. vllm/transformers_utils/configs/moonvit.py +32 -0
  967. vllm/transformers_utils/configs/mpt.py +179 -0
  968. vllm/transformers_utils/configs/nemotron.py +204 -0
  969. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  970. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  971. vllm/transformers_utils/configs/solar.py +246 -0
  972. vllm/transformers_utils/configs/telechat2.py +63 -0
  973. vllm/transformers_utils/configs/ultravox.py +107 -0
  974. vllm/transformers_utils/detokenizer.py +167 -0
  975. vllm/transformers_utils/detokenizer_utils.py +188 -0
  976. vllm/transformers_utils/processor.py +210 -0
  977. vllm/transformers_utils/processors/__init__.py +6 -0
  978. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  979. vllm/transformers_utils/s3_utils.py +161 -0
  980. vllm/transformers_utils/tokenizer.py +291 -0
  981. vllm/transformers_utils/tokenizer_base.py +146 -0
  982. vllm/transformers_utils/tokenizer_group.py +110 -0
  983. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  984. vllm/transformers_utils/tokenizers/mistral.py +483 -0
  985. vllm/transformers_utils/utils.py +98 -0
  986. vllm/triton_utils/__init__.py +5 -0
  987. vllm/triton_utils/importing.py +53 -0
  988. vllm/usage/__init__.py +0 -0
  989. vllm/usage/usage_lib.py +255 -0
  990. vllm/utils.py +2692 -0
  991. vllm/v1/__init__.py +0 -0
  992. vllm/v1/attention/__init__.py +0 -0
  993. vllm/v1/attention/backends/__init__.py +0 -0
  994. vllm/v1/attention/backends/flash_attn.py +783 -0
  995. vllm/v1/attention/backends/flashinfer.py +638 -0
  996. vllm/v1/attention/backends/mla/__init__.py +0 -0
  997. vllm/v1/attention/backends/mla/common.py +974 -0
  998. vllm/v1/attention/backends/mla/flashmla.py +149 -0
  999. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1000. vllm/v1/attention/backends/pallas.py +221 -0
  1001. vllm/v1/attention/backends/triton_attn.py +198 -0
  1002. vllm/v1/core/__init__.py +0 -0
  1003. vllm/v1/core/block_pool.py +281 -0
  1004. vllm/v1/core/encoder_cache_manager.py +149 -0
  1005. vllm/v1/core/kv_cache_manager.py +385 -0
  1006. vllm/v1/core/kv_cache_utils.py +744 -0
  1007. vllm/v1/core/sched/__init__.py +0 -0
  1008. vllm/v1/core/sched/interface.py +134 -0
  1009. vllm/v1/core/sched/output.py +126 -0
  1010. vllm/v1/core/sched/scheduler.py +838 -0
  1011. vllm/v1/core/sched/utils.py +22 -0
  1012. vllm/v1/core/specialized_manager.py +161 -0
  1013. vllm/v1/engine/__init__.py +166 -0
  1014. vllm/v1/engine/async_llm.py +532 -0
  1015. vllm/v1/engine/core.py +701 -0
  1016. vllm/v1/engine/core_client.py +942 -0
  1017. vllm/v1/engine/detokenizer.py +260 -0
  1018. vllm/v1/engine/exceptions.py +16 -0
  1019. vllm/v1/engine/llm_engine.py +285 -0
  1020. vllm/v1/engine/logprobs.py +198 -0
  1021. vllm/v1/engine/mm_input_cache.py +82 -0
  1022. vllm/v1/engine/output_processor.py +420 -0
  1023. vllm/v1/engine/parallel_sampling.py +132 -0
  1024. vllm/v1/engine/processor.py +387 -0
  1025. vllm/v1/executor/__init__.py +0 -0
  1026. vllm/v1/executor/abstract.py +112 -0
  1027. vllm/v1/executor/multiproc_executor.py +480 -0
  1028. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1029. vllm/v1/kv_cache_interface.py +166 -0
  1030. vllm/v1/metrics/__init__.py +0 -0
  1031. vllm/v1/metrics/loggers.py +498 -0
  1032. vllm/v1/metrics/stats.py +238 -0
  1033. vllm/v1/outputs.py +111 -0
  1034. vllm/v1/request.py +178 -0
  1035. vllm/v1/sample/__init__.py +0 -0
  1036. vllm/v1/sample/metadata.py +43 -0
  1037. vllm/v1/sample/ops/__init__.py +0 -0
  1038. vllm/v1/sample/ops/bad_words.py +38 -0
  1039. vllm/v1/sample/ops/penalties.py +58 -0
  1040. vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
  1041. vllm/v1/sample/rejection_sampler.py +631 -0
  1042. vllm/v1/sample/sampler.py +270 -0
  1043. vllm/v1/sample/tpu/__init__.py +0 -0
  1044. vllm/v1/sample/tpu/metadata.py +118 -0
  1045. vllm/v1/sample/tpu/sampler.py +154 -0
  1046. vllm/v1/serial_utils.py +274 -0
  1047. vllm/v1/spec_decode/__init__.py +0 -0
  1048. vllm/v1/spec_decode/eagle.py +318 -0
  1049. vllm/v1/spec_decode/metadata.py +61 -0
  1050. vllm/v1/spec_decode/metrics.py +164 -0
  1051. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1052. vllm/v1/spec_decode/utils.py +18 -0
  1053. vllm/v1/stats/__init__.py +0 -0
  1054. vllm/v1/stats/common.py +453 -0
  1055. vllm/v1/structured_output/__init__.py +113 -0
  1056. vllm/v1/structured_output/backend_guidance.py +215 -0
  1057. vllm/v1/structured_output/backend_types.py +96 -0
  1058. vllm/v1/structured_output/backend_xgrammar.py +299 -0
  1059. vllm/v1/structured_output/request.py +84 -0
  1060. vllm/v1/structured_output/utils.py +174 -0
  1061. vllm/v1/utils.py +249 -0
  1062. vllm/v1/worker/__init__.py +0 -0
  1063. vllm/v1/worker/block_table.py +87 -0
  1064. vllm/v1/worker/gpu_input_batch.py +677 -0
  1065. vllm/v1/worker/gpu_model_runner.py +1776 -0
  1066. vllm/v1/worker/gpu_worker.py +349 -0
  1067. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1068. vllm/v1/worker/tpu_model_runner.py +1419 -0
  1069. vllm/v1/worker/tpu_worker.py +260 -0
  1070. vllm/v1/worker/utils.py +74 -0
  1071. vllm/v1/worker/worker_base.py +64 -0
  1072. vllm/version.py +40 -0
  1073. vllm/vllm_flash_attn/.gitkeep +0 -0
  1074. vllm/worker/__init__.py +0 -0
  1075. vllm/worker/cache_engine.py +144 -0
  1076. vllm/worker/cpu_enc_dec_model_runner.py +323 -0
  1077. vllm/worker/cpu_model_runner.py +668 -0
  1078. vllm/worker/cpu_pooling_model_runner.py +122 -0
  1079. vllm/worker/cpu_worker.py +400 -0
  1080. vllm/worker/enc_dec_model_runner.py +542 -0
  1081. vllm/worker/hpu_model_runner.py +2221 -0
  1082. vllm/worker/hpu_worker.py +483 -0
  1083. vllm/worker/model_runner.py +2056 -0
  1084. vllm/worker/model_runner_base.py +281 -0
  1085. vllm/worker/multi_step_hpu_worker.py +122 -0
  1086. vllm/worker/multi_step_model_runner.py +908 -0
  1087. vllm/worker/multi_step_tpu_worker.py +107 -0
  1088. vllm/worker/multi_step_worker.py +196 -0
  1089. vllm/worker/neuron_model_runner.py +336 -0
  1090. vllm/worker/neuron_worker.py +138 -0
  1091. vllm/worker/pooling_model_runner.py +200 -0
  1092. vllm/worker/tpu_model_runner.py +908 -0
  1093. vllm/worker/tpu_worker.py +332 -0
  1094. vllm/worker/utils.py +52 -0
  1095. vllm/worker/worker.py +570 -0
  1096. vllm/worker/worker_base.py +644 -0
  1097. vllm/worker/xpu_model_runner.py +603 -0
  1098. vllm/worker/xpu_worker.py +185 -0
  1099. vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
  1100. vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
  1101. vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
  1102. vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
  1103. vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1623 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ # Copyright 2024 the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch Mllama model."""
