vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu might be problematic. Click here for more details.

Files changed (1103) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1536 -0
  4. vllm/_ipex_ops.py +241 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +38 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +31 -0
  16. vllm/assets/video.py +103 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +303 -0
  22. vllm/attention/backends/flash_attn.py +999 -0
  23. vllm/attention/backends/flashinfer.py +1092 -0
  24. vllm/attention/backends/flashmla.py +242 -0
  25. vllm/attention/backends/hpu_attn.py +301 -0
  26. vllm/attention/backends/ipex_attn.py +396 -0
  27. vllm/attention/backends/mla/__init__.py +0 -0
  28. vllm/attention/backends/mla/common.py +1444 -0
  29. vllm/attention/backends/pallas.py +346 -0
  30. vllm/attention/backends/placeholder_attn.py +399 -0
  31. vllm/attention/backends/rocm_aiter_mla.py +412 -0
  32. vllm/attention/backends/rocm_flash_attn.py +969 -0
  33. vllm/attention/backends/torch_sdpa.py +691 -0
  34. vllm/attention/backends/triton_mla.py +113 -0
  35. vllm/attention/backends/utils.py +609 -0
  36. vllm/attention/backends/xformers.py +798 -0
  37. vllm/attention/layer.py +443 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  41. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  42. vllm/attention/ops/blocksparse_attention/utils.py +244 -0
  43. vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
  44. vllm/attention/ops/flashmla.py +115 -0
  45. vllm/attention/ops/hpu_paged_attn.py +105 -0
  46. vllm/attention/ops/ipex_attn.py +193 -0
  47. vllm/attention/ops/merge_attn_states.py +42 -0
  48. vllm/attention/ops/nki_flash_attn.py +905 -0
  49. vllm/attention/ops/paged_attn.py +255 -0
  50. vllm/attention/ops/prefix_prefill.py +902 -0
  51. vllm/attention/ops/rocm_aiter_mla.py +42 -0
  52. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  53. vllm/attention/ops/triton_decode_attention.py +675 -0
  54. vllm/attention/ops/triton_flash_attention.py +1375 -0
  55. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  56. vllm/attention/selector.py +186 -0
  57. vllm/attention/utils/fa_utils.py +54 -0
  58. vllm/beam_search.py +82 -0
  59. vllm/benchmarks/__init__.py +0 -0
  60. vllm/benchmarks/datasets.py +831 -0
  61. vllm/benchmarks/endpoint_request_func.py +160 -0
  62. vllm/benchmarks/latency.py +181 -0
  63. vllm/benchmarks/serve.py +925 -0
  64. vllm/benchmarks/throughput.py +608 -0
  65. vllm/benchmarks/utils.py +69 -0
  66. vllm/collect_env.py +795 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/backends.py +715 -0
  69. vllm/compilation/compiler_interface.py +437 -0
  70. vllm/compilation/counter.py +33 -0
  71. vllm/compilation/decorators.py +249 -0
  72. vllm/compilation/fix_functionalization.py +182 -0
  73. vllm/compilation/fusion.py +617 -0
  74. vllm/compilation/fx_utils.py +60 -0
  75. vllm/compilation/inductor_pass.py +114 -0
  76. vllm/compilation/monitor.py +38 -0
  77. vllm/compilation/multi_output_match.py +108 -0
  78. vllm/compilation/noop_elimination.py +135 -0
  79. vllm/compilation/pass_manager.py +74 -0
  80. vllm/compilation/sequence_parallelism.py +266 -0
  81. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  82. vllm/compilation/vllm_inductor_pass.py +68 -0
  83. vllm/compilation/wrapper.py +129 -0
  84. vllm/config.py +4179 -0
  85. vllm/connections.py +170 -0
  86. vllm/core/__init__.py +0 -0
  87. vllm/core/block/__init__.py +0 -0
  88. vllm/core/block/block_table.py +398 -0
  89. vllm/core/block/common.py +370 -0
  90. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  91. vllm/core/block/interfaces.py +318 -0
  92. vllm/core/block/naive_block.py +465 -0
  93. vllm/core/block/prefix_caching_block.py +1134 -0
  94. vllm/core/block/utils.py +27 -0
  95. vllm/core/block_manager.py +520 -0
  96. vllm/core/evictor.py +156 -0
  97. vllm/core/interfaces.py +134 -0
  98. vllm/core/placeholder_block_space_manager.py +99 -0
  99. vllm/core/scheduler.py +2060 -0
  100. vllm/device_allocator/__init__.py +0 -0
  101. vllm/device_allocator/cumem.py +280 -0
  102. vllm/distributed/__init__.py +5 -0
  103. vllm/distributed/communication_op.py +40 -0
  104. vllm/distributed/device_communicators/__init__.py +0 -0
  105. vllm/distributed/device_communicators/base_device_communicator.py +151 -0
  106. vllm/distributed/device_communicators/cpu_communicator.py +139 -0
  107. vllm/distributed/device_communicators/cuda_communicator.py +131 -0
  108. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  109. vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
  110. vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
  111. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  112. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  113. vllm/distributed/device_communicators/pynccl.py +217 -0
  114. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  115. vllm/distributed/device_communicators/shm_broadcast.py +557 -0
  116. vllm/distributed/device_communicators/tpu_communicator.py +93 -0
  117. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  118. vllm/distributed/kv_transfer/README.md +29 -0
  119. vllm/distributed/kv_transfer/__init__.py +11 -0
  120. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  121. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  122. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  123. vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
  124. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  125. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
  126. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  132. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  133. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  134. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  135. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  136. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  137. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  138. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  139. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  140. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  141. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  142. vllm/distributed/parallel_state.py +1209 -0
  143. vllm/distributed/utils.py +366 -0
  144. vllm/engine/__init__.py +0 -0
  145. vllm/engine/arg_utils.py +1724 -0
  146. vllm/engine/async_llm_engine.py +1261 -0
  147. vllm/engine/async_timeout.py +191 -0
  148. vllm/engine/llm_engine.py +2150 -0
  149. vllm/engine/metrics.py +717 -0
  150. vllm/engine/metrics_types.py +96 -0
  151. vllm/engine/multiprocessing/__init__.py +183 -0
  152. vllm/engine/multiprocessing/client.py +745 -0
  153. vllm/engine/multiprocessing/engine.py +450 -0
  154. vllm/engine/output_processor/__init__.py +0 -0
  155. vllm/engine/output_processor/interfaces.py +74 -0
  156. vllm/engine/output_processor/multi_step.py +210 -0
  157. vllm/engine/output_processor/single_step.py +136 -0
  158. vllm/engine/output_processor/stop_checker.py +130 -0
  159. vllm/engine/output_processor/util.py +27 -0
  160. vllm/engine/protocol.py +302 -0
  161. vllm/entrypoints/__init__.py +0 -0
  162. vllm/entrypoints/api_server.py +177 -0
  163. vllm/entrypoints/chat_utils.py +1259 -0
  164. vllm/entrypoints/cli/__init__.py +0 -0
  165. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  166. vllm/entrypoints/cli/benchmark/base.py +38 -0
  167. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  168. vllm/entrypoints/cli/benchmark/main.py +53 -0
  169. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  170. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  171. vllm/entrypoints/cli/collect_env.py +35 -0
  172. vllm/entrypoints/cli/main.py +59 -0
  173. vllm/entrypoints/cli/openai.py +175 -0
  174. vllm/entrypoints/cli/serve.py +59 -0
  175. vllm/entrypoints/cli/types.py +24 -0
  176. vllm/entrypoints/launcher.py +146 -0
  177. vllm/entrypoints/llm.py +1450 -0
  178. vllm/entrypoints/logger.py +44 -0
  179. vllm/entrypoints/openai/__init__.py +0 -0
  180. vllm/entrypoints/openai/api_server.py +1130 -0
  181. vllm/entrypoints/openai/cli_args.py +296 -0
  182. vllm/entrypoints/openai/logits_processors.py +89 -0
  183. vllm/entrypoints/openai/protocol.py +1806 -0
  184. vllm/entrypoints/openai/run_batch.py +439 -0
  185. vllm/entrypoints/openai/serving_chat.py +1210 -0
  186. vllm/entrypoints/openai/serving_completion.py +557 -0
  187. vllm/entrypoints/openai/serving_embedding.py +245 -0
  188. vllm/entrypoints/openai/serving_engine.py +569 -0
  189. vllm/entrypoints/openai/serving_models.py +314 -0
  190. vllm/entrypoints/openai/serving_pooling.py +237 -0
  191. vllm/entrypoints/openai/serving_score.py +439 -0
  192. vllm/entrypoints/openai/serving_tokenization.py +147 -0
  193. vllm/entrypoints/openai/serving_transcription.py +421 -0
  194. vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
  195. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  196. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
  197. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
  198. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  199. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
  200. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
  201. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
  202. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  203. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
  204. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
  205. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  206. vllm/entrypoints/score_utils.py +49 -0
  207. vllm/entrypoints/ssl.py +74 -0
  208. vllm/entrypoints/utils.py +136 -0
  209. vllm/env_override.py +34 -0
  210. vllm/envs.py +800 -0
  211. vllm/executor/__init__.py +0 -0
  212. vllm/executor/executor_base.py +400 -0
  213. vllm/executor/mp_distributed_executor.py +243 -0
  214. vllm/executor/msgspec_utils.py +29 -0
  215. vllm/executor/multiproc_worker_utils.py +312 -0
  216. vllm/executor/ray_distributed_executor.py +700 -0
  217. vllm/executor/ray_utils.py +400 -0
  218. vllm/executor/uniproc_executor.py +141 -0
  219. vllm/forward_context.py +159 -0
  220. vllm/inputs/__init__.py +37 -0
  221. vllm/inputs/data.py +248 -0
  222. vllm/inputs/parse.py +121 -0
  223. vllm/inputs/preprocess.py +745 -0
  224. vllm/inputs/registry.py +212 -0
  225. vllm/jsontree.py +79 -0
  226. vllm/logger.py +210 -0
  227. vllm/logging_utils/__init__.py +7 -0
  228. vllm/logging_utils/formatter.py +17 -0
  229. vllm/logits_process.py +121 -0
  230. vllm/lora/__init__.py +0 -0
  231. vllm/lora/fully_sharded_layers.py +335 -0
  232. vllm/lora/layers.py +1263 -0
  233. vllm/lora/lora.py +198 -0
  234. vllm/lora/models.py +802 -0
  235. vllm/lora/ops/__init__.py +0 -0
  236. vllm/lora/ops/torch_ops/__init__.py +15 -0
  237. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  238. vllm/lora/ops/triton_ops/__init__.py +11 -0
  239. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  240. vllm/lora/ops/triton_ops/lora_expand.py +293 -0
  241. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  242. vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
  243. vllm/lora/ops/triton_ops/utils.py +121 -0
  244. vllm/lora/peft_helper.py +115 -0
  245. vllm/lora/punica_wrapper/__init__.py +9 -0
  246. vllm/lora/punica_wrapper/punica_base.py +483 -0
  247. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  248. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  249. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  250. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  251. vllm/lora/punica_wrapper/utils.py +161 -0
  252. vllm/lora/request.py +97 -0
  253. vllm/lora/resolver.py +83 -0
  254. vllm/lora/utils.py +237 -0
  255. vllm/lora/worker_manager.py +251 -0
  256. vllm/model_executor/__init__.py +15 -0
  257. vllm/model_executor/custom_op.py +153 -0
  258. vllm/model_executor/guided_decoding/__init__.py +180 -0
  259. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  260. vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
  261. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  262. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  263. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  264. vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
  265. vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
  266. vllm/model_executor/guided_decoding/utils.py +241 -0
  267. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  268. vllm/model_executor/layers/__init__.py +0 -0
  269. vllm/model_executor/layers/activation.py +368 -0
  270. vllm/model_executor/layers/fused_moe/__init__.py +51 -0
  271. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  272. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  273. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  274. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  275. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  276. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  277. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  278. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  279. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  280. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  281. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  282. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  283. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  284. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  285. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  286. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  287. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  426. vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
  427. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
  428. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
  429. vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
  430. vllm/model_executor/layers/fused_moe/layer.py +949 -0
  431. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  432. vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
  433. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  434. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
  435. vllm/model_executor/layers/fused_moe/utils.py +48 -0
  436. vllm/model_executor/layers/layernorm.py +277 -0
  437. vllm/model_executor/layers/lightning_attn.py +651 -0
  438. vllm/model_executor/layers/linear.py +1518 -0
