vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu might be problematic. Click here for more details.

Files changed (1103) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1536 -0
  4. vllm/_ipex_ops.py +241 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +38 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +31 -0
  16. vllm/assets/video.py +103 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +303 -0
  22. vllm/attention/backends/flash_attn.py +999 -0
  23. vllm/attention/backends/flashinfer.py +1092 -0
  24. vllm/attention/backends/flashmla.py +242 -0
  25. vllm/attention/backends/hpu_attn.py +301 -0
  26. vllm/attention/backends/ipex_attn.py +396 -0
  27. vllm/attention/backends/mla/__init__.py +0 -0
  28. vllm/attention/backends/mla/common.py +1444 -0
  29. vllm/attention/backends/pallas.py +346 -0
  30. vllm/attention/backends/placeholder_attn.py +399 -0
  31. vllm/attention/backends/rocm_aiter_mla.py +412 -0
  32. vllm/attention/backends/rocm_flash_attn.py +969 -0
  33. vllm/attention/backends/torch_sdpa.py +691 -0
  34. vllm/attention/backends/triton_mla.py +113 -0
  35. vllm/attention/backends/utils.py +609 -0
  36. vllm/attention/backends/xformers.py +798 -0
  37. vllm/attention/layer.py +443 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  41. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  42. vllm/attention/ops/blocksparse_attention/utils.py +244 -0
  43. vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
  44. vllm/attention/ops/flashmla.py +115 -0
  45. vllm/attention/ops/hpu_paged_attn.py +105 -0
  46. vllm/attention/ops/ipex_attn.py +193 -0
  47. vllm/attention/ops/merge_attn_states.py +42 -0
  48. vllm/attention/ops/nki_flash_attn.py +905 -0
  49. vllm/attention/ops/paged_attn.py +255 -0
  50. vllm/attention/ops/prefix_prefill.py +902 -0
  51. vllm/attention/ops/rocm_aiter_mla.py +42 -0
  52. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  53. vllm/attention/ops/triton_decode_attention.py +675 -0
  54. vllm/attention/ops/triton_flash_attention.py +1375 -0
  55. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  56. vllm/attention/selector.py +186 -0
  57. vllm/attention/utils/fa_utils.py +54 -0
  58. vllm/beam_search.py +82 -0
  59. vllm/benchmarks/__init__.py +0 -0
  60. vllm/benchmarks/datasets.py +831 -0
  61. vllm/benchmarks/endpoint_request_func.py +160 -0
  62. vllm/benchmarks/latency.py +181 -0
  63. vllm/benchmarks/serve.py +925 -0
  64. vllm/benchmarks/throughput.py +608 -0
  65. vllm/benchmarks/utils.py +69 -0
  66. vllm/collect_env.py +795 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/backends.py +715 -0
  69. vllm/compilation/compiler_interface.py +437 -0
  70. vllm/compilation/counter.py +33 -0
  71. vllm/compilation/decorators.py +249 -0
  72. vllm/compilation/fix_functionalization.py +182 -0
  73. vllm/compilation/fusion.py +617 -0
  74. vllm/compilation/fx_utils.py +60 -0
  75. vllm/compilation/inductor_pass.py +114 -0
  76. vllm/compilation/monitor.py +38 -0
  77. vllm/compilation/multi_output_match.py +108 -0
  78. vllm/compilation/noop_elimination.py +135 -0
  79. vllm/compilation/pass_manager.py +74 -0
  80. vllm/compilation/sequence_parallelism.py +266 -0
  81. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  82. vllm/compilation/vllm_inductor_pass.py +68 -0
  83. vllm/compilation/wrapper.py +129 -0
  84. vllm/config.py +4179 -0
  85. vllm/connections.py +170 -0
  86. vllm/core/__init__.py +0 -0
  87. vllm/core/block/__init__.py +0 -0
  88. vllm/core/block/block_table.py +398 -0
  89. vllm/core/block/common.py +370 -0
  90. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  91. vllm/core/block/interfaces.py +318 -0
  92. vllm/core/block/naive_block.py +465 -0
  93. vllm/core/block/prefix_caching_block.py +1134 -0
  94. vllm/core/block/utils.py +27 -0
  95. vllm/core/block_manager.py +520 -0
  96. vllm/core/evictor.py +156 -0
  97. vllm/core/interfaces.py +134 -0
  98. vllm/core/placeholder_block_space_manager.py +99 -0
  99. vllm/core/scheduler.py +2060 -0
  100. vllm/device_allocator/__init__.py +0 -0
  101. vllm/device_allocator/cumem.py +280 -0
  102. vllm/distributed/__init__.py +5 -0
  103. vllm/distributed/communication_op.py +40 -0
  104. vllm/distributed/device_communicators/__init__.py +0 -0
  105. vllm/distributed/device_communicators/base_device_communicator.py +151 -0
  106. vllm/distributed/device_communicators/cpu_communicator.py +139 -0
  107. vllm/distributed/device_communicators/cuda_communicator.py +131 -0
  108. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  109. vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
  110. vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
  111. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  112. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  113. vllm/distributed/device_communicators/pynccl.py +217 -0
  114. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  115. vllm/distributed/device_communicators/shm_broadcast.py +557 -0
  116. vllm/distributed/device_communicators/tpu_communicator.py +93 -0
  117. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  118. vllm/distributed/kv_transfer/README.md +29 -0
  119. vllm/distributed/kv_transfer/__init__.py +11 -0
  120. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  121. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  122. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  123. vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
  124. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  125. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
  126. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  132. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  133. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  134. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  135. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  136. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  137. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  138. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  139. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  140. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  141. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  142. vllm/distributed/parallel_state.py +1209 -0
  143. vllm/distributed/utils.py +366 -0
  144. vllm/engine/__init__.py +0 -0
  145. vllm/engine/arg_utils.py +1724 -0
  146. vllm/engine/async_llm_engine.py +1261 -0
  147. vllm/engine/async_timeout.py +191 -0
  148. vllm/engine/llm_engine.py +2150 -0
  149. vllm/engine/metrics.py +717 -0
  150. vllm/engine/metrics_types.py +96 -0
  151. vllm/engine/multiprocessing/__init__.py +183 -0
  152. vllm/engine/multiprocessing/client.py +745 -0
  153. vllm/engine/multiprocessing/engine.py +450 -0
  154. vllm/engine/output_processor/__init__.py +0 -0
  155. vllm/engine/output_processor/interfaces.py +74 -0
  156. vllm/engine/output_processor/multi_step.py +210 -0
  157. vllm/engine/output_processor/single_step.py +136 -0
  158. vllm/engine/output_processor/stop_checker.py +130 -0
  159. vllm/engine/output_processor/util.py +27 -0
  160. vllm/engine/protocol.py +302 -0
  161. vllm/entrypoints/__init__.py +0 -0
  162. vllm/entrypoints/api_server.py +177 -0
  163. vllm/entrypoints/chat_utils.py +1259 -0
  164. vllm/entrypoints/cli/__init__.py +0 -0
  165. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  166. vllm/entrypoints/cli/benchmark/base.py +38 -0
  167. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  168. vllm/entrypoints/cli/benchmark/main.py +53 -0
  169. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  170. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  171. vllm/entrypoints/cli/collect_env.py +35 -0
  172. vllm/entrypoints/cli/main.py +59 -0
  173. vllm/entrypoints/cli/openai.py +175 -0
  174. vllm/entrypoints/cli/serve.py +59 -0
  175. vllm/entrypoints/cli/types.py +24 -0
  176. vllm/entrypoints/launcher.py +146 -0
  177. vllm/entrypoints/llm.py +1450 -0
  178. vllm/entrypoints/logger.py +44 -0
  179. vllm/entrypoints/openai/__init__.py +0 -0
  180. vllm/entrypoints/openai/api_server.py +1130 -0
  181. vllm/entrypoints/openai/cli_args.py +296 -0
  182. vllm/entrypoints/openai/logits_processors.py +89 -0
  183. vllm/entrypoints/openai/protocol.py +1806 -0
  184. vllm/entrypoints/openai/run_batch.py +439 -0
  185. vllm/entrypoints/openai/serving_chat.py +1210 -0
  186. vllm/entrypoints/openai/serving_completion.py +557 -0
  187. vllm/entrypoints/openai/serving_embedding.py +245 -0
  188. vllm/entrypoints/openai/serving_engine.py +569 -0
  189. vllm/entrypoints/openai/serving_models.py +314 -0
  190. vllm/entrypoints/openai/serving_pooling.py +237 -0
  191. vllm/entrypoints/openai/serving_score.py +439 -0
  192. vllm/entrypoints/openai/serving_tokenization.py +147 -0
  193. vllm/entrypoints/openai/serving_transcription.py +421 -0
  194. vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
  195. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  196. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
  197. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
  198. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  199. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
  200. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
  201. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
  202. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  203. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
  204. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
  205. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  206. vllm/entrypoints/score_utils.py +49 -0
  207. vllm/entrypoints/ssl.py +74 -0
  208. vllm/entrypoints/utils.py +136 -0
  209. vllm/env_override.py +34 -0
  210. vllm/envs.py +800 -0
  211. vllm/executor/__init__.py +0 -0
  212. vllm/executor/executor_base.py +400 -0
  213. vllm/executor/mp_distributed_executor.py +243 -0
  214. vllm/executor/msgspec_utils.py +29 -0
  215. vllm/executor/multiproc_worker_utils.py +312 -0
  216. vllm/executor/ray_distributed_executor.py +700 -0
  217. vllm/executor/ray_utils.py +400 -0
  218. vllm/executor/uniproc_executor.py +141 -0
  219. vllm/forward_context.py +159 -0
  220. vllm/inputs/__init__.py +37 -0
  221. vllm/inputs/data.py +248 -0
  222. vllm/inputs/parse.py +121 -0
  223. vllm/inputs/preprocess.py +745 -0
  224. vllm/inputs/registry.py +212 -0
  225. vllm/jsontree.py +79 -0
  226. vllm/logger.py +210 -0
  227. vllm/logging_utils/__init__.py +7 -0
  228. vllm/logging_utils/formatter.py +17 -0
  229. vllm/logits_process.py +121 -0
  230. vllm/lora/__init__.py +0 -0
  231. vllm/lora/fully_sharded_layers.py +335 -0
  232. vllm/lora/layers.py +1263 -0
  233. vllm/lora/lora.py +198 -0
  234. vllm/lora/models.py +802 -0
  235. vllm/lora/ops/__init__.py +0 -0
  236. vllm/lora/ops/torch_ops/__init__.py +15 -0
  237. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  238. vllm/lora/ops/triton_ops/__init__.py +11 -0
  239. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  240. vllm/lora/ops/triton_ops/lora_expand.py +293 -0
  241. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  242. vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
  243. vllm/lora/ops/triton_ops/utils.py +121 -0
  244. vllm/lora/peft_helper.py +115 -0
  245. vllm/lora/punica_wrapper/__init__.py +9 -0
  246. vllm/lora/punica_wrapper/punica_base.py +483 -0
  247. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  248. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  249. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  250. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  251. vllm/lora/punica_wrapper/utils.py +161 -0
  252. vllm/lora/request.py +97 -0
  253. vllm/lora/resolver.py +83 -0
  254. vllm/lora/utils.py +237 -0
  255. vllm/lora/worker_manager.py +251 -0
  256. vllm/model_executor/__init__.py +15 -0
  257. vllm/model_executor/custom_op.py +153 -0
  258. vllm/model_executor/guided_decoding/__init__.py +180 -0
  259. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  260. vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