17
+ import math
18
+ from collections.abc import Iterable, Mapping, Sequence
19
+ from typing import List, Literal, Optional, Set, Tuple, TypedDict, Union
20
+
21
+ import numpy as np
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import transformers.models.mllama.configuration_mllama as config_mllama
25
+ from PIL.Image import Image
26
+ from torch import nn
27
+ from transformers import BatchFeature, MllamaConfig
28
+ from transformers.modeling_outputs import (BaseModelOutput,
29
+ CausalLMOutputWithPast)
30
+ from transformers.models.mllama.image_processing_mllama import (
31
+ get_optimal_tiled_canvas)
32
+ from transformers.models.mllama.processing_mllama import (
33
+ MllamaProcessor, get_cross_attention_token_mask)
34
+
35
+ import vllm.distributed.parallel_state as ps
36
+ from vllm.attention import Attention, AttentionMetadata, AttentionType
37
+ from vllm.attention.ops.paged_attn import PagedAttention
38
+ from vllm.attention.selector import _Backend
39
+ from vllm.config import VllmConfig
40
+ from vllm.distributed import get_pp_group, get_tp_group
41
+ from vllm.forward_context import get_forward_context
42
+ from vllm.logger import init_logger
43
+ from vllm.model_executor.layers.layernorm import RMSNorm
44
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
45
+ QKVCrossParallelLinear,
46
+ QKVParallelLinear,
47
+ RowParallelLinear)
48
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
49
+ from vllm.model_executor.layers.quantization import QuantizationConfig
50
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
51
+ DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
52
+ from vllm.model_executor.model_loader.weight_utils import (
53
+ default_weight_loader, maybe_remap_kv_scale_name)
54
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
55
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
56
+ from vllm.multimodal import MULTIMODAL_REGISTRY
57
+ from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalEncDecInputs,
58
+ MultiModalFieldConfig, MultiModalKwargs)
59
+ from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
60
+ MultiModalDataItems)
61
+ from vllm.multimodal.processing import (BaseProcessingInfo,
62
+ EncDecMultiModalProcessor,
63
+ PromptReplacement, PromptUpdate)
64
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
65
+
66
+ from .clip import CLIPMLP
67
+ from .interfaces import SupportsMultiModal, SupportsV0Only
68
+ from .llama import LlamaDecoderLayer, LlamaMLP
69
+ from .utils import maybe_prefix
70
+
71
+ logger = init_logger(__name__)
72
+
73
+
74
+ class MllamaImagePixelInputs(TypedDict):
75
+ type: Literal["pixel_values"]
76
+ data: torch.Tensor
77
+ """Shape: """
78
+ """(batch_size, max_num_image, max_num_chunk, num_channel, height, width)"""
79
+ aspect_ratio_ids: torch.Tensor
80
+ """Shape: `(batch_size, max_num_image)`"""
81
+ aspect_ratio_mask: torch.Tensor
82
+ """Shape: `(batch_size, max_num_image, max_num_tiles)`"""
83
+
84
+
85
+ # TODO: support LlamaImageEmbeddingInputs
86
+
87
+
88
+ def calc_token_per_chunk(image_size: int) -> int:
89
+ assert image_size % 14 == 0, "chunk size should be multiple of 14"
90
+ token_per_chunk = (image_size // 14)**2 + 1
91
+ return token_per_chunk
92
+
93
+
94
+ class MllamaProcessingInfo(BaseProcessingInfo):
95
+
96
+ def get_hf_config(self) -> MllamaConfig:
97
+ return self.ctx.get_hf_config(MllamaConfig)
98
+
99
+ def get_hf_processor(self, **kwargs: object) -> MllamaProcessor:
100
+ return self.ctx.get_hf_processor(MllamaProcessor, **kwargs)
101
+
102
+ def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
103
+ return {"image": None}
104
+
105
+ def get_token_per_chunk_from_config(self) -> int:
106
+ image_size = self.get_hf_config().vision_config.image_size
107
+ return calc_token_per_chunk(image_size)
108
+
109
+ def get_num_tiles_per_image(self, image_height: int,
110
+ image_width: int) -> int:
111
+ vision_config = self.get_hf_config().vision_config
112
+ max_num_tiles = vision_config.max_num_tiles
113
+ image_size = vision_config.image_size
114
+ tiled_height, tiled_width = get_optimal_tiled_canvas(
115
+ image_height,
116
+ image_width,
117
+ max_num_tiles,
118
+ tile_size=image_size,
119
+ )
120
+ num_tiles_height = tiled_height // image_size
121
+ num_tiles_width = tiled_width // image_size
122
+ return num_tiles_height * num_tiles_width
123
+
124
+ def get_image_size_with_most_features(self) -> ImageSize:
125
+ vision_config = self.get_hf_config().vision_config
126
+ image_size = vision_config.image_size
127
+ max_num_tiles = vision_config.max_num_tiles
128
+ # Result in the max possible feature size (h:w = 16:1)
129
+ return ImageSize(height=max_num_tiles * image_size, width=image_size)
130
+
131
+
132
+ class MllamaDummyInputsBuilder(BaseDummyInputsBuilder[MllamaProcessingInfo]):
133
+
134
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
135
+ num_images = mm_counts.get("image", 0)
136
+
137
+ processor = self.info.get_hf_processor()
138
+ image_token = processor.image_token
139
+
140
+ return image_token * num_images
141
+
142
+ def get_dummy_mm_data(
143
+ self,
144
+ seq_len: int,
145
+ mm_counts: Mapping[str, int],
146
+ ) -> MultiModalDataDict:
147
+ num_images = mm_counts.get("image", 0)
148
+
149
+ target_width, target_height = \
150
+ self.info.get_image_size_with_most_features()
151
+
152
+ return {
153
+ "image":
154
+ self._get_dummy_images(width=target_width,
155
+ height=target_height,
156
+ num_images=num_images)
157
+ }
158
+
159
+
160
+ class MllamaMultiModalProcessor(EncDecMultiModalProcessor[MllamaProcessingInfo]
161
+ ):
162
+
163
+ def apply(
164
+ self,
165
+ prompt: Union[str, list[int]],
166
+ mm_data: MultiModalDataDict,
167
+ hf_processor_mm_kwargs: Mapping[str, object],
168
+ return_mm_hashes: bool = False,
169
+ ) -> MultiModalEncDecInputs:
170
+ mm_inputs = super().apply(prompt, mm_data, hf_processor_mm_kwargs,
171
+ return_mm_hashes)
172
+
173
+ image_token_id = self.info.get_hf_config().image_token_index
174
+ # Check that the number of image tokens in the decoder prompt matches
175
+ # the number of images provided in mm_data
176
+ num_image_tokens = mm_inputs['prompt_token_ids'].count(image_token_id)
177
+ image_data = mm_data.get("image", [])
178
+ num_images = 1 if isinstance(image_data, Image) else len(image_data)
179
+ if num_image_tokens != num_images:
180
+ raise ValueError(
181
+ f"The number of image tokens ({num_image_tokens}) must be"
182
+ f" the same as the number of images ({num_images})")
183
+
184
+ # Given prompt: <IMG0> P0 P1 <IMG1> <IMG2> P3 P4 D5 D6...., (P-prefill, D-decode) # noqa: E501
185
+ # P0 & P1 do cross attention with placeholder of <IMG0>
186
+ # P3 P4 D5 D6 do cross attention with placeholder of <IMG1> and <IMG2>
187
+ # Example input to encoder and decoder:
188
+ # {
189
+ # 'encoder': {
190
+ # 'type': 'token',
191
+ # 'prompt_token_ids': [128256, 128256, ..., 128256],
192
+ # 'prompt': '<|image|><|image|>...<|image|>',
193
+ # 'multi_modal_data': {'image': <PIL.Image.Image image mode=RGB size=1770x1180 at 0x7FDE2C624880>}, # noqa: E501
194
+ # },
195
+ # 'decoder': {
196
+ # 'type': 'token',
197
+ # 'prompt_token_ids': [128000, 128256, 128000, 3923, 374, 279, 2262, 315, 420, 2217, 30], # noqa: E501
198
+ # 'prompt': '<|image|><|begin_of_text|>What is the content of this image?', # noqa: E501
199
+ # 'multi_modal_data': {'image': <PIL.Image.Image image mode=RGB size=1770x1180 at 0x7FDE2C624880>}, # noqa: E501
200
+ # },
201
+ # }
202
+
203
+ if mm_data:
204
+ hf_processor = self.info.get_hf_processor()
205
+ image_token: str = hf_processor.image_token
206
+
207
+ # Since only the last group of consecutive images
208
+ # are attended by the decoded tokens, we only need to
209
+ # get the number of tokens for those images.
210
+ token_per_chunk = self.info.get_token_per_chunk_from_config()
211
+ num_decode_images = self._get_num_image_in_last_group(
212
+ mm_inputs["prompt_token_ids"])
213
+ num_encode_images = num_images - num_decode_images
214
+
215
+ # Set encoder prompt length based on the number of tiles.
216
+ # This tells the block manager to allocate correct number
217
+ # of slots for encoder tokens.
218
+ num_tiles = mm_inputs["mm_kwargs"]["num_tiles"]
219
+ decode_tiles = num_tiles[num_encode_images:num_images].sum().item()
220
+ num_tokens = decode_tiles * token_per_chunk
221
+ mm_inputs["encoder_prompt_token_ids"] = [image_token_id
222
+ ] * num_tokens
223
+ mm_inputs["encoder_prompt"] = image_token * num_tokens
224
+
225
+ return mm_inputs
226
+
227
+ def _get_num_image_in_last_group(self, prompt_token_ids: List[int]) -> int:
228
+ num_images = 0
229
+ for token_id in prompt_token_ids[::-1]:
230
+ if token_id == self.info.get_hf_config().image_token_index:
231
+ num_images += 1
232
+ elif num_images > 0:
233
+ break
234
+ return num_images
235
+
236
+ def _call_hf_processor(
237
+ self,
238
+ prompt: str,
239
+ mm_data: Mapping[str, object],
240
+ mm_kwargs: Mapping[str, object],
241
+ ) -> BatchFeature:
242
+ tokenizer = self.info.get_tokenizer()
243
+ if mm_data:
244
+ num_tiles = [
245
+ self.info.get_num_tiles_per_image(img.height, img.width)
246
+ for img in mm_data["images"]
247
+ ]
248
+ processed_outputs = super()._call_hf_processor(
249
+ prompt, mm_data, mm_kwargs)
250
+ processed_outputs["num_tiles"] = torch.tensor(num_tiles)
251
+ for k in ('pixel_values', 'aspect_ratio_ids', "aspect_ratio_mask"):
252
+ processed_outputs[k] = processed_outputs[k].squeeze(0)
253
+
254
+ processed_token_ids = processed_outputs.pop("input_ids")
255
+ start_idx, end_idx = 0, processed_token_ids.size(1)
256
+ processed_prompt_text = tokenizer.decode(processed_token_ids[0])
257
+
258
+ hf_processor = self.info.get_hf_processor()
259
+ bos_token = hf_processor.bos_token
260
+ # Remove the bos_token from the start of prompt,
261
+ # because we all know there would be image_token.
262
+ if processed_prompt_text.startswith(bos_token):
263
+ start_idx += 1
264
+ # Remove the bos_token from the end of prompt,
265
+ # because text is empty in this case.
