vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of vllm-cpu might be problematic. Click here for more details.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +170 -0
- vllm/_custom_ops.py +1536 -0
- vllm/_ipex_ops.py +241 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +105 -0
- vllm/adapter_commons/request.py +25 -0
- vllm/adapter_commons/utils.py +92 -0
- vllm/adapter_commons/worker_manager.py +38 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +38 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +31 -0
- vllm/assets/video.py +103 -0
- vllm/attention/__init__.py +19 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +306 -0
- vllm/attention/backends/blocksparse_attn.py +457 -0
- vllm/attention/backends/cpu_mla.py +303 -0
- vllm/attention/backends/flash_attn.py +999 -0
- vllm/attention/backends/flashinfer.py +1092 -0
- vllm/attention/backends/flashmla.py +242 -0
- vllm/attention/backends/hpu_attn.py +301 -0
- vllm/attention/backends/ipex_attn.py +396 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1444 -0
- vllm/attention/backends/pallas.py +346 -0
- vllm/attention/backends/placeholder_attn.py +399 -0
- vllm/attention/backends/rocm_aiter_mla.py +412 -0
- vllm/attention/backends/rocm_flash_attn.py +969 -0
- vllm/attention/backends/torch_sdpa.py +691 -0
- vllm/attention/backends/triton_mla.py +113 -0
- vllm/attention/backends/utils.py +609 -0
- vllm/attention/backends/xformers.py +798 -0
- vllm/attention/layer.py +443 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
- vllm/attention/ops/blocksparse_attention/interface.py +238 -0
- vllm/attention/ops/blocksparse_attention/utils.py +244 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
- vllm/attention/ops/flashmla.py +115 -0
- vllm/attention/ops/hpu_paged_attn.py +105 -0
- vllm/attention/ops/ipex_attn.py +193 -0
- vllm/attention/ops/merge_attn_states.py +42 -0
- vllm/attention/ops/nki_flash_attn.py +905 -0
- vllm/attention/ops/paged_attn.py +255 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +42 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
- vllm/attention/ops/triton_decode_attention.py +675 -0
- vllm/attention/ops/triton_flash_attention.py +1375 -0
- vllm/attention/ops/triton_merge_attn_states.py +96 -0
- vllm/attention/selector.py +186 -0
- vllm/attention/utils/fa_utils.py +54 -0
- vllm/beam_search.py +82 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +831 -0
- vllm/benchmarks/endpoint_request_func.py +160 -0
- vllm/benchmarks/latency.py +181 -0
- vllm/benchmarks/serve.py +925 -0
- vllm/benchmarks/throughput.py +608 -0
- vllm/benchmarks/utils.py +69 -0
- vllm/collect_env.py +795 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/backends.py +715 -0
- vllm/compilation/compiler_interface.py +437 -0
- vllm/compilation/counter.py +33 -0
- vllm/compilation/decorators.py +249 -0
- vllm/compilation/fix_functionalization.py +182 -0
- vllm/compilation/fusion.py +617 -0
- vllm/compilation/fx_utils.py +60 -0
- vllm/compilation/inductor_pass.py +114 -0
- vllm/compilation/monitor.py +38 -0
- vllm/compilation/multi_output_match.py +108 -0
- vllm/compilation/noop_elimination.py +135 -0
- vllm/compilation/pass_manager.py +74 -0
- vllm/compilation/sequence_parallelism.py +266 -0
- vllm/compilation/torch25_custom_graph_pass.py +41 -0
- vllm/compilation/vllm_inductor_pass.py +68 -0
- vllm/compilation/wrapper.py +129 -0
- vllm/config.py +4179 -0
- vllm/connections.py +170 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +398 -0
- vllm/core/block/common.py +370 -0
- vllm/core/block/cpu_gpu_block_allocator.py +440 -0
- vllm/core/block/interfaces.py +318 -0
- vllm/core/block/naive_block.py +465 -0
- vllm/core/block/prefix_caching_block.py +1134 -0
- vllm/core/block/utils.py +27 -0
- vllm/core/block_manager.py +520 -0
- vllm/core/evictor.py +156 -0
- vllm/core/interfaces.py +134 -0
- vllm/core/placeholder_block_space_manager.py +99 -0
- vllm/core/scheduler.py +2060 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +280 -0
- vllm/distributed/__init__.py +5 -0
- vllm/distributed/communication_op.py +40 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/base_device_communicator.py +151 -0
- vllm/distributed/device_communicators/cpu_communicator.py +139 -0
- vllm/distributed/device_communicators/cuda_communicator.py +131 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
- vllm/distributed/device_communicators/hpu_communicator.py +45 -0
- vllm/distributed/device_communicators/neuron_communicator.py +19 -0
- vllm/distributed/device_communicators/pynccl.py +217 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
- vllm/distributed/device_communicators/shm_broadcast.py +557 -0
- vllm/distributed/device_communicators/tpu_communicator.py +93 -0
- vllm/distributed/device_communicators/xpu_communicator.py +54 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +11 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