  439. vllm/model_executor/layers/logits_processor.py +196 -0
  440. vllm/model_executor/layers/mamba/__init__.py +0 -0
  441. vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
  442. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  443. vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
  444. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  445. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  446. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
  447. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  448. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  449. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  450. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  451. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  452. vllm/model_executor/layers/pooler.py +336 -0
  453. vllm/model_executor/layers/quantization/__init__.py +153 -0
  454. vllm/model_executor/layers/quantization/aqlm.py +374 -0
  455. vllm/model_executor/layers/quantization/awq.py +184 -0
  456. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  457. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  458. vllm/model_executor/layers/quantization/base_config.py +145 -0
  459. vllm/model_executor/layers/quantization/bitblas.py +459 -0
  460. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  461. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  462. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
  463. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
  464. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
  465. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  466. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  467. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  468. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
  469. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  470. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  471. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  472. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  473. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
  474. vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
  475. vllm/model_executor/layers/quantization/experts_int8.py +194 -0
  476. vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
  477. vllm/model_executor/layers/quantization/fp8.py +832 -0
  478. vllm/model_executor/layers/quantization/gguf.py +408 -0
  479. vllm/model_executor/layers/quantization/gptq.py +276 -0
  480. vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
  481. vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
  482. vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
  483. vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
  484. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  485. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  486. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  487. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  488. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  489. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  490. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  491. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  492. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
  493. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  494. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  495. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  496. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  497. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  498. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  499. vllm/model_executor/layers/quantization/kv_cache.py +137 -0
  500. vllm/model_executor/layers/quantization/marlin.py +259 -0
  501. vllm/model_executor/layers/quantization/modelopt.py +410 -0
  502. vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
  503. vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
  504. vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
  505. vllm/model_executor/layers/quantization/qqq.py +273 -0
  506. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  507. vllm/model_executor/layers/quantization/quark/quark.py +385 -0
  508. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  509. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
  510. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  511. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
  512. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  513. vllm/model_executor/layers/quantization/quark/utils.py +102 -0
  514. vllm/model_executor/layers/quantization/schema.py +85 -0
  515. vllm/model_executor/layers/quantization/torchao.py +127 -0
  516. vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
  517. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  518. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  519. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
  520. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  521. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  522. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  523. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  524. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  525. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  526. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  527. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  528. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  529. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  530. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  531. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  532. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  533. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  534. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  535. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  536. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  537. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  538. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  539. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  540. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  541. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  542. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  543. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  544. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  545. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  546. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  547. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  548. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  549. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  550. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  551. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
  723. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  724. vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
  725. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  726. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  727. vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
  728. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
  729. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  730. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  731. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
  732. vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
  733. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  734. vllm/model_executor/layers/rejection_sampler.py +400 -0
  735. vllm/model_executor/layers/resampler.py +269 -0
  736. vllm/model_executor/layers/rotary_embedding.py +1598 -0
  737. vllm/model_executor/layers/sampler.py +1221 -0
  738. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  739. vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
  740. vllm/model_executor/layers/utils.py +99 -0
  741. vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
  742. vllm/model_executor/model_loader/__init__.py +20 -0
  743. vllm/model_executor/model_loader/loader.py +1542 -0
  744. vllm/model_executor/model_loader/neuron.py +243 -0
  745. vllm/model_executor/model_loader/tensorizer.py +468 -0
  746. vllm/model_executor/model_loader/utils.py +171 -0
  747. vllm/model_executor/model_loader/weight_utils.py +749 -0
  748. vllm/model_executor/models/__init__.py +27 -0
  749. vllm/model_executor/models/adapters.py +247 -0
  750. vllm/model_executor/models/arctic.py +559 -0
  751. vllm/model_executor/models/aria.py +656 -0
  752. vllm/model_executor/models/aya_vision.py +461 -0
  753. vllm/model_executor/models/baichuan.py +469 -0
  754. vllm/model_executor/models/bamba.py +542 -0
  755. vllm/model_executor/models/bart.py +936 -0
  756. vllm/model_executor/models/bert.py +725 -0
  757. vllm/model_executor/models/blip.py +337 -0
  758. vllm/model_executor/models/blip2.py +717 -0
  759. vllm/model_executor/models/bloom.py +358 -0
  760. vllm/model_executor/models/chameleon.py +1135 -0
  761. vllm/model_executor/models/chatglm.py +476 -0
  762. vllm/model_executor/models/clip.py +410 -0
  763. vllm/model_executor/models/commandr.py +466 -0
  764. vllm/model_executor/models/constant_size_cache.py +136 -0
  765. vllm/model_executor/models/dbrx.py +469 -0
  766. vllm/model_executor/models/deepseek.py +484 -0
  767. vllm/model_executor/models/deepseek_mtp.py +266 -0
  768. vllm/model_executor/models/deepseek_v2.py +830 -0
  769. vllm/model_executor/models/deepseek_vl2.py +647 -0
  770. vllm/model_executor/models/eagle.py +247 -0
  771. vllm/model_executor/models/exaone.py +548 -0
  772. vllm/model_executor/models/fairseq2_llama.py +153 -0
  773. vllm/model_executor/models/falcon.py +508 -0
  774. vllm/model_executor/models/florence2.py +1102 -0
  775. vllm/model_executor/models/fuyu.py +388 -0
  776. vllm/model_executor/models/gemma.py +423 -0
  777. vllm/model_executor/models/gemma2.py +423 -0
  778. vllm/model_executor/models/gemma3.py +531 -0
  779. vllm/model_executor/models/gemma3_mm.py +716 -0
  780. vllm/model_executor/models/glm.py +22 -0
  781. vllm/model_executor/models/glm4.py +303 -0
  782. vllm/model_executor/models/glm4v.py +647 -0
  783. vllm/model_executor/models/gpt2.py +313 -0
  784. vllm/model_executor/models/gpt_bigcode.py +336 -0
  785. vllm/model_executor/models/gpt_j.py +337 -0
  786. vllm/model_executor/models/gpt_neox.py +330 -0
  787. vllm/model_executor/models/granite.py +494 -0
  788. vllm/model_executor/models/granite_speech.py +777 -0
  789. vllm/model_executor/models/granitemoe.py +435 -0
  790. vllm/model_executor/models/granitemoeshared.py +339 -0
  791. vllm/model_executor/models/gritlm.py +245 -0
  792. vllm/model_executor/models/grok1.py +560 -0
  793. vllm/model_executor/models/h2ovl.py +542 -0
  794. vllm/model_executor/models/idefics2_vision_model.py +387 -0
  795. vllm/model_executor/models/idefics3.py +767 -0
  796. vllm/model_executor/models/interfaces.py +569 -0
  797. vllm/model_executor/models/interfaces_base.py +163 -0
  798. vllm/model_executor/models/intern_vit.py +476 -0
  799. vllm/model_executor/models/internlm2.py +453 -0
  800. vllm/model_executor/models/internlm2_ve.py +146 -0
  801. vllm/model_executor/models/internvl.py +945 -0
  802. vllm/model_executor/models/jais.py +371 -0
  803. vllm/model_executor/models/jamba.py +590 -0
  804. vllm/model_executor/models/kimi_vl.py +577 -0
  805. vllm/model_executor/models/llama.py +619 -0
  806. vllm/model_executor/models/llama4.py +530 -0
  807. vllm/model_executor/models/llama_eagle.py +152 -0
  808. vllm/model_executor/models/llama_eagle3.py +232 -0
  809. vllm/model_executor/models/llava.py +869 -0
  810. vllm/model_executor/models/llava_next.py +582 -0
  811. vllm/model_executor/models/llava_next_video.py +470 -0
  812. vllm/model_executor/models/llava_onevision.py +954 -0
  813. vllm/model_executor/models/mamba.py +271 -0
  814. vllm/model_executor/models/mamba2.py +302 -0
  815. vllm/model_executor/models/mamba_cache.py +76 -0
  816. vllm/model_executor/models/medusa.py +210 -0
  817. vllm/model_executor/models/minicpm.py +592 -0
  818. vllm/model_executor/models/minicpm3.py +229 -0
  819. vllm/model_executor/models/minicpmo.py +725 -0
  820. vllm/model_executor/models/minicpmv.py +1287 -0
  821. vllm/model_executor/models/minimax_cache.py +35 -0
  822. vllm/model_executor/models/minimax_text_01.py +1261 -0
  823. vllm/model_executor/models/mistral3.py +598 -0
  824. vllm/model_executor/models/mixtral.py +485 -0
  825. vllm/model_executor/models/mixtral_quant.py +447 -0
  826. vllm/model_executor/models/mllama.py +1623 -0
  827. vllm/model_executor/models/mllama4.py +838 -0
  828. vllm/model_executor/models/mlp_speculator.py +205 -0
  829. vllm/model_executor/models/modernbert.py +325 -0
  830. vllm/model_executor/models/module_mapping.py +71 -0
  831. vllm/model_executor/models/molmo.py +1567 -0
  832. vllm/model_executor/models/moonvit.py +628 -0
  833. vllm/model_executor/models/mpt.py +329 -0
  834. vllm/model_executor/models/nemotron.py +506 -0
  835. vllm/model_executor/models/nemotron_nas.py +446 -0
  836. vllm/model_executor/models/nvlm_d.py +212 -0
  837. vllm/model_executor/models/olmo.py +390 -0
  838. vllm/model_executor/models/olmo2.py +412 -0
  839. vllm/model_executor/models/olmoe.py +449 -0
  840. vllm/model_executor/models/opt.py +410 -0
  841. vllm/model_executor/models/orion.py +356 -0
  842. vllm/model_executor/models/paligemma.py +397 -0
  843. vllm/model_executor/models/persimmon.py +342 -0
  844. vllm/model_executor/models/phi.py +354 -0
  845. vllm/model_executor/models/phi3.py +18 -0
  846. vllm/model_executor/models/phi3_small.py +463 -0
  847. vllm/model_executor/models/phi3v.py +722 -0
  848. vllm/model_executor/models/phi4mm.py +1263 -0
  849. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  850. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  851. vllm/model_executor/models/phimoe.py +666 -0
  852. vllm/model_executor/models/pixtral.py +1281 -0
  853. vllm/model_executor/models/plamo2.py +736 -0
  854. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  855. vllm/model_executor/models/qwen.py +360 -0
  856. vllm/model_executor/models/qwen2.py +552 -0
  857. vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
  858. vllm/model_executor/models/qwen2_5_vl.py +1136 -0
  859. vllm/model_executor/models/qwen2_audio.py +402 -0
  860. vllm/model_executor/models/qwen2_moe.py +531 -0
  861. vllm/model_executor/models/qwen2_rm.py +130 -0
  862. vllm/model_executor/models/qwen2_vl.py +1409 -0