  261. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  262. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  263. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  264. vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
  265. vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
  266. vllm/model_executor/guided_decoding/utils.py +241 -0
  267. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  268. vllm/model_executor/layers/__init__.py +0 -0
  269. vllm/model_executor/layers/activation.py +368 -0
  270. vllm/model_executor/layers/fused_moe/__init__.py +51 -0
  271. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  272. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  273. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  274. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  275. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  276. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  277. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  278. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  279. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  280. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  281. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  282. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  283. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  284. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  285. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  286. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  287. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  426. vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
  427. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
  428. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
  429. vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
  430. vllm/model_executor/layers/fused_moe/layer.py +949 -0
  431. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  432. vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
  433. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  434. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
  435. vllm/model_executor/layers/fused_moe/utils.py +48 -0
  436. vllm/model_executor/layers/layernorm.py +277 -0
  437. vllm/model_executor/layers/lightning_attn.py +651 -0
  438. vllm/model_executor/layers/linear.py +1518 -0
  439. vllm/model_executor/layers/logits_processor.py +196 -0
  440. vllm/model_executor/layers/mamba/__init__.py +0 -0
  441. vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
  442. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  443. vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
  444. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  445. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  446. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
  447. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  448. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  449. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  450. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  451. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  452. vllm/model_executor/layers/pooler.py +336 -0
  453. vllm/model_executor/layers/quantization/__init__.py +153 -0
  454. vllm/model_executor/layers/quantization/aqlm.py +374 -0
  455. vllm/model_executor/layers/quantization/awq.py +184 -0
  456. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  457. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  458. vllm/model_executor/layers/quantization/base_config.py +145 -0
  459. vllm/model_executor/layers/quantization/bitblas.py +459 -0
  460. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  461. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  462. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
  463. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
  464. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
  465. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  466. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  467. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  468. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
  469. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  470. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  471. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  472. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  473. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
  474. vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
  475. vllm/model_executor/layers/quantization/experts_int8.py +194 -0
  476. vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
  477. vllm/model_executor/layers/quantization/fp8.py +832 -0
  478. vllm/model_executor/layers/quantization/gguf.py +408 -0
  479. vllm/model_executor/layers/quantization/gptq.py +276 -0
  480. vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
  481. vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
  482. vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
  483. vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
  484. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  485. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  486. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  487. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  488. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  489. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  490. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  491. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  492. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
  493. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  494. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  495. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  496. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  497. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  498. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  499. vllm/model_executor/layers/quantization/kv_cache.py +137 -0
  500. vllm/model_executor/layers/quantization/marlin.py +259 -0
  501. vllm/model_executor/layers/quantization/modelopt.py +410 -0
  502. vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
  503. vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
  504. vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
  505. vllm/model_executor/layers/quantization/qqq.py +273 -0
  506. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  507. vllm/model_executor/layers/quantization/quark/quark.py +385 -0
  508. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  509. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
  510. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  511. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
  512. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  513. vllm/model_executor/layers/quantization/quark/utils.py +102 -0
  514. vllm/model_executor/layers/quantization/schema.py +85 -0
  515. vllm/model_executor/layers/quantization/torchao.py +127 -0
  516. vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
  517. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  518. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  519. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
  520. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  521. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  522. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  523. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  524. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  525. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  526. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  527. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  528. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  529. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  530. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  531. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  532. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  533. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  534. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  535. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  536. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  537. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  538. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  539. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  540. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  541. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  542. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  543. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  544. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  545. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  546. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  547. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  548. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  549. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  550. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  551. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
  723. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  724. vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
  725. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  726. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  727. vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
  728. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
  729. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  730. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  731. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
  732. vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
  733. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  734. vllm/model_executor/layers/rejection_sampler.py +400 -0
  735. vllm/model_executor/layers/resampler.py +269 -0
  736. vllm/model_executor/layers/rotary_embedding.py +1598 -0
  737. vllm/model_executor/layers/sampler.py +1221 -0
  738. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  739. vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
  740. vllm/model_executor/layers/utils.py +99 -0
  741. vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
  742. vllm/model_executor/model_loader/__init__.py +20 -0
  743. vllm/model_executor/model_loader/loader.py +1542 -0
  744. vllm/model_executor/model_loader/neuron.py +243 -0
  745. vllm/model_executor/model_loader/tensorizer.py +468 -0
  746. vllm/model_executor/model_loader/utils.py +171 -0
  747. vllm/model_executor/model_loader/weight_utils.py +749 -0
  748. vllm/model_executor/models/__init__.py +27 -0
  749. vllm/model_executor/models/adapters.py +247 -0
  750. vllm/model_executor/models/arctic.py +559 -0
  751. vllm/model_executor/models/aria.py +656 -0
  752. vllm/model_executor/models/aya_vision.py +461 -0
  753. vllm/model_executor/models/baichuan.py +469 -0
  754. vllm/model_executor/models/bamba.py +542 -0
  755. vllm/model_executor/models/bart.py +936 -0
  756. vllm/model_executor/models/bert.py +725 -0
  757. vllm/model_executor/models/blip.py +337 -0
  758. vllm/model_executor/models/blip2.py +717 -0
  759. vllm/model_executor/models/bloom.py +358 -0
  760. vllm/model_executor/models/chameleon.py +1135 -0
  761. vllm/model_executor/models/chatglm.py +476 -0
  762. vllm/model_executor/models/clip.py +410 -0
  763. vllm/model_executor/models/commandr.py +466 -0
  764. vllm/model_executor/models/constant_size_cache.py +136 -0
  765. vllm/model_executor/models/dbrx.py +469 -0
  766. vllm/model_executor/models/deepseek.py +484 -0
  767. vllm/model_executor/models/deepseek_mtp.py +266 -0
  768. vllm/model_executor/models/deepseek_v2.py +830 -0
  769. vllm/model_executor/models/deepseek_vl2.py +647 -0
  770. vllm/model_executor/models/eagle.py +247 -0
  771. vllm/model_executor/models/exaone.py +548 -0
  772. vllm/model_executor/models/fairseq2_llama.py +153 -0
  773. vllm/model_executor/models/falcon.py +508 -0
  774. vllm/model_executor/models/florence2.py +1102 -0
  775. vllm/model_executor/models/fuyu.py +388 -0
  776. vllm/model_executor/models/gemma.py +423 -0