- vllm/distributed/parallel_state.py +1209 -0
- vllm/distributed/utils.py +366 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1724 -0
- vllm/engine/async_llm_engine.py +1261 -0
- vllm/engine/async_timeout.py +191 -0
- vllm/engine/llm_engine.py +2150 -0
- vllm/engine/metrics.py +717 -0
- vllm/engine/metrics_types.py +96 -0
- vllm/engine/multiprocessing/__init__.py +183 -0
- vllm/engine/multiprocessing/client.py +745 -0
- vllm/engine/multiprocessing/engine.py +450 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +74 -0
- vllm/engine/output_processor/multi_step.py +210 -0
- vllm/engine/output_processor/single_step.py +136 -0
- vllm/engine/output_processor/stop_checker.py +130 -0
- vllm/engine/output_processor/util.py +27 -0
- vllm/engine/protocol.py +302 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +177 -0
- vllm/entrypoints/chat_utils.py +1259 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +38 -0
- vllm/entrypoints/cli/benchmark/latency.py +29 -0
- vllm/entrypoints/cli/benchmark/main.py +53 -0
- vllm/entrypoints/cli/benchmark/serve.py +29 -0
- vllm/entrypoints/cli/benchmark/throughput.py +29 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +59 -0
- vllm/entrypoints/cli/openai.py +175 -0
- vllm/entrypoints/cli/serve.py +59 -0
- vllm/entrypoints/cli/types.py +24 -0
- vllm/entrypoints/launcher.py +146 -0
- vllm/entrypoints/llm.py +1450 -0
- vllm/entrypoints/logger.py +44 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1130 -0
- vllm/entrypoints/openai/cli_args.py +296 -0
- vllm/entrypoints/openai/logits_processors.py +89 -0
- vllm/entrypoints/openai/protocol.py +1806 -0
- vllm/entrypoints/openai/run_batch.py +439 -0
- vllm/entrypoints/openai/serving_chat.py +1210 -0
- vllm/entrypoints/openai/serving_completion.py +557 -0
- vllm/entrypoints/openai/serving_embedding.py +245 -0
- vllm/entrypoints/openai/serving_engine.py +569 -0
- vllm/entrypoints/openai/serving_models.py +314 -0
- vllm/entrypoints/openai/serving_pooling.py +237 -0
- vllm/entrypoints/openai/serving_score.py +439 -0
- vllm/entrypoints/openai/serving_tokenization.py +147 -0
- vllm/entrypoints/openai/serving_transcription.py +421 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
- vllm/entrypoints/score_utils.py +49 -0
- vllm/entrypoints/ssl.py +74 -0
- vllm/entrypoints/utils.py +136 -0
- vllm/env_override.py +34 -0
- vllm/envs.py +800 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +400 -0
- vllm/executor/mp_distributed_executor.py +243 -0
- vllm/executor/msgspec_utils.py +29 -0
- vllm/executor/multiproc_worker_utils.py +312 -0
- vllm/executor/ray_distributed_executor.py +700 -0
- vllm/executor/ray_utils.py +400 -0
- vllm/executor/uniproc_executor.py +141 -0
- vllm/forward_context.py +159 -0
- vllm/inputs/__init__.py +37 -0
- vllm/inputs/data.py +248 -0
- vllm/inputs/parse.py +121 -0
- vllm/inputs/preprocess.py +745 -0
- vllm/inputs/registry.py +212 -0
- vllm/jsontree.py +79 -0
- vllm/logger.py +210 -0
- vllm/logging_utils/__init__.py +7 -0
- vllm/logging_utils/formatter.py +17 -0
- vllm/logits_process.py +121 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +335 -0
- vllm/lora/layers.py +1263 -0
- vllm/lora/lora.py +198 -0
- vllm/lora/models.py +802 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +15 -0
- vllm/lora/ops/torch_ops/lora_ops.py +115 -0
- vllm/lora/ops/triton_ops/__init__.py +11 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand.py +293 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
- vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
- vllm/lora/ops/triton_ops/utils.py +121 -0
- vllm/lora/peft_helper.py +115 -0
- vllm/lora/punica_wrapper/__init__.py +9 -0
- vllm/lora/punica_wrapper/punica_base.py +483 -0
- vllm/lora/punica_wrapper/punica_cpu.py +348 -0
- vllm/lora/punica_wrapper/punica_gpu.py +289 -0
- vllm/lora/punica_wrapper/punica_hpu.py +144 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/utils.py +161 -0
- vllm/lora/request.py +97 -0
- vllm/lora/resolver.py +83 -0
- vllm/lora/utils.py +237 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +15 -0
- vllm/model_executor/custom_op.py +153 -0
- vllm/model_executor/guided_decoding/__init__.py +180 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
- vllm/model_executor/guided_decoding/guided_fields.py +42 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
- vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
- vllm/model_executor/guided_decoding/utils.py +241 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +368 -0
- vllm/model_executor/layers/fused_moe/__init__.py +51 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
- vllm/model_executor/layers/fused_moe/layer.py +949 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
- vllm/model_executor/layers/fused_moe/utils.py +48 -0
- vllm/model_executor/layers/layernorm.py +277 -0