  863. vllm/model_executor/models/qwen3.py +319 -0
  864. vllm/model_executor/models/qwen3_moe.py +528 -0
  865. vllm/model_executor/models/qwen_vl.py +784 -0
  866. vllm/model_executor/models/registry.py +611 -0
  867. vllm/model_executor/models/roberta.py +332 -0
  868. vllm/model_executor/models/siglip.py +522 -0
  869. vllm/model_executor/models/skyworkr1v.py +949 -0
  870. vllm/model_executor/models/smolvlm.py +51 -0
  871. vllm/model_executor/models/solar.py +504 -0
  872. vllm/model_executor/models/stablelm.py +349 -0
  873. vllm/model_executor/models/starcoder2.py +355 -0
  874. vllm/model_executor/models/telechat2.py +139 -0
  875. vllm/model_executor/models/teleflm.py +78 -0
  876. vllm/model_executor/models/transformers.py +442 -0
  877. vllm/model_executor/models/ultravox.py +655 -0
  878. vllm/model_executor/models/utils.py +714 -0
  879. vllm/model_executor/models/vision.py +149 -0
  880. vllm/model_executor/models/whisper.py +746 -0
  881. vllm/model_executor/models/zamba2.py +1008 -0
  882. vllm/model_executor/parameter.py +458 -0
  883. vllm/model_executor/pooling_metadata.py +71 -0
  884. vllm/model_executor/sampling_metadata.py +596 -0
  885. vllm/model_executor/utils.py +53 -0
  886. vllm/multimodal/__init__.py +31 -0
  887. vllm/multimodal/audio.py +105 -0
  888. vllm/multimodal/base.py +218 -0
  889. vllm/multimodal/hasher.py +103 -0
  890. vllm/multimodal/image.py +77 -0
  891. vllm/multimodal/inputs.py +843 -0
  892. vllm/multimodal/parse.py +454 -0
  893. vllm/multimodal/processing.py +1760 -0
  894. vllm/multimodal/profiling.py +274 -0
  895. vllm/multimodal/registry.py +321 -0
  896. vllm/multimodal/utils.py +386 -0
  897. vllm/multimodal/video.py +166 -0
  898. vllm/outputs.py +521 -0
  899. vllm/platforms/__init__.py +286 -0
  900. vllm/platforms/cpu.py +182 -0
  901. vllm/platforms/cuda.py +463 -0
  902. vllm/platforms/hpu.py +94 -0
  903. vllm/platforms/interface.py +427 -0
  904. vllm/platforms/neuron.py +69 -0
  905. vllm/platforms/rocm.py +346 -0
  906. vllm/platforms/tpu.py +174 -0
  907. vllm/platforms/xpu.py +142 -0
  908. vllm/plugins/__init__.py +82 -0
  909. vllm/pooling_params.py +53 -0
  910. vllm/profiler/__init__.py +7 -0
  911. vllm/profiler/layerwise_profile.py +374 -0
  912. vllm/profiler/utils.py +147 -0
  913. vllm/prompt_adapter/__init__.py +0 -0
  914. vllm/prompt_adapter/layers.py +82 -0
  915. vllm/prompt_adapter/models.py +357 -0
  916. vllm/prompt_adapter/request.py +36 -0
  917. vllm/prompt_adapter/utils.py +97 -0
  918. vllm/prompt_adapter/worker_manager.py +178 -0
  919. vllm/py.typed +2 -0
  920. vllm/reasoning/__init__.py +12 -0
  921. vllm/reasoning/abs_reasoning_parsers.py +189 -0
  922. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  923. vllm/reasoning/granite_reasoning_parser.py +362 -0
  924. vllm/sampling_params.py +598 -0
  925. vllm/scalar_type.py +335 -0
  926. vllm/scripts.py +14 -0
  927. vllm/sequence.py +1486 -0
  928. vllm/spec_decode/__init__.py +0 -0
  929. vllm/spec_decode/batch_expansion.py +505 -0
  930. vllm/spec_decode/draft_model_runner.py +335 -0
  931. vllm/spec_decode/interfaces.py +98 -0
  932. vllm/spec_decode/medusa_worker.py +137 -0
  933. vllm/spec_decode/metrics.py +212 -0
  934. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  935. vllm/spec_decode/mqa_scorer.py +159 -0
  936. vllm/spec_decode/multi_step_worker.py +416 -0
  937. vllm/spec_decode/ngram_worker.py +195 -0
  938. vllm/spec_decode/proposer_worker_base.py +58 -0
  939. vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
  940. vllm/spec_decode/spec_decode_worker.py +1324 -0
  941. vllm/spec_decode/target_model_runner.py +44 -0
  942. vllm/spec_decode/top1_proposer.py +274 -0
  943. vllm/spec_decode/util.py +276 -0
  944. vllm/test_utils.py +129 -0
  945. vllm/third_party/__init__.py +0 -0
  946. vllm/third_party/pynvml.py +6139 -0
  947. vllm/tracing.py +130 -0
  948. vllm/transformers_utils/__init__.py +19 -0
  949. vllm/transformers_utils/config.py +813 -0
  950. vllm/transformers_utils/configs/__init__.py +52 -0
  951. vllm/transformers_utils/configs/arctic.py +206 -0
  952. vllm/transformers_utils/configs/chatglm.py +71 -0
  953. vllm/transformers_utils/configs/cohere2.py +194 -0
  954. vllm/transformers_utils/configs/dbrx.py +280 -0
  955. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  956. vllm/transformers_utils/configs/eagle.py +65 -0
  957. vllm/transformers_utils/configs/exaone.py +191 -0
  958. vllm/transformers_utils/configs/falcon.py +89 -0
  959. vllm/transformers_utils/configs/h2ovl.py +15 -0
  960. vllm/transformers_utils/configs/internvl.py +53 -0
  961. vllm/transformers_utils/configs/jais.py +237 -0
  962. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  963. vllm/transformers_utils/configs/medusa.py +62 -0
  964. vllm/transformers_utils/configs/mllama.py +30 -0
  965. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  966. vllm/transformers_utils/configs/moonvit.py +32 -0
  967. vllm/transformers_utils/configs/mpt.py +179 -0
  968. vllm/transformers_utils/configs/nemotron.py +204 -0
  969. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  970. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  971. vllm/transformers_utils/configs/solar.py +246 -0
  972. vllm/transformers_utils/configs/telechat2.py +63 -0
  973. vllm/transformers_utils/configs/ultravox.py +107 -0
  974. vllm/transformers_utils/detokenizer.py +167 -0
  975. vllm/transformers_utils/detokenizer_utils.py +188 -0
  976. vllm/transformers_utils/processor.py +210 -0
  977. vllm/transformers_utils/processors/__init__.py +6 -0
  978. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  979. vllm/transformers_utils/s3_utils.py +161 -0
  980. vllm/transformers_utils/tokenizer.py +291 -0
  981. vllm/transformers_utils/tokenizer_base.py +146 -0
  982. vllm/transformers_utils/tokenizer_group.py +110 -0
  983. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  984. vllm/transformers_utils/tokenizers/mistral.py +483 -0
  985. vllm/transformers_utils/utils.py +98 -0
  986. vllm/triton_utils/__init__.py +5 -0
  987. vllm/triton_utils/importing.py +53 -0
  988. vllm/usage/__init__.py +0 -0
  989. vllm/usage/usage_lib.py +255 -0
  990. vllm/utils.py +2692 -0
  991. vllm/v1/__init__.py +0 -0
  992. vllm/v1/attention/__init__.py +0 -0
  993. vllm/v1/attention/backends/__init__.py +0 -0
  994. vllm/v1/attention/backends/flash_attn.py +783 -0
  995. vllm/v1/attention/backends/flashinfer.py +638 -0
  996. vllm/v1/attention/backends/mla/__init__.py +0 -0
  997. vllm/v1/attention/backends/mla/common.py +974 -0
  998. vllm/v1/attention/backends/mla/flashmla.py +149 -0
  999. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1000. vllm/v1/attention/backends/pallas.py +221 -0
  1001. vllm/v1/attention/backends/triton_attn.py +198 -0
  1002. vllm/v1/core/__init__.py +0 -0
  1003. vllm/v1/core/block_pool.py +281 -0
  1004. vllm/v1/core/encoder_cache_manager.py +149 -0
  1005. vllm/v1/core/kv_cache_manager.py +385 -0
  1006. vllm/v1/core/kv_cache_utils.py +744 -0
  1007. vllm/v1/core/sched/__init__.py +0 -0
  1008. vllm/v1/core/sched/interface.py +134 -0
  1009. vllm/v1/core/sched/output.py +126 -0
  1010. vllm/v1/core/sched/scheduler.py +838 -0
  1011. vllm/v1/core/sched/utils.py +22 -0
  1012. vllm/v1/core/specialized_manager.py +161 -0
  1013. vllm/v1/engine/__init__.py +166 -0
  1014. vllm/v1/engine/async_llm.py +532 -0
  1015. vllm/v1/engine/core.py +701 -0
  1016. vllm/v1/engine/core_client.py +942 -0
  1017. vllm/v1/engine/detokenizer.py +260 -0
  1018. vllm/v1/engine/exceptions.py +16 -0
  1019. vllm/v1/engine/llm_engine.py +285 -0
  1020. vllm/v1/engine/logprobs.py +198 -0
  1021. vllm/v1/engine/mm_input_cache.py +82 -0
  1022. vllm/v1/engine/output_processor.py +420 -0
  1023. vllm/v1/engine/parallel_sampling.py +132 -0
  1024. vllm/v1/engine/processor.py +387 -0
  1025. vllm/v1/executor/__init__.py +0 -0
  1026. vllm/v1/executor/abstract.py +112 -0
  1027. vllm/v1/executor/multiproc_executor.py +480 -0
  1028. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1029. vllm/v1/kv_cache_interface.py +166 -0
  1030. vllm/v1/metrics/__init__.py +0 -0
  1031. vllm/v1/metrics/loggers.py +498 -0
  1032. vllm/v1/metrics/stats.py +238 -0
  1033. vllm/v1/outputs.py +111 -0
  1034. vllm/v1/request.py +178 -0
  1035. vllm/v1/sample/__init__.py +0 -0
  1036. vllm/v1/sample/metadata.py +43 -0
  1037. vllm/v1/sample/ops/__init__.py +0 -0
  1038. vllm/v1/sample/ops/bad_words.py +38 -0
  1039. vllm/v1/sample/ops/penalties.py +58 -0
  1040. vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
  1041. vllm/v1/sample/rejection_sampler.py +631 -0
  1042. vllm/v1/sample/sampler.py +270 -0
  1043. vllm/v1/sample/tpu/__init__.py +0 -0
  1044. vllm/v1/sample/tpu/metadata.py +118 -0
  1045. vllm/v1/sample/tpu/sampler.py +154 -0
  1046. vllm/v1/serial_utils.py +274 -0
  1047. vllm/v1/spec_decode/__init__.py +0 -0
  1048. vllm/v1/spec_decode/eagle.py +318 -0
  1049. vllm/v1/spec_decode/metadata.py +61 -0
  1050. vllm/v1/spec_decode/metrics.py +164 -0
  1051. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1052. vllm/v1/spec_decode/utils.py +18 -0
  1053. vllm/v1/stats/__init__.py +0 -0
  1054. vllm/v1/stats/common.py +453 -0
  1055. vllm/v1/structured_output/__init__.py +113 -0
  1056. vllm/v1/structured_output/backend_guidance.py +215 -0
  1057. vllm/v1/structured_output/backend_types.py +96 -0
  1058. vllm/v1/structured_output/backend_xgrammar.py +299 -0
  1059. vllm/v1/structured_output/request.py +84 -0
  1060. vllm/v1/structured_output/utils.py +174 -0
  1061. vllm/v1/utils.py +249 -0
  1062. vllm/v1/worker/__init__.py +0 -0
  1063. vllm/v1/worker/block_table.py +87 -0
  1064. vllm/v1/worker/gpu_input_batch.py +677 -0
  1065. vllm/v1/worker/gpu_model_runner.py +1776 -0
  1066. vllm/v1/worker/gpu_worker.py +349 -0
  1067. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1068. vllm/v1/worker/tpu_model_runner.py +1419 -0
  1069. vllm/v1/worker/tpu_worker.py +260 -0
  1070. vllm/v1/worker/utils.py +74 -0
  1071. vllm/v1/worker/worker_base.py +64 -0
  1072. vllm/version.py +40 -0
  1073. vllm/vllm_flash_attn/.gitkeep +0 -0
  1074. vllm/worker/__init__.py +0 -0
  1075. vllm/worker/cache_engine.py +144 -0
  1076. vllm/worker/cpu_enc_dec_model_runner.py +323 -0
  1077. vllm/worker/cpu_model_runner.py +668 -0
  1078. vllm/worker/cpu_pooling_model_runner.py +122 -0
  1079. vllm/worker/cpu_worker.py +400 -0
  1080. vllm/worker/enc_dec_model_runner.py +542 -0
  1081. vllm/worker/hpu_model_runner.py +2221 -0
  1082. vllm/worker/hpu_worker.py +483 -0
  1083. vllm/worker/model_runner.py +2056 -0
  1084. vllm/worker/model_runner_base.py +281 -0
  1085. vllm/worker/multi_step_hpu_worker.py +122 -0
  1086. vllm/worker/multi_step_model_runner.py +908 -0
  1087. vllm/worker/multi_step_tpu_worker.py +107 -0
  1088. vllm/worker/multi_step_worker.py +196 -0
  1089. vllm/worker/neuron_model_runner.py +336 -0
  1090. vllm/worker/neuron_worker.py +138 -0
  1091. vllm/worker/pooling_model_runner.py +200 -0
  1092. vllm/worker/tpu_model_runner.py +908 -0
  1093. vllm/worker/tpu_worker.py +332 -0
  1094. vllm/worker/utils.py +52 -0
  1095. vllm/worker/worker.py +570 -0
  1096. vllm/worker/worker_base.py +644 -0
  1097. vllm/worker/xpu_model_runner.py +603 -0
  1098. vllm/worker/xpu_worker.py +185 -0
  1099. vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
  1100. vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
  1101. vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
  1102. vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
  1103. vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1539 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ """Fused MoE kernel."""
3
+ import functools
4
+ import json
5
+ import os
6
+ from typing import Any, Callable, Dict, List, Optional, Tuple
7
+
8
+ import torch
9
+ import triton
10
+ import triton.language as tl
11
+
12
+ import vllm.envs as envs
13
+ from vllm import _custom_ops as ops
14
+ from vllm.logger import init_logger
15
+ from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
16
+ _valid_deep_gemm, deep_gemm_moe_fp8)
17
+ from vllm.model_executor.layers.fused_moe.moe_align_block_size import (
18
+ moe_align_block_size)
19
+ from vllm.model_executor.layers.quantization.utils.fp8_utils import (
20
+ per_token_group_quant_fp8)
21
+ from vllm.model_executor.layers.quantization.utils.int8_utils import (
22
+ per_token_group_quant_int8, per_token_quant_int8)
23
+ from vllm.platforms import current_platform
24
+ from vllm.utils import direct_register_custom_op
25
+
26
+ from .rocm_aiter_fused_moe import is_rocm_aiter_moe_enabled
27
+
28
+ logger = init_logger(__name__)
29
+
30
+
31
+ @triton.jit
32
+ def write_zeros_to_output(c_ptr, stride_cm, stride_cn, pid_n, N, offs_token,
33
+ token_mask, BLOCK_SIZE_M, BLOCK_SIZE_N,
34
+ compute_type):
35
+ accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=compute_type)
36
+ offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
37
+ c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[
38
+ None, :]
39
+ c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
40
+ tl.store(c_ptrs, accumulator, mask=c_mask)
41
+
42
+
43
+ @triton.jit
44
+ def fused_moe_kernel_gptq_awq(
45
+ # Pointers to matrices
46
+ a_ptr,
47
+ b_ptr,
48
+ c_ptr,
49
+ b_scale_ptr,
50
+ b_zp_ptr,
51
+ topk_weights_ptr,
52
+ sorted_token_ids_ptr,
53
+ expert_ids_ptr,
54
+ num_tokens_post_padded_ptr,
55
+ # Matrix dimensions
56
+ N: tl.constexpr,
57
+ K: tl.constexpr,
58
+ EM,
59
+ num_valid_tokens,
60
+ # The stride variables represent how much to increase the ptr by when
61
+ # moving by 1 element in a particular dimension. E.g. `stride_am` is
62
+ # how much to increase `a_ptr` by to get the element one row down
63
+ # (A has M rows).
64
+ stride_am,
65
+ stride_ak,
66
+ stride_be,
67
+ stride_bk,
68
+ stride_bn,
69
+ stride_cm,
70
+ stride_cn,
71
+ stride_bse,
72
+ stride_bsk,
73
+ stride_bsn,
74
+ stride_bze,
75
+ stride_bzk,
76
+ stride_bzn,
77
+ block_k_diviable: tl.constexpr,
78
+ group_size: tl.constexpr,
79
+ # Meta-parameters
80
+ BLOCK_SIZE_M: tl.constexpr,
81
+ BLOCK_SIZE_N: tl.constexpr,
82
+ BLOCK_SIZE_K: tl.constexpr,
83
+ GROUP_SIZE_M: tl.constexpr,
84
+ MUL_ROUTED_WEIGHT: tl.constexpr,
85
+ top_k: tl.constexpr,
86
+ compute_type: tl.constexpr,
87
+ has_zp: tl.constexpr,
88
+ use_int4_w4a16: tl.constexpr,
89
+ use_int8_w8a16: tl.constexpr):
90
+ """
91
+ Implements the fused computation for a Mixture of Experts (MOE) using
92
+ token and expert matrices.