  777. vllm/model_executor/models/gemma2.py +423 -0
  778. vllm/model_executor/models/gemma3.py +531 -0
  779. vllm/model_executor/models/gemma3_mm.py +716 -0
  780. vllm/model_executor/models/glm.py +22 -0
  781. vllm/model_executor/models/glm4.py +303 -0
  782. vllm/model_executor/models/glm4v.py +647 -0
  783. vllm/model_executor/models/gpt2.py +313 -0
  784. vllm/model_executor/models/gpt_bigcode.py +336 -0
  785. vllm/model_executor/models/gpt_j.py +337 -0
  786. vllm/model_executor/models/gpt_neox.py +330 -0
  787. vllm/model_executor/models/granite.py +494 -0
  788. vllm/model_executor/models/granite_speech.py +777 -0
  789. vllm/model_executor/models/granitemoe.py +435 -0
  790. vllm/model_executor/models/granitemoeshared.py +339 -0
  791. vllm/model_executor/models/gritlm.py +245 -0
  792. vllm/model_executor/models/grok1.py +560 -0
  793. vllm/model_executor/models/h2ovl.py +542 -0
  794. vllm/model_executor/models/idefics2_vision_model.py +387 -0
  795. vllm/model_executor/models/idefics3.py +767 -0
  796. vllm/model_executor/models/interfaces.py +569 -0
  797. vllm/model_executor/models/interfaces_base.py +163 -0
  798. vllm/model_executor/models/intern_vit.py +476 -0
  799. vllm/model_executor/models/internlm2.py +453 -0
  800. vllm/model_executor/models/internlm2_ve.py +146 -0
  801. vllm/model_executor/models/internvl.py +945 -0
  802. vllm/model_executor/models/jais.py +371 -0
  803. vllm/model_executor/models/jamba.py +590 -0
  804. vllm/model_executor/models/kimi_vl.py +577 -0
  805. vllm/model_executor/models/llama.py +619 -0
  806. vllm/model_executor/models/llama4.py +530 -0
  807. vllm/model_executor/models/llama_eagle.py +152 -0
  808. vllm/model_executor/models/llama_eagle3.py +232 -0
  809. vllm/model_executor/models/llava.py +869 -0
  810. vllm/model_executor/models/llava_next.py +582 -0
  811. vllm/model_executor/models/llava_next_video.py +470 -0
  812. vllm/model_executor/models/llava_onevision.py +954 -0
  813. vllm/model_executor/models/mamba.py +271 -0
  814. vllm/model_executor/models/mamba2.py +302 -0
  815. vllm/model_executor/models/mamba_cache.py +76 -0
  816. vllm/model_executor/models/medusa.py +210 -0
  817. vllm/model_executor/models/minicpm.py +592 -0
  818. vllm/model_executor/models/minicpm3.py +229 -0
  819. vllm/model_executor/models/minicpmo.py +725 -0
  820. vllm/model_executor/models/minicpmv.py +1287 -0
  821. vllm/model_executor/models/minimax_cache.py +35 -0
  822. vllm/model_executor/models/minimax_text_01.py +1261 -0
  823. vllm/model_executor/models/mistral3.py +598 -0
  824. vllm/model_executor/models/mixtral.py +485 -0
  825. vllm/model_executor/models/mixtral_quant.py +447 -0
  826. vllm/model_executor/models/mllama.py +1623 -0
  827. vllm/model_executor/models/mllama4.py +838 -0
  828. vllm/model_executor/models/mlp_speculator.py +205 -0
  829. vllm/model_executor/models/modernbert.py +325 -0
  830. vllm/model_executor/models/module_mapping.py +71 -0
  831. vllm/model_executor/models/molmo.py +1567 -0
  832. vllm/model_executor/models/moonvit.py +628 -0
  833. vllm/model_executor/models/mpt.py +329 -0
  834. vllm/model_executor/models/nemotron.py +506 -0
  835. vllm/model_executor/models/nemotron_nas.py +446 -0
  836. vllm/model_executor/models/nvlm_d.py +212 -0
  837. vllm/model_executor/models/olmo.py +390 -0
  838. vllm/model_executor/models/olmo2.py +412 -0
  839. vllm/model_executor/models/olmoe.py +449 -0
  840. vllm/model_executor/models/opt.py +410 -0
  841. vllm/model_executor/models/orion.py +356 -0
  842. vllm/model_executor/models/paligemma.py +397 -0
  843. vllm/model_executor/models/persimmon.py +342 -0
  844. vllm/model_executor/models/phi.py +354 -0
  845. vllm/model_executor/models/phi3.py +18 -0
  846. vllm/model_executor/models/phi3_small.py +463 -0
  847. vllm/model_executor/models/phi3v.py +722 -0
  848. vllm/model_executor/models/phi4mm.py +1263 -0
  849. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  850. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  851. vllm/model_executor/models/phimoe.py +666 -0
  852. vllm/model_executor/models/pixtral.py +1281 -0
  853. vllm/model_executor/models/plamo2.py +736 -0
  854. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  855. vllm/model_executor/models/qwen.py +360 -0
  856. vllm/model_executor/models/qwen2.py +552 -0
  857. vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
  858. vllm/model_executor/models/qwen2_5_vl.py +1136 -0
  859. vllm/model_executor/models/qwen2_audio.py +402 -0
  860. vllm/model_executor/models/qwen2_moe.py +531 -0
  861. vllm/model_executor/models/qwen2_rm.py +130 -0
  862. vllm/model_executor/models/qwen2_vl.py +1409 -0
  863. vllm/model_executor/models/qwen3.py +319 -0
  864. vllm/model_executor/models/qwen3_moe.py +528 -0
  865. vllm/model_executor/models/qwen_vl.py +784 -0
  866. vllm/model_executor/models/registry.py +611 -0
  867. vllm/model_executor/models/roberta.py +332 -0
  868. vllm/model_executor/models/siglip.py +522 -0
  869. vllm/model_executor/models/skyworkr1v.py +949 -0
  870. vllm/model_executor/models/smolvlm.py +51 -0
  871. vllm/model_executor/models/solar.py +504 -0
  872. vllm/model_executor/models/stablelm.py +349 -0
  873. vllm/model_executor/models/starcoder2.py +355 -0
  874. vllm/model_executor/models/telechat2.py +139 -0
  875. vllm/model_executor/models/teleflm.py +78 -0
  876. vllm/model_executor/models/transformers.py +442 -0
  877. vllm/model_executor/models/ultravox.py +655 -0
  878. vllm/model_executor/models/utils.py +714 -0
  879. vllm/model_executor/models/vision.py +149 -0
  880. vllm/model_executor/models/whisper.py +746 -0
  881. vllm/model_executor/models/zamba2.py +1008 -0
  882. vllm/model_executor/parameter.py +458 -0
  883. vllm/model_executor/pooling_metadata.py +71 -0
  884. vllm/model_executor/sampling_metadata.py +596 -0
  885. vllm/model_executor/utils.py +53 -0
  886. vllm/multimodal/__init__.py +31 -0
  887. vllm/multimodal/audio.py +105 -0
  888. vllm/multimodal/base.py +218 -0
  889. vllm/multimodal/hasher.py +103 -0
  890. vllm/multimodal/image.py +77 -0
  891. vllm/multimodal/inputs.py +843 -0
  892. vllm/multimodal/parse.py +454 -0
  893. vllm/multimodal/processing.py +1760 -0
  894. vllm/multimodal/profiling.py +274 -0
  895. vllm/multimodal/registry.py +321 -0
  896. vllm/multimodal/utils.py +386 -0
  897. vllm/multimodal/video.py +166 -0
  898. vllm/outputs.py +521 -0
  899. vllm/platforms/__init__.py +286 -0
  900. vllm/platforms/cpu.py +182 -0
  901. vllm/platforms/cuda.py +463 -0
  902. vllm/platforms/hpu.py +94 -0
  903. vllm/platforms/interface.py +427 -0
  904. vllm/platforms/neuron.py +69 -0
  905. vllm/platforms/rocm.py +346 -0
  906. vllm/platforms/tpu.py +174 -0
  907. vllm/platforms/xpu.py +142 -0
  908. vllm/plugins/__init__.py +82 -0
  909. vllm/pooling_params.py +53 -0
  910. vllm/profiler/__init__.py +7 -0
  911. vllm/profiler/layerwise_profile.py +374 -0
  912. vllm/profiler/utils.py +147 -0
  913. vllm/prompt_adapter/__init__.py +0 -0
  914. vllm/prompt_adapter/layers.py +82 -0
  915. vllm/prompt_adapter/models.py +357 -0
  916. vllm/prompt_adapter/request.py +36 -0
  917. vllm/prompt_adapter/utils.py +97 -0
  918. vllm/prompt_adapter/worker_manager.py +178 -0
  919. vllm/py.typed +2 -0
  920. vllm/reasoning/__init__.py +12 -0
  921. vllm/reasoning/abs_reasoning_parsers.py +189 -0
  922. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  923. vllm/reasoning/granite_reasoning_parser.py +362 -0
  924. vllm/sampling_params.py +598 -0
  925. vllm/scalar_type.py +335 -0
  926. vllm/scripts.py +14 -0
  927. vllm/sequence.py +1486 -0
  928. vllm/spec_decode/__init__.py +0 -0
  929. vllm/spec_decode/batch_expansion.py +505 -0
  930. vllm/spec_decode/draft_model_runner.py +335 -0
  931. vllm/spec_decode/interfaces.py +98 -0
  932. vllm/spec_decode/medusa_worker.py +137 -0
  933. vllm/spec_decode/metrics.py +212 -0
  934. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  935. vllm/spec_decode/mqa_scorer.py +159 -0
  936. vllm/spec_decode/multi_step_worker.py +416 -0
  937. vllm/spec_decode/ngram_worker.py +195 -0
  938. vllm/spec_decode/proposer_worker_base.py +58 -0
  939. vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
  940. vllm/spec_decode/spec_decode_worker.py +1324 -0
  941. vllm/spec_decode/target_model_runner.py +44 -0
  942. vllm/spec_decode/top1_proposer.py +274 -0
  943. vllm/spec_decode/util.py +276 -0
  944. vllm/test_utils.py +129 -0
  945. vllm/third_party/__init__.py +0 -0
  946. vllm/third_party/pynvml.py +6139 -0
  947. vllm/tracing.py +130 -0
  948. vllm/transformers_utils/__init__.py +19 -0
  949. vllm/transformers_utils/config.py +813 -0
  950. vllm/transformers_utils/configs/__init__.py +52 -0
  951. vllm/transformers_utils/configs/arctic.py +206 -0
  952. vllm/transformers_utils/configs/chatglm.py +71 -0
  953. vllm/transformers_utils/configs/cohere2.py +194 -0
  954. vllm/transformers_utils/configs/dbrx.py +280 -0
  955. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  956. vllm/transformers_utils/configs/eagle.py +65 -0
  957. vllm/transformers_utils/configs/exaone.py +191 -0
  958. vllm/transformers_utils/configs/falcon.py +89 -0
  959. vllm/transformers_utils/configs/h2ovl.py +15 -0
  960. vllm/transformers_utils/configs/internvl.py +53 -0
  961. vllm/transformers_utils/configs/jais.py +237 -0
  962. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  963. vllm/transformers_utils/configs/medusa.py +62 -0
  964. vllm/transformers_utils/configs/mllama.py +30 -0
  965. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  966. vllm/transformers_utils/configs/moonvit.py +32 -0
  967. vllm/transformers_utils/configs/mpt.py +179 -0
  968. vllm/transformers_utils/configs/nemotron.py +204 -0
  969. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  970. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  971. vllm/transformers_utils/configs/solar.py +246 -0
  972. vllm/transformers_utils/configs/telechat2.py +63 -0
  973. vllm/transformers_utils/configs/ultravox.py +107 -0
  974. vllm/transformers_utils/detokenizer.py +167 -0
  975. vllm/transformers_utils/detokenizer_utils.py +188 -0
  976. vllm/transformers_utils/processor.py +210 -0
  977. vllm/transformers_utils/processors/__init__.py +6 -0
  978. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  979. vllm/transformers_utils/s3_utils.py +161 -0
  980. vllm/transformers_utils/tokenizer.py +291 -0
  981. vllm/transformers_utils/tokenizer_base.py +146 -0
  982. vllm/transformers_utils/tokenizer_group.py +110 -0
  983. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  984. vllm/transformers_utils/tokenizers/mistral.py +483 -0
  985. vllm/transformers_utils/utils.py +98 -0
  986. vllm/triton_utils/__init__.py +5 -0
  987. vllm/triton_utils/importing.py +53 -0
  988. vllm/usage/__init__.py +0 -0
  989. vllm/usage/usage_lib.py +255 -0
  990. vllm/utils.py +2692 -0
  991. vllm/v1/__init__.py +0 -0
  992. vllm/v1/attention/__init__.py +0 -0
  993. vllm/v1/attention/backends/__init__.py +0 -0
  994. vllm/v1/attention/backends/flash_attn.py +783 -0
  995. vllm/v1/attention/backends/flashinfer.py +638 -0
  996. vllm/v1/attention/backends/mla/__init__.py +0 -0
  997. vllm/v1/attention/backends/mla/common.py +974 -0
  998. vllm/v1/attention/backends/mla/flashmla.py +149 -0
  999. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1000. vllm/v1/attention/backends/pallas.py +221 -0
  1001. vllm/v1/attention/backends/triton_attn.py +198 -0
  1002. vllm/v1/core/__init__.py +0 -0
  1003. vllm/v1/core/block_pool.py +281 -0
  1004. vllm/v1/core/encoder_cache_manager.py +149 -0
  1005. vllm/v1/core/kv_cache_manager.py +385 -0
  1006. vllm/v1/core/kv_cache_utils.py +744 -0
  1007. vllm/v1/core/sched/__init__.py +0 -0
  1008. vllm/v1/core/sched/interface.py +134 -0
  1009. vllm/v1/core/sched/output.py +126 -0
  1010. vllm/v1/core/sched/scheduler.py +838 -0
  1011. vllm/v1/core/sched/utils.py +22 -0
  1012. vllm/v1/core/specialized_manager.py +161 -0
  1013. vllm/v1/engine/__init__.py +166 -0
  1014. vllm/v1/engine/async_llm.py +532 -0
  1015. vllm/v1/engine/core.py +701 -0
  1016. vllm/v1/engine/core_client.py +942 -0