- vllm/model_executor/layers/lightning_attn.py +651 -0
- vllm/model_executor/layers/linear.py +1518 -0
- vllm/model_executor/layers/logits_processor.py +196 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
- vllm/model_executor/layers/pooler.py +336 -0
- vllm/model_executor/layers/quantization/__init__.py +153 -0
- vllm/model_executor/layers/quantization/aqlm.py +374 -0
- vllm/model_executor/layers/quantization/awq.py +184 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
- vllm/model_executor/layers/quantization/awq_triton.py +319 -0
- vllm/model_executor/layers/quantization/base_config.py +145 -0
- vllm/model_executor/layers/quantization/bitblas.py +459 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
- vllm/model_executor/layers/quantization/experts_int8.py +194 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
- vllm/model_executor/layers/quantization/fp8.py +832 -0
- vllm/model_executor/layers/quantization/gguf.py +408 -0
- vllm/model_executor/layers/quantization/gptq.py +276 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
- vllm/model_executor/layers/quantization/kv_cache.py +137 -0
- vllm/model_executor/layers/quantization/marlin.py +259 -0
- vllm/model_executor/layers/quantization/modelopt.py +410 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
- vllm/model_executor/layers/quantization/qqq.py +273 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +385 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
- vllm/model_executor/layers/quantization/quark/utils.py +102 -0
- vllm/model_executor/layers/quantization/schema.py +85 -0
- vllm/model_executor/layers/quantization/torchao.py +127 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
- vllm/model_executor/layers/rejection_sampler.py +400 -0
- vllm/model_executor/layers/resampler.py +269 -0
- vllm/model_executor/layers/rotary_embedding.py +1598 -0
- vllm/model_executor/layers/sampler.py +1221 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
- vllm/model_executor/layers/utils.py +99 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
- vllm/model_executor/model_loader/__init__.py +20 -0
- vllm/model_executor/model_loader/loader.py +1542 -0
- vllm/model_executor/model_loader/neuron.py +243 -0
- vllm/model_executor/model_loader/tensorizer.py +468 -0
- vllm/model_executor/model_loader/utils.py +171 -0
- vllm/model_executor/model_loader/weight_utils.py +749 -0
- vllm/model_executor/models/__init__.py +27 -0
- vllm/model_executor/models/adapters.py +247 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +656 -0
- vllm/model_executor/models/aya_vision.py +461 -0
- vllm/model_executor/models/baichuan.py +469 -0
- vllm/model_executor/models/bamba.py +542 -0
- vllm/model_executor/models/bart.py +936 -0
- vllm/model_executor/models/bert.py +725 -0
- vllm/model_executor/models/blip.py +337 -0
- vllm/model_executor/models/blip2.py +717 -0
- vllm/model_executor/models/bloom.py +358 -0
- vllm/model_executor/models/chameleon.py +1135 -0
- vllm/model_executor/models/chatglm.py +476 -0
- vllm/model_executor/models/clip.py +410 -0
- vllm/model_executor/models/commandr.py +466 -0
- vllm/model_executor/models/constant_size_cache.py +136 -0
- vllm/model_executor/models/dbrx.py +469 -0
- vllm/model_executor/models/deepseek.py +484 -0
- vllm/model_executor/models/deepseek_mtp.py +266 -0
- vllm/model_executor/models/deepseek_v2.py +830 -0
- vllm/model_executor/models/deepseek_vl2.py +647 -0
- vllm/model_executor/models/eagle.py +247 -0
- vllm/model_executor/models/exaone.py +548 -0
- vllm/model_executor/models/fairseq2_llama.py +153 -0
- vllm/model_executor/models/falcon.py +508 -0
- vllm/model_executor/models/florence2.py +1102 -0
- vllm/model_executor/models/fuyu.py +388 -0
- vllm/model_executor/models/gemma.py +423 -0
- vllm/model_executor/models/gemma2.py +423 -0
- vllm/model_executor/models/gemma3.py +531 -0
- vllm/model_executor/models/gemma3_mm.py +716 -0
- vllm/model_executor/models/glm.py +22 -0
- vllm/model_executor/models/glm4.py +303 -0
- vllm/model_executor/models/glm4v.py +647 -0
- vllm/model_executor/models/gpt2.py +313 -0
- vllm/model_executor/models/gpt_bigcode.py +336 -0
- vllm/model_executor/models/gpt_j.py +337 -0
- vllm/model_executor/models/gpt_neox.py +330 -0
- vllm/model_executor/models/granite.py +494 -0
- vllm/model_executor/models/granite_speech.py +777 -0
- vllm/model_executor/models/granitemoe.py +435 -0
- vllm/model_executor/models/granitemoeshared.py +339 -0
- vllm/model_executor/models/gritlm.py +245 -0
- vllm/model_executor/models/grok1.py +560 -0
- vllm/model_executor/models/h2ovl.py +542 -0
- vllm/model_executor/models/idefics2_vision_model.py +387 -0
- vllm/model_executor/models/idefics3.py +767 -0
- vllm/model_executor/models/interfaces.py +569 -0
- vllm/model_executor/models/interfaces_base.py +163 -0
- vllm/model_executor/models/intern_vit.py +476 -0