93
+
94
+ Key Parameters:
95
+ - A: The input tensor representing tokens with shape (*, K), where '*' can
96
+ be any shape representing batches and K is the feature dimension of
97
+ each token.
98
+ - B: The stacked MOE weight tensor with shape (E, N, K), where E is
99
+ the number of experts, K is the input feature dimension, and N is
100
+ the output feature dimension.
101
+ - C: The output cache tensor with shape (M, topk, N), where M is the
102
+ total number of tokens post padding, topk is the number of times
103
+ each token is repeated, and N is the output feature dimension.
104
+ - sorted_token_ids: A tensor containing the sorted indices of tokens,
105
+ repeated topk times and arranged by the expert index they are
106
+ assigned to.
107
+ - expert_ids: A tensor containing the indices of the expert for each
108
+ block. It determines which expert matrix from B should be used for
109
+ each block in A.
110
+ This kernel performs the multiplication of a token by its corresponding
111
+ expert matrix as determined by `expert_ids`. The sorting of
112
+ `sorted_token_ids` by expert index and padding ensures divisibility by
113
+ BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
114
+ multiplication across different blocks processed by the same expert.
115
+ """
116
+ # -----------------------------------------------------------
117
+ # Map program ids `pid` to the block of C it should compute.
118
+ # This is done in a grouped ordering to promote L2 data reuse.
119
+ pid = tl.program_id(axis=0)
120
+ num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
121
+ num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
122
+ num_pid_in_group = GROUP_SIZE_M * num_pid_n
123
+ group_id = pid // num_pid_in_group
124
+ first_pid_m = group_id * GROUP_SIZE_M
125
+ group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
126
+ pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
127
+ pid_n = (pid % num_pid_in_group) // group_size_m
128
+
129
+ # ----------------------------------------------------------
130
+ # Create pointers for the first blocks of A and B.
131
+ # We will advance this pointer as we move in the K direction
132
+ # and accumulate
133
+ # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
134
+ # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
135
+ num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
136
+ if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
137
+ return
138
+ offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(
139
+ tl.int64)
140
+ offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
141
+ token_mask = offs_token < num_valid_tokens
142
+
143
+ off_experts = tl.load(expert_ids_ptr + pid_m).to(tl.int64)
144
+ if off_experts == -1:
145
+ # -----------------------------------------------------------
146
+ # Write back zeros to the output when the expert is not
147
+ # in the current expert parallel rank.
148
+ write_zeros_to_output(c_ptr, stride_cm, stride_cn, pid_n, N,
149
+ offs_token, token_mask, BLOCK_SIZE_M,
150
+ BLOCK_SIZE_N, compute_type)
151
+ return
152
+
153
+ offs_bn = (pid_n * BLOCK_SIZE_N +
154
+ tl.arange(0, BLOCK_SIZE_N).to(tl.int64)) % N
155
+ offs_k = tl.arange(0, BLOCK_SIZE_K)
156
+ a_ptrs = a_ptr + (offs_token[:, None] // top_k * stride_am +
157
+ offs_k[None, :] * stride_ak)
158
+
159
+ if use_int4_w4a16:
160
+ b_ptrs = b_ptr + off_experts * stride_be + \
161
+ (offs_k[:, None] // 2) * stride_bk + offs_bn[None, :] * \
162
+ stride_bn
163
+ b_shifter = (offs_k[:, None] % 2) * 4
164
+ elif use_int8_w8a16:
165
+ b_ptrs = b_ptr + off_experts * stride_be + \
166
+ offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn
167
+
168
+ if not has_zp and use_int4_w4a16:
169
+ b_zp_num = 8
170
+ if not has_zp and use_int8_w8a16:
171
+ b_zp_num = 128
172
+ elif has_zp and use_int4_w4a16:
173
+ b_zp_shifter = (offs_bn[None, :] % 2) * 4
174
+
175
+ # -----------------------------------------------------------
176
+ # Iterate to compute a block of the C matrix.
177
+ # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
178
+ # of fp32 values for higher accuracy.
179
+ # `accumulator` will be converted back to fp16 after the loop.
180
+ accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
181
+ for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
182
+ # Load the next block of A and B, generate a mask by checking the
183
+ # K dimension.
184
+
185
+ if not block_k_diviable:
186
+ k_mask = offs_k[:, None] < K - k * BLOCK_SIZE_K
187
+ k_other = 0.0
188
+ else:
189
+ k_mask = None
190
+ k_other = None
191
+
192
+ a = tl.load(a_ptrs,
193
+ mask=token_mask[:, None] &
194
+ (offs_k[None, :] < K - k * BLOCK_SIZE_K),
195
+ other=0.0)
196
+ b = tl.load(b_ptrs)
197
+ if use_int4_w4a16:
198
+ b = (b >> b_shifter) & 0xF
199
+
200
+ b_scale_ptrs = b_scale_ptr + off_experts * stride_bse + \
201
+ offs_bn[None, :] * stride_bsn + \
202
+ ((offs_k[:, None] + BLOCK_SIZE_K * k) // group_size) * \
203
+ stride_bsk
204
+ b_scale = tl.load(b_scale_ptrs, mask=k_mask, other=k_other)
205
+ b_scale = b_scale.to(tl.float32)
206
+
207
+ if has_zp and use_int4_w4a16:
208
+ offs_k_true = (offs_k[:, None] + BLOCK_SIZE_K * k) // group_size
209
+ b_zp_ptrs = b_zp_ptr + off_experts * stride_bze + \
210
+ (offs_bn[None, :] // 2) * stride_bzn + \
211
+ offs_k_true * stride_bzk
212
+ b_zp = tl.load(b_zp_ptrs, mask=k_mask, other=k_other)
213
+ b_zp = ((b_zp >> b_zp_shifter) & 0xF)
214
+ b_zp = b_zp.to(tl.float32)
215
+ elif has_zp and use_int8_w8a16:
216
+ offs_k_true = (offs_k[:, None] + BLOCK_SIZE_K * k) // group_size
217
+ b_zp_ptrs = b_zp_ptr + off_experts * stride_bze + \
218
+ offs_bn[None, :] * stride_bzn + \
219
+ offs_k_true * stride_bzk
220
+ b_zp = tl.load(b_zp_ptrs, mask=k_mask, other=k_other)
221
+ b_zp = b_zp.to(tl.float32)
222
+
223
+ # We accumulate along the K dimension.
224
+ if has_zp:
225
+ b = ((b.to(tl.float32) - b_zp) * b_scale).to(compute_type)
226
+ else:
227
+ b = ((b.to(tl.float32) - b_zp_num) * b_scale).to(compute_type)
228
+ accumulator = tl.dot(a, b, acc=accumulator)
229
+
230
+ # Advance the ptrs to the next K block.
231
+ a_ptrs += BLOCK_SIZE_K * stride_ak
232
+ if use_int4_w4a16:
233
+ b_ptrs += (BLOCK_SIZE_K // 2) * stride_bk
234
+ else:
235
+ b_ptrs += BLOCK_SIZE_K * stride_bk
236
+
237
+ if MUL_ROUTED_WEIGHT:
238
+ moe_weight = tl.load(topk_weights_ptr + offs_token,
239
+ mask=token_mask,
240
+ other=0)
241
+ accumulator = accumulator * moe_weight[:, None]
242
+
243
+ accumulator = accumulator.to(compute_type)
244
+ # -----------------------------------------------------------
245
+ # Write back the block of the output
246
+ offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
247
+ c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[
248
+ None, :]
249
+ c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
250
+ tl.store(c_ptrs, accumulator, mask=c_mask)
251
+
252
+
253
+ @triton.jit
254
+ def fused_moe_kernel(
255
+ # Pointers to matrices
256
+ a_ptr,
257
+ b_ptr,
258
+ c_ptr,
259
+ a_scale_ptr,
260
+ b_scale_ptr,
261
+ topk_weights_ptr,
262
+ sorted_token_ids_ptr,
263
+ expert_ids_ptr,
264
+ num_tokens_post_padded_ptr,
265
+ # Matrix dimensions
266
+ N,
267
+ K,
268
+ EM,
269
+ num_valid_tokens,
270
+ # The stride variables represent how much to increase the ptr by when
271
+ # moving by 1 element in a particular dimension. E.g. `stride_am` is
272
+ # how much to increase `a_ptr` by to get the element one row down
273
+ # (A has M rows).
274
+ stride_am,
275
+ stride_ak,
276
+ stride_be,
277
+ stride_bk,
278
+ stride_bn,
279
+ stride_cm,
280
+ stride_cn,
281
+ stride_asm,
282
+ stride_ask,
283
+ stride_bse,
284
+ stride_bsk,
285
+ stride_bsn,
286
+ # Block size for block-wise quantization
287
+ group_n: tl.constexpr,
288
+ group_k: tl.constexpr,
289
+ # Meta-parameters
290
+ BLOCK_SIZE_M: tl.constexpr,
291
+ BLOCK_SIZE_N: tl.constexpr,
292
+ BLOCK_SIZE_K: tl.constexpr,
293
+ GROUP_SIZE_M: tl.constexpr,
294
+ MUL_ROUTED_WEIGHT: tl.constexpr,
295
+ top_k: tl.constexpr,
296
+ compute_type: tl.constexpr,
297
+ use_fp8_w8a8: tl.constexpr,
298
+ use_int8_w8a8: tl.constexpr,
299
+ use_int8_w8a16: tl.constexpr,
300
+ per_channel_quant: tl.constexpr,
301
+ ):
302
+ """
303
+ Implements the fused computation for a Mixture of Experts (MOE) using
304
+ token and expert matrices.
305
+
306
+ Key Parameters:
307
+ - A: The input tensor representing tokens with shape (*, K), where '*' can
308
+ be any shape representing batches and K is the feature dimension of
309
+ each token.
310
+ - B: The stacked MOE weight tensor with shape (E, N, K), where E is
311
+ the number of experts, K is the input feature dimension, and N is
312
+ the output feature dimension.
313
+ - C: The output cache tensor with shape (M, topk, N), where M is the
314
+ total number of tokens post padding, topk is the number of times
315
+ each token is repeated, and N is the output feature dimension.
316
+ - sorted_token_ids: A tensor containing the sorted indices of tokens,
317
+ repeated topk times and arranged by the expert index they are
318
+ assigned to.
319
+ - expert_ids: A tensor containing the indices of the expert for each
320
+ block. It determines which expert matrix from B should be used for
321
+ each block in A.
322
+ This kernel performs the multiplication of a token by its corresponding
323
+ expert matrix as determined by `expert_ids`. The sorting of
324
+ `sorted_token_ids` by expert index and padding ensures divisibility by
325
+ BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
326
+ multiplication across different blocks processed by the same expert.
327
+ """
328
+ # -----------------------------------------------------------
329
+ # Map program ids `pid` to the block of C it should compute.
330
+ # This is done in a grouped ordering to promote L2 data reuse.
331
+ pid = tl.program_id(axis=0)
332
+ num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
333
+ num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
334
+ num_pid_in_group = GROUP_SIZE_M * num_pid_n
335
+ group_id = pid // num_pid_in_group
336
+ first_pid_m = group_id * GROUP_SIZE_M
337
+ group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
338
+ pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
339
+ pid_n = (pid % num_pid_in_group) // group_size_m
340
+
341
+ # ----------------------------------------------------------
342
+ # Create pointers for the first blocks of A and B.
343
+ # We will advance this pointer as we move in the K direction
344
+ # and accumulate
345
+ # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
346
+ # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
347
+ num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
348
+ if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
349
+ return
350
+ offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(
351
+ tl.int64)
352
+ offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
353
+ token_mask = offs_token < num_valid_tokens
354
+
355
+ off_experts = tl.load(expert_ids_ptr + pid_m).to(tl.int64)
356
+ if off_experts == -1:
357
+ # -----------------------------------------------------------
358
+ # Write back zeros to the output when the expert is not
359
+ # in the current expert parallel rank.
360
+ write_zeros_to_output(c_ptr, stride_cm, stride_cn, pid_n, N,
361
+ offs_token, token_mask, BLOCK_SIZE_M,
362
+ BLOCK_SIZE_N, compute_type)
363
+ return
364
+
365
+ offs_bn = (pid_n * BLOCK_SIZE_N +
366
+ tl.arange(0, BLOCK_SIZE_N).to(tl.int64)) % N
367
+ offs_k = tl.arange(0, BLOCK_SIZE_K)
368
+ a_ptrs = a_ptr + (offs_token[:, None] // top_k * stride_am +
369
+ offs_k[None, :] * stride_ak)
370
+
371
+ b_ptrs = b_ptr + off_experts * stride_be + (offs_k[:, None] * stride_bk +
372
+ offs_bn[None, :] * stride_bn)
373
+ if use_int8_w8a16:
374
+ b_scale_ptrs = b_scale_ptr + off_experts * stride_bse + offs_bn[
375
+ None, :] * stride_bsn
376
+ b_scale = tl.load(b_scale_ptrs)
377
+
378
+ if use_fp8_w8a8 or use_int8_w8a8:
379
+ # block-wise
380
+ if group_k > 0 and group_n > 0:
381
+ a_scale_ptrs = a_scale_ptr + (offs_token // top_k) * stride_asm
382
+ offs_bsn = offs_bn // group_n
383
+ b_scale_ptrs = (b_scale_ptr + off_experts * stride_bse +
384
+ offs_bsn * stride_bsn)
385
+ # channel-wise
386
+ elif per_channel_quant:
387
+ b_scale_ptrs = b_scale_ptr + off_experts * stride_bse + offs_bn[
388
+ None, :] * stride_bsn
389
+ b_scale = tl.load(b_scale_ptrs)
390
+ # Load per-token scale for activations
391
+ a_scale_ptrs = a_scale_ptr + (offs_token // top_k) * stride_asm
392
+ a_scale = tl.load(a_scale_ptrs, mask=token_mask, other=0.0)[:,
393
+ None]
394
+ # tensor-wise
395
+ else:
396
+ a_scale = tl.load(a_scale_ptr)
397
+ b_scale = tl.load(b_scale_ptr + off_experts)
398
+
399
+ # -----------------------------------------------------------
400
+ # Iterate to compute a block of the C matrix.