266
+ if processed_prompt_text.endswith(bos_token):
267
+ end_idx -= 1
268
+ processed_outputs[
269
+ "input_ids"] = processed_token_ids[:, start_idx:end_idx]
270
+ else:
271
+ processed_outputs = tokenizer(prompt,
272
+ add_special_tokens=False,
273
+ return_tensors="pt")
274
+ return processed_outputs
275
+
276
+ def _get_mm_fields_config(
277
+ self,
278
+ hf_inputs: BatchFeature,
279
+ hf_processor_mm_kwargs: Mapping[str, object],
280
+ ) -> Mapping[str, MultiModalFieldConfig]:
281
+ return dict(
282
+ pixel_values=MultiModalFieldConfig.batched("image"),
283
+ aspect_ratio_ids=MultiModalFieldConfig.batched("image"),
284
+ aspect_ratio_mask=MultiModalFieldConfig.batched("image"),
285
+ num_tiles=MultiModalFieldConfig.batched("image"),
286
+ )
287
+
288
+ def create_encoder_prompt(
289
+ self,
290
+ prompt: Union[str, list[int]],
291
+ mm_data: MultiModalDataDict,
292
+ ) -> Union[str, list[int]]:
293
+ data = mm_data.get("image", [])
294
+ num_images = 1 if isinstance(data, Image) else len(data)
295
+ image_token_id = self.info.get_hf_config().image_token_index
296
+ return [image_token_id] * num_images
297
+
298
+ def _get_prompt_updates(
299
+ self,
300
+ mm_items: MultiModalDataItems,
301
+ hf_processor_mm_kwargs: Mapping[str, object],
302
+ out_mm_kwargs: MultiModalKwargs,
303
+ ) -> Sequence[PromptUpdate]:
304
+ token_per_chunk = self.info.get_token_per_chunk_from_config()
305
+ image_token_id = self.info.get_hf_config().image_token_index
306
+
307
+ def get_replacement_mllama(item_idx):
308
+ images = mm_items.get_items("image", ImageProcessorItems)
309
+ image_size = images.get_image_size(item_idx)
310
+ num_tile = self.info.get_num_tiles_per_image(
311
+ image_height=image_size.height,
312
+ image_width=image_size.width,
313
+ )
314
+ num_tokens = num_tile * token_per_chunk
315
+ return [image_token_id] * num_tokens
316
+
317
+ return [
318
+ PromptReplacement(
319
+ modality="image",
320
+ target=[image_token_id],
321
+ replacement=get_replacement_mllama,
322
+ )
323
+ ]
324
+
325
+
326
+ def _prepare_aspect_ratio_attention_mask(
327
+ aspect_ratio_mask: torch.Tensor,
328
+ num_patches: int,
329
+ target_length: int,
330
+ dtype: torch.dtype,
331
+ ) -> torch.Tensor:
332
+ # Expand aspect ratio mask to target_length
333
+ batch_size, max_num_tiles = aspect_ratio_mask.shape
334
+ attention_mask = aspect_ratio_mask.view(batch_size, max_num_tiles, 1,
335
+ 1).to(dtype)
336
+ attention_mask = attention_mask.repeat(1, 1, target_length, 1)
337
+
338
+ # Mask padding patches
339
+ pad_patches = target_length - num_patches
340
+ attention_mask[:, :, -pad_patches:] = 0
341
+
342
+ # Invert the mask (0 -> 1, 1 -> 0)
343
+ attention_mask = 1 - attention_mask
344
+
345
+ # Reshape to 2D and create 4D attention mask
346
+ # (batch_size, 1, max_num_tiles*target_length, max_num_tiles*target_length)
347
+ attention_mask = attention_mask.reshape(batch_size,
348
+ max_num_tiles * target_length, 1)
349
+ attention_mask = attention_mask @ attention_mask.transpose(
350
+ -1, -2) * torch.finfo(dtype).min
351
+ attention_mask = attention_mask.unsqueeze(1)
352
+
353
+ return attention_mask
354
+
355
+
356
+ class ColumnParallelConv2dPatch(torch.nn.Module):
357
+ """Conv2D Patching layer with model parallelism.
358
+ Column parallel over unfolded input.
359
+ Arguments:
360
+ in_channels: Input channels.
361
+ out_channels: Output channels.
362
+ kernel_size: Size of convolution kernel.
363
+ stride (default 1): Stride for convolution.
364
+ bias (default False): Use bias in Conv2d.
365
+ Input: (bsz, in_channels, width, height)
366
+ Output: (bsz, num_tokens, out_channels)
367
+ """
368
+
369
+ def __init__(
370
+ self,
371
+ in_channels: int,
372
+ out_channels: int,
373
+ kernel_size: Union[int, Tuple[int, int]],
374
+ stride: Union[int, Tuple[int, int]],
375
+ bias: bool = False,
376
+ ) -> None:
377
+ super().__init__()
378
+ if isinstance(kernel_size, int):
379
+ kernel_size = (kernel_size, kernel_size)
380
+ self._unfold = torch.nn.Unfold(kernel_size=kernel_size, stride=stride)
381
+ self._linear = ColumnParallelLinear(
382
+ in_channels * kernel_size[0] * kernel_size[1],
383
+ out_channels,
384
+ bias=bias,
385
+ )
386
+
387
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
388
+ x = self._unfold(x)
389
+ x = x.permute(0, 2, 1)
390
+ x, _ = self._linear(x)
391
+ return x
392
+
393
+
394
+ class MllamaPrecomputedAspectRatioEmbedding(nn.Module):
395
+
396
+ def __init__(self,
397
+ config: config_mllama.MllamaVisionConfig,
398
+ is_gated: bool = True):
399
+ super().__init__()
400
+ self.max_num_tiles = config.max_num_tiles
401
+ self.hidden_size = config.hidden_size
402
+ self.max_aspect_ratio_id = config.max_aspect_ratio_id
403
+ self.is_gated = is_gated
404
+
405
+ self.embedding = nn.Embedding(self.max_aspect_ratio_id + 1,
406
+ self.max_num_tiles * self.hidden_size)
407
+ if is_gated:
408
+ self.gate = nn.Parameter(torch.zeros(1))
409
+
410
+ def forward(self, hidden_state: torch.Tensor,
411
+ aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
412
+ embeddings = self.embedding(aspect_ratio_ids)
413
+ embeddings = embeddings.reshape(-1, self.max_num_tiles, 1,
414
+ self.hidden_size)
415
+
416
+ if self.is_gated:
417
+ embeddings = embeddings * self.gate.tanh()
418
+
419
+ hidden_state = hidden_state + embeddings
420
+ return hidden_state
421
+
422
+
423
+ class MllamaPrecomputedPositionEmbedding(nn.Module):
424
+
425
+ def __init__(self, config: config_mllama.MllamaVisionConfig):
426
+ super().__init__()
427
+ self.max_num_tiles = config.max_num_tiles
428
+ self.max_aspect_ratio_id = config.max_aspect_ratio_id
429
+ self.num_patches = (config.image_size // config.patch_size)**2 + 1
430
+ self.hidden_size = config.hidden_size
431
+ self.scale = config.hidden_size**-0.5
432
+
433
+ self.gate = nn.Parameter(torch.zeros(1))
434
+
435
+ # position embedding
436
+ position_embedding = torch.randn(self.num_patches, self.hidden_size)
437
+ self.embedding = nn.Parameter(self.scale * position_embedding)
438
+
439
+ # tile position embedding
440
+ self.tile_embedding = nn.Embedding(
441
+ self.max_aspect_ratio_id + 1,
442
+ self.max_num_tiles * self.num_patches * self.hidden_size)
443
+
444
+ def forward(self, hidden_state: torch.Tensor,
445
+ aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
446
+ # position embeddings
447
+ gated_position_embedding = (1 - self.gate.tanh()) * self.embedding
448
+ hidden_state = hidden_state + gated_position_embedding.view(
449
+ 1, 1, self.num_patches, self.hidden_size)
450
+
451
+ # precomputed tile position embeddings
452
+ tile_position_embedding = self.tile_embedding(aspect_ratio_ids)
453
+ batch_size = hidden_state.shape[0]
454
+ tile_position_embedding = tile_position_embedding.reshape(
455
+ batch_size, self.max_num_tiles, self.num_patches, self.hidden_size)
456
+ gated_tile_position_embedding = self.gate.tanh(
457
+ ) * tile_position_embedding
458
+ hidden_state = hidden_state + gated_tile_position_embedding
459
+
460
+ return hidden_state
461
+
462
+
463
+ # TODO: support other attention backends for attention in vision model
464
+ class MllamaVisionSdpaAttention(nn.Module):
465
+
466
+ def __init__(self,
467
+ config: config_mllama.MllamaVisionConfig,
468
+ quant_config: Optional[QuantizationConfig] = None,
469
+ prefix: str = ""):
470
+ super().__init__()
471
+
472
+ tensor_parallel_size = get_tp_group().world_size
473
+ self.embed_dim = config.hidden_size
474
+ self.num_heads = config.attention_heads
475
+ self.head_dim = config.hidden_size // config.attention_heads
476
+ self.num_local_heads = self.num_heads // tensor_parallel_size
477
+ self.q_size = self.num_local_heads * self.head_dim
478
+ self.kv_size = self.num_local_heads * self.head_dim
479
+
480
+ self.qkv_proj = QKVParallelLinear(
481
+ self.embed_dim,
482
+ self.head_dim,
483
+ self.num_heads,
484
+ bias=False,
485
+ quant_config=quant_config,
486
+ prefix=f"{prefix}.qkv_proj",
487
+ )
488
+ self.o_proj = RowParallelLinear(
489
+ self.num_heads * self.head_dim,
490
+ self.embed_dim,
491
+ bias=False,
492
+ input_is_parallel=True,
493
+ quant_config=quant_config,
494
+ prefix=f"{prefix}.o_proj",
495
+ )
496
+
497
+ def forward(