- vllm/model_executor/models/internlm2.py +453 -0
- vllm/model_executor/models/internlm2_ve.py +146 -0
- vllm/model_executor/models/internvl.py +945 -0
- vllm/model_executor/models/jais.py +371 -0
- vllm/model_executor/models/jamba.py +590 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +619 -0
- vllm/model_executor/models/llama4.py +530 -0
- vllm/model_executor/models/llama_eagle.py +152 -0
- vllm/model_executor/models/llama_eagle3.py +232 -0
- vllm/model_executor/models/llava.py +869 -0
- vllm/model_executor/models/llava_next.py +582 -0
- vllm/model_executor/models/llava_next_video.py +470 -0
- vllm/model_executor/models/llava_onevision.py +954 -0
- vllm/model_executor/models/mamba.py +271 -0
- vllm/model_executor/models/mamba2.py +302 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +210 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +229 -0
- vllm/model_executor/models/minicpmo.py +725 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +35 -0
- vllm/model_executor/models/minimax_text_01.py +1261 -0
- vllm/model_executor/models/mistral3.py +598 -0
- vllm/model_executor/models/mixtral.py +485 -0
- vllm/model_executor/models/mixtral_quant.py +447 -0
- vllm/model_executor/models/mllama.py +1623 -0
- vllm/model_executor/models/mllama4.py +838 -0
- vllm/model_executor/models/mlp_speculator.py +205 -0
- vllm/model_executor/models/modernbert.py +325 -0
- vllm/model_executor/models/module_mapping.py +71 -0
- vllm/model_executor/models/molmo.py +1567 -0
- vllm/model_executor/models/moonvit.py +628 -0
- vllm/model_executor/models/mpt.py +329 -0
- vllm/model_executor/models/nemotron.py +506 -0
- vllm/model_executor/models/nemotron_nas.py +446 -0
- vllm/model_executor/models/nvlm_d.py +212 -0
- vllm/model_executor/models/olmo.py +390 -0
- vllm/model_executor/models/olmo2.py +412 -0
- vllm/model_executor/models/olmoe.py +449 -0
- vllm/model_executor/models/opt.py +410 -0
- vllm/model_executor/models/orion.py +356 -0
- vllm/model_executor/models/paligemma.py +397 -0
- vllm/model_executor/models/persimmon.py +342 -0
- vllm/model_executor/models/phi.py +354 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3_small.py +463 -0
- vllm/model_executor/models/phi3v.py +722 -0
- vllm/model_executor/models/phi4mm.py +1263 -0
- vllm/model_executor/models/phi4mm_audio.py +1232 -0
- vllm/model_executor/models/phi4mm_utils.py +1883 -0
- vllm/model_executor/models/phimoe.py +666 -0
- vllm/model_executor/models/pixtral.py +1281 -0
- vllm/model_executor/models/plamo2.py +736 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
- vllm/model_executor/models/qwen.py +360 -0
- vllm/model_executor/models/qwen2.py +552 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
- vllm/model_executor/models/qwen2_5_vl.py +1136 -0
- vllm/model_executor/models/qwen2_audio.py +402 -0
- vllm/model_executor/models/qwen2_moe.py +531 -0
- vllm/model_executor/models/qwen2_rm.py +130 -0
- vllm/model_executor/models/qwen2_vl.py +1409 -0
- vllm/model_executor/models/qwen3.py +319 -0
- vllm/model_executor/models/qwen3_moe.py +528 -0
- vllm/model_executor/models/qwen_vl.py +784 -0
- vllm/model_executor/models/registry.py +611 -0
- vllm/model_executor/models/roberta.py +332 -0
- vllm/model_executor/models/siglip.py +522 -0
- vllm/model_executor/models/skyworkr1v.py +949 -0
- vllm/model_executor/models/smolvlm.py +51 -0
- vllm/model_executor/models/solar.py +504 -0
- vllm/model_executor/models/stablelm.py +349 -0
- vllm/model_executor/models/starcoder2.py +355 -0
- vllm/model_executor/models/telechat2.py +139 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/transformers.py +442 -0
- vllm/model_executor/models/ultravox.py +655 -0
- vllm/model_executor/models/utils.py +714 -0
- vllm/model_executor/models/vision.py +149 -0
- vllm/model_executor/models/whisper.py +746 -0
- vllm/model_executor/models/zamba2.py +1008 -0
- vllm/model_executor/parameter.py +458 -0
- vllm/model_executor/pooling_metadata.py +71 -0
- vllm/model_executor/sampling_metadata.py +596 -0
- vllm/model_executor/utils.py +53 -0
- vllm/multimodal/__init__.py +31 -0
- vllm/multimodal/audio.py +105 -0
- vllm/multimodal/base.py +218 -0
- vllm/multimodal/hasher.py +103 -0
- vllm/multimodal/image.py +77 -0
- vllm/multimodal/inputs.py +843 -0
- vllm/multimodal/parse.py +454 -0
- vllm/multimodal/processing.py +1760 -0
- vllm/multimodal/profiling.py +274 -0
- vllm/multimodal/registry.py +321 -0
- vllm/multimodal/utils.py +386 -0
- vllm/multimodal/video.py +166 -0
- vllm/outputs.py +521 -0
- vllm/platforms/__init__.py +286 -0
- vllm/platforms/cpu.py +182 -0
- vllm/platforms/cuda.py +463 -0
- vllm/platforms/hpu.py +94 -0
- vllm/platforms/interface.py +427 -0
- vllm/platforms/neuron.py +69 -0
- vllm/platforms/rocm.py +346 -0
- vllm/platforms/tpu.py +174 -0
- vllm/platforms/xpu.py +142 -0
- vllm/plugins/__init__.py +82 -0