401
+ # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
402
+ # of fp32 values for higher accuracy.
403
+ # `accumulator` will be converted back to fp16 after the loop.
404
+ accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
405
+ for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
406
+ # Load the next block of A and B, generate a mask by checking the
407
+ # K dimension.
408
+ a = tl.load(a_ptrs,
409
+ mask=token_mask[:, None] &
410
+ (offs_k[None, :] < K - k * BLOCK_SIZE_K),
411
+ other=0.0)
412
+ b = tl.load(b_ptrs,
413
+ mask=offs_k[:, None] < K - k * BLOCK_SIZE_K,
414
+ other=0.0)
415
+ # We accumulate along the K dimension.
416
+ if use_int8_w8a16:
417
+ accumulator = tl.dot(a, b.to(compute_type), acc=accumulator)
418
+ elif use_fp8_w8a8 or use_int8_w8a8:
419
+ if group_k > 0 and group_n > 0:
420
+ k_start = k * BLOCK_SIZE_K
421
+ offs_ks = k_start // group_k
422
+ a_scale = tl.load(a_scale_ptrs + offs_ks * stride_ask,
423
+ mask=token_mask,
424
+ other=0.0)
425
+ b_scale = tl.load(b_scale_ptrs + offs_ks * stride_bsk)
426
+
427
+ accumulator += tl.dot(a, b) * a_scale[:,
428
+ None] * b_scale[None, :]
429
+ else:
430
+ if use_fp8_w8a8:
431
+ # acc used to enable fp8_fast_accum
432
+ accumulator = tl.dot(a, b, acc=accumulator)
433
+ else:
434
+ accumulator += tl.dot(a, b)
435
+ else:
436
+ accumulator += tl.dot(a, b)
437
+ # Advance the ptrs to the next K block.
438
+ a_ptrs += BLOCK_SIZE_K * stride_ak
439
+ b_ptrs += BLOCK_SIZE_K * stride_bk
440
+
441
+ if MUL_ROUTED_WEIGHT:
442
+ moe_weight = tl.load(topk_weights_ptr + offs_token,
443
+ mask=token_mask,
444
+ other=0)
445
+ accumulator = accumulator * moe_weight[:, None]
446
+ if use_int8_w8a16:
447
+ accumulator = (accumulator * b_scale).to(compute_type)
448
+ elif use_fp8_w8a8 or use_int8_w8a8:
449
+ if group_k > 0 and group_n > 0:
450
+ accumulator = accumulator.to(compute_type)
451
+ else:
452
+ accumulator = (accumulator * a_scale * b_scale).to(compute_type)
453
+ else:
454
+ accumulator = accumulator.to(compute_type)
455
+ # -----------------------------------------------------------
456
+ # Write back the block of the output
457
+ offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
458
+ c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[
459
+ None, :]
460
+ c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
461
+ tl.store(c_ptrs, accumulator, mask=c_mask)
462
+
463
+
464
+ def invoke_fused_moe_kernel(A: torch.Tensor,
465
+ B: torch.Tensor,
466
+ C: torch.Tensor,
467
+ A_scale: Optional[torch.Tensor],
468
+ B_scale: Optional[torch.Tensor],
469
+ B_zp: Optional[torch.Tensor],
470
+ topk_weights: Optional[torch.Tensor],
471
+ sorted_token_ids: torch.Tensor,
472
+ expert_ids: torch.Tensor,
473
+ num_tokens_post_padded: torch.Tensor,
474
+ mul_routed_weight: bool,
475
+ top_k: int,
476
+ config: Dict[str, Any],
477
+ compute_type: tl.dtype,
478
+ use_fp8_w8a8: bool,
479
+ use_int8_w8a8: bool,
480
+ use_int8_w8a16: bool,
481
+ use_int4_w4a16: bool,
482
+ per_channel_quant: bool,
483
+ block_shape: Optional[List[int]] = None) -> None:
484
+ assert topk_weights is not None or not mul_routed_weight
485
+ assert topk_weights is None or topk_weights.stride(1) == 1
486
+ assert sorted_token_ids.stride(0) == 1
487
+
488
+ M = A.shape[0]
489
+ num_tokens = M * top_k
490
+
491
+ EM = sorted_token_ids.shape[0]
492
+ if A.shape[0] < config["BLOCK_SIZE_M"]:
493
+ # optimize for small batch_size.
494
+ # We assume that top_ids of each token is unique, so
495
+ # so num_valid_experts <= batch_size <= BLOCK_SIZE_M,
496
+ # and we can skip some invalid blocks.
497
+ EM = min(sorted_token_ids.shape[0],
498
+ A.shape[0] * top_k * config['BLOCK_SIZE_M'])
499
+ grid = lambda META: (triton.cdiv(EM, META['BLOCK_SIZE_M']) * triton.cdiv(
500
+ B.shape[1], META['BLOCK_SIZE_N']), )
501
+
502
+ if (use_int8_w8a16 or use_int4_w4a16) and \
503
+ block_shape is not None and block_shape[1] > 0:
504
+ assert B_scale is not None and B_scale.ndim == 3
505
+ assert B_zp is None or B_zp.ndim == 3
506
+
507
+ use_moe_wna16_cuda = should_moe_wna16_use_cuda(
508
+ num_valid_tokens=num_tokens,
509
+ group_size=block_shape[1],
510
+ num_experts=B.shape[0],
511
+ bit=4 if use_int4_w4a16 else 8)
512
+ config = config.copy()
513
+ config.update(
514
+ get_moe_wna16_block_config(config=config,
515
+ use_moe_wna16_cuda=use_moe_wna16_cuda,
516
+ num_valid_tokens=num_tokens,
517
+ size_k=A.shape[1],
518
+ size_n=B.shape[1],
519
+ num_experts=B.shape[1],
520
+ group_size=block_shape[1],
521
+ real_top_k=top_k,
522
+ block_size_m=config["BLOCK_SIZE_M"]))
523
+
524
+ if use_moe_wna16_cuda:
525
+ bit = 4 if use_int4_w4a16 else 8
526
+ ops.moe_wna16_gemm(A, C, B, B_scale, B_zp,
527
+ topk_weights if mul_routed_weight else None,
528
+ sorted_token_ids, expert_ids,
529
+ num_tokens_post_padded, top_k,
530
+ config["BLOCK_SIZE_M"], config["BLOCK_SIZE_N"],
531
+ config["BLOCK_SIZE_K"], bit)
532
+ return
533
+
534
+ fused_moe_kernel_gptq_awq[grid](
535
+ A,
536
+ B,
537
+ C,
538
+ B_scale,
539
+ B_zp,
540
+ topk_weights,
541
+ sorted_token_ids,
542
+ expert_ids,
543
+ num_tokens_post_padded,
544
+ B.shape[1],
545
+ A.shape[1],
546
+ EM,
547
+ num_tokens,
548
+ A.stride(0),
549
+ A.stride(1),
550
+ B.stride(0),
551
+ B.stride(2),
552
+ B.stride(1),
553
+ C.stride(1),
554
+ C.stride(2),
555
+ B_scale.stride(0),
556
+ B_scale.stride(2),
557
+ B_scale.stride(1),
558
+ B_zp.stride(0) if B_zp is not None else 0,
559
+ B_zp.stride(2) if B_zp is not None else 0,
560
+ B_zp.stride(1) if B_zp is not None else 0,
561
+ block_k_diviable=A.shape[1] % config["BLOCK_SIZE_K"] == 0,
562
+ group_size=block_shape[1],
563
+ MUL_ROUTED_WEIGHT=mul_routed_weight,
564
+ top_k=top_k,
565
+ compute_type=compute_type,
566
+ has_zp=B_zp is not None,
567
+ use_int4_w4a16=use_int4_w4a16,
568
+ use_int8_w8a16=use_int8_w8a16,
569
+ **config,
570
+ )
571
+ else:
572
+ config = config.copy()
573
+ BLOCK_SIZE_K = config.pop("BLOCK_SIZE_K")
574
+ if block_shape is not None:
575
+ BLOCK_SIZE_K = min(BLOCK_SIZE_K, min(block_shape[0],
576
+ block_shape[1]))
577
+ fused_moe_kernel[grid](
578
+ A,
579
+ B,
580
+ C,
581
+ A_scale,
582
+ B_scale,
583
+ topk_weights,
584
+ sorted_token_ids,
585
+ expert_ids,
586
+ num_tokens_post_padded,
587
+ B.shape[1],
588
+ B.shape[2],
589
+ EM,
590
+ num_tokens,
591
+ A.stride(0),
592
+ A.stride(1),
593
+ B.stride(0),
594
+ B.stride(2),
595
+ B.stride(1),
596
+ C.stride(1),
597
+ C.stride(2),
598
+ A_scale.stride(0)
599
+ if A_scale is not None and A_scale.ndim == 2 else 0,
600
+ A_scale.stride(1)
601
+ if A_scale is not None and A_scale.ndim == 2 else 0,
602
+ B_scale.stride(0)
603
+ if B_scale is not None and B_scale.ndim >= 2 else 0,
604
+ B_scale.stride(2)
605
+ if B_scale is not None and B_scale.ndim == 3 else 0,
606
+ B_scale.stride(1)
607
+ if B_scale is not None and B_scale.ndim >= 2 else 0,
608
+ 0 if block_shape is None else block_shape[0],
609
+ 0 if block_shape is None else block_shape[1],
610
+ MUL_ROUTED_WEIGHT=mul_routed_weight,
611
+ top_k=top_k,
612
+ compute_type=compute_type,
613
+ use_fp8_w8a8=use_fp8_w8a8,
614
+ use_int8_w8a8=use_int8_w8a8,
615
+ use_int8_w8a16=use_int8_w8a16,
616
+ per_channel_quant=per_channel_quant,
617
+ BLOCK_SIZE_K=BLOCK_SIZE_K,
618
+ **config,
619
+ )
620
+
621
+
622
+ # Adapted from: https://github.com/sgl-project/sglang/pull/2628
623
+ def get_config_file_name(E: int,
624
+ N: int,
625
+ dtype: Optional[str],
626
+ block_shape: Optional[List[int]] = None) -> str:
627
+ device_name = current_platform.get_device_name().replace(" ", "_")
628
+ dtype_selector = "" if not dtype else f",dtype={dtype}"
629
+ block_shape_selector = ("" if not block_shape or not all(block_shape) else
630
+ f",block_shape={block_shape}").replace(" ", "")
631
+ return f"E={E},N={N},device_name={device_name}{dtype_selector}{block_shape_selector}.json" # noqa: E501
632
+
633
+
634
+ # Adapted from: https://github.com/sgl-project/sglang/pull/2628
635
+ @functools.lru_cache
636
+ def get_moe_configs(
637
+ E: int,
638
+ N: int,
639
+ dtype: Optional[str],
640
+ block_n: Optional[int] = None,
641
+ block_k: Optional[int] = None,
642
+ ) -> Optional[Dict[int, Any]]:
643
+ """
644
+ Return optimized configurations for the fused MoE kernel.
645
+
646
+ The return value will be a dictionary that maps an irregular grid of
647
+ batch sizes to configurations of the fused_moe kernel. To evaluate the
648
+ kernel on a given batch size bs, the closest batch size in the grid should
649
+ be picked and the associated configuration chosen to invoke the kernel.
650
+ """
651
+
652
+ # First look up if an optimized configuration is available in the configs
653
+ # directory
654
+ block_shape = [block_n, block_k] if block_n and block_k else None
655
+ json_file_name = get_config_file_name(E, N, dtype, block_shape)
656
+
657
+ config_file_path = os.path.join(
658
+ os.path.dirname(os.path.realpath(__file__)), "configs", json_file_name)
659
+ if os.path.exists(config_file_path):
660
+ with open(config_file_path) as f:
661
+ logger.info("Using configuration from %s for MoE layer.",
662
+ config_file_path)
663
+ # If a configuration has been found, return it
664
+ return {int(key): val for key, val in json.load(f).items()}
665
+
666
+ # If no optimized configuration is available, we will use the default
667
+ # configuration
668
+ logger.warning(
669
+ ("Using default MoE config. Performance might be sub-optimal! "
670
+ "Config file not found at %s"), config_file_path)
671
+ return None
672
+
673
+
674
+ def get_moe_wna16_block_config(config: Dict[str,
675
+ int], use_moe_wna16_cuda: bool,
676
+ num_valid_tokens: int, size_k: int, size_n: int,
677
+ num_experts: int, group_size: int,
678
+ real_top_k: int, block_size_m: int):
679
+ if "BLOCK_SIZE_N" in config and "BLOCK_SIZE_K" in config:
680
+ # optimal block config is set
681
+ return {}
682
+ if not use_moe_wna16_cuda:
683
+ # triton moe wna16 kernel
684
+ if num_valid_tokens // real_top_k == 1:
685
+ # if bs=1, use a smaller BLOCK_SIZE_N
686
+ return {"BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 64}
687
+ else:
688
+ return {"BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32}
689
+ else:
690
+ # cuda moe wna16 kernel
691
+ # set default block_size 128, and increase them when num_blocks
692
+ # is too large.