  1017. vllm/v1/engine/detokenizer.py +260 -0
  1018. vllm/v1/engine/exceptions.py +16 -0
  1019. vllm/v1/engine/llm_engine.py +285 -0
  1020. vllm/v1/engine/logprobs.py +198 -0
  1021. vllm/v1/engine/mm_input_cache.py +82 -0
  1022. vllm/v1/engine/output_processor.py +420 -0
  1023. vllm/v1/engine/parallel_sampling.py +132 -0
  1024. vllm/v1/engine/processor.py +387 -0
  1025. vllm/v1/executor/__init__.py +0 -0
  1026. vllm/v1/executor/abstract.py +112 -0
  1027. vllm/v1/executor/multiproc_executor.py +480 -0
  1028. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1029. vllm/v1/kv_cache_interface.py +166 -0
  1030. vllm/v1/metrics/__init__.py +0 -0
  1031. vllm/v1/metrics/loggers.py +498 -0
  1032. vllm/v1/metrics/stats.py +238 -0
  1033. vllm/v1/outputs.py +111 -0
  1034. vllm/v1/request.py +178 -0
  1035. vllm/v1/sample/__init__.py +0 -0
  1036. vllm/v1/sample/metadata.py +43 -0
  1037. vllm/v1/sample/ops/__init__.py +0 -0
  1038. vllm/v1/sample/ops/bad_words.py +38 -0
  1039. vllm/v1/sample/ops/penalties.py +58 -0
  1040. vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
  1041. vllm/v1/sample/rejection_sampler.py +631 -0
  1042. vllm/v1/sample/sampler.py +270 -0
  1043. vllm/v1/sample/tpu/__init__.py +0 -0
  1044. vllm/v1/sample/tpu/metadata.py +118 -0
  1045. vllm/v1/sample/tpu/sampler.py +154 -0
  1046. vllm/v1/serial_utils.py +274 -0
  1047. vllm/v1/spec_decode/__init__.py +0 -0
  1048. vllm/v1/spec_decode/eagle.py +318 -0
  1049. vllm/v1/spec_decode/metadata.py +61 -0
  1050. vllm/v1/spec_decode/metrics.py +164 -0
  1051. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1052. vllm/v1/spec_decode/utils.py +18 -0
  1053. vllm/v1/stats/__init__.py +0 -0
  1054. vllm/v1/stats/common.py +453 -0
  1055. vllm/v1/structured_output/__init__.py +113 -0
  1056. vllm/v1/structured_output/backend_guidance.py +215 -0
  1057. vllm/v1/structured_output/backend_types.py +96 -0
  1058. vllm/v1/structured_output/backend_xgrammar.py +299 -0
  1059. vllm/v1/structured_output/request.py +84 -0
  1060. vllm/v1/structured_output/utils.py +174 -0
  1061. vllm/v1/utils.py +249 -0
  1062. vllm/v1/worker/__init__.py +0 -0
  1063. vllm/v1/worker/block_table.py +87 -0
  1064. vllm/v1/worker/gpu_input_batch.py +677 -0
  1065. vllm/v1/worker/gpu_model_runner.py +1776 -0
  1066. vllm/v1/worker/gpu_worker.py +349 -0
  1067. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1068. vllm/v1/worker/tpu_model_runner.py +1419 -0
  1069. vllm/v1/worker/tpu_worker.py +260 -0
  1070. vllm/v1/worker/utils.py +74 -0
  1071. vllm/v1/worker/worker_base.py +64 -0
  1072. vllm/version.py +40 -0
  1073. vllm/vllm_flash_attn/.gitkeep +0 -0
  1074. vllm/worker/__init__.py +0 -0
  1075. vllm/worker/cache_engine.py +144 -0
  1076. vllm/worker/cpu_enc_dec_model_runner.py +323 -0
  1077. vllm/worker/cpu_model_runner.py +668 -0
  1078. vllm/worker/cpu_pooling_model_runner.py +122 -0
  1079. vllm/worker/cpu_worker.py +400 -0
  1080. vllm/worker/enc_dec_model_runner.py +542 -0
  1081. vllm/worker/hpu_model_runner.py +2221 -0
  1082. vllm/worker/hpu_worker.py +483 -0
  1083. vllm/worker/model_runner.py +2056 -0
  1084. vllm/worker/model_runner_base.py +281 -0
  1085. vllm/worker/multi_step_hpu_worker.py +122 -0
  1086. vllm/worker/multi_step_model_runner.py +908 -0
  1087. vllm/worker/multi_step_tpu_worker.py +107 -0
  1088. vllm/worker/multi_step_worker.py +196 -0
  1089. vllm/worker/neuron_model_runner.py +336 -0
  1090. vllm/worker/neuron_worker.py +138 -0
  1091. vllm/worker/pooling_model_runner.py +200 -0
  1092. vllm/worker/tpu_model_runner.py +908 -0
  1093. vllm/worker/tpu_worker.py +332 -0
  1094. vllm/worker/utils.py +52 -0
  1095. vllm/worker/worker.py +570 -0
  1096. vllm/worker/worker_base.py +644 -0
  1097. vllm/worker/xpu_model_runner.py +603 -0
  1098. vllm/worker/xpu_worker.py +185 -0
  1099. vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
  1100. vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
  1101. vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
  1102. vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
  1103. vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1263 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ import math
3
+ from collections.abc import Iterable, Mapping, Sequence
4
+ from typing import Any, Dict, List, Literal, Optional, Tuple, TypedDict, Union
5
+
6
+ import numpy as np
7
+ import torch
8
+ import torch.nn as nn
9
+ from transformers import (BatchFeature, PretrainedConfig, ProcessorMixin,
10
+ SequenceFeatureExtractor, SiglipVisionConfig)
11
+
12
+ from vllm.config import VllmConfig
13
+ from vllm.distributed import get_pp_group
14
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
15
+ from vllm.model_executor.layers.quantization import QuantizationConfig
16
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
17
+ DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead)
18
+ from vllm.model_executor.models.llama import LlamaModel
19
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
20
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
21
+ from vllm.multimodal import MULTIMODAL_REGISTRY
22
+ from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
23
+ MultiModalKwargs, NestedTensors)
24
+ from vllm.multimodal.parse import (AudioProcessorItems, ImageEmbeddingItems,
25
+ ImageProcessorItems, ImageSize,
26
+ MultiModalDataItems, MultiModalDataParser)
27
+ from vllm.multimodal.processing import (BaseMultiModalProcessor,
28
+ BaseProcessingInfo, PromptReplacement,
29
+ PromptUpdate)
30
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
31
+ from vllm.sequence import IntermediateTensors
32
+ from vllm.utils import is_list_of
33
+
34
+ from .idefics2_vision_model import Idefics2VisionTransformer
35
+ from .interfaces import MultiModalEmbeddings, SupportsLoRA, SupportsMultiModal
36
+ from .phi4mm_audio import AudioEmbedding
37
+ from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn, maybe_prefix,
38
+ merge_multimodal_embeddings)
39
+
40
+ # <|endoftext10|> (see vocab.json in hf model)
41
+ _IMAGE_PLACEHOLDER_TOKEN_ID = 200010
42
+ # <|endoftext11|>
43
+ _AUDIO_PLACEHOLDER_TOKEN_ID = 200011
44
+
45
+ _AUDIO_MAX_SOUNDFILE_SIZE = 241_000
46
+
47
+ SIGLIP_NAME = "siglip-so400m-patch14-448"
48
+ VISION_ENCODER_TO_PROCESSING_CONFIG = {
49
+ 'siglip-so400m-patch14-448': {
50
+ 'vit_image_size': 448,
51
+ 'vit_patch_size': 14,
52
+ 'token_compression_factor': 2,
53
+ },
54
+ }
55
+
56
+
57
+ def _get_padding_size(orig_width: int, orig_height: int, target_height: int,
58
+ target_width: int):
59
+ ratio_width = target_width / orig_width
60
+ ratio_height = target_height / orig_height
61
+
62
+ if ratio_width < ratio_height:
63
+ padding_width = 0
64
+ padding_height = target_height - int(orig_height * ratio_width)
65
+ else:
66
+ padding_width = target_width - int(orig_width * ratio_height)
67
+ padding_height = 0
68
+ return padding_height, padding_width
69
+
70
+
71
+ def get_navit_vision_model(layer_idx: int = -1, **kwargs):
72
+ vision_config = {
73
+ "hidden_size": 1152,
74
+ "image_size": 448,
75
+ "intermediate_size": 4304,
76
+ "model_type": "siglip_vision_model",
77
+ "num_attention_heads": 16,
78
+ "num_hidden_layers": 27,
79
+ "patch_size": 14,
80
+ }
81
+
82
+ model_config = SiglipVisionConfig(**vision_config, **kwargs)
83
+ if layer_idx < 0:
84
+ num_hidden_layers = model_config.num_hidden_layers \
85
+ + layer_idx + 1
86
+ else:
87
+ num_hidden_layers = layer_idx + 1
88
+
89
+ vision_model = Idefics2VisionTransformer(
90
+ config=model_config,
91
+ require_post_norm=False,
92
+ num_hidden_layers_override=num_hidden_layers,
93
+ )
94
+
95
+ return vision_model
96
+
97
+
98
+ class Phi4MMImageEncoder(nn.Module):
99
+ """Image embedding."""
100
+
101
+ def __init__(self,
102
+ config: PretrainedConfig,
103
+ quant_config: Optional[QuantizationConfig],
104
+ prefix: str = "",
105
+ model_dir: str = "") -> None:
106
+ super().__init__()
107
+
108
+ # n_embed or hidden_size
109
+ hidden_size = config.n_embd if hasattr(
110
+ config, 'n_embd') else config.hidden_size
111
+
112
+ # layer_idx to output the img features
113
+ if isinstance(config.img_processor, dict):
114
+ self.layer_idx = config.img_processor.get('layer_idx', -2)
115
+ self.type_feature = config.img_processor.get(
116
+ 'type_feature', 'patch')
117
+ else:
118
+ self.layer_idx = -2
119
+ self.type_feature = 'patch'
120
+
121
+ self.img_processor = get_navit_vision_model(layer_idx=self.layer_idx)
122
+
123
+ pe_weight = self.img_processor.embeddings.position_embedding.weight
124
+ L, D = pe_weight.size()
125
+ H = int(math.sqrt(L))
126
+ assert H**2 == L, f'position embedding size {L} is not square'
127
+ if H % 2 != 0:
128
+ self.img_processor_padding = nn.ReflectionPad2d((0, 1, 0, 1))
129
+ H += 1
130
+ image_dim_out = D
131
+ # ((448/14)//2)**2
132
+ self.num_img_tokens = (H // 2)**2
133
+ self.base_feat_height_target = H
134
+
135
+ self.image_dim_out = image_dim_out
136
+ self.img_sizes = None
137
+ self.image_attention_mask = None
138
+
139
+ # global_gn and sub_gn for hd transform, serves as line separator
140
+ self.use_hd_transform = True
141
+ self.with_learnable_separator = True
142
+ self.hd_transform_order = "sub_glb"
143
+ self.freeze_img_processor = False
144
+ self.crop_size = 448
145
+
146
+ # image token compression
147
+ self.image_token_compression_cls = 'avg_pool_2d'
148
+ self.image_token_compression = nn.AvgPool2d(kernel_size=2, stride=2)
149
+ self.base_feat_height_reduction = 1
150
+ self.base_feat_height_target = self.base_feat_height_target // 2
151
+
152
+ # with_hd_transform and with_learnable_separator should have same value
153
+ assert self.use_hd_transform == self.with_learnable_separator, \
154
+ 'use_hd_transform and with_learnable_separator should have same value'
155
+ assert self.use_hd_transform, \
156
+ 'learnable separator is only for hd transform'
157
+ # 1024 * 4, merge spatial to channel dimension
158
+ self.glb_GN = nn.Parameter(
159
+ torch.zeros([
160
+ 1, 1, self.image_dim_out * self.base_feat_height_reduction**2
161
+ ]))
162
+ self.sub_GN = nn.Parameter(
163
+ torch.zeros([
164
+ 1, 1, 1,
165
+ self.image_dim_out * self.base_feat_height_reduction**2
166
+ ]))
167
+
168
+ dim_projection = hidden_size
169
+ depth = 2
170
+ layers = [
171
+ nn.Linear(image_dim_out * self.base_feat_height_reduction**2,
172
+ dim_projection)
173
+ ]
174
+ for _ in range(1, depth):
175
+ layers.extend(
176
+ [nn.GELU(),
177
+ nn.Linear(dim_projection, dim_projection)])
178
+ self.img_projection = nn.Sequential(*layers)
179
+
180
+ self.vocab_size = config.vocab_size
181
+ self.img_features = None
182
+
183
+ self.use_out_place_operations = False
184
+
185
+ def get_img_features(self,
186
+ img_embeds: torch.FloatTensor,
187
+ attention_mask=None) -> torch.FloatTensor:
188
+
189
+ img_feature = self.img_processor(img_embeds,
190
+ patch_attention_mask=attention_mask)
191
+
192
+ if self.type_feature == "patch":
193
+ patch_feature = img_feature
194
+
195
+ use_token_compression = self.image_token_compression is not None
196
+ use_padding = getattr(self, 'img_processor_padding',
197
+ None) is not None
198
+ if use_token_compression or use_padding:
199
+ # reshape to 2D tensor
200
+ width = int(math.sqrt(patch_feature.size(1)))
201
+ patch_feature = patch_feature.view(-1, width, width,
202
+ patch_feature.size(-1))
203
+ # convert to NCHW
204
+ patch_feature = patch_feature.permute(0, 3, 1, 2)
205
+
206
+ if use_padding:
207
+ patch_feature = self.img_processor_padding(patch_feature)
208
+ if use_token_compression:
209
+ patch_feature = self.image_token_compression(patch_feature)
210
+
211
+ # convert to NHWC
212
+ patch_feature = patch_feature.permute(0, 2, 3, 1)
213
+ patch_feature = patch_feature.view(
214
+ -1,
215
+ patch_feature.size(1) * patch_feature.size(2),
216
+ patch_feature.size(-1))
217
+
218
+ return patch_feature
219
+
220
+ raise NotImplementedError
221
+
222
+ def forward(self, pixel_values: torch.FloatTensor,
223
+ image_sizes: torch.Tensor,
224
+ image_attention_mask: torch.Tensor) -> list[torch.FloatTensor]:
225
+ """
226
+ process image and return vision embeddings.