- vllm/pooling_params.py +53 -0
- vllm/profiler/__init__.py +7 -0
- vllm/profiler/layerwise_profile.py +374 -0
- vllm/profiler/utils.py +147 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +82 -0
- vllm/prompt_adapter/models.py +357 -0
- vllm/prompt_adapter/request.py +36 -0
- vllm/prompt_adapter/utils.py +97 -0
- vllm/prompt_adapter/worker_manager.py +178 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +12 -0
- vllm/reasoning/abs_reasoning_parsers.py +189 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
- vllm/reasoning/granite_reasoning_parser.py +362 -0
- vllm/sampling_params.py +598 -0
- vllm/scalar_type.py +335 -0
- vllm/scripts.py +14 -0
- vllm/sequence.py +1486 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +505 -0
- vllm/spec_decode/draft_model_runner.py +335 -0
- vllm/spec_decode/interfaces.py +98 -0
- vllm/spec_decode/medusa_worker.py +137 -0
- vllm/spec_decode/metrics.py +212 -0
- vllm/spec_decode/mlp_speculator_worker.py +93 -0
- vllm/spec_decode/mqa_scorer.py +159 -0
- vllm/spec_decode/multi_step_worker.py +416 -0
- vllm/spec_decode/ngram_worker.py +195 -0
- vllm/spec_decode/proposer_worker_base.py +58 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
- vllm/spec_decode/spec_decode_worker.py +1324 -0
- vllm/spec_decode/target_model_runner.py +44 -0
- vllm/spec_decode/top1_proposer.py +274 -0
- vllm/spec_decode/util.py +276 -0
- vllm/test_utils.py +129 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6139 -0
- vllm/tracing.py +130 -0
- vllm/transformers_utils/__init__.py +19 -0
- vllm/transformers_utils/config.py +813 -0
- vllm/transformers_utils/configs/__init__.py +52 -0
- vllm/transformers_utils/configs/arctic.py +206 -0
- vllm/transformers_utils/configs/chatglm.py +71 -0
- vllm/transformers_utils/configs/cohere2.py +194 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +65 -0
- vllm/transformers_utils/configs/exaone.py +191 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/h2ovl.py +15 -0
- vllm/transformers_utils/configs/internvl.py +53 -0
- vllm/transformers_utils/configs/jais.py +237 -0
- vllm/transformers_utils/configs/kimi_vl.py +36 -0
- vllm/transformers_utils/configs/medusa.py +62 -0
- vllm/transformers_utils/configs/mllama.py +30 -0
- vllm/transformers_utils/configs/mlp_speculator.py +67 -0
- vllm/transformers_utils/configs/moonvit.py +32 -0
- vllm/transformers_utils/configs/mpt.py +179 -0
- vllm/transformers_utils/configs/nemotron.py +204 -0
- vllm/transformers_utils/configs/nvlm_d.py +14 -0
- vllm/transformers_utils/configs/skyworkr1v.py +53 -0
- vllm/transformers_utils/configs/solar.py +246 -0
- vllm/transformers_utils/configs/telechat2.py +63 -0
- vllm/transformers_utils/configs/ultravox.py +107 -0
- vllm/transformers_utils/detokenizer.py +167 -0
- vllm/transformers_utils/detokenizer_utils.py +188 -0
- vllm/transformers_utils/processor.py +210 -0
- vllm/transformers_utils/processors/__init__.py +6 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/s3_utils.py +161 -0
- vllm/transformers_utils/tokenizer.py +291 -0
- vllm/transformers_utils/tokenizer_base.py +146 -0
- vllm/transformers_utils/tokenizer_group.py +110 -0
- vllm/transformers_utils/tokenizers/__init__.py +9 -0
- vllm/transformers_utils/tokenizers/mistral.py +483 -0
- vllm/transformers_utils/utils.py +98 -0
- vllm/triton_utils/__init__.py +5 -0
- vllm/triton_utils/importing.py +53 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +255 -0
- vllm/utils.py +2692 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/flash_attn.py +783 -0
- vllm/v1/attention/backends/flashinfer.py +638 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +974 -0
- vllm/v1/attention/backends/mla/flashmla.py +149 -0
- vllm/v1/attention/backends/mla/triton_mla.py +118 -0
- vllm/v1/attention/backends/pallas.py +221 -0
- vllm/v1/attention/backends/triton_attn.py +198 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +281 -0
- vllm/v1/core/encoder_cache_manager.py +149 -0
- vllm/v1/core/kv_cache_manager.py +385 -0
- vllm/v1/core/kv_cache_utils.py +744 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +134 -0
- vllm/v1/core/sched/output.py +126 -0
- vllm/v1/core/sched/scheduler.py +838 -0
- vllm/v1/core/sched/utils.py +22 -0
- vllm/v1/core/specialized_manager.py +161 -0
- vllm/v1/engine/__init__.py +166 -0
- vllm/v1/engine/async_llm.py +532 -0
- vllm/v1/engine/core.py +701 -0
- vllm/v1/engine/core_client.py +942 -0
- vllm/v1/engine/detokenizer.py +260 -0
- vllm/v1/engine/exceptions.py +16 -0
- vllm/v1/engine/llm_engine.py +285 -0
- vllm/v1/engine/logprobs.py +198 -0
- vllm/v1/engine/mm_input_cache.py +82 -0
- vllm/v1/engine/output_processor.py +420 -0
- vllm/v1/engine/parallel_sampling.py +132 -0
- vllm/v1/engine/processor.py +387 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +112 -0
- vllm/v1/executor/multiproc_executor.py +480 -0