693
+ block_size_n = 128
694
+ block_size_k = 128
695
+ if block_size_k <= group_size:
696
+ block_size_k = group_size
697
+
698
+ num_n_blocks = size_k // block_size_k
699
+ num_k_blocks = size_n // block_size_k
700
+ num_m_blocks = (num_valid_tokens + block_size_m - 1) / block_size_m + \
701
+ num_experts
702
+ if num_valid_tokens // real_top_k <= block_size_m:
703
+ num_m_blocks = min(num_m_blocks, num_valid_tokens)
704
+ num_blocks = num_m_blocks * num_n_blocks * num_k_blocks
705
+
706
+ if size_k % 256 == 0 and num_blocks >= 256 and \
707
+ block_size_k < 256:
708
+ block_size_k = 256
709
+ num_blocks = num_blocks // (256 // block_size_k)
710
+
711
+ if num_m_blocks <= 16 and size_k % (block_size_k * 2) == 0 and \
712
+ size_k % (block_size_k * 2) == 0 and block_size_k <= 512 and \
713
+ num_blocks >= 512:
714
+ block_size_k = block_size_k * 2
715
+ num_blocks = num_blocks // 2
716
+
717
+ if num_blocks > 1024:
718
+ block_size_n = 256
719
+ num_n_blocks = num_n_blocks // 2
720
+ num_blocks = num_blocks // 2
721
+
722
+ if size_n <= 1024 and num_blocks >= 1024:
723
+ # The kernel performance got much better with BLOCK_SIZE_N=1024
724
+ # when num_blocks is large, event when N is small.
725
+ # Not sure why, maybe it force the CUDA SM process only one block
726
+ # at the same time.
727
+ block_size_n = 1024
728
+
729
+ return {"BLOCK_SIZE_N": block_size_n, "BLOCK_SIZE_K": block_size_k}
730
+
731
+
732
+ def should_moe_wna16_use_cuda(num_valid_tokens: int, group_size: int,
733
+ num_experts: int, bit: int):
734
+ return bit == 4 and group_size in [32, 64, 128] and \
735
+ num_valid_tokens / num_experts <= 6
736
+
737
+
738
+ def get_default_config(
739
+ M: int,
740
+ E: int,
741
+ N: int,
742
+ K: int,
743
+ topk: int,
744
+ dtype: Optional[str],
745
+ is_marlin: bool,
746
+ block_shape: Optional[List[int]] = None,
747
+ ) -> Dict[str, int]:
748
+ if dtype == "fp8_w8a8" and block_shape is not None:
749
+ # Block-wise quant: BLOCK_SIZE_N must be divisible by block_shape[0]
750
+ # BLOCK_SIZE_K must be divisible by block_shape[1]
751
+ config = {
752
+ "BLOCK_SIZE_M": 64,
753
+ "BLOCK_SIZE_N": block_shape[0],
754
+ "BLOCK_SIZE_K": block_shape[1],
755
+ "GROUP_SIZE_M": 32,
756
+ "num_warps": 4,
757
+ "num_stages": 3,
758
+ }
759
+ elif dtype in ["int4_w4a16", "int8_w8a16"] and block_shape is not None:
760
+ # moe wna16 kernels
761
+ # only set BLOCK_SIZE_M
762
+ # BLOCK_SIZE_N and BLOCK_SIZE_K would be set later
763
+ bit = 4 if dtype == "int4_w4a16" else 8
764
+ use_moe_wna16_cuda = should_moe_wna16_use_cuda(M * topk,
765
+ block_shape[1], E, bit)
766
+ if use_moe_wna16_cuda:
767
+ config = {"BLOCK_SIZE_M": min(16, M)}
768
+ elif M <= 20:
769
+ config = {"BLOCK_SIZE_M": 16, "GROUP_SIZE_M": 1}
770
+ elif M <= 40:
771
+ config = {"BLOCK_SIZE_M": 32, "GROUP_SIZE_M": 1}
772
+ else:
773
+ config = {"BLOCK_SIZE_M": 64, "GROUP_SIZE_M": 1}
774
+ elif is_marlin:
775
+ for block_size_m in [8, 16, 32, 48, 64]:
776
+ if M * topk / E / block_size_m < 0.9:
777
+ break
778
+ return {"BLOCK_SIZE_M": block_size_m}
779
+ elif M <= E:
780
+ config = {
781
+ "BLOCK_SIZE_M": 16,
782
+ "BLOCK_SIZE_N": 32,
783
+ "BLOCK_SIZE_K": 64,
784
+ "GROUP_SIZE_M": 1,
785
+ }
786
+ else:
787
+ config = {
788
+ "BLOCK_SIZE_M": 64,
789
+ "BLOCK_SIZE_N": 64,
790
+ "BLOCK_SIZE_K": 32,
791
+ "GROUP_SIZE_M": 8,
792
+ }
793
+ return config
794
+
795
+
796
+ def try_get_optimal_moe_config(
797
+ w1_shape: Tuple[int, ...],
798
+ w2_shape: Tuple[int, ...],
799
+ top_k: int,
800
+ dtype: Optional[str],
801
+ M: int,
802
+ is_marlin: bool = False,
803
+ block_shape: Optional[List[int]] = None,
804
+ ):
805
+ from vllm.model_executor.layers.fused_moe import get_config
806
+ override_config = get_config()
807
+ if override_config:
808
+ config = override_config
809
+ else:
810
+ # First try to load optimal config from the file
811
+ E, _, N = w2_shape
812
+ if dtype == "int4_w4a16":
813
+ N = N * 2
814
+ block_n = block_shape[0] if block_shape else 0
815
+ block_k = block_shape[1] if block_shape else 0
816
+ configs = get_moe_configs(E, N, dtype, block_n, block_k)
817
+
818
+ if configs:
819
+ # If an optimal configuration map has been found, look up the
820
+ # optimal config
821
+ config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
822
+ else:
823
+ # Else use the default config
824
+ config = get_default_config(M, E, N, w1_shape[2], top_k, dtype,
825
+ is_marlin, block_shape)
826
+ return config
827
+
828
+
829
+ def vllm_topk_softmax(topk_weights: torch.Tensor, topk_indices: torch.Tensor,
830
+ token_expert_indices: torch.Tensor,
831
+ gating_output: torch.Tensor,
832
+ renormalize: bool) -> tuple[torch.Tensor, ...]:
833
+ ops.topk_softmax(
834
+ topk_weights,
835
+ topk_indices,
836
+ token_expert_indices,
837
+ gating_output,
838
+ )
839
+ if renormalize:
840
+ topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
841
+
842
+ return topk_weights, topk_indices
843
+
844
+
845
+ def dispatch_topk_func() -> Callable[..., tuple[torch.Tensor, ...]]:
846
+ if is_rocm_aiter_moe_enabled():
847
+ from .rocm_aiter_fused_moe import rocm_aiter_topk_softmax
848
+ return rocm_aiter_topk_softmax
849
+ return vllm_topk_softmax
850
+
851
+
852
+ def fused_topk(
853
+ hidden_states: torch.Tensor,
854
+ gating_output: torch.Tensor,
855
+ topk: int,
856
+ renormalize: bool,
857
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
858
+ assert hidden_states.shape[0] == gating_output.shape[0], (
859
+ "Number of tokens mismatch")
860
+
861
+ M, _ = hidden_states.shape
862
+
863
+ topk_weights = torch.empty(M,
864
+ topk,
865
+ dtype=torch.float32,
866
+ device=hidden_states.device)
867
+ topk_ids = torch.empty(M,
868
+ topk,
869
+ dtype=torch.int32,
870
+ device=hidden_states.device)
871
+ token_expert_indicies = torch.empty(M,
872
+ topk,
873
+ dtype=torch.int32,
874
+ device=hidden_states.device)
875
+
876
+ gating_output_float = gating_output.float() # TODO(woosuk): Optimize this.
877
+
878
+ topk_func = dispatch_topk_func()
879
+ topk_weights, topk_ids = topk_func(topk_weights, topk_ids,
880
+ token_expert_indicies,
881
+ gating_output_float, renormalize)
882
+
883
+ del token_expert_indicies # Not used. Will be used in the future.
884
+ return topk_weights, topk_ids
885
+
886
+
887
+ # This is used by the Deepseek-V2 and Deepseek-V3 model
888
+ @torch.compile(dynamic=True, backend=current_platform.simple_compile_backend)
889
+ def grouped_topk(
890
+ hidden_states: torch.Tensor,
891
+ gating_output: torch.Tensor,
892
+ topk: int,
893
+ renormalize: bool,
894
+ num_expert_group: int = 0,
895
+ topk_group: int = 0,
896
+ scoring_func: str = "softmax",
897
+ e_score_correction_bias: Optional[torch.Tensor] = None
898
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
899
+
900
+ assert hidden_states.shape[0] == gating_output.shape[0], (
901
+ "Number of tokens mismatch")
902
+
903
+ if scoring_func == "softmax":
904
+ scores = torch.softmax(gating_output, dim=-1)
905
+ elif scoring_func == "sigmoid":
906
+ scores = gating_output.sigmoid()
907
+ else:
908
+ raise ValueError(f"Unsupported scoring function: {scoring_func}")
909
+
910
+ num_token = scores.shape[0]
911
+ if e_score_correction_bias is not None:
912
+ # Store original scores before applying correction bias. We use biased
913
+ # scores for expert selection but original scores for routing weights
914
+ original_scores = scores
915
+ scores = scores + e_score_correction_bias.unsqueeze(0)
916
+ group_scores = (scores.view(num_token, num_expert_group,
917
+ -1).topk(2, dim=-1)[0].sum(dim=-1))
918
+ else:
919
+ group_scores = scores.view(num_token, num_expert_group,
920
+ -1).max(dim=-1).values # [n, n_group]
921
+ group_idx = torch.topk(group_scores, k=topk_group, dim=-1,
922
+ sorted=False)[1] # [n, top_k_group]
923
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
924
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
925
+ score_mask = group_mask.unsqueeze(-1).expand(
926
+ num_token, num_expert_group,
927
+ scores.shape[-1] // num_expert_group).reshape(num_token, -1) # [n, e]
928
+ tmp_scores = scores.masked_fill(~score_mask.bool(),
929
+ float("-inf")) # [n, e]
930
+
931
+ if e_score_correction_bias is not None:
932
+ topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)[1]
933
+ # Use original unbiased scores for the routing weights
934
+ topk_weights = original_scores.gather(1, topk_ids)
935
+ else:
936
+ topk_weights, topk_ids = torch.topk(tmp_scores,
937
+ k=topk,
938
+ dim=-1,
939
+ sorted=False)
940
+
941
+ if renormalize:
942
+ topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
943
+
944
+ return topk_weights.to(torch.float32), topk_ids.to(torch.int32)
945
+
946
+
947
+ def get_config_dtype_str(
948
+ dtype: torch.dtype,
949
+ use_int4_w4a16: Optional[bool] = False,
950
+ use_int8_w8a16: Optional[bool] = False,
951
+ use_fp8_w8a8: Optional[bool] = False) -> Optional[str]:
952
+ if use_fp8_w8a8:
953
+ return "fp8_w8a8"
954
+ elif use_int8_w8a16:
955
+ return "int8_w8a16"
956
+ elif use_int4_w4a16:
957
+ return "int4_w4a16"
958
+ elif dtype == torch.float:
959
+ # avoiding cases where kernel fails when float32 MoE
960
+ # use fp16/bfloat16 configs
961
+ return "float32"
962
+ return None
963
+
964
+
965
+ def inplace_fused_experts(hidden_states: torch.Tensor,
966
+ w1: torch.Tensor,
967
+ w2: torch.Tensor,
968
+ topk_weights: torch.Tensor,
969
+ topk_ids: torch.Tensor,
970
+ activation: str = "silu",
971
+ apply_router_weight_on_input: bool = False,
972
+ use_fp8_w8a8: bool = False,
973
+ use_int8_w8a8: bool = False,
974
+ use_int8_w8a16: bool = False,
975
+ use_int4_w4a16: bool = False,
976
+ per_channel_quant: bool = False,
977
+ global_num_experts: int = -1,
978
+ expert_map: Optional[torch.Tensor] = None,
979
+ w1_scale: Optional[torch.Tensor] = None,
980
+ w2_scale: Optional[torch.Tensor] = None,
981
+ w1_zp: Optional[torch.Tensor] = None,
982
+ w2_zp: Optional[torch.Tensor] = None,
983
+ a1_scale: Optional[torch.Tensor] = None,
984
+ a2_scale: Optional[torch.Tensor] = None,
985