227
+
228
+ pixel_values: (num_images, num_crops, c, h, w)
229
+ image_sizes: [[h1, w1], [h2, w2]]
230
+ image_attention_mask: num_images x num_crops x 32 x 32
231
+ output: (num_images, num_img_tokens, hidden_size)
232
+ """
233
+
234
+ # eg
235
+ # pixel_values: torch.Size([1, 7, 3, 448, 448])
236
+ # image_sizes: tensor([[ 896, 1344]], device='cuda:0')
237
+ # output: torch.Size([1, 1841, 3072])
238
+
239
+ if isinstance(self.img_projection, nn.Sequential):
240
+ target_device = self.img_projection[0].bias.device
241
+ target_dtype = self.img_projection[0].bias.dtype
242
+ else: # It's a single nn.Linear layer
243
+ target_device = self.img_projection.bias.device
244
+ target_dtype = self.img_projection.bias.dtype
245
+
246
+ img_sizes = image_sizes
247
+ num_images, num_crops, c, h, w = pixel_values.shape
248
+ bs = num_images
249
+ pixel_values = pixel_values.flatten(0, 1)
250
+
251
+ img_features = self.get_img_features(
252
+ pixel_values,
253
+ image_attention_mask.type(torch.BoolTensor).flatten(
254
+ 0, 1).to(target_device))
255
+
256
+ base_feat_height_target = self.base_feat_height_target
257
+ base_resolution = self.crop_size
258
+ base_feat_height_reduction = self.base_feat_height_reduction
259
+
260
+ base_feat_height = base_feat_width = int(np.sqrt(
261
+ img_features.shape[1]))
262
+ assert base_feat_height == base_feat_height_target \
263
+ and base_feat_width == base_feat_height_target, \
264
+ f'base_feat_height: {base_feat_height},"\
265
+ f" base_feat_width: {base_feat_width}, "\
266
+ f"expect {base_feat_height_target} features for hd transform'
267
+
268
+ # bs x max_num_crops x (24x24) x C
269
+ img_features = img_features.view(bs, -1,
270
+ base_feat_height * base_feat_width,
271
+ self.image_dim_out)
272
+ C = self.image_dim_out
273
+ H = base_feat_height
274
+
275
+ output_imgs = []
276
+ output_len = []
277
+ # training is tensor, inference is list
278
+ if isinstance(img_sizes, torch.Tensor):
279
+ img_sizes = img_sizes.view(-1, 2)
280
+ for _bs in range(bs):
281
+ h, w = img_sizes[_bs]
282
+ h = h // base_resolution
283
+ w = w // base_resolution
284
+ B_ = h * w
285
+
286
+ # 1 x (24x24) x 1024
287
+ global_img_feature = img_features[_bs, :1]
288
+
289
+ # 1 x 12 x 12 x 4096
290
+ glb_img = global_img_feature.reshape(1, H, H, C).reshape(
291
+ 1, H // base_feat_height_reduction, base_feat_height_reduction,
292
+ H // base_feat_height_reduction, base_feat_height_reduction,
293
+ C).contiguous().permute(0, 1, 3, 2, 4, 5).reshape(
294
+ 1, H // base_feat_height_reduction,
295
+ H // base_feat_height_reduction,
296
+ base_feat_height_reduction * base_feat_height_reduction *
297
+ C).contiguous()
298
+ temp_glb_GN = self.sub_GN.repeat(1,
299
+ H // base_feat_height_reduction,
300
+ 1, 1)
301
+
302
+ # 1 x 156 x 4096
303
+ glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(
304
+ 1, -1,
305
+ base_feat_height_reduction * base_feat_height_reduction * C)
306
+
307
+ # (max_num_crops-1) x (12x12) x C
308
+ sub_img = img_features[_bs, 1:]
309
+ # 16x574x1024
310
+ # get rid of padding sub_img
311
+ sub_img = sub_img[:B_]
312
+
313
+ # (num_crops, 12, 2, 12, 2, 1024) ->
314
+ # (num_crops, 12, 12, 2, 2, 1024) -> (num_crops, 12*12, 4*1024)
315
+ sub_img = sub_img.reshape(B_, H, H, C).reshape(
316
+ B_, H // base_feat_height_reduction,
317
+ base_feat_height_reduction, H // base_feat_height_reduction,
318
+ base_feat_height_reduction,
319
+ C).contiguous().permute(0, 1, 3, 2, 4, 5).reshape(
320
+ B_, -1, base_feat_height_reduction *
321
+ base_feat_height_reduction * C).contiguous()
322
+ sub_img = sub_img.reshape(
323
+ 1, h, w, base_feat_height // base_feat_height_reduction,
324
+ base_feat_width // base_feat_height_reduction,
325
+ -1).permute(0, 1, 3, 2, 4, 5).reshape(
326
+ 1, h * base_feat_height // base_feat_height_reduction,
327
+ w * base_feat_width // base_feat_height_reduction,
328
+ base_feat_height_reduction * base_feat_height_reduction *
329
+ C)
330
+
331
+ if image_attention_mask is not None and len(
332
+ image_attention_mask) > 0:
333
+ reshaped_image_attention_mask = image_attention_mask[
334
+ _bs, 1:B_ + 1, 0::2, 0::2].reshape(
335
+ 1, h, w,
336
+ base_feat_height // base_feat_height_reduction,
337
+ base_feat_width // base_feat_height_reduction).permute(
338
+ 0, 1, 3, 2, 4).reshape(
339
+ 1, h * base_feat_height //
340
+ base_feat_height_reduction, w *
341
+ base_feat_width // base_feat_height_reduction)
342
+ useful_height = int(
343
+ reshaped_image_attention_mask[0, :, 0].sum().item())
344
+ useful_width = int(
345
+ reshaped_image_attention_mask[0, 0, :].sum().item())
346
+ sub_img = sub_img[:, :useful_height, :useful_width]
347
+ temp_sub_GN = self.sub_GN.repeat(1, useful_height, 1, 1)
348
+ temp_len = int(
349
+ image_attention_mask[_bs, :B_ + 1, 0::2, 0::2].sum().item(
350
+ )) + (useful_height +
351
+ 1) + base_feat_height // base_feat_height_reduction
352
+ else:
353
+ temp_sub_GN = self.sub_GN.repeat(
354
+ 1, h * base_feat_height // base_feat_height_reduction, 1,
355
+ 1)
356
+ temp_len = int((h * w + 1) * self.num_img_tokens + 1 +
357
+ (h + 1) * base_feat_height //
358
+ base_feat_height_reduction)
359
+
360
+ sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(
361
+ 1, -1,
362
+ base_feat_height_reduction * base_feat_height_reduction * C)
363
+ # (1, num_img_tokens, 1024*4)
364
+
365
+ # glb + sub
366
+ if self.hd_transform_order == 'glb_sub':
367
+ output_imgs.append(
368
+ torch.cat([glb_img, self.glb_GN, sub_img], dim=1))
369
+ elif self.hd_transform_order == 'sub_glb':
370
+ output_imgs.append(
371
+ torch.cat([sub_img, self.glb_GN, glb_img], dim=1))
372
+ else:
373
+ raise NotImplementedError(
374
+ f'hd_transform_order = {self.hd_transform_order}, "\
375
+ "not implemented')
376
+
377
+ #temp_len = int((h*w+1)*144 + 1 + (h+1)*12)
378
+ assert temp_len == output_imgs[-1].shape[
379
+ 1], f'temp_len: {temp_len}, output_imgs[-1].shape[1]: "\
380
+ "{output_imgs[-1].shape[1]}'
381
+
382
+ output_len.append(temp_len)
383
+
384
+ img_set_tensor = []
385
+ for _output_img in output_imgs:
386
+ img_feature_proj = self.img_projection(
387
+ _output_img.to(target_device).to(target_dtype))
388
+ img_set_tensor.append(img_feature_proj.squeeze(0))
389
+
390
+ return img_set_tensor
391
+
392
+
393
+ class Phi4MMImagePixelInputs(TypedDict):
394
+ type: Literal["pixel_values"]
395
+ data: Union[torch.Tensor, List[torch.Tensor]]
396
+ """
397
+ Shape:
398
+ `(batch_size * num_images, 1 + num_patches, num_channels, height, width)`
399
+
400
+ Note that `num_patches` may be different per batch and image,
401
+ in which case the data is passed as a list instead of a batched tensor.
402
+ """
403
+
404
+ image_sizes: torch.Tensor
405
+ """
406
+ Shape: `(batch_size * num_images, 2)`
407
+
408
+ This should be in `(height, width)` format.
409
+ """
410
+
411
+ num_img_tokens: list[int]
412
+ """Shape: `(batch_size * num_images)`"""
413
+
414
+ image_attention_mask: torch.Tensor
415
+ """Shape: `(batch_size * num_images, H_mask, W_mask)`"""
416
+
417
+
418
+ class Phi4MMImageEmbeddingInputs(TypedDict):
419
+ type: Literal["image_embeds"]
420
+ data: Union[torch.Tensor, List[torch.Tensor]]
421
+ """Shape: `(batch_size * num_images, image_feature_size, hidden_size)`
422
+
423
+ `hidden_size` must match the hidden size of language model backbone.