- vllm/v1/executor/ray_distributed_executor.py +61 -0
- vllm/v1/kv_cache_interface.py +166 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +498 -0
- vllm/v1/metrics/stats.py +238 -0
- vllm/v1/outputs.py +111 -0
- vllm/v1/request.py +178 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +38 -0
- vllm/v1/sample/ops/penalties.py +58 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +270 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +118 -0
- vllm/v1/sample/tpu/sampler.py +154 -0
- vllm/v1/serial_utils.py +274 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +318 -0
- vllm/v1/spec_decode/metadata.py +61 -0
- vllm/v1/spec_decode/metrics.py +164 -0
- vllm/v1/spec_decode/ngram_proposer.py +131 -0
- vllm/v1/spec_decode/utils.py +18 -0
- vllm/v1/stats/__init__.py +0 -0
- vllm/v1/stats/common.py +453 -0
- vllm/v1/structured_output/__init__.py +113 -0
- vllm/v1/structured_output/backend_guidance.py +215 -0
- vllm/v1/structured_output/backend_types.py +96 -0
- vllm/v1/structured_output/backend_xgrammar.py +299 -0
- vllm/v1/structured_output/request.py +84 -0
- vllm/v1/structured_output/utils.py +174 -0
- vllm/v1/utils.py +249 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +87 -0
- vllm/v1/worker/gpu_input_batch.py +677 -0
- vllm/v1/worker/gpu_model_runner.py +1776 -0
- vllm/v1/worker/gpu_worker.py +349 -0
- vllm/v1/worker/lora_model_runner_mixin.py +145 -0
- vllm/v1/worker/tpu_model_runner.py +1419 -0
- vllm/v1/worker/tpu_worker.py +260 -0
- vllm/v1/worker/utils.py +74 -0
- vllm/v1/worker/worker_base.py +64 -0
- vllm/version.py +40 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +144 -0
- vllm/worker/cpu_enc_dec_model_runner.py +323 -0
- vllm/worker/cpu_model_runner.py +668 -0
- vllm/worker/cpu_pooling_model_runner.py +122 -0
- vllm/worker/cpu_worker.py +400 -0
- vllm/worker/enc_dec_model_runner.py +542 -0
- vllm/worker/hpu_model_runner.py +2221 -0
- vllm/worker/hpu_worker.py +483 -0
- vllm/worker/model_runner.py +2056 -0
- vllm/worker/model_runner_base.py +281 -0
- vllm/worker/multi_step_hpu_worker.py +122 -0
- vllm/worker/multi_step_model_runner.py +908 -0
- vllm/worker/multi_step_tpu_worker.py +107 -0
- vllm/worker/multi_step_worker.py +196 -0
- vllm/worker/neuron_model_runner.py +336 -0
- vllm/worker/neuron_worker.py +138 -0
- vllm/worker/pooling_model_runner.py +200 -0
- vllm/worker/tpu_model_runner.py +908 -0
- vllm/worker/tpu_worker.py +332 -0
- vllm/worker/utils.py +52 -0
- vllm/worker/worker.py +570 -0
- vllm/worker/worker_base.py +644 -0
- vllm/worker/xpu_model_runner.py +603 -0
- vllm/worker/xpu_worker.py +185 -0
- vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
- vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
- vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
- vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
- vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
vllm/platforms/cuda.py
ADDED
|
@@ -0,0 +1,463 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
"""Code inside this file can safely assume cuda platform, e.g. importing
|
|
3
|
+
pynvml. However, it should not initialize cuda context.
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
import os
|
|
7
|
+
from functools import wraps
|
|
8
|
+
from typing import (TYPE_CHECKING, Callable, List, Optional, Tuple, TypeVar,
|
|
9
|
+
Union)
|
|
10
|
+
|
|
11
|
+
import torch
|
|
12
|
+
from typing_extensions import ParamSpec
|
|
13
|
+
|
|
14
|
+
# import custom ops, trigger op registration
|
|
15
|
+
import vllm._C # noqa
|
|
16
|
+
import vllm.envs as envs
|
|
17
|
+
from vllm.logger import init_logger
|
|
18
|
+
from vllm.utils import import_pynvml
|
|
19
|
+
|
|
20
|
+
from .interface import DeviceCapability, Platform, PlatformEnum, _Backend
|
|
21
|
+
|
|
22
|
+
if TYPE_CHECKING:
|
|
23
|
+
from vllm.config import ModelConfig, VllmConfig
|
|
24
|
+
|
|
25
|
+
logger = init_logger(__name__)
|
|
26
|
+
|
|
27
|
+
_P = ParamSpec("_P")
|
|
28
|
+
_R = TypeVar("_R")
|
|
29
|
+
|
|
30
|
+
pynvml = import_pynvml()
|
|
31
|
+
|
|
32
|
+
# pytorch 2.5 uses cudnn sdpa by default, which will cause crash on some models
|
|
33
|
+
# see https://github.com/huggingface/diffusers/issues/9704 for details
|
|
34
|
+
torch.backends.cuda.enable_cudnn_sdp(False)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def device_id_to_physical_device_id(device_id: int) -> int:
|
|
38
|
+
if "CUDA_VISIBLE_DEVICES" in os.environ:
|
|
39
|
+
device_ids = os.environ["CUDA_VISIBLE_DEVICES"].split(",")
|
|
40
|
+
if device_ids == [""]:
|
|
41
|
+
msg = (
|
|
42
|
+
"CUDA_VISIBLE_DEVICES is set to empty string, which means"
|
|
43
|
+
" GPU support is disabled. If you are using ray, please unset"
|
|
44
|
+
" the environment variable `CUDA_VISIBLE_DEVICES` inside the"
|
|
45
|
+
" worker/actor. "
|
|
46
|
+
"Check https://github.com/vllm-project/vllm/issues/8402 for"
|
|
47
|
+
" more information.")