+ block_shape: Optional[List[int]] = None) -> None:
986
+ fused_experts_impl(hidden_states, w1, w2, topk_weights, topk_ids, True,
987
+ activation, apply_router_weight_on_input, use_fp8_w8a8,
988
+ use_int8_w8a8, use_int8_w8a16, use_int4_w4a16,
989
+ per_channel_quant, global_num_experts, expert_map,
990
+ w1_scale, w2_scale, w1_zp, w2_zp, a1_scale, a2_scale,
991
+ block_shape)
992
+
993
+
994
+ def inplace_fused_experts_fake(
995
+ hidden_states: torch.Tensor,
996
+ w1: torch.Tensor,
997
+ w2: torch.Tensor,
998
+ topk_weights: torch.Tensor,
999
+ topk_ids: torch.Tensor,
1000
+ activation: str = "silu",
1001
+ apply_router_weight_on_input: bool = False,
1002
+ use_fp8_w8a8: bool = False,
1003
+ use_int8_w8a8: bool = False,
1004
+ use_int8_w8a16: bool = False,
1005
+ use_int4_w4a16: bool = False,
1006
+ per_channel_quant: bool = False,
1007
+ global_num_experts: int = -1,
1008
+ expert_map: Optional[torch.Tensor] = None,
1009
+ w1_scale: Optional[torch.Tensor] = None,
1010
+ w2_scale: Optional[torch.Tensor] = None,
1011
+ w1_zp: Optional[torch.Tensor] = None,
1012
+ w2_zp: Optional[torch.Tensor] = None,
1013
+ a1_scale: Optional[torch.Tensor] = None,
1014
+ a2_scale: Optional[torch.Tensor] = None,
1015
+ block_shape: Optional[List[int]] = None) -> None:
1016
+ pass
1017
+
1018
+
1019
+ direct_register_custom_op(
1020
+ op_name="inplace_fused_experts",
1021
+ op_func=inplace_fused_experts,
1022
+ mutates_args=["hidden_states"],
1023
+ fake_impl=inplace_fused_experts_fake,
1024
+ tags=(torch.Tag.needs_fixed_stride_order, ),
1025
+ )
1026
+
1027
+
1028
+ def outplace_fused_experts(
1029
+ hidden_states: torch.Tensor,
1030
+ w1: torch.Tensor,
1031
+ w2: torch.Tensor,
1032
+ topk_weights: torch.Tensor,
1033
+ topk_ids: torch.Tensor,
1034
+ activation: str = "silu",
1035
+ apply_router_weight_on_input: bool = False,
1036
+ use_fp8_w8a8: bool = False,
1037
+ use_int8_w8a8: bool = False,
1038
+ use_int8_w8a16: bool = False,
1039
+ use_int4_w4a16: bool = False,
1040
+ per_channel_quant: bool = False,
1041
+ global_num_experts: int = -1,
1042
+ expert_map: Optional[torch.Tensor] = None,
1043
+ w1_scale: Optional[torch.Tensor] = None,
1044
+ w2_scale: Optional[torch.Tensor] = None,
1045
+ w1_zp: Optional[torch.Tensor] = None,
1046
+ w2_zp: Optional[torch.Tensor] = None,
1047
+ a1_scale: Optional[torch.Tensor] = None,
1048
+ a2_scale: Optional[torch.Tensor] = None,
1049
+ block_shape: Optional[List[int]] = None) -> torch.Tensor:
1050
+ return fused_experts_impl(hidden_states, w1, w2, topk_weights, topk_ids,
1051
+ False, activation, apply_router_weight_on_input,
1052
+ use_fp8_w8a8, use_int8_w8a8, use_int8_w8a16,
1053
+ use_int4_w4a16, per_channel_quant,
1054
+ global_num_experts, expert_map, w1_scale,
1055
+ w2_scale, w1_zp, w2_zp, a1_scale, a2_scale,
1056
+ block_shape)
1057
+
1058
+
1059
+ def outplace_fused_experts_fake(
1060
+ hidden_states: torch.Tensor,
1061
+ w1: torch.Tensor,
1062
+ w2: torch.Tensor,
1063
+ topk_weights: torch.Tensor,
1064
+ topk_ids: torch.Tensor,
1065
+ activation: str = "silu",
1066
+ use_fp8_w8a8: bool = False,
1067
+ use_int8_w8a8: bool = False,
1068
+ use_int8_w8a16: bool = False,
1069
+ use_int4_w4a16: bool = False,
1070
+ per_channel_quant: bool = False,
1071
+ global_num_experts: int = -1,
1072
+ expert_map: Optional[torch.Tensor] = None,
1073
+ w1_scale: Optional[torch.Tensor] = None,
1074
+ w2_scale: Optional[torch.Tensor] = None,
1075
+ w1_zp: Optional[torch.Tensor] = None,
1076
+ w2_zp: Optional[torch.Tensor] = None,
1077
+ a1_scale: Optional[torch.Tensor] = None,
1078
+ a2_scale: Optional[torch.Tensor] = None,
1079
+ block_shape: Optional[List[int]] = None) -> torch.Tensor:
1080
+ return torch.empty_like(hidden_states)
1081
+
1082
+
1083
+ direct_register_custom_op(
1084
+ op_name="outplace_fused_experts",
1085
+ op_func=outplace_fused_experts,
1086
+ mutates_args=[],
1087
+ fake_impl=outplace_fused_experts_fake,
1088
+ tags=(torch.Tag.needs_fixed_stride_order, ),
1089
+ )
1090
+
1091
+
1092
+ def torch_vllm_inplace_fused_experts(**kwargs) -> torch.Tensor:
1093
+ torch.ops.vllm.inplace_fused_experts(**kwargs)
1094
+ hidden_states = kwargs['hidden_states']
1095
+ return hidden_states
1096
+
1097
+
1098
+ def torch_vllm_outplace_fused_experts(**kwargs) -> torch.Tensor:
1099
+ return torch.ops.vllm.outplace_fused_experts(**kwargs)
1100
+
1101
+
1102
+ def dispatch_fused_experts_func(inplace: bool) -> Callable[..., torch.Tensor]:
1103
+ if is_rocm_aiter_moe_enabled():
1104
+ from .rocm_aiter_fused_moe import rocm_aiter_fused_experts
1105
+ return rocm_aiter_fused_experts
1106
+ if inplace:
1107
+ return torch_vllm_inplace_fused_experts
1108
+ return torch_vllm_outplace_fused_experts
1109
+
1110
+
1111
+ def fused_experts(hidden_states: torch.Tensor,
1112
+ w1: torch.Tensor,
1113
+ w2: torch.Tensor,
1114
+ topk_weights: torch.Tensor,
1115
+ topk_ids: torch.Tensor,
1116
+ inplace: bool = False,
1117
+ activation: str = "silu",
1118
+ apply_router_weight_on_input: bool = False,
1119
+ use_fp8_w8a8: bool = False,
1120
+ use_int8_w8a8: bool = False,
1121
+ use_int8_w8a16: bool = False,
1122
+ use_int4_w4a16: bool = False,
1123
+ per_channel_quant: bool = False,
1124
+ global_num_experts: int = -1,
1125
+ expert_map: Optional[torch.Tensor] = None,
1126
+ w1_scale: Optional[torch.Tensor] = None,
1127
+ w2_scale: Optional[torch.Tensor] = None,
1128
+ w1_zp: Optional[torch.Tensor] = None,
1129
+ w2_zp: Optional[torch.Tensor] = None,
1130
+ a1_scale: Optional[torch.Tensor] = None,
1131
+ a2_scale: Optional[torch.Tensor] = None,
1132
+ block_shape: Optional[List[int]] = None,
1133
+ allow_deep_gemm: bool = False) -> torch.Tensor:
1134
+ if (allow_deep_gemm and use_fp8_w8a8
1135
+ and _valid_deep_gemm(hidden_states, w1, w2, expert_map)):
1136
+ assert apply_router_weight_on_input is False
1137
+ return deep_gemm_moe_fp8(
1138
+ hidden_states=hidden_states,
1139
+ w1=w1,
1140
+ w2=w2,
1141
+ topk_weights=topk_weights,
1142
+ topk_ids=topk_ids,
1143
+ inplace=inplace,
1144
+ activation=activation,
1145
+ global_num_experts=global_num_experts,
1146
+ expert_map=expert_map,
1147
+ w1_scale=w1_scale,
1148
+ w2_scale=w2_scale,
1149
+ a1_scale=a1_scale,
1150
+ a2_scale=a2_scale,
1151
+ )
1152
+ else:
1153
+ return dispatch_fused_experts_func(inplace)(
1154
+ hidden_states=hidden_states,
1155
+ w1=w1,
1156
+ w2=w2,
1157
+ topk_weights=topk_weights,
1158
+ topk_ids=topk_ids,
1159
+ activation=activation,
1160
+ apply_router_weight_on_input=apply_router_weight_on_input,
1161
+ use_fp8_w8a8=use_fp8_w8a8,
1162
+ use_int8_w8a8=use_int8_w8a8,
1163
+ use_int8_w8a16=use_int8_w8a16,
1164
+ use_int4_w4a16=use_int4_w4a16,
1165
+ per_channel_quant=per_channel_quant,
1166
+ global_num_experts=global_num_experts,
1167
+ expert_map=expert_map,
1168
+ w1_scale=w1_scale,
1169
+ w2_scale=w2_scale,
1170
+ w1_zp=w1_zp,
1171
+ w2_zp=w2_zp,
1172
+ a1_scale=a1_scale,
1173
+ a2_scale=a2_scale,
1174
+ block_shape=block_shape)
1175
+
1176
+
1177
+ def moe_kernel_prepare_input(
1178
+ A: torch.Tensor,
1179
+ B: torch.Tensor,
1180
+ A_scale: Optional[torch.Tensor],
1181
+ B_scale: Optional[torch.Tensor],
1182
+ use_fp8_w8a8: bool,
1183
+ use_int8_w8a8: bool,
1184
+ use_int8_w8a16: bool,
1185
+ use_int4_w4a16: bool,
1186
+ per_channel_quant: bool,
1187
+ block_shape: Optional[List[int]] = None,
1188
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
1189
+ if use_fp8_w8a8:
1190
+ assert B_scale is not None
1191
+ if block_shape is None:
1192
+ # If weights are per-channel (per_channel_quant=True), then
1193
+ # activations apply per-token quantization. Otherwise, assume
1194
+ # activation tensor-wise fp8 quantization, dynamic or static
1195
+ A, A_scale = ops.scaled_fp8_quant(
1196
+ A, A_scale, use_per_token_if_dynamic=per_channel_quant)
1197
+ else:
1198
+ # activation block-wise fp8 quantization
1199
+ assert len(block_shape) == 2
1200
+ _, block_k = block_shape[0], block_shape[1]
1201
+ A, A_scale = per_token_group_quant_fp8(A, block_k)
1202
+ assert triton.cdiv(A.shape[-1], block_k) == A_scale.shape[-1]
1203
+ # assert triton.cdiv(B.shape[-2], block_n) == B_scale.shape[-2]
1204
+ # assert triton.cdiv(B.shape[-1], block_k) == B_scale.shape[-1]
1205
+ elif use_int8_w8a8:
1206
+ assert B_scale is not None
1207
+ if block_shape is None:
1208
+ # activation channel-wise int8 quantization
1209
+ assert (per_channel_quant
1210
+ ), "int8 quantization only supports block or channel-wise"
1211
+ A, A_scale = per_token_quant_int8(A)
1212
+ else:
1213
+ # activation block-wise int8 quantization
1214
+ assert len(block_shape) == 2
1215
+ _, block_k = block_shape[0], block_shape[1]
1216
+ A, A_scale = per_token_group_quant_int8(A, block_k)
1217
+ assert triton.cdiv(A.shape[-1], block_k) == A_scale.shape[-1]
1218
+ # assert triton.cdiv(B.shape[-2], block_n) == B_scale.shape[-2]
1219
+ # assert triton.cdiv(B.shape[-1], block_k) == B_scale.shape[-1]
1220
+ elif use_int8_w8a16 or use_int4_w4a16:
1221
+ assert B_scale is not None
1222
+ assert block_shape is None or block_shape[0] == 0
1223
+ else:
1224
+ assert A_scale is None
1225
+ assert B_scale is None
1226
+
1227
+ return A, A_scale
1228
+
1229
+
1230
+ def fused_experts_impl(hidden_states: torch.Tensor,
1231
+ w1: torch.Tensor,
1232
+ w2: torch.Tensor,
1233
+ topk_weights: torch.Tensor,
1234
+ topk_ids: torch.Tensor,
1235
+ inplace: bool = False,
1236
+ activation: str = "silu",
1237
+ apply_router_weight_on_input: bool = False,
1238
+ use_fp8_w8a8: bool = False,
1239
+ use_int8_w8a8: bool = False,
1240
+ use_int8_w8a16: bool = False,
1241
+ use_int4_w4a16: bool = False,
1242
+ per_channel_quant: bool = False,
1243
+ global_num_experts: int = -1,
1244
+ expert_map: Optional[torch.Tensor] = None,
1245
+ w1_scale: Optional[torch.Tensor] = None,
1246
+ w2_scale: Optional[torch.Tensor] = None,
1247
+ w1_zp: Optional[torch.Tensor] = None,
1248
+ w2_zp: Optional[torch.Tensor] = None,
1249
+ a1_scale: Optional[torch.Tensor] = None,
1250
+ a2_scale: Optional[torch.Tensor] = None,
1251
+ block_shape: Optional[List[int]] = None):
1252
+ # Check constraints.