424
+ """
425
+
426
+
427
+ class Phi4MMAudioFeatureInputs(TypedDict):
428
+ type: Literal["audio_features"]
429
+ data: Union[torch.Tensor, List[torch.Tensor]]
430
+ """Shape: `(batch_size * num_audios, 80, M)"""
431
+
432
+
433
+ class Phi4MMAudioEmbeddingInputs(TypedDict):
434
+ type: Literal["audio_embeds"]
435
+ data: NestedTensors
436
+ """Shape: `(batch_size, num_audios, audio_feature_size, hidden_size)"""
437
+
438
+
439
+ Phi4MMImageInput = Union[Phi4MMImagePixelInputs, Phi4MMImageEmbeddingInputs]
440
+ Phi4MMAudioInputs = Union[Phi4MMAudioFeatureInputs, Phi4MMAudioEmbeddingInputs]
441
+
442
+
443
+ def cat_with_pad(tensors, dim, padding_value=0):
444
+ """
445
+ cat along dim, while pad to max for all other dims
446
+ """
447
+ ndim = tensors[0].dim()
448
+ assert all(
449
+ t.dim() == ndim for t in
450
+ tensors[1:]), "All tensors must have the same number of dimensions"
451
+
452
+ out_size = [max(t.shape[i] for t in tensors) for i in range(ndim)]
453
+ out_size[dim] = sum(t.shape[dim] for t in tensors)
454
+ output = tensors[0].new_full(out_size, padding_value)
455
+
456
+ index = 0
457
+ for t in tensors:
458
+ # Create a slice list where every dimension except dim is full slice
459
+ slices = [slice(0, t.shape[d]) for d in range(ndim)]
460
+ # Update only the concat dimension slice
461
+ slices[dim] = slice(index, index + t.shape[dim])
462
+
463
+ output[slices] = t
464
+ index += t.shape[dim]
465
+
466
+ return output
467
+
468
+
469
+ class Phi4MMProcessingInfo(BaseProcessingInfo):
470
+
471
+ def get_hf_processor(
472
+ self,
473
+ *,
474
+ dynamic_hd: Optional[int] = None,
475
+ **kwargs: object,
476
+ ) -> ProcessorMixin:
477
+ if dynamic_hd is not None:
478
+ kwargs["dynamic_hd"] = dynamic_hd
479
+
480
+ return self.ctx.get_hf_processor(**kwargs)
481
+
482
+ @property
483
+ def image_tokens(self) -> list[str]:
484
+ return [f"<|image_{i+1}|>" for i in range(100)]
485
+
486
+ @property
487
+ def audio_tokens(self) -> list[str]:
488
+ return [f"<|audio_{i+1}|>" for i in range(100)]
489
+
490
+ def get_dynamic_hd(
491
+ self,
492
+ processor: Optional[ProcessorMixin] = None,
493
+ ) -> int:
494
+ if processor is None:
495
+ processor = self.get_hf_processor()
496
+ image_processor = processor.image_processor
497
+ return image_processor.dynamic_hd
498
+
499
+ def get_feature_extractor(self) -> SequenceFeatureExtractor:
500
+ return self.get_hf_processor().audio_processor
501
+
502
+ def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
503
+ return {"audio": None, "image": None}
504
+
505
+ def _find_target_aspect_ratio(
506
+ self,
507
+ orig_width: int,
508
+ orig_height: int,
509
+ image_size: int,
510
+ max_num: int,
511
+ min_num: int,
512
+ ):
513
+ w_crop_num = math.ceil(orig_width / float(image_size))
514
+ h_crop_num = math.ceil(orig_height / float(image_size))
515
+ if w_crop_num * h_crop_num > max_num:
516
+ aspect_ratio = orig_width / orig_height
517
+
518
+ # calculate the existing image aspect ratio
519
+ target_ratios = set((i, j) for i in range(1, max_num + 1)
520
+ for j in range(1, max_num + 1)
521
+ if i * j <= max_num and i * j >= min_num)
522
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
523
+
524
+ # find the closest aspect ratio to the target
525
+ image_processor = self.get_hf_processor().image_processor
526
+ target_aspect_ratio = image_processor.find_closest_aspect_ratio(
527
+ aspect_ratio,
528
+ target_ratios,
529
+ orig_width,
530
+ orig_height,
531
+ image_size,
532
+ )
533
+
534
+ # calculate the target width and height
535
+ target_width = image_size * target_aspect_ratio[0]
536
+ target_height = image_size * target_aspect_ratio[1]
537
+ else:
538
+ target_width = image_size * w_crop_num
539
+ target_height = image_size * h_crop_num
540
+ target_aspect_ratio = (w_crop_num, h_crop_num)
541
+ return target_aspect_ratio, target_height, target_width
542
+
543
+ def _compute_num_image_tokens(
544
+ self,
545
+ orig_width: int,
546
+ orig_height: int,
547
+ dynamic_hd_size: int,
548
+ vit_image_size: int,
549
+ vit_patch_size: int,
550
+ token_compression_factor: int = 2,
551
+ ):
552
+ """
553
+ compute the number of tokens an image is expected to take up considering
554
+ the image encoder architecture and exclude output features containing
555
+ only padding pixels
556
+
557
+ for siglip, vit_image_size=448, vit_patch_size=14, so output will be
558
+ 32x32 feature map
559
+ NOTE right now, Phi4MM uses hard-coded token_compression_factor=2
560
+ """
561
+ assert vit_image_size % vit_patch_size == 0, (
562
+ "vit_image_size must be divisible by vit_patch_size")
563
+ assert (vit_image_size // vit_patch_size %
564
+ token_compression_factor == 0), (
565
+ "vit_image_size // vit_patch_size must be divisible by "
566
+ "token_compression_factor")
567
+
568
+ target_aspect_ratio, target_height, target_width = (
569
+ self._find_target_aspect_ratio(orig_width,
570
+ orig_height,
571
+ vit_image_size,
572
+ dynamic_hd_size,
573
+ min_num=1))
574
+ assert target_aspect_ratio[0] * vit_image_size == target_width, (
575
+ f"{target_aspect_ratio[0]} * {vit_image_size} != {target_width}")
576
+ assert target_aspect_ratio[1] * vit_image_size == target_height, (
577
+ f"{target_aspect_ratio[1]} * {vit_image_size} != {target_height}")
578
+ assert (target_height % vit_image_size == 0
579
+ and target_width % vit_image_size == 0)
580
+
581
+ padding_height, padding_width = _get_padding_size(
582
+ orig_width, orig_height, target_height, target_width)
583
+ assert padding_width == 0 or padding_height == 0, \
584
+ "padding_width or padding_height must be 0"
585
+
586
+ target_feat_width = target_width // vit_patch_size
587
+ target_feat_height = target_height // vit_patch_size
588
+ if padding_width >= vit_patch_size:
589
+ assert padding_height == 0, "padding_height not 0"
590
+ non_pad_feat_width = target_feat_width - math.floor(
591
+ padding_width / vit_patch_size)
592
+ non_pad_feat_height = target_feat_height
593
+ elif padding_height >= vit_patch_size:
594
+ assert padding_width == 0, "padding_width not 0"
595
+ non_pad_feat_height = target_feat_height - math.floor(
596
+ padding_height / vit_patch_size)
597
+ non_pad_feat_width = target_feat_width
598
+ else:
599
+ # small padding shorter than a vit patch
600
+ non_pad_feat_width = target_feat_width
601
+ non_pad_feat_height = target_feat_height
602
+
603
+ feat_width = non_pad_feat_width // token_compression_factor
604
+ feat_height = non_pad_feat_height // token_compression_factor
605
+ # NOTE it's possible that the non-padding feature is not divisible
606
+ if non_pad_feat_width % token_compression_factor != 0:
607
+ feat_width += 1
608
+ if non_pad_feat_height % token_compression_factor != 0:
609
+ feat_height += 1
610
+ num_hd_patch_tokens = feat_width * feat_height
611
+ num_hd_newline_tokens = feat_height
612
+ vit_feature_size = vit_image_size // vit_patch_size
613
+ num_global_image_tokens = (vit_feature_size //
614
+ token_compression_factor)**2
615
+ num_sep_tokens = 1
616
+ num_global_image_newline_tokens = \
617
+ vit_feature_size // token_compression_factor
618
+
619
+ return (num_global_image_tokens + num_sep_tokens +
620
+ num_hd_patch_tokens + num_hd_newline_tokens +
621
+ num_global_image_newline_tokens)
622
+
623
+ def get_num_image_tokens(
624
+ self,
625
+ *,
626
+ image_width: int,
627
+ image_height: int,
628
+ processor: Optional[ProcessorMixin] = None,
629
+ ) -> int:
630
+ hf_config = self.get_hf_config()
631
+ vision_encoder_name = hf_config.img_processor
632
+ if vision_encoder_name is None:
633
+ vision_encoder_name = SIGLIP_NAME
634
+ prepro_config = VISION_ENCODER_TO_PROCESSING_CONFIG[
635
+ vision_encoder_name]
636
+ vit_image_size = prepro_config['vit_image_size']
637
+ vit_patch_size = prepro_config['vit_patch_size']
638
+ token_compression_factor = prepro_config['token_compression_factor']
639
+
640
+ dynamic_hd_size = self.get_dynamic_hd(processor=processor)
641
+
642
+ image_num_tokens = self._compute_num_image_tokens(
643
+ image_width,
644
+ image_height,
645
+ dynamic_hd_size=dynamic_hd_size,
646
+ vit_image_size=vit_image_size,
647
+ vit_patch_size=vit_patch_size,
648
+ token_compression_factor=token_compression_factor,
649
+ )
650
+
651
+ return image_num_tokens
652
+
653
+ def get_image_size_with_most_features(
654
+ self,
655
+ processor: Optional[ProcessorMixin] = None,
656
+ ) -> ImageSize:
657
+ hf_config = self.get_hf_config()
658
+ vision_encoder_name = hf_config.img_processor
659
+ if vision_encoder_name is None:
660
+ vision_encoder_name = SIGLIP_NAME
661
+ prepro_config = VISION_ENCODER_TO_PROCESSING_CONFIG[
662
+ vision_encoder_name]
663
+ vit_image_size = prepro_config['vit_image_size']
664
+
665
+ max_side = vit_image_size * self.get_dynamic_hd(processor=processor)
666
+ return ImageSize(height=max_side, width=vit_image_size)
667
+
668
+ def get_audio_num_frames(self, audio_len: int, sr: float) -> int:
669
+ """
670
+ Compute the output size of the `extract_features` method.
671
+
672
+ Args:
673
+ audio_len (int): Length of the input waveform in samples.
674
+ sr (float): Sampling rate of the waveform, either 16000 or 8000.
675
+
676
+ Returns:
677
+ tuple (int, int): Output size as (T, D), where:
678
+ T: Number of time frames.
679
+ D: Number of Mel filterbank bins (80).
680
+ """
681
+
682
+ # Resample to 16000 or 8000 if needed
683
+ if sr > 16000:
684
+ audio_len //= sr // 16000
685
+ elif 8000 <= sr < 16000:
686
+ # We'll resample to 16K from 8K
687
+ audio_len *= 2
688
+ elif sr < 8000:
689
+ raise RuntimeError(f"Unsupported sample rate {sr}")
690
+
691
+ # Spectrogram parameters for 16 kHz
692
+ win_length = 400 # Frame length in samples
693
+ hop_length = 160 # Frame shift in samples
694
+
695
+ # Calculate number of frames (T)
696
+ num_frames = (audio_len - win_length) // hop_length + 1
697
+ if num_frames < 1:
698
+ raise ValueError("Waveform too short for given parameters.")
699
+
700
+ # Return time frames (T)
701
+ return num_frames
702
+
703
+ def _compute_audio_embed_size(self, audio_frames: int) -> int:
704
+ """
705
+ Compute the audio embedding size based on the audio frames and
706
+ compression rate.