|
|
48
|
+
raise RuntimeError(msg)
|
|
49
|
+
physical_device_id = device_ids[device_id]
|
|
50
|
+
return int(physical_device_id)
|
|
51
|
+
else:
|
|
52
|
+
return device_id
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def with_nvml_context(fn: Callable[_P, _R]) -> Callable[_P, _R]:
|
|
56
|
+
|
|
57
|
+
@wraps(fn)
|
|
58
|
+
def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> _R:
|
|
59
|
+
pynvml.nvmlInit()
|
|
60
|
+
try:
|
|
61
|
+
return fn(*args, **kwargs)
|
|
62
|
+
finally:
|
|
63
|
+
pynvml.nvmlShutdown()
|
|
64
|
+
|
|
65
|
+
return wrapper
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
class CudaPlatformBase(Platform):
|
|
69
|
+
_enum = PlatformEnum.CUDA
|
|
70
|
+
device_name: str = "cuda"
|
|
71
|
+
device_type: str = "cuda"
|
|
72
|
+
dispatch_key: str = "CUDA"
|
|
73
|
+
ray_device_key: str = "GPU"
|
|
74
|
+
device_control_env_var: str = "CUDA_VISIBLE_DEVICES"
|
|
75
|
+
|
|
76
|
+
@classmethod
|
|
77
|
+
def get_device_capability(cls,
|
|
78
|
+
device_id: int = 0
|
|
79
|
+
) -> Optional[DeviceCapability]:
|
|
80
|
+
raise NotImplementedError
|
|
81
|
+
|
|
82
|
+
@classmethod
|
|
83
|
+
def get_device_name(cls, device_id: int = 0) -> str:
|
|
84
|
+
raise NotImplementedError
|
|
85
|
+
|
|
86
|
+
@classmethod
|
|
87
|
+
def get_device_total_memory(cls, device_id: int = 0) -> int:
|
|
88
|
+
raise NotImplementedError
|
|
89
|
+
|
|
90
|
+
@classmethod
|
|
91
|
+
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
|
|
92
|
+
if enforce_eager:
|
|
93
|
+
logger.warning(
|
|
94
|
+
"To see benefits of async output processing, enable CUDA "
|
|
95
|
+
"graph. Since, enforce-eager is enabled, async output "
|
|
96
|
+
"processor cannot be used")
|
|
97
|
+
return False
|
|
98
|
+
return True
|
|
99
|
+
|
|
100
|
+
@classmethod
|
|
101
|
+
def is_fully_connected(cls, device_ids: List[int]) -> bool:
|
|
102
|
+
raise NotImplementedError
|
|
103
|
+
|
|
104
|
+
@classmethod
|
|
105
|
+
def log_warnings(cls):
|
|
106
|
+
pass
|
|
107
|
+
|
|
108
|
+
@classmethod
|
|
109
|
+
def check_and_update_config(cls, vllm_config: "VllmConfig") -> None:
|
|
110
|
+
parallel_config = vllm_config.parallel_config
|
|
111
|
+
scheduler_config = vllm_config.scheduler_config
|
|
112
|
+
compilation_config = vllm_config.compilation_config
|
|
113
|
+
model_config = vllm_config.model_config
|
|
114
|
+
|
|
115
|
+
if parallel_config.worker_cls == "auto":
|
|
116
|
+
if scheduler_config.is_multi_step:
|
|
117
|
+
if envs.VLLM_USE_V1:
|
|
118
|
+
raise NotImplementedError(
|
|
119
|
+
"Multi-step scheduling is not supported (and not "
|
|
120
|
+
"needed) on vLLM V1. Please launch without "
|
|
121
|
+
"--num-scheduler-steps.")
|
|
122
|
+
else:
|
|
123
|
+
parallel_config.worker_cls = \
|
|
124
|
+
"vllm.worker.multi_step_worker.MultiStepWorker"
|
|
125
|
+
elif vllm_config.speculative_config:
|
|
126
|
+
if envs.VLLM_USE_V1:
|
|
127
|
+
parallel_config.worker_cls = \
|
|
128
|
+
"vllm.v1.worker.gpu_worker.Worker"
|
|
129
|
+
else:
|
|
130
|
+
parallel_config.worker_cls = \
|
|
131
|
+
"vllm.spec_decode.spec_decode_worker.create_spec_worker"
|
|
132
|
+
parallel_config.sd_worker_cls = \
|
|
133
|
+
"vllm.worker.worker.Worker"
|
|
134
|
+
else:
|
|
135
|
+
if envs.VLLM_USE_V1:
|
|
136
|
+
parallel_config.worker_cls = \
|
|
137
|
+
"vllm.v1.worker.gpu_worker.Worker"
|
|
138
|
+
else:
|
|
139
|
+
parallel_config.worker_cls = "vllm.worker.worker.Worker"
|
|
140
|
+
|
|
141
|
+
cache_config = vllm_config.cache_config
|
|
142
|
+
if cache_config and cache_config.block_size is None:
|
|
143
|
+
cache_config.block_size = 16
|
|
144
|
+
|
|
145
|
+
# TODO(lucas): handle this more gracefully
|
|
146
|
+
# Note: model_config may be None during testing
|
|
147
|
+
if model_config is not None and model_config.use_mla:
|
|
148
|
+
# if `VLLM_ATTENTION_BACKEND` is not set and we are using MLA, then
|
|
149
|
+
# we default to FlashMLA backend, so we need to force the blocksize
|
|
150
|
+
# here
|
|
151
|
+
use_flashmla = (envs.VLLM_ATTENTION_BACKEND is None \
|
|
152
|
+
or envs.VLLM_ATTENTION_BACKEND == "FLASHMLA")
|
|
153
|
+
from vllm.attention.ops.flashmla import is_flashmla_supported
|
|
154
|
+
if use_flashmla and is_flashmla_supported()[0] \
|
|
155
|
+
and cache_config.block_size != 64:
|
|
156
|
+
cache_config.block_size = 64
|
|
157
|
+
logger.info(
|
|
158
|
+
"Forcing kv cache block size to 64 for FlashMLA backend.")