1253
+ if use_int4_w4a16:
1254
+ assert hidden_states.shape[1] // 2 == w1.shape[
1255
+ 2], "Hidden size mismatch"
1256
+ else:
1257
+ assert hidden_states.shape[1] == w1.shape[2], "Hidden size mismatch"
1258
+
1259
+ assert topk_weights.shape == topk_ids.shape, "topk shape mismatch"
1260
+ assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
1261
+ assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
1262
+ assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
1263
+ assert hidden_states.dtype in [
1264
+ torch.float32, torch.float16, torch.bfloat16
1265
+ ]
1266
+
1267
+ num_tokens, _ = hidden_states.shape
1268
+ E, N, _ = w1.shape
1269
+ K = w2.shape[1]
1270
+ if global_num_experts == -1:
1271
+ global_num_experts = E
1272
+ top_k_num = topk_ids.shape[1]
1273
+ # We execute the fused_moe kernel in chunks to circumvent this issue:
1274
+ # https://github.com/vllm-project/vllm/issues/5938
1275
+ CHUNK_SIZE = envs.VLLM_FUSED_MOE_CHUNK_SIZE
1276
+ M = min(num_tokens, CHUNK_SIZE)
1277
+ config_dtype = get_config_dtype_str(use_fp8_w8a8=use_fp8_w8a8,
1278
+ use_int8_w8a16=use_int8_w8a16,
1279
+ use_int4_w4a16=use_int4_w4a16,
1280
+ dtype=hidden_states.dtype)
1281
+
1282
+ get_config_func = functools.partial(
1283
+ try_get_optimal_moe_config,
1284
+ w1.shape,
1285
+ w2.shape,
1286
+ top_k_num,
1287
+ config_dtype,
1288
+ block_shape=block_shape,
1289
+ )
1290
+
1291
+ config = get_config_func(M)
1292
+
1293
+ # We can reuse the memory between these because by the time we need
1294
+ # cache3, we're done with cache1
1295
+ cache13 = torch.empty(M * top_k_num * max(N, K),
1296
+ device=hidden_states.device,
1297
+ dtype=hidden_states.dtype)
1298
+ intermediate_cache1 = cache13[:M * top_k_num * N].view(M, top_k_num, N)
1299
+ intermediate_cache3 = cache13[:M * top_k_num * K].view(M, top_k_num, K)
1300
+
1301
+ # This needs separate memory since it's used concurrently with cache1
1302
+ intermediate_cache2 = torch.empty((M * top_k_num, N // 2),
1303
+ device=hidden_states.device,
1304
+ dtype=hidden_states.dtype)
1305
+
1306
+ if hidden_states.dtype == torch.bfloat16:
1307
+ compute_type = tl.bfloat16
1308
+ elif hidden_states.dtype == torch.float16:
1309
+ compute_type = tl.float16
1310
+ elif hidden_states.dtype == torch.float32:
1311
+ compute_type = tl.float32
1312
+ else:
1313
+ raise ValueError(f"Unsupported compute_type: {hidden_states.dtype}")
1314
+
1315
+ if inplace:
1316
+ out_hidden_states = hidden_states
1317
+ else:
1318
+ out_hidden_states = torch.empty_like(hidden_states)
1319
+
1320
+ for chunk in range((num_tokens // CHUNK_SIZE) + 1):
1321
+ begin_chunk_idx, end_chunk_idx = (chunk * CHUNK_SIZE,
1322
+ min((chunk + 1) * CHUNK_SIZE,
1323
+ num_tokens))
1324
+ curr_hidden_states = hidden_states[begin_chunk_idx:end_chunk_idx]
1325
+ tokens_in_chunk, _ = curr_hidden_states.shape
1326
+
1327
+ if tokens_in_chunk == 0:
1328
+ break
1329
+
1330
+ if tokens_in_chunk < CHUNK_SIZE and chunk > 0:
1331
+ # Adjust the intermediate cache size and config for the last
1332
+ # chunk. Note that in most cases we only have one chunk
1333
+ # so the cache size and config are already set correctly and
1334
+ # do not need to be adjusted.
1335
+ intermediate_cache1 = intermediate_cache1[:tokens_in_chunk]
1336
+ intermediate_cache2 = intermediate_cache2[:tokens_in_chunk *
1337
+ topk_ids.shape[1]]
1338
+ intermediate_cache3 = intermediate_cache3[:tokens_in_chunk]
1339
+ config = get_config_func(tokens_in_chunk)
1340
+
1341
+ curr_topk_ids = topk_ids[begin_chunk_idx:end_chunk_idx]
1342
+ curr_topk_weights = topk_weights[begin_chunk_idx:end_chunk_idx]
1343
+
1344
+ qcurr_hidden_states, qa1_scale = moe_kernel_prepare_input(
1345
+ A=curr_hidden_states,
1346
+ B=w1,
1347
+ A_scale=a1_scale,
1348
+ B_scale=w1_scale,
1349
+ use_fp8_w8a8=use_fp8_w8a8,
1350
+ use_int8_w8a8=use_int8_w8a8,
1351
+ use_int8_w8a16=use_int8_w8a16,
1352
+ use_int4_w4a16=use_int4_w4a16,
1353
+ per_channel_quant=per_channel_quant,
1354
+ block_shape=block_shape)
1355
+
1356
+ sorted_token_ids, expert_ids, num_tokens_post_padded = (
1357
+ moe_align_block_size(curr_topk_ids, config['BLOCK_SIZE_M'],
1358
+ global_num_experts, expert_map))
1359
+
1360
+ invoke_fused_moe_kernel(qcurr_hidden_states,
1361
+ w1,
1362
+ intermediate_cache1,
1363
+ qa1_scale,
1364
+ w1_scale,
1365
+ w1_zp,
1366
+ curr_topk_weights,
1367
+ sorted_token_ids,
1368
+ expert_ids,
1369
+ num_tokens_post_padded,
1370
+ apply_router_weight_on_input,
1371
+ top_k_num,
1372
+ config,
1373
+ compute_type=compute_type,
1374
+ use_fp8_w8a8=use_fp8_w8a8,
1375
+ use_int8_w8a8=use_int8_w8a8,
1376
+ use_int8_w8a16=use_int8_w8a16,
1377
+ use_int4_w4a16=use_int4_w4a16,
1378
+ per_channel_quant=per_channel_quant,
1379
+ block_shape=block_shape)
1380
+
1381
+ if activation == "silu":
1382
+ torch.ops._C.silu_and_mul(intermediate_cache2,
1383
+ intermediate_cache1.view(-1, N))
1384
+ elif activation == "gelu":
1385
+ torch.ops._C.gelu_and_mul(intermediate_cache2,
1386
+ intermediate_cache1.view(-1, N))
1387
+ else:
1388
+ raise ValueError(f"Unsupported FusedMoe activation: {activation}")
1389
+
1390
+ qintermediate_cache2, qa2_scale = moe_kernel_prepare_input(
1391
+ A=intermediate_cache2,
1392
+ B=w2,
1393
+ A_scale=a2_scale,
1394
+ B_scale=w2_scale,
1395
+ use_fp8_w8a8=use_fp8_w8a8,
1396
+ use_int8_w8a8=use_int8_w8a8,
1397
+ use_int8_w8a16=use_int8_w8a16,
1398
+ use_int4_w4a16=use_int4_w4a16,
1399
+ per_channel_quant=per_channel_quant,
1400
+ block_shape=block_shape)
1401
+
1402
+ invoke_fused_moe_kernel(qintermediate_cache2,
1403
+ w2,
1404
+ intermediate_cache3,
1405
+ qa2_scale,
1406
+ w2_scale,
1407
+ w2_zp,
1408
+ curr_topk_weights,
1409
+ sorted_token_ids,
1410
+ expert_ids,
1411
+ num_tokens_post_padded,
1412
+ not apply_router_weight_on_input,
1413
+ 1,
1414
+ config,
1415
+ compute_type=compute_type,
1416
+ use_fp8_w8a8=use_fp8_w8a8,
1417
+ use_int8_w8a8=use_int8_w8a8,
1418
+ use_int8_w8a16=use_int8_w8a16,
1419
+ use_int4_w4a16=use_int4_w4a16,
1420
+ per_channel_quant=per_channel_quant,
1421
+ block_shape=block_shape)
1422
+
1423
+ ops.moe_sum(intermediate_cache3.view(*intermediate_cache3.shape),
1424
+ out_hidden_states[begin_chunk_idx:end_chunk_idx])
1425
+
1426
+ return out_hidden_states
1427
+
1428
+
1429
+ def fused_moe(
1430
+ hidden_states: torch.Tensor,
1431
+ w1: torch.Tensor,
1432
+ w2: torch.Tensor,
1433
+ gating_output: torch.Tensor,
1434
+ topk: int,
1435
+ renormalize: bool,
1436
+ inplace: bool = False,
1437
+ activation: str = "silu",
1438
+ use_grouped_topk: bool = False,
1439
+ num_expert_group: Optional[int] = None,
1440
+ topk_group: Optional[int] = None,
1441
+ custom_routing_function: Optional[Callable] = None,
1442
+ use_fp8_w8a8: bool = False,
1443
+ use_int8_w8a8: bool = False,
1444
+ use_int8_w8a16: bool = False,
1445
+ use_int4_w4a16: bool = False,
1446
+ per_channel_quant: bool = False,
1447
+ global_num_experts: int = -1,
1448
+ expert_map: Optional[torch.Tensor] = None,
1449
+ w1_scale: Optional[torch.Tensor] = None,
1450
+ w2_scale: Optional[torch.Tensor] = None,
1451
+ w1_zp: Optional[torch.Tensor] = None,
1452
+ w2_zp: Optional[torch.Tensor] = None,
1453
+ a1_scale: Optional[torch.Tensor] = None,
1454
+ a2_scale: Optional[torch.Tensor] = None,
1455
+ block_shape: Optional[List[int]] = None,
1456
+ ) -> torch.Tensor:
1457
+ """
1458
+ This function computes a Mixture of Experts (MoE) layer using two sets of
1459
+ weights, w1 and w2, and top-k gating mechanism.
1460
+
1461
+ Parameters:
1462
+ - hidden_states (torch.Tensor): The input tensor to the MoE layer.
1463
+ - w1 (torch.Tensor): The first set of expert weights.
1464
+ - w2 (torch.Tensor): The second set of expert weights.
1465
+ - gating_output (torch.Tensor): The output of the gating operation
1466
+ (before softmax).
1467
+ - topk (int): The number of top-k experts to select.
1468
+ - renormalize (bool): If True, renormalize the top-k weights to sum to 1.
1469
+ - inplace (bool): If True, perform the operation in-place.
1470
+ Defaults to False.
1471
+ - activation (str): The activation function to apply after the first
1472
+ MoE layer.
1473
+ - num_expert_group: Optional[int]: additional parameter for grouped_topk
1474
+ - topk_group: Optional[int]: additional parameter for grouped_topk
1475
+ - use_grouped_topk: If True, use grouped_topk instead of fused_topk
1476
+ note: Deepseekv2 model uses grouped_topk
1477
+ - use_fp8_w8a8 (bool): If True, use fp8 arithmetic to compute the inner
1478
+ products for w1 and w2. Defaults to False.
1479
+ - use_int8_w8a8 (bool): If True, use int8 arithmetic to compute the inner
1480
+ products for w1 and w2. Defaults to False.
1481
+ - use_int8_w8a16 (bool): If True, use matmul of int8 weight and bf16/fp16
1482
+ activation to compute the inner products for w1 and w2.
1483
+ Defaults to False.
1484
+ - use_int4_w4a16 (bool): If True, use matmul of int4 weight and bf16/fp16
1485
+ activation to compute the inner products for w1 and w2.
1486
+ Defaults to False.
1487
+ - global_num_experts (int): The total number of experts in the global
1488
+ expert space.
1489
+ - expert_map (Optional[torch.Tensor]): A tensor mapping expert indices
1490
+ from the global expert space to the local expert space of the expert
1491
+ parallel shard.
1492
+ - w1_scale (Optional[torch.Tensor]): Optional scale to be used for
1493
+ w1.
1494
+ - w2_scale (Optional[torch.Tensor]): Optional scale to be used for
1495
+ w2.
1496
+ - a1_scale (Optional[torch.Tensor]): Optional scale to be used for
1497
+ a1.
1498
+ - a2_scale (Optional[torch.Tensor]): Optional scale to be used for
1499
+ a2.
1500
+ - block_shape: (Optional[List[int]]): Optional block size for block-wise
1501
+ quantization.
1502
+
1503
+ Returns:
1504
+ - torch.Tensor: The output tensor after applying the MoE layer.
1505
+ """
1506
+
1507
+ if use_grouped_topk:
1508
+ assert num_expert_group is not None and topk_group is not None
1509
+ topk_weights, topk_ids = grouped_topk(hidden_states, gating_output,
1510
+ topk, renormalize,
1511
+ num_expert_group, topk_group)
1512
+ elif custom_routing_function is None:
1513
+ topk_weights, topk_ids = fused_topk(hidden_states, gating_output, topk,
1514
+ renormalize)
1515
+ else:
1516
+ topk_weights, topk_ids = custom_routing_function(
1517
+ hidden_states, gating_output, topk, renormalize)
1518
+
1519
+ return fused_experts(hidden_states,
1520
+ w1,
1521
+ w2,
1522
+ topk_weights,
1523
+ topk_ids,
1524
+ inplace=inplace,
1525
+ activation=activation,
1526
+ use_fp8_w8a8=use_fp8_w8a8,
1527
+ use_int8_w8a8=use_int8_w8a8,
1528
+ use_int8_w8a16=use_int8_w8a16,
1529
+ use_int4_w4a16=use_int4_w4a16,
1530
+ per_channel_quant=per_channel_quant,
1531
+ global_num_experts=global_num_experts,
1532
+ expert_map=expert_map,
1533
+ w1_scale=w1_scale,
1534
+ w2_scale=w2_scale,
1535
+ w1_zp=w1_zp,
1536
+ w2_zp=w2_zp,
1537
+ a1_scale=a1_scale,
1538
+ a2_scale=a2_scale,
1539
+ block_shape=block_shape)