498
+ self,
499
+ hidden_state: torch.Tensor,
500
+ attention_mask: Optional[torch.Tensor] = None,
501
+ ) -> torch.Tensor:
502
+ qkv, _ = self.qkv_proj(hidden_state)
503
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
504
+ q = q.view(q.shape[0], q.shape[1], self.num_local_heads,
505
+ self.head_dim).transpose(1, 2)
506
+ k = k.view(k.shape[0], k.shape[1], self.num_local_heads,
507
+ self.head_dim).transpose(1, 2)
508
+ v = v.view(v.shape[0], v.shape[1], self.num_local_heads,
509
+ self.head_dim).transpose(1, 2)
510
+
511
+ # TODO: remove padding in image encoder
512
+ attn_output = F.scaled_dot_product_attention(q,
513
+ k,
514
+ v,
515
+ attn_mask=attention_mask,
516
+ dropout_p=0.0)
517
+
518
+ attn_output = attn_output.transpose(1, 2).contiguous()
519
+ attn_output = attn_output.reshape(attn_output.shape[0],
520
+ attn_output.shape[1], -1)
521
+ output, _ = self.o_proj(attn_output)
522
+ return output
523
+
524
+
525
+ class MllamaVisionEncoderLayer(nn.Module):
526
+
527
+ def __init__(
528
+ self,
529
+ config: config_mllama.MllamaVisionConfig,
530
+ quant_config: Optional[QuantizationConfig],
531
+ prefix: str = "",
532
+ is_gated: bool = False,
533
+ ) -> None:
534
+ super().__init__()
535
+
536
+ self.hidden_size = config.hidden_size
537
+ self.num_attention_heads = config.attention_heads
538
+ self.is_gated = is_gated
539
+ self.intermediate_size = config.intermediate_size
540
+
541
+ self.self_attn = MllamaVisionSdpaAttention(
542
+ config, quant_config=quant_config, prefix=f"{prefix}.self_attn")
543
+ self.mlp = CLIPMLP(config,
544
+ quant_config=quant_config,
545
+ prefix=f"{prefix}.mlp")
546
+
547
+ self.input_layernorm = nn.LayerNorm(self.hidden_size,
548
+ eps=config.norm_eps)
549
+ self.post_attention_layernorm = nn.LayerNorm(self.hidden_size,
550
+ eps=config.norm_eps)
551
+
552
+ # there used to be an if else here, no code path
553
+ if is_gated:
554
+ self.gate_attn = nn.Parameter(torch.ones(1) * math.pi / 4)
555
+ self.gate_ffn = nn.Parameter(torch.ones(1) * math.pi / 4)
556
+
557
+ def forward(
558
+ self,
559
+ hidden_state: torch.Tensor,
560
+ attention_mask: Optional[torch.Tensor] = None,
561
+ ):
562
+ # Self Attention
563
+ residual = hidden_state
564
+ hidden_state = self.input_layernorm(hidden_state)
565
+ hidden_state = self.self_attn(hidden_state,
566
+ attention_mask=attention_mask)
567
+ gate_attn = 1 if not self.is_gated else self.gate_attn.tanh()
568
+ hidden_state = residual + gate_attn * hidden_state
569
+
570
+ # Feed forward
571
+ residual = hidden_state
572
+ hidden_state = self.post_attention_layernorm(hidden_state)
573
+ hidden_state = self.mlp(hidden_state)
574
+ gate_ffn = 1 if not self.is_gated else self.gate_ffn.tanh()
575
+ hidden_state = residual + gate_ffn * hidden_state
576
+
577
+ return hidden_state
578
+
579
+
580
+ class MllamaVisionEncoder(nn.Module):
581
+
582
+ def __init__(
583
+ self,
584
+ config: config_mllama.MllamaVisionConfig,
585
+ quant_config: Optional[QuantizationConfig],
586
+ num_layers: int = 32,
587
+ is_gated: bool = False,
588
+ output_hidden_states=None,
589
+ prefix: str = "",
590
+ ) -> None:
591
+ super().__init__()
592
+ self.config = config
593
+ self.layers = nn.ModuleList([
594
+ MllamaVisionEncoderLayer(config,
595
+ quant_config=quant_config,
596
+ is_gated=is_gated,
597
+ prefix=f"{prefix}.layers.{layer_idx}")
598
+ for layer_idx in range(num_layers)
599
+ ])
600
+ self.output_hidden_states = output_hidden_states or []
601
+
602
+ def forward(
603
+ self,
604
+ hidden_states: torch.Tensor,
605
+ attention_mask: Optional[torch.Tensor] = None,
606
+ ) -> Union[Tuple, BaseModelOutput]:
607
+ encoder_states = ()
608
+
609
+ for i, encoder_layer in enumerate(self.layers):
610
+ if i in self.output_hidden_states:
611
+ encoder_states = encoder_states + (hidden_states, )
612
+ hidden_states = encoder_layer(
613
+ hidden_states,
614
+ attention_mask,
615
+ )
616
+
617
+ if len(self.layers) - 1 in self.output_hidden_states:
618
+ encoder_states = encoder_states + (hidden_states, )
619
+
620
+ return hidden_states, encoder_states
621
+
622
+
623
+ class MllamaVisionModel(nn.Module):
624
+
625
+ def __init__(
626
+ self,
627
+ config: config_mllama.MllamaVisionConfig,
628
+ quant_config: Optional[QuantizationConfig],
629
+ prefix: str = "",
630
+ ) -> None:
631
+ super().__init__()
632
+
633
+ self.image_size = config.image_size
634
+ self.patch_size = config.patch_size
635
+ self.max_num_tiles = config.max_num_tiles
636
+ self.hidden_size = config.hidden_size
637
+ self.in_channels = config.num_channels
638
+ self.intermediate_layers_indices = config.intermediate_layers_indices
639
+
640
+ self.num_patches = (self.image_size // self.patch_size)**2 + 1
641
+ self.scale = config.hidden_size**-0.5
642
+
643
+ self.patch_embedding = ColumnParallelConv2dPatch(
644
+ in_channels=config.num_channels,
645
+ out_channels=self.hidden_size,
646
+ kernel_size=self.patch_size,
647
+ stride=self.patch_size,
648
+ bias=False,
649
+ )
650
+
651
+ self.class_embedding = nn.Parameter(self.scale *
652
+ torch.randn(self.hidden_size))
653
+ self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding(
654
+ config)
655
+
656
+ self.pre_tile_positional_embedding = \
657
+ MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True)
658
+ self.post_tile_positional_embedding = \
659
+ MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True)
660
+
661
+ # layer norms
662
+ self.layernorm_pre = nn.LayerNorm(self.hidden_size)
663
+ self.layernorm_post = nn.LayerNorm(self.hidden_size)
664
+
665
+ # encoders
666
+ self.transformer = MllamaVisionEncoder(
667
+ config,
668
+ quant_config,
669
+ config.num_hidden_layers,
670
+ is_gated=False,
671
+ output_hidden_states=config.intermediate_layers_indices,
672
+ prefix=f"{prefix}.transformer",
673
+ )
674
+ self.global_transformer = MllamaVisionEncoder(
675
+ config,
676
+ quant_config,
677
+ config.num_global_layers,
678
+ is_gated=True,
679
+ prefix=f"{prefix}.global_transformer",
680
+ )
681
+
682
+ def apply_class_embedding(self,
683
+ hidden_state: torch.Tensor) -> torch.Tensor:
684
+ batch_size, _, hidden_size = hidden_state.shape
685
+ class_embedding = self.class_embedding.expand(batch_size, 1,
686
+ hidden_size)
687
+ hidden_state = torch.cat([class_embedding, hidden_state], dim=1)
688
+ return hidden_state
689
+
690
+ def forward(self, pixel_values: torch.Tensor,
691
+ aspect_ratio_ids: torch.Tensor,
692
+ aspect_ratio_mask: torch.Tensor) -> torch.Tensor:
693
+ batch_size, num_concurrent_media, num_tiles, num_channels, \
694
+ height, width = pixel_values.shape
695
+
696
+ pixel_values = pixel_values.reshape(
697
+ batch_size * num_concurrent_media * num_tiles, num_channels,
698
+ height, width)
699
+ aspect_ratio_ids = aspect_ratio_ids.reshape(
700
+ batch_size * num_concurrent_media, -1)
701
+
702
+ # patch embedding
703
+ patch_embeds = self.patch_embedding(
704
+ pixel_values.to(self.layernorm_pre.weight.dtype))
705
+ hidden_state = patch_embeds
706
+ hidden_state = ps.get_tp_group().all_gather(hidden_state)
707
+
708
+ # tile embeddings
709
+ _, num_patches, dim = hidden_state.shape
710
+ hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
711
+ num_tiles, -1, dim)
712
+ hidden_state = self.pre_tile_positional_embedding(
713
+ hidden_state, aspect_ratio_ids)
714
+
715
+ # apply cls token
716
+ hidden_state = hidden_state.reshape(
717
+ batch_size * num_concurrent_media * num_tiles, num_patches, dim)
718
+ hidden_state = self.apply_class_embedding(hidden_state)
719
+ num_patches += 1
720
+
721
+ # apply position embeddings
722
+ hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
723
+ num_tiles, num_patches, dim)
724
+ hidden_state = self.gated_positional_embedding(hidden_state,
725
+ aspect_ratio_ids)
726
+
727
+ # apply encoder
728
+ hidden_state = self.layernorm_pre(hidden_state)
729
+
730
+ # Compute the number of tokens to pad
731
+ num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8
732
+ # Compute padding tuple for pad function
733
+ padding = (
734
+ 0, 0, 0, num_padding_patches
735
+ ) # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2)
736
+ # Pad the tensor
737
+ hidden_state = F.pad(hidden_state, padding, mode="constant", value=0)
738
+ slice_index = -num_padding_patches if num_padding_patches > 0 else None
739
+
740
+ attention_mask = aspect_ratio_mask.reshape(
741
+ batch_size * num_concurrent_media, -1)
742
+ attention_mask = _prepare_aspect_ratio_attention_mask(
743
+ aspect_ratio_mask=attention_mask,
744
+ num_patches=self.num_patches,
745
+ target_length=hidden_state.shape[2],
746
+ dtype=self.layernorm_pre.weight.dtype,
747
+ )
748
+
749
+ hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1,
750
+ dim)
751
+ output = self.transformer(
752
+ hidden_state,
753
+ attention_mask=attention_mask,
754
+ )
755
+ hidden_state, intermediate_hidden_states = output[0], output[1]
756
+ intermediate_hidden_states = torch.stack(intermediate_hidden_states,
757
+ dim=-1)
758
+
759
+ # apply global encoder
760
+ hidden_state = self.layernorm_post(hidden_state)
761
+ hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
762
+ num_tiles,
763
+ num_patches + num_padding_patches,
764
+ dim)
765
+ hidden_state = self.post_tile_positional_embedding(
766
+ hidden_state, aspect_ratio_ids)
767
+ hidden_state = hidden_state.reshape(
768
+ batch_size * num_concurrent_media,
769
+ num_tiles * (num_patches + num_padding_patches), dim)
770
+ hidden_state = self.global_transformer(
771
+ hidden_state, attention_mask=attention_mask)[0]
772
+ hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
773
+ num_tiles,
774
+ num_patches + num_padding_patches,
775
+ dim)
776
+ hidden_state = hidden_state[:, :, :slice_index]
777
+
778
+ # adding intermediate layer outputs
779
+ hidden_state = hidden_state.reshape(batch_size, num_concurrent_media,
780
+ num_tiles, num_patches, dim)
781
+ intermediate_hidden_states = intermediate_hidden_states.reshape(
782
+ batch_size * num_concurrent_media, num_tiles,
783
+ num_patches + num_padding_patches, -1)
784
+ intermediate_hidden_states = intermediate_hidden_states[:, :, :
785
+ slice_index]
786
+ intermediate_hidden_states = intermediate_hidden_states.reshape(
787
+ batch_size, num_concurrent_media, num_tiles, num_patches, -1)
788
+ hidden_state = torch.cat([hidden_state, intermediate_hidden_states],
789
+ dim=-1)
790
+ return hidden_state
791
+
792
+
793
+ class MllamaTextRMSNorm(nn.Module):
794
+
795
+ def __init__(self, hidden_size, eps=1e-6):
796
+ """
797
+ MllamaTextRMSNorm is equivalent to T5LayerNorm
798
+ """
799
+ super().__init__()
800
+ self.weight = nn.Parameter(torch.ones(hidden_size))
801
+ self.variance_epsilon = eps
802
+
803
+ def forward(self, hidden_states):
804
+ input_dtype = hidden_states.dtype
805
+ hidden_states = hidden_states.to(torch.float32)
806
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
807
+ hidden_states = hidden_states * torch.rsqrt(variance +
808
+ self.variance_epsilon)
809
+ return self.weight * hidden_states.to(input_dtype)
810
+
811
+ def extra_repr(self):
812
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
813
+
814
+
815
+ class MllamaTextCrossAttention(nn.Module):
816
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
817
+
818
+ def __init__(
819
+ self,
820
+ config: Optional[config_mllama.MllamaTextConfig] = None,
821
+ layer_idx: Optional[int] = None,
822
+ quant_config: Optional[QuantizationConfig] = None,
823
+ prefix: str = "",
824
+ ):
825
+ super().__init__()
826
+ self.config = config
827
+ self.pipeline_parallel_rank = get_pp_group().rank_in_group
828
+ self.tensor_parallel_size = get_tp_group().world_size
829
+ self.num_heads = config.num_attention_heads
830
+ self.num_key_value_heads = config.num_key_value_heads
831
+
832
+ self.num_local_heads = self.num_heads // self.tensor_parallel_size
833
+ self.num_local_key_value_heads = \
834
+ self.num_key_value_heads // self.tensor_parallel_size
835
+ self.hidden_size = config.hidden_size
836
+ self.head_dim = config.hidden_size // self.num_heads
837
+ self.num_key_value_heads = config.num_key_value_heads
838
+
839
+ self.layer_idx = layer_idx
840
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
841
+ self.q_local_size = self.num_local_heads * self.head_dim
842
+ self.kv_local_size = self.num_local_key_value_heads * self.head_dim
843
+
844
+ self.qkv_proj = QKVCrossParallelLinear(
845
+ self.hidden_size,
846
+ self.head_dim,
847
+ self.num_heads,
848
+ self.num_key_value_heads,
849
+ bias=False,
850
+ quant_config=quant_config,
851
+ prefix=f"{prefix}.qkv_proj",
852
+ )
853
+
854
+ self.o_proj = RowParallelLinear(
855
+ self.num_heads * self.head_dim,
856
+ self.hidden_size,
857
+ bias=False,
858
+ input_is_parallel=True,
859
+ quant_config=quant_config,
860
+ prefix=f"{prefix}.o_proj",
861
+ )
862
+ # vllm.model_executor.layers.layernorm.RMSNorm has precision issue,
863
+ # use huggingface's instead
864
+ self.q_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
865
+ self.k_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
866
+ self.scaling = self.head_dim**-0.5
867
+
868
+ self.attn = Attention(
869
+ self.num_local_heads,
870
+ self.head_dim,
871
+ self.scaling,
872
+ self.num_local_key_value_heads,
873
+ prefix=f"{prefix}.attn",
874
+ attn_type=AttentionType.ENCODER_DECODER,
875
+ )
876
+
877
+ def forward(
878
+ self,
879
+ hidden_states: torch.Tensor,
880
+ attention_mask: Optional[torch.Tensor],
881
+ kv_range_for_decode: Optional[List[Tuple[int, int]]],
882
+ cross_attention_states: Optional[torch.Tensor],
883
+ ) -> torch.Tensor:
884
+ q, k, v = self.qkv_proj(hidden_states, cross_attention_states)
885
+ if cross_attention_states is not None:
886
+ k = k.view(-1, self.num_local_key_value_heads, self.head_dim)
887
+ v = v.view(-1, self.num_local_key_value_heads, self.head_dim)
888
+ k = self.k_norm(k)
889
+
890
+ q = q.view(-1, self.num_local_heads, self.head_dim)
891
+ q = self.q_norm(q)
892
+
893
+ if attention_mask is not None:
894
+ output = self._attention_with_mask(q, k, v, attention_mask,
895
+ kv_range_for_decode)
896
+ else:
897
+ output = self.attn(
898
+ q.view(-1, self.num_local_heads * self.head_dim), k, v)
899
+ out, _ = self.o_proj(output)
900
+ return out
901
+
902
+ def _attention_with_mask(
903
+ self,
904
+ q: torch.Tensor,
905
+ k: torch.Tensor,
906
+ v: torch.Tensor,
907
+ attention_mask: torch.Tensor,
908
+ kv_range_for_decode: List[Tuple[int, int]],
909
+ ) -> torch.Tensor:
910
+ kv_cache = self.attn.kv_cache[self.pipeline_parallel_rank]
911
+ attn_metadata: AttentionMetadata = get_forward_context().attn_metadata
912
+ # Skip writing kv-cache for the initial profiling run.
913
+ # TODO (NickLucche) replace with custom attn bias and use standard attn
914
+ if len(kv_cache.shape) > 1:
915
+ i = torch.ones(1, dtype=torch.float32)
916
+ if self.attn.backend in (_Backend.FLASH_ATTN,
917
+ _Backend.FLASH_ATTN_VLLM_V1):
918
+ cached_k = torch.cat([k[s:e] for s, e in kv_range_for_decode])
919
+ cached_v = torch.cat([v[s:e] for s, e in kv_range_for_decode])
920
+ torch.ops._C_cache_ops.reshape_and_cache_flash(
921
+ cached_k,
922
+ cached_v,
923
+ kv_cache[0],
924
+ kv_cache[1],
925
+ attn_metadata.
926
+ cross_slot_mapping, # type: ignore[union-attr]
927
+ "auto",
928
+ i,
929
+ i,
930
+ )
931
+ elif self.attn.backend in (_Backend.XFORMERS, _Backend.ROCM_FLASH,
932
+ _Backend.TORCH_SDPA):
933
+ key_cache, value_cache = PagedAttention.split_kv_cache(
934
+ kv_cache, self.num_local_key_value_heads, self.head_dim)
935
+ cached_k = torch.cat([k[s:e] for s, e in kv_range_for_decode])
936
+ cached_v = torch.cat([v[s:e] for s, e in kv_range_for_decode])
937
+ PagedAttention.write_to_paged_cache(
938
+ cached_k, cached_v, key_cache, value_cache,
939
+ attn_metadata.cross_slot_mapping, "auto", i, i)
940
+ else:
941
+ raise ValueError(
942
+ f"Unsupported Attention backend {self.attn.backend} "
943
+ "enum found. Expected the Attention backend to be "
944
+ "FLASH_ATTN, FLASH_ATTN_VLLM_V1, "
945
+ "XFORMERS or TORCH_SDPA.")
946
+
947
+ # We have to call torch.sdpa for prefill when using a
948
+ # custom cross-attention mask. Because the mask is not a
949
+ # standard causal mask, neither a block diagonal mask which
950
+ # can be optimized by xformers.BlockDiagonalMask.
951
+ # The mask is specially calculated for supporting multi
952
+ # images and interleaved images.
953
+ q_len = q.shape[0]
954
+ kv_len = k.shape[0]
955
+ q = q.transpose(0, 1).view(self.num_local_key_value_heads,
956
+ self.num_key_value_groups, q_len,
957
+ self.head_dim).contiguous()
958
+ k = k.transpose(0,
959
+ 1)[:,
960
+ None, :, :].expand(self.num_local_key_value_heads,
961
+ self.num_key_value_groups,
962
+ kv_len,
963
+ self.head_dim).contiguous()
964
+ v = v.transpose(0,
965
+ 1)[:,
966
+ None, :, :].expand(self.num_local_key_value_heads,
967
+ self.num_key_value_groups,
968
+ kv_len,
969
+ self.head_dim).contiguous()
970
+ attention_mask = attention_mask.view(1, 1, q_len, kv_len)
971
+ output = F.scaled_dot_product_attention(q,
972
+ k,
973
+ v,
974
+ attn_mask=attention_mask,
975
+ is_causal=False)
976
+ output = output.permute(2, 0, 1, 3).reshape(
977
+ q_len, self.num_local_heads * self.head_dim)
978
+ return output
979
+
980
+
981
+ class MllamaCrossAttentionDecoderLayer(torch.nn.Module):
982
+ """Cross-attention transformer block with tanh-gated attention
983
+ and feedforward."""
984
+
985
+ def __init__(
986
+ self,
987
+ config: config_mllama.MllamaTextConfig,
988
+ layer_idx: int,
989
+ quant_config: Optional[QuantizationConfig],
990
+ prefix: str = "",
991
+ ) -> None:
992
+ super().__init__()
993
+
994
+ self.layer_idx = layer_idx
995
+ self.cross_attn = MllamaTextCrossAttention(
996
+ config=config,
997
+ layer_idx=layer_idx,
998
+ quant_config=quant_config,
999
+ prefix=f"{prefix}.cross_attn",
1000
+ )
1001
+
1002
+ self.input_layernorm = RMSNorm(config.hidden_size,
1003
+ eps=config.rms_norm_eps)
1004
+ self.cross_attn_attn_gate = torch.nn.Parameter(torch.zeros(1))
1005
+
1006
+ self.mlp = LlamaMLP(
1007
+ hidden_size=config.hidden_size,
1008
+ intermediate_size=config.intermediate_size,
1009
+ hidden_act=config.hidden_act,
1010
+ quant_config=quant_config,
1011
+ prefix=f"{prefix}.mlp",
1012
+ )
1013
+ self.post_attention_layernorm = RMSNorm(config.hidden_size,
1014
+ eps=config.rms_norm_eps)
1015
+ self.cross_attn_mlp_gate = torch.nn.Parameter(torch.zeros(1))
1016
+
1017
+ def forward(
1018
+ self,
1019
+ hidden_states: torch.Tensor,
1020
+ cross_attention_states: torch.Tensor,
1021
+ cross_attention_mask: torch.Tensor,
1022
+ kv_range_for_decode: Optional[List[Tuple[int, int]]],
1023
+ full_text_row_masked_out_mask: torch.Tensor,
1024
+ ) -> torch.Tensor:
1025
+ residual = hidden_states
1026
+ hidden_states = self.input_layernorm(hidden_states)
1027
+
1028
+ hidden_states = self.cross_attn(
1029
+ hidden_states=hidden_states,
1030
+ attention_mask=cross_attention_mask,
1031
+ kv_range_for_decode=kv_range_for_decode,
1032
+ cross_attention_states=cross_attention_states,
1033
+ )
1034
+ hidden_states = full_text_row_masked_out_mask * hidden_states
1035
+ hidden_states = residual + self.cross_attn_attn_gate.tanh(
1036
+ ) * hidden_states
1037
+
1038
+ residual = hidden_states
1039
+ hidden_states = self.post_attention_layernorm(hidden_states)
1040
+ hidden_states = self.mlp(hidden_states)
1041
+ hidden_states = full_text_row_masked_out_mask * hidden_states
1042
+ hidden_states = residual + self.cross_attn_mlp_gate.tanh(
1043
+ ) * hidden_states
1044
+ return hidden_states
1045
+
1046
+
1047
+ class MllamaTextModel(nn.Module):
1048
+ config_class = config_mllama.MllamaTextConfig
1049
+ base_model_prefix = "model"
1050
+
1051
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1052
+ super().__init__()
1053
+
1054
+ config = vllm_config.model_config.hf_config.text_config
1055
+ cache_config = vllm_config.cache_config
1056
+ quant_config = vllm_config.quant_config
1057
+
1058
+ self.vocab_size = config.vocab_size
1059
+ self.embed_tokens = VocabParallelEmbedding(config.vocab_size + 8,
1060
+ config.hidden_size)
1061
+ self.cross_attention_layers = config.cross_attention_layers
1062
+
1063
+ layers = []
1064
+ for layer_idx in range(config.num_hidden_layers):
1065
+ if layer_idx in self.cross_attention_layers:
1066
+ layers.append(
1067
+ MllamaCrossAttentionDecoderLayer(
1068
+ config,
1069
+ layer_idx,
1070
+ quant_config=quant_config,
1071
+ prefix=f"{prefix}.layers.{layer_idx}",
1072
+ ))
1073
+ else:
1074
+ # TODO: force LlamaDecoderLayer to config.attention_bias=False
1075
+ layers.append(
1076
+ LlamaDecoderLayer(
1077
+ config,
1078
+ cache_config=cache_config,
1079
+ quant_config=quant_config,
1080
+ prefix=f"{prefix}.layers.{layer_idx}",
1081
+ ))
1082
+
1083
+ self.layers = nn.ModuleList(layers)
1084
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1085
+
1086
+ def forward(
1087
+ self,
1088
+ input_ids: torch.LongTensor,
1089
+ positions: Optional[torch.LongTensor],
1090
+ cross_attention_states: Optional[torch.LongTensor],
1091
+ cross_attention_mask: Optional[torch.LongTensor],
1092
+ kv_range_for_decode: Optional[List[Tuple[int, int]]],
1093
+ full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor,
1094
+ torch.Tensor]],
1095
+ skip_cross_attention: bool,
1096
+ ) -> torch.Tensor:
1097
+ inputs_embeds = self.embed_tokens(input_ids)
1098
+ hidden_states = inputs_embeds
1099
+
1100
+ for idx, decoder_layer in enumerate(self.layers):
1101
+ if idx in self.cross_attention_layers:
1102
+ if not skip_cross_attention:
1103
+ hidden_states = decoder_layer(
1104
+ hidden_states=hidden_states,
1105
+ cross_attention_states=cross_attention_states,
1106
+ cross_attention_mask=cross_attention_mask,
1107
+ kv_range_for_decode=kv_range_for_decode,
1108
+ full_text_row_masked_out_mask=
1109
+ full_text_row_masked_out_mask,
1110
+ )
1111
+ else:
1112
+ hidden_states, residual = decoder_layer(
1113
+ positions=positions,
1114
+ hidden_states=hidden_states,
1115
+ residual=None,
1116
+ )
1117
+ hidden_states = hidden_states + residual
1118
+ hidden_states = self.norm(hidden_states)
1119
+ return hidden_states
1120
+
1121
+
1122
+ class MllamaForCausalLM(nn.Module):
1123
+ config_class = config_mllama.MllamaTextConfig
1124
+ base_model_prefix = "language_model"
1125
+ _no_split_modules = [
1126
+ "MllamaCrossAttentionDecoderLayer", "MllamaSelfAttentionDecoderLayer"
1127
+ ]
1128
+
1129
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1130
+ super().__init__()
1131
+
1132
+ config = vllm_config.model_config.hf_config.text_config
1133
+ quant_config = vllm_config.quant_config
1134
+
1135
+ self.vocab_size = config.vocab_size
1136
+ self.model = MllamaTextModel(vllm_config=vllm_config,
1137
+ prefix=f"{prefix}.model")
1138
+ self.lm_head = ParallelLMHead(
1139
+ config.vocab_size,
1140
+ config.hidden_size,
1141
+ org_num_embeddings=config.vocab_size,
1142
+ padding_size=DEFAULT_VOCAB_PADDING_SIZE,
1143
+ quant_config=quant_config,
1144
+ prefix=f"{prefix}.lm_head",
1145
+ )
1146
+
1147
+ def forward(
1148
+ self,
1149
+ input_ids: torch.LongTensor,
1150
+ positions: Optional[torch.LongTensor],
1151
+ cross_attention_states: Optional[torch.LongTensor],
1152
+ cross_attention_mask: Optional[torch.LongTensor],
1153
+ kv_range_for_decode: Optional[List[Tuple[int, int]]],
1154
+ full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor,
1155
+ torch.Tensor]],
1156
+ skip_cross_attention: bool,
1157
+ ) -> torch.Tensor:
1158
+ hidden_states = self.model(
1159
+ input_ids=input_ids,
1160
+ positions=positions,
1161
+ cross_attention_states=cross_attention_states,
1162
+ cross_attention_mask=cross_attention_mask,
1163
+ kv_range_for_decode=kv_range_for_decode,
1164
+ full_text_row_masked_out_mask=full_text_row_masked_out_mask,
1165
+ skip_cross_attention=skip_cross_attention,
1166
+ )
1167
+ return hidden_states
1168
+
1169
+
1170
+ @MULTIMODAL_REGISTRY.register_processor(MllamaMultiModalProcessor,
1171
+ info=MllamaProcessingInfo,
1172
+ dummy_inputs=MllamaDummyInputsBuilder)
1173
+ class MllamaForConditionalGeneration(nn.Module, SupportsMultiModal,
1174
+ SupportsV0Only):
1175
+ packed_modules_mapping = {
1176
+ "qkv_proj": ["q_proj", "k_proj", "v_proj"],
1177
+ "gate_up_proj": ["gate_proj", "up_proj"]
1178
+ }
1179
+
1180
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1181
+ super().__init__()
1182
+ config: MllamaConfig = vllm_config.model_config.hf_config
1183
+ quant_config = vllm_config.quant_config
1184
+ self.config = config
1185
+ self.quant_config = quant_config
1186
+ self.vocab_size = config.text_config.vocab_size
1187
+ self.hidden_size = config.text_config.hidden_size
1188
+ self.max_num_tiles = config.vision_config.max_num_tiles
1189
+ self.vision_output_dim = config.vision_config.vision_output_dim
1190
+ self.pad_token_id = \
1191
+ config.pad_token_id if config.pad_token_id is not None else -1
1192
+ self.image_size = config.vision_config.image_size
1193
+ self.image_token_id = config.image_token_index
1194
+
1195
+ self.vision_model = MllamaVisionModel(config.vision_config,
1196
+ quant_config,
1197
+ prefix=maybe_prefix(
1198
+ prefix, "vision_model"))
1199
+ self.language_model = MllamaForCausalLM(
1200
+ vllm_config=vllm_config,
1201
+ prefix=maybe_prefix(prefix, "language_model"),
1202
+ )
1203
+ self.multi_modal_projector = ColumnParallelLinear(
1204
+ config.vision_config.vision_output_dim,
1205
+ config.text_config.hidden_size,
1206
+ bias=True,
1207
+ quant_config=quant_config,
1208
+ gather_output=True,
1209
+ prefix=maybe_prefix(prefix, "multi_modal_projector"),
1210
+ )
1211
+ self.logits_processor = LogitsProcessor(config.output_hidden_states,
1212
+ config.text_config.vocab_size)
1213
+
1214
+ def compute_logits(
1215
+ self,
1216
+ hidden_states: torch.Tensor,
1217
+ sampling_metadata: SamplingMetadata,
1218
+ ) -> Optional[torch.Tensor]:
1219
+ logits = self.logits_processor(self.language_model.lm_head,
1220
+ hidden_states, sampling_metadata)
1221
+ return logits
1222
+
1223
+ def unpack_data(self,
1224
+ image_data: Union[List[torch.Tensor], torch.Tensor],
1225
+ padding_value=0) -> torch.Tensor:
1226
+ if isinstance(image_data, torch.Tensor):
1227
+ # torch.Tensor
1228
+ return image_data
1229
+ else:
1230
+ assert isinstance(
1231
+ image_data[0],
1232
+ torch.Tensor), "Image data is not properly batched."
1233
+ # List[torch.Tensor]
1234
+ bsz = len(image_data)
1235
+ max_length = max(t.size(0) for t in image_data)
1236
+ trailing_dims = image_data[0].shape[1:]
1237
+ for data in image_data:
1238
+ cur_trailing_dims = data.shape[1:]
1239
+ assert cur_trailing_dims == trailing_dims
1240
+ output_tensor = torch.full((bsz, max_length, *trailing_dims),
1241
+ padding_value,
1242
+ dtype=image_data[0].dtype,
1243
+ device=image_data[0].device)
1244
+ for i, t in enumerate(image_data):
1245
+ output_tensor[i, :t.size(0)] = t
1246
+ return output_tensor
1247
+
1248
+ def _parse_and_validate_image_input(self, **kwargs: object):
1249
+ # tensor with the same shape will be batched together by
1250
+ # MultiModalKwargs.batch, so pixel_values here can be:
1251
+ # - List[torch.Tensor]:
1252
+ # with shape (num_image, num_tiles, 3, image_res, image_res)
1253
+ # - torch.Tensor:
1254
+ # with shape (bs, num_image, num_tiles, 3, image_res, image_res)
1255
+ pixel_values: Optional[Union[List[List[torch.Tensor]],
1256
+ List[torch.Tensor],
1257
+ torch.Tensor]] = kwargs.pop(
1258
+ "pixel_values", None)
1259
+ image_embeds: Optional[Union[List[List[torch.Tensor]],
1260
+ List[torch.Tensor],
1261
+ torch.Tensor]] = kwargs.pop(
1262
+ "image_embeds", None)
1263
+ aspect_ratio_ids: Optional[Union[List[List[torch.Tensor]],
1264
+ List[torch.Tensor],
1265
+ torch.Tensor]] = kwargs.pop(
1266
+ "aspect_ratio_ids", None)
1267
+ aspect_ratio_mask: Optional[Union[List[List[torch.Tensor]],
1268
+ List[torch.Tensor],
1269
+ torch.Tensor]] = kwargs.pop(
1270
+ "aspect_ratio_mask", None)
1271
+
1272
+ if pixel_values is None and image_embeds is None:
1273
+ return None
1274
+
1275
+ if pixel_values is not None and image_embeds is not None:
1276
+ raise ValueError(
1277
+ "Both pixel values and image embeds are provided.")
1278
+
1279
+ if pixel_values is not None:
1280
+ assert aspect_ratio_ids is not None
1281
+ assert aspect_ratio_mask is not None
1282
+
1283
+ return MllamaImagePixelInputs(
1284
+ type="pixel_values",
1285
+ data=self.unpack_data(pixel_values),
1286
+ aspect_ratio_ids=self.unpack_data(aspect_ratio_ids),
1287
+ aspect_ratio_mask=self.unpack_data(aspect_ratio_mask))
1288
+
1289
+ if image_embeds is not None:
1290
+ raise NotImplementedError
1291
+
1292
+ raise AssertionError("This line should be unreachable.")
1293
+
1294
+ def _get_and_validate_encoder_lens(
1295
+ self,
1296
+ encoder_seq_lens: List[int],
1297
+ num_tiles: List[List[int]],
1298
+ num_tokens_per_tile: int,
1299
+ ) -> List[int]:
1300
+ # Get the actual number of encoder tokens for each sample.
1301
+ # Because attn_metadata.encoder_seq_lens only counts the last
1302
+ # group of images for each sample, which is used to cheat the
1303
+ # block manager to allocate blocks for those images only.
1304
+ # See MllamaMultiModalProcessor for more details.
1305
+ actual_encoder_seq_lens = [
1306
+ sum(num_tile) * num_tokens_per_tile for num_tile in num_tiles
1307
+ ]
1308
+
1309
+ # remove 0 encoder len entries for text-only requests for these
1310
+ # assertions
1311
+ attn_metadata_lens = [x for x in encoder_seq_lens if x > 0]
1312
+ assert len(actual_encoder_seq_lens) == len(attn_metadata_lens)
1313
+ for actual_len, last_group_len in zip(actual_encoder_seq_lens,
1314
+ attn_metadata_lens):
1315
+ assert actual_len >= last_group_len
1316
+
1317
+ return actual_encoder_seq_lens
1318
+
1319
+ def flat_encoder_result(self, cross_attention_states: torch.Tensor,
1320
+ attn_metadata: AttentionMetadata,
1321
+ actual_encoder_seq_lens: List[int]):
1322
+
1323
+ cross_attention_states_flat = torch.zeros(
1324
+ sum(actual_encoder_seq_lens),
1325
+ cross_attention_states.shape[-1],
1326
+ device=cross_attention_states.device,
1327
+ dtype=cross_attention_states.dtype)
1328
+ start_pos = 0
1329
+ for seq_len, vision_token_in_batch in zip(actual_encoder_seq_lens,
1330
+ cross_attention_states):
1331
+ end_pos = start_pos + seq_len
1332
+ cross_attention_states_flat[
1333
+ start_pos:end_pos] = vision_token_in_batch[:seq_len]
1334
+ start_pos = end_pos
1335
+ cross_attention_states = cross_attention_states_flat
1336
+ return cross_attention_states
1337
+
1338
+ def get_language_model(self) -> torch.nn.Module:
1339
+ return self.language_model
1340
+
1341
+ def get_cross_attention_states(
1342
+ self,
1343
+ image_inputs: MllamaImagePixelInputs,
1344
+ attn_metadata: AttentionMetadata,
1345
+ actual_encoder_seq_lens: List[int],
1346
+ ) -> Tuple[torch.Tensor]:
1347
+ # NOTE: llama's reference implementation runs vision model on CPU
1348
+ pixel_values = image_inputs['data']
1349
+ aspect_ratio_ids = image_inputs['aspect_ratio_ids']
1350
+ aspect_ratio_mask = image_inputs['aspect_ratio_mask']
1351
+ cross_attention_states = self.vision_model(pixel_values,
1352
+ aspect_ratio_ids,
1353
+ aspect_ratio_mask)
1354
+ cross_attention_states, _ = self.multi_modal_projector(
1355
+ cross_attention_states)
1356
+
1357
+ bsz, _, _, _, image_token_dim = tuple(cross_attention_states.shape)
1358
+ cross_attention_states = cross_attention_states.view(
1359
+ bsz, -1, image_token_dim)
1360
+
1361
+ cross_attention_states = self.flat_encoder_result(
1362
+ cross_attention_states, attn_metadata, actual_encoder_seq_lens)
1363
+
1364
+ return cross_attention_states
1365
+
1366
+ def get_cross_attention_mask(
1367
+ self,
1368
+ input_ids: torch.Tensor,
1369
+ attn_metadata: AttentionMetadata,
1370
+ num_tiles: List[List[int]],
1371
+ num_tokens_per_tile: int,
1372
+ dtype: torch.dtype,
1373
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
1374
+ token_ids = input_ids.tolist()
1375
+ start = 0
1376
+ batch_token_ids = []
1377
+ for seq_len in attn_metadata.seq_lens:
1378
+ batch_token_ids.append(token_ids[start:start + seq_len])
1379
+ start += seq_len
1380
+ sparse_mask = [
1381
+ get_cross_attention_token_mask(t, self.image_token_id)
1382
+ for t in batch_token_ids
1383
+ ]
1384
+
1385
+ # Skip generating cross-attention mask if all samples
1386
+ # are text-only or have only 1 leading image.
1387
+ if skip_attention_mask(sparse_mask):
1388
+ return None, None
1389
+
1390
+ dense_mask, tile_range_for_decode = \
1391
+ convert_sparse_cross_attention_mask_to_dense(
1392
+ sparse_mask, num_tiles, attn_metadata.seq_lens)
1393
+ cross_attention_mask = \
1394
+ convert_dense_cross_attention_mask_to_tensor(
1395
+ dense_mask, num_tokens_per_tile, input_ids.device, dtype)
1396
+ kv_range_for_decode = [[
1397
+ t[0] * num_tokens_per_tile, t[1] * num_tokens_per_tile
1398
+ ] for t in tile_range_for_decode]
1399
+
1400
+ return cross_attention_mask, kv_range_for_decode
1401
+
1402
+ def get_full_text_row_masked_out_mask(
1403
+ self,
1404
+ attn_metadata: AttentionMetadata,
1405
+ device: torch.device,
1406
+ ) -> torch.Tensor:
1407
+ full_text_row_masked_out_mask = torch.ones(
1408
+ (attn_metadata.num_prefill_tokens, 1), dtype=torch.bool)
1409
+ start_pos = 0
1410
+ for seq_len, encoder_seq_len in zip(attn_metadata.seq_lens,
1411
+ attn_metadata.encoder_seq_lens):
1412
+ if encoder_seq_len == 0:
1413
+ full_text_row_masked_out_mask[start_pos:start_pos +
1414
+ seq_len] = False
1415
+ start_pos += seq_len
1416
+ full_text_row_masked_out_mask = full_text_row_masked_out_mask.to(
1417
+ device)
1418
+ return full_text_row_masked_out_mask
1419
+
1420
+ def forward(
1421
+ self,
1422
+ input_ids: torch.Tensor,
1423
+ positions: torch.Tensor,
1424
+ **kwargs: object,
1425
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1426
+ attn_metadata = get_forward_context().attn_metadata
1427
+ if attn_metadata.num_prefill_tokens > 0 and \
1428
+ attn_metadata.num_decode_tokens > 0:
1429
+ raise ValueError("Chunk prefill not supported")
1430
+ image_inputs = self._parse_and_validate_image_input(**kwargs)
1431
+ cross_attention_states = None
1432
+ cross_attention_mask = None
1433
+ kv_range_for_decode = None
1434
+
1435
+ # For 1) text-only prefill and decode, 2) image-present decode.
1436
+ if image_inputs is None:
1437
+ full_text_row_masked_out_mask = (
1438
+ attn_metadata.encoder_seq_lens_tensor
1439
+ != 0).reshape(-1, 1).to(input_ids.device)
1440
+ skip_cross_attention = attn_metadata.max_encoder_seq_len == 0
1441
+
1442
+ # For image-present prefill.
1443
+ else:
1444
+ skip_cross_attention = False
1445
+
1446
+ num_tiles = [t.tolist() for t in kwargs.pop("num_tiles")]
1447
+ num_tokens_per_tile = calc_token_per_chunk(self.image_size)
1448
+
1449
+ actual_encoder_seq_lens = self._get_and_validate_encoder_lens(
1450
+ attn_metadata.encoder_seq_lens,
1451
+ num_tiles,
1452
+ num_tokens_per_tile,
1453
+ )
1454
+
1455
+ cross_attention_states = self.get_cross_attention_states(
1456
+ image_inputs, attn_metadata, actual_encoder_seq_lens)
1457
+
1458
+ full_text_row_masked_out_mask = \
1459
+ self.get_full_text_row_masked_out_mask(
1460
+ attn_metadata, input_ids.device)
1461
+
1462
+ cross_attention_mask, kv_range_for_decode = \
1463
+ self.get_cross_attention_mask(
1464
+ input_ids, attn_metadata, num_tiles,
1465
+ num_tokens_per_tile, cross_attention_states.dtype)
1466
+
1467
+ outputs = self.language_model(
1468
+ input_ids=input_ids,
1469
+ positions=positions,
1470
+ cross_attention_states=cross_attention_states,
1471
+ cross_attention_mask=cross_attention_mask,
1472
+ kv_range_for_decode=kv_range_for_decode,
1473
+ full_text_row_masked_out_mask=full_text_row_masked_out_mask,
1474
+ skip_cross_attention=skip_cross_attention,
1475
+ )
1476
+
1477
+ return outputs
1478
+
1479
+ def load_weights(self, weights: Iterable[Tuple[str,
1480
+ torch.Tensor]]) -> Set[str]:
1481
+ stacked_params_mapping = [
1482
+ # (param_name, shard_name, shard_id)
1483
+ (".qkv_proj", ".q_proj", "q"),
1484
+ (".qkv_proj", ".k_proj", "k"),
1485
+ (".qkv_proj", ".v_proj", "v"),
1486
+ (".gate_up_proj", ".gate_proj", 0),
1487
+ (".gate_up_proj", ".up_proj", 1),
1488
+ ]
1489
+ params_dict = dict(self.named_parameters())
1490
+ updated_params: Set[str] = set()
1491
+ for name, loaded_weight in weights:
1492
+ if 'patch_embedding.weight' in name:
1493
+ name = name.replace('patch_embedding.weight',
1494
+ 'patch_embedding._linear.weight')
1495
+ loaded_weight = loaded_weight.view(loaded_weight.shape[0], -1)
1496
+ if (self.quant_config is not None and
1497
+ (scale_name := self.quant_config.get_cache_scale(name))):
1498
+ # Loading kv cache quantization scales
1499
+ param = params_dict[scale_name]
1500
+ weight_loader = getattr(param, "weight_loader",
1501
+ default_weight_loader)
1502
+ loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
1503
+ loaded_weight[0])
1504
+ weight_loader(param, loaded_weight)
1505
+ updated_params.add(scale_name)
1506
+ continue
1507
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
1508
+ if weight_name not in name:
1509
+ continue
1510
+ name = name.replace(weight_name, param_name)
1511
+ param = params_dict[name]
1512
+ updated_params.add(name)
1513
+ weight_loader = param.weight_loader
1514
+ weight_loader(param, loaded_weight, shard_id)
1515
+ break
1516
+ else:
1517
+ orig_name = name
1518
+ name = maybe_remap_kv_scale_name(name, params_dict)
1519
+ if name is None:
1520
+ logger.debug("Missing name %s, orig name %s", name,
1521
+ orig_name)
1522
+ continue
1523
+
1524
+ param = params_dict.pop(name)
1525
+ weight_loader = getattr(param, "weight_loader",
1526
+ default_weight_loader)
1527
+ weight_loader(param, loaded_weight)
1528
+ updated_params.add(name)
1529
+ return updated_params
1530
+
1531
+ def get_mm_mapping(self) -> MultiModelKeys:
1532
+ """
1533
+ Get the module prefix in multimodal models
1534
+ """
1535
+ return MultiModelKeys.from_string_field(
1536
+ language_model="language_model",
1537
+ connector="multi_modal_projector",
1538
+ tower_model="vision_model")
1539
+
1540
+
1541
+ def skip_attention_mask(sparse_mask: List[List[int]]) -> bool:
1542
+ for mask in sparse_mask:
1543
+ # Skip text-only samples.
1544
+ if len(mask) == 0:
1545
+ continue
1546
+ # If the sample contains more than 1 images,
1547
+ # we can't skip mask.
1548
+ if len(mask) != 1:
1549
+ return False
1550
+ # If the sample contains only 1 image,
1551
+ # but the image is not the leading one,
1552
+ # we can't skip mask.
1553
+ if mask[0][0] != 0 or mask[0][1] != -1:
1554
+ return False
1555
+ return True
1556
+
1557
+
1558
+ def convert_sparse_cross_attention_mask_to_dense(
1559
+ sparse_mask: List[List[List[int]]],
1560
+ num_tiles: List[List[int]],
1561
+ lengths: List[int],
1562
+ ) -> Tuple[np.ndarray, List[Tuple[int, int]]]:
1563
+ total_length = sum(lengths)
1564
+ total_tiles = sum([sum(tiles) for tiles in num_tiles])
1565
+ dense_mask = np.zeros(shape=(total_length, total_tiles), dtype=np.int64)
1566
+ # A list of ranges, range[i] = [start, end] means that the i-th image will
1567
+ # use tiles[start, end] for cross-attention decoding.
1568
+ tile_range_for_decode = []
1569
+
1570
+ seq_start = 0
1571
+ tile_start = 0
1572
+
1573
+ # sparse_mask has an [] entry for each sequence that does not have images,
1574
+ # but num_tiles does not have these entries...
1575
+ num_tiles_idx = 0
1576
+ for masks, length in zip(sparse_mask, lengths):
1577
+ if len(masks) == 0:
1578
+ # Text only
1579
+ continue
1580
+
1581
+ tiles = num_tiles[num_tiles_idx]
1582
+ num_tiles_idx += 1
1583
+ ts, td = -1, 0
1584
+ for mask, tile in zip(masks, tiles):
1585
+ if len(mask) != 2:
1586
+ continue
1587
+ start, end = mask
1588
+ end = min(end, length)
1589
+ if end == -1:
1590
+ end = length
1591
+ if end == length:
1592
+ if ts == -1:
1593
+ ts = tile_start
1594
+ td += tile
1595
+ dense_mask[seq_start + start:seq_start + end,
1596
+ tile_start:tile_start + tile] = 1
1597
+ tile_start += tile
1598
+ assert ts != -1
1599
+ assert td != 0
1600
+ tile_range_for_decode.append((ts, ts + td))
1601
+ seq_start += length
1602
+ assert num_tiles_idx == len(num_tiles)
1603
+
1604
+ return dense_mask, tile_range_for_decode
1605
+
1606
+
1607
+ def convert_dense_cross_attention_mask_to_tensor(
1608
+ cross_attention_token_mask: np.ndarray,
1609
+ num_tokens_per_tile: int,
1610
+ device: torch.device,
1611
+ dtype: torch.dtype,
1612
+ ) -> torch.Tensor:
1613
+ mask = torch.tensor(cross_attention_token_mask, dtype=dtype, device=device)
1614
+ mask = mask.repeat_interleave(num_tokens_per_tile, dim=1)
1615
+
1616
+ mask = 1.0 - mask
1617
+ mask = mask.masked_fill(mask.to(torch.bool), torch.finfo(dtype).min)
1618
+
1619
+ ninf = torch.finfo(dtype).min
1620
+ full_text_mask = ((mask != ninf).any(dim=-1).type_as(mask)[..., None])
1621
+ mask *= full_text_mask
1622
+ # (num_prompt_tokens, num_encoder_tokens)
1623
+ return mask