|
|
159
|
+
|
|
160
|
+
if (parallel_config.data_parallel_size > 1
|
|
161
|
+
and compilation_config.use_cudagraph):
|
|
162
|
+
logger.info(
|
|
163
|
+
"Data Parallel: Forcing enforce eager to be True since DP is "
|
|
164
|
+
"currently not supported with CUDA Graphs.")
|
|
165
|
+
vllm_config.model_config.enforce_eager = True
|
|
166
|
+
compilation_config.use_cudagraph = False
|
|
167
|
+
|
|
168
|
+
@classmethod
|
|
169
|
+
def get_current_memory_usage(cls,
|
|
170
|
+
device: Optional[torch.types.Device] = None
|
|
171
|
+
) -> float:
|
|
172
|
+
torch.cuda.reset_peak_memory_stats(device)
|
|
173
|
+
return torch.cuda.max_memory_allocated(device)
|
|
174
|
+
|
|
175
|
+
@classmethod
|
|
176
|
+
def get_attn_backend_cls(cls, selected_backend, head_size, dtype,
|
|
177
|
+
kv_cache_dtype, block_size, use_v1,
|
|
178
|
+
use_mla) -> str:
|
|
179
|
+
if use_mla:
|
|
180
|
+
# TODO(lucas): refactor to be more concise
|
|
181
|
+
# we should probably consider factoring out V1 here
|
|
182
|
+
if selected_backend == _Backend.TRITON_MLA or block_size != 64:
|
|
183
|
+
if use_v1:
|
|
184
|
+
logger.info_once("Using Triton MLA backend on V1 engine.")
|
|
185
|
+
return ("vllm.v1.attention.backends.mla."
|
|
186
|
+
"triton_mla.TritonMLABackend")
|
|
187
|
+
else:
|
|
188
|
+
logger.info("Using Triton MLA backend.")
|
|
189
|
+
return "vllm.attention.backends.triton_mla.TritonMLABackend"
|
|
190
|
+
else:
|
|
191
|
+
from vllm.attention.backends.flashmla import (
|
|
192
|
+
is_flashmla_supported)
|
|
193
|
+
if not is_flashmla_supported()[0]:
|
|
194
|
+
logger.warning(
|
|
195
|
+
"FlashMLA backend is not supported due to %s",
|
|
196
|
+
is_flashmla_supported()[1])
|
|
197
|
+
elif block_size != 64:
|
|
198
|
+
logger.warning(
|
|
199
|
+
"FlashMLA backend is not supported for block size %d"
|
|
200
|
+
" (currently only supports block size 64).",
|
|
201
|
+
block_size)
|
|
202
|
+
else:
|
|
203
|
+
if use_v1:
|
|
204
|
+
logger.info_once(
|
|
205
|
+
"Using FlashMLA backend on V1 engine.")
|
|
206
|
+
return ("vllm.v1.attention.backends.mla."
|
|
207
|
+
"flashmla.FlashMLABackend")
|
|
208
|
+
else:
|
|
209
|
+
logger.info("Using FlashMLA backend.")
|
|
210
|
+
return ("vllm.attention.backends."
|
|
211
|
+
"flashmla.FlashMLABackend")
|
|
212
|
+
if use_v1:
|
|
213
|
+
if selected_backend == _Backend.FLASHINFER:
|
|
214
|
+
logger.info_once("Using FlashInfer backend on V1 engine.")
|
|
215
|
+
return "vllm.v1.attention.backends.flashinfer.FlashInferBackend"
|
|
216
|
+
if selected_backend == _Backend.TRITON_ATTN_VLLM_V1:
|
|
217
|
+
logger.info_once("Using Triton backend on V1 engine.")
|
|
218
|
+
return ("vllm.v1.attention.backends."
|
|
219
|
+
"triton_attn.TritonAttentionBackend")
|
|
220
|
+
if cls.has_device_capability(80):
|
|
221
|
+
logger.info_once("Using Flash Attention backend on V1 engine.")
|
|
222
|
+
return ("vllm.v1.attention.backends."
|
|
223
|
+
"flash_attn.FlashAttentionBackend")
|
|
224
|
+
if selected_backend == _Backend.FLASHINFER:
|
|
225
|
+
logger.info("Using FlashInfer backend.")
|
|
226
|
+
return "vllm.attention.backends.flashinfer.FlashInferBackend"
|
|
227
|
+
elif selected_backend == _Backend.XFORMERS:
|
|
228
|
+
logger.info("Using XFormers backend.")
|
|
229
|
+
return "vllm.attention.backends.xformers.XFormersBackend"
|
|
230
|
+
elif selected_backend == _Backend.FLASH_ATTN:
|
|
231
|
+
pass
|
|
232
|
+
elif selected_backend:
|
|
233
|
+
raise ValueError(
|
|
234
|
+
f"Invalid attention backend for {cls.device_name}, "
|
|
235
|
+
f"with use_v1: {use_v1} use_mla: {use_mla}")
|
|
236
|
+
|
|
237
|
+
target_backend = _Backend.FLASH_ATTN
|
|
238
|
+
if not cls.has_device_capability(80):
|
|
239
|
+
# Volta and Turing NVIDIA GPUs.
|
|
240
|
+
logger.info(
|
|
241
|
+
"Cannot use FlashAttention-2