707
+ """
708
+ hf_config = self.get_hf_config()
709
+ compression_rate = hf_config.embd_layer['audio_embd_layer'][
710
+ 'compression_rate']
711
+ # NOTE: this is a hard-coded value but might be configurable
712
+ # in the future
713
+ qformer_compression_rate = 1
714
+ integer = audio_frames // compression_rate
715
+ remainder = audio_frames % compression_rate
716
+
717
+ result = integer if remainder == 0 else integer + 1
718
+
719
+ integer = result // qformer_compression_rate
720
+ remainder = result % qformer_compression_rate
721
+ # qformer compression
722
+ result = integer if remainder == 0 else integer + 1
723
+
724
+ return result
725
+
726
+
727
+ class Phi4MMDummyInputsBuilder(BaseDummyInputsBuilder[Phi4MMProcessingInfo]):
728
+
729
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
730
+ num_audios = mm_counts.get("audio", 0)
731
+ num_images = mm_counts.get("image", 0)
732
+
733
+ image_tokens: list[str] = self.info.image_tokens[:num_images]
734
+ audio_tokens: list[str] = self.info.audio_tokens[:num_audios]
735
+
736
+ return "".join(image_tokens + audio_tokens)
737
+
738
+ def get_dummy_mm_data(
739
+ self,
740
+ seq_len: int,
741
+ mm_counts: Mapping[str, int],
742
+ ) -> MultiModalDataDict:
743
+ num_audios = mm_counts.get("audio", 0)
744
+ num_images = mm_counts.get("image", 0)
745
+
746
+ target_width, target_height = \
747
+ self.info.get_image_size_with_most_features()
748
+
749
+ mm_data = {
750
+ "image":
751
+ self._get_dummy_images(width=target_width,
752
+ height=target_height,
753
+ num_images=num_images),
754
+ "audio":
755
+ self._get_dummy_audios(length=_AUDIO_MAX_SOUNDFILE_SIZE,
756
+ num_audios=num_audios),
757
+ }
758
+
759
+ return mm_data
760
+
761
+
762
+ class Phi4MMMultiModalProcessor(BaseMultiModalProcessor[Phi4MMProcessingInfo]):
763
+
764
+ def _get_data_parser(self) -> MultiModalDataParser:
765
+ feature_extractor = self.info.get_feature_extractor()
766
+ return MultiModalDataParser(target_sr=feature_extractor.sampling_rate,
767
+ audio_resample_method="scipy")
768
+
769
+ def _call_hf_processor(
770
+ self,
771
+ prompt: str,
772
+ mm_data: Mapping[str, object],
773
+ mm_kwargs: Mapping[str, object],
774
+ ) -> BatchFeature:
775
+ if not mm_data:
776
+ prompt_ids = self.info.get_tokenizer().encode(prompt)
777
+ prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
778
+ return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
779
+
780
+ sr = self.info.get_feature_extractor().sampling_rate
781
+ if (audio_data := mm_data.get("audios", [])):
782
+ mm_data['audios'] = [(data, sr) for data in audio_data]
783
+
784
+ processed_outputs = super()._call_hf_processor(prompt, mm_data,
785
+ mm_kwargs)
786
+
787
+ num_img_tokens = [
788
+ self.info.get_num_image_tokens(image_width=img_size[0],
789
+ image_height=img_size[1])
790
+ for img_size in processed_outputs["image_sizes"]
791
+ ]
792
+ processed_outputs["num_img_tokens"] = num_img_tokens
793
+
794
+ audio_features = processed_outputs['input_audio_embeds']
795
+ feature_sizes = [
796
+ self.info.get_audio_num_frames(len(audio), sr)
797
+ for audio in audio_data
798
+ ]
799
+ processed_outputs['input_audio_embeds'] = [
800
+ audio_features[idx, :size]
801
+ for idx, size in enumerate(feature_sizes)
802
+ ]
803
+
804
+ return processed_outputs
805
+
806
+ def _get_mm_fields_config(
807
+ self,
808
+ hf_inputs: BatchFeature,
809
+ hf_processor_mm_kwargs: Mapping[str, object],
810
+ ) -> Mapping[str, MultiModalFieldConfig]:
811
+ return dict(
812
+ input_image_embeds=MultiModalFieldConfig.batched("image"),
813
+ image_attention_mask=MultiModalFieldConfig.batched("image"),
814
+ image_sizes=MultiModalFieldConfig.batched("image"),
815
+ num_img_tokens=MultiModalFieldConfig.batched("image"),
816
+ input_audio_embeds=MultiModalFieldConfig.batched("audio"),
817
+ )
818
+
819
+ def _get_prompt_updates(
820
+ self,
821
+ mm_items: MultiModalDataItems,
822
+ hf_processor_mm_kwargs: Mapping[str, Any],
823
+ out_mm_kwargs: MultiModalKwargs,
824
+ ) -> Sequence[PromptUpdate]:
825
+ image_tokens: list[str] = self.info.image_tokens # type: ignore
826
+ audio_tokens: list[str] = self.info.audio_tokens # type: ignore
827
+ feature_extractor = self.info.get_feature_extractor()
828
+ hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
829
+
830
+ def get_image_replacement_phi4mm(item_idx: int):
831
+ images = mm_items.get_items(
832
+ "image", (ImageEmbeddingItems, ImageProcessorItems))
833
+
834
+ if isinstance(images, ImageEmbeddingItems):
835
+ num_image_tokens = images.get_feature_size(item_idx)
836
+ else:
837
+ image_size = images.get_image_size(item_idx)
838
+ num_image_tokens = self.info.get_num_image_tokens(
839
+ image_width=image_size.width,
840
+ image_height=image_size.height,
841
+ processor=hf_processor,
842
+ )
843
+
844
+ image_tokens = [_IMAGE_PLACEHOLDER_TOKEN_ID] * num_image_tokens
845
+
846
+ return image_tokens
847
+
848
+ def get_audio_replacement_phi4mm(item_idx: int):
849
+ audios = mm_items.get_items("audio", AudioProcessorItems)
850
+ # TODO(Isotr0py): support embedding inputs
851
+ audio_len = audios.get_audio_length(item_idx)
852
+ audio_frames = self.info.get_audio_num_frames(
853
+ audio_len, feature_extractor.sampling_rate)
854
+ audio_embed_size = self.info._compute_audio_embed_size(
855
+ audio_frames)
856
+
857
+ audio_tokens = [_AUDIO_PLACEHOLDER_TOKEN_ID] * audio_embed_size
858
+
859
+ return audio_tokens
860
+
861
+ num_images = mm_items.get_count("image", strict=False)
862
+ num_audios = mm_items.get_count("audio", strict=False)
863
+
864
+ image_repl = [
865
+ PromptReplacement(
866
+ modality="image",
867
+ target=image_token,
868
+ replacement=get_image_replacement_phi4mm,
869
+ ) for image_token in image_tokens[:num_images]
870
+ ]
871
+ audio_repl = [
872
+ PromptReplacement(
873
+ modality="audio",
874
+ target=audio_token,
875
+ replacement=get_audio_replacement_phi4mm,
876
+ ) for audio_token in audio_tokens[:num_audios]
877
+ ]
878
+ return image_repl + audio_repl
879
+
880
+
881
+ @MULTIMODAL_REGISTRY.register_processor(
882
+ Phi4MMMultiModalProcessor,
883
+ info=Phi4MMProcessingInfo,
884
+ dummy_inputs=Phi4MMDummyInputsBuilder,
885
+ )
886
+ class Phi4MMForCausalLM(nn.Module, SupportsLoRA, SupportsMultiModal):
887
+ """
888
+ Implements the Phi-4-multimodal-instruct model in vLLM.
889
+ """
890
+ packed_modules_mapping = {
891
+ "qkv_proj": [
892
+ "qkv_proj",
893
+ ],
894
+ "gate_up_proj": [
895
+ "gate_up_proj",
896
+ ],
897
+ }
898
+
899
+ hf_to_vllm_mapper = WeightsMapper(
900
+ orig_to_new_substr={
901
+ "base_layer.": "",
902
+ },
903
+ orig_to_new_prefix={
904
+ "model.embed_tokens_extend.audio_embed.audio_projection.vision.":
905
+ "embed_tokens_extend.audio_projection_for_vision.",
906
+ "model.embed_tokens_extend.audio_embed.audio_projection.speech.":
907
+ "embed_tokens_extend.audio_projection.",
908
+ "model.embed_tokens_extend.audio_embed.": "embed_tokens_extend.",
909
+ "model.embed_tokens_extend.image_embed.": "vision_encoder.",
910
+ },
911
+ )
912
+
913
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
914
+ super().__init__()
915
+ config = vllm_config.model_config.hf_config
916
+ multimodal_config = vllm_config.model_config.multimodal_config
917
+ assert multimodal_config, "multimodal_config is required"
918
+ quant_config = vllm_config.quant_config
919
+ lora_config = vllm_config.lora_config
920
+
921
+ self.config = config
922
+ self.multimodal_config = multimodal_config
923
+ self.quant_config = quant_config
924
+ self.lora_config = lora_config
925
+
926
+ # Tensor/Pipeline parallel not supported for now.
927
+ assert get_pp_group(
928
+ ).world_size == 1, "pipeline parallel is not supported"
929
+
930
+ self.vision_encoder = Phi4MMImageEncoder(
931
+ config,
932
+ quant_config,
933
+ prefix="model.vision_embed_tokens",
934
+ model_dir=config._name_or_path)
935
+
936
+ if isinstance(config.embd_layer["audio_embd_layer"], dict):
937
+ embedding_config = {
938
+ "embedding_cls":
939
+ config.embd_layer["audio_embd_layer"]["embedding_cls"],
940
+ **config.embd_layer["audio_embd_layer"],
941
+ }
942
+ else:
943
+ embedding_config = {
944
+ "embedding_cls": self.config.embd_layer["embedding_cls"]
945
+ }
946
+
947
+ self.embed_tokens_extend = AudioEmbedding(config, **embedding_config)
948
+ self.model = LlamaModel(vllm_config=vllm_config,
949
+ prefix=maybe_prefix(prefix, "model"))
950
+
951
+ self.unpadded_vocab_size = config.vocab_size
952
+ if lora_config:
953
+ self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
954
+ self.lm_head = ParallelLMHead(
955
+ self.unpadded_vocab_size,
956
+ config.hidden_size,
957
+ org_num_embeddings=config.vocab_size,
958
+ padding_size=(
959
+ DEFAULT_VOCAB_PADDING_SIZE
960
+ # We need bigger padding if using lora for kernel
961
+ # compatibility
962
+ if not lora_config else lora_config.lora_vocab_padding_size),
963
+ quant_config=quant_config,
964
+ )
965
+ if config.tie_word_embeddings:
966
+ self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
967
+ logit_scale = getattr(config, "logit_scale", 1.0)
968
+ self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
969
+ config.vocab_size, logit_scale)
970
+
971
+ def _parse_and_validate_audio_input(
972
+ self, **kwargs: object) -> Optional[Phi4MMAudioInputs]:
973
+ """
974
+ Parse and validate the audio input to the model. This handles both
975
+ audio features and audio embeddings, but only the former is used for
976
+ now.
977
+
978
+ Args:
979
+ kwargs (object): Keyword arguments.
980
+
981
+ Returns:
982
+ Optional[Phi4MMAudioInputs]: Parsed and validated audio inputs.
983
+ """
984
+ audio_features = kwargs.pop("input_audio_embeds", None)
985
+ audio_embeds = kwargs.pop("audio_embeds", None)
986
+
987
+ if audio_features is None and audio_embeds is None:
988
+ return None
989
+
990
+ if audio_features is not None:
991
+ if not isinstance(audio_features, (torch.Tensor, list)):
992
+ raise ValueError("Incorrect type of audio features. "
993
+ f"Got type: {type(audio_features)}")
994
+
995
+ return Phi4MMAudioFeatureInputs(type="audio_features",
996
+ data=flatten_bn(audio_features))
997
+
998
+ if audio_embeds is not None:
999
+ if not isinstance(audio_embeds, (torch.Tensor, list)):
1000
+ raise ValueError("Incorrect type of audio embeds. "
1001
+ f"Got type: {type(audio_embeds)}")
1002
+
1003
+ return Phi4MMAudioEmbeddingInputs(type="audio_embeds",
1004
+ data=audio_embeds)
1005
+
1006
+ raise AssertionError("This line should be unreachable.")
1007
+
1008
+ def _process_audio_input(self, audio_input: Phi4MMAudioInputs,
1009
+ audio_projection_mode: str) -> NestedTensors:
1010
+ """
1011
+ Create the audio embeddings from the audio input, where the audio input
1012
+ is pairs of audio features and audio embed lengths. The audio input is
1013
+ created by `input_mapper_for_phi4mm_audio`.
1014
+
1015
+ Args:
1016
+ audio_input (Phi4MMAudioInputs): Audio input.
1017
+
1018
+ Returns:
1019
+ NestedTensors: Audio embeddings
1020
+ """
1021
+ if audio_input["type"] == "audio_embeds":
1022
+ return audio_input["data"]
1023
+
1024
+ audio_features = audio_input["data"]
1025
+ # (e.g. multiple examples) and the second dim is the multi-audio dim
1026
+ # (e.g. multiple audios in the same example)
1027
+
1028
+ dtype = next(self.embed_tokens_extend.parameters()).dtype
1029
+ audio_embeds = [
1030
+ self.embed_tokens_extend(
1031
+ features.to(dtype),
1032
+ audio_projection_mode=audio_projection_mode,
1033
+ ) for features in audio_features
1034
+ ]
1035
+ return audio_embeds
1036
+
1037
+ def _parse_and_validate_image_input(self,
1038
+ **kwargs: object) -> Optional[Dict]:
1039
+ input_image_embeds: NestedTensors = kwargs.get("input_image_embeds")
1040
+ if input_image_embeds is None:
1041
+ return None
1042
+
1043
+ image_sizes = kwargs.get("image_sizes")
1044
+ image_attention_mask = kwargs.get("image_attention_mask")
1045
+ num_img_tokens = kwargs.get("num_img_tokens")
1046
+ assert image_sizes is not None and image_attention_mask is not None\
1047
+ and num_img_tokens is not None, "Missing image inputs"
1048
+
1049
+ if is_list_of(input_image_embeds, torch.Tensor):
1050
+ assert all(p.dim() == 5
1051
+ for p in input_image_embeds), "Incorrect image inputs"
1052
+ # list len is batch_size.
1053
+ # each tensor has dimension: num_img_per_example, num_hd_patches,
1054
+ # channels, height, width.
1055
+ # need to pad along num_hd_patches.
1056
+ # mask size num_img_per_prompt, num_hd_patches, feat_h, heat_w.
1057
+ input_image_embeds = cat_with_pad(input_image_embeds, dim=0)
1058
+ elif isinstance(input_image_embeds, torch.Tensor):
1059
+ # dimension: batch_size, num_img_per_example, num_hd_patches,
1060
+ # channels, height, width.
1061
+ # we flatten first 2 dims to make it a single large batch for
1062
+ # SigLIP Encoder.
1063
+ assert input_image_embeds.dim() == 6, "Incorrect image inputs"
1064
+ input_image_embeds = input_image_embeds.flatten(0, 1)
1065
+ else:
1066
+ raise ValueError("Incorrect input_image_embeds inputs")
1067
+
1068
+ if isinstance(image_attention_mask, list):
1069
+ image_attention_mask = cat_with_pad(image_attention_mask, dim=0)
1070
+ elif isinstance(image_attention_mask, torch.Tensor):
1071
+ image_attention_mask = image_attention_mask.flatten(0, 1)
1072
+ else:
1073
+ raise ValueError("Incorrect image_attention_mask inputs")
1074
+
1075
+ if isinstance(image_sizes, list):
1076
+ image_sizes = torch.cat(image_sizes, dim=0)
1077
+ elif isinstance(image_sizes, torch.Tensor):
1078
+ image_sizes = image_sizes.flatten(0, 1)
1079
+ else:
1080
+ raise ValueError("Incorrect image_attention_mask inputs")
1081
+
1082
+ if isinstance(num_img_tokens, list):
1083
+ num_img_tokens = [
1084
+ n for num_tensor in num_img_tokens
1085
+ for n in num_tensor.tolist()
1086
+ ]
1087
+ elif isinstance(num_img_tokens, torch.Tensor):
1088
+ num_img_tokens = num_img_tokens.flatten(0, 1).tolist()
1089
+ else:
1090
+ raise ValueError("Incorrect image_attention_mask inputs")
1091
+
1092
+ return Phi4MMImagePixelInputs(
1093
+ type="pixel_values",
1094
+ data=input_image_embeds,
1095
+ image_sizes=image_sizes,
1096
+ image_attention_mask=image_attention_mask,
1097
+ num_img_tokens=num_img_tokens,
1098
+ )
1099
+
1100
+ def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
1101
+ modalities = {}
1102
+
1103
+ # Preserve the order of modalities if there are multiple of them
1104
+ # from the order of kwargs.
1105
+ for input_key in kwargs:
1106
+ if input_key in ("input_image_embeds",
1107
+ "image_embeds") and "images" not in modalities:
1108
+ modalities["images"] = self._parse_and_validate_image_input(
1109
+ **kwargs)
1110
+ if input_key in ("input_audio_embeds",
1111
+ "audio_embeds") and "audios" not in modalities:
1112
+ modalities["audios"] = self._parse_and_validate_audio_input(
1113
+ **kwargs)
1114
+
1115
+ return modalities
1116
+
1117
+ def _process_image_input(
1118
+ self, image_input: Phi4MMImagePixelInputs) -> list[torch.Tensor]:
1119
+ if image_input["type"] == "image_embeds":
1120
+ image_embeds = image_input["image_embeds"].type(self.visual.dtype)
1121
+ else:
1122
+ dtype = next(self.vision_encoder.parameters()).dtype
1123
+ pixel_values = image_input['data'].to(dtype)
1124
+ image_sizes = image_input['image_sizes']
1125
+ image_attention_mask = image_input['image_attention_mask']
1126
+ image_embeds = self.vision_encoder(pixel_values, image_sizes,
1127
+ image_attention_mask)
1128
+ return image_embeds
1129
+
1130
+ def get_multimodal_embeddings(
1131
+ self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
1132
+
1133
+ modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
1134
+ if not modalities:
1135
+ return None
1136
+
1137
+ # The result multimodal_embeddings is tuple of tensors, with each
1138
+ # tensor correspoending to a multimodal data item (image or video).
1139
+ multimodal_embeddings: tuple[torch.Tensor, ...] = ()
1140
+
1141
+ # NOTE: It is important to iterate over the keys in this dictionary
1142
+ # to preserve the order of the modalities.
1143
+ audio_projection_mode = 'speech'
1144
+ for modality in modalities:
1145
+ # make sure process images first
1146
+ if modality == "images":
1147
+ audio_projection_mode = "vision"
1148
+ image_input = modalities["images"]
1149
+ vision_embeddings = self._process_image_input(image_input)
1150
+ multimodal_embeddings += tuple(vision_embeddings)
1151
+ if modality == "audios":
1152
+ audio_input = modalities["audios"]
1153
+ audio_embeddings = self._process_audio_input(
1154
+ audio_input, audio_projection_mode=audio_projection_mode)
1155
+ multimodal_embeddings += tuple(audio_embeddings)
1156
+
1157
+ return multimodal_embeddings
1158
+
1159
+ def get_input_embeddings(
1160
+ self,
1161
+ input_ids: torch.Tensor,
1162
+ multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
1163
+ ) -> torch.Tensor:
1164
+ inputs_embeds = self.model.embed_tokens(input_ids)
1165
+ if multimodal_embeddings is not None:
1166
+ inputs_embeds = merge_multimodal_embeddings(
1167
+ input_ids, inputs_embeds, multimodal_embeddings,
1168
+ [_IMAGE_PLACEHOLDER_TOKEN_ID, _AUDIO_PLACEHOLDER_TOKEN_ID])
1169
+ return inputs_embeds
1170
+
1171
+ def get_input_embeddings_v0(
1172
+ self,
1173
+ input_ids: torch.Tensor,
1174
+ image_input: Optional[Phi4MMImagePixelInputs] = None,
1175
+ audio_input: Optional[Phi4MMAudioFeatureInputs] = None,
1176
+ ) -> torch.Tensor:
1177
+ audio_projection_mode = 'speech'
1178
+ inputs_embeds = self.get_input_embeddings(input_ids)
1179
+ if image_input is not None:
1180
+ image_embeds = self._process_image_input(image_input)
1181
+ inputs_embeds = merge_multimodal_embeddings(
1182
+ input_ids,
1183
+ inputs_embeds,
1184
+ image_embeds,
1185
+ placeholder_token_id=_IMAGE_PLACEHOLDER_TOKEN_ID,
1186
+ )
1187
+ audio_projection_mode = 'vision'
1188
+
1189
+ if audio_input is not None:
1190
+ audio_embeds = self._process_audio_input(
1191
+ audio_input, audio_projection_mode=audio_projection_mode)
1192
+ inputs_embeds = merge_multimodal_embeddings(
1193
+ input_ids,
1194
+ inputs_embeds,
1195
+ audio_embeds,
1196
+ placeholder_token_id=_AUDIO_PLACEHOLDER_TOKEN_ID,
1197
+ )
1198
+ return inputs_embeds
1199
+
1200
+ def forward(
1201
+ self,
1202
+ input_ids: torch.Tensor,
1203
+ positions: torch.Tensor,
1204
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1205
+ inputs_embeds: Optional[torch.Tensor] = None,
1206
+ **kwargs: object,
1207
+ ) -> torch.Tensor:
1208
+ if intermediate_tensors is not None:
1209
+ inputs_embeds = None
1210
+
1211
+ # NOTE: In v1, inputs_embeds is always generated at model runner from
1212
+ # `get_multimodal_embeddings` and `get_input_embeddings`, this
1213
+ # condition is only for v0 compatibility.
1214
+ elif inputs_embeds is None:
1215
+ image_input = self._parse_and_validate_image_input(**kwargs)
1216
+ audio_input = self._parse_and_validate_audio_input(**kwargs)
1217
+
1218
+ if image_input is None and audio_input is None:
1219
+ inputs_embeds = None
1220
+ else:
1221
+ inputs_embeds = self.get_input_embeddings_v0(
1222
+ input_ids,
1223
+ image_input=image_input,
1224
+ audio_input=audio_input)
1225
+ input_ids = None
1226
+
1227
+ hidden_states = self.model(
1228
+ input_ids,
1229
+ positions,
1230
+ intermediate_tensors,
1231
+ inputs_embeds=inputs_embeds,
1232
+ )
1233
+
1234
+ return hidden_states
1235
+
1236
+ def compute_logits(
1237
+ self,
1238
+ hidden_states: torch.Tensor,
1239
+ sampling_metadata: SamplingMetadata,
1240
+ ) -> Optional[torch.Tensor]:
1241
+ logits = self.logits_processor(self.lm_head, hidden_states,
1242
+ sampling_metadata)
1243
+ return logits
1244
+
1245
+ def load_weights(self, weights: Iterable[Tuple[str,
1246
+ torch.Tensor]]) -> None:
1247
+ weights = ((name, data) for name, data in weights
1248
+ if "lora" not in name)
1249
+ loader = AutoWeightsLoader(self)
1250
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
1251
+
1252
+ def get_mm_mapping(self) -> MultiModelKeys:
1253
+ """
1254
+ Get the module prefix in multimodal models
1255
+ """
1256
+ return MultiModelKeys.from_string_field(
1257
+ language_model="model.",
1258
+ connector=["audio_projection_for_vision", "audio_projection"],
1259
+ tower_model=["vision_encoder", "embed_tokens_extend"],
1260
+ )
1261
+
1262
+ def get_language_model(self) -> torch.nn.Module:
1263
+ return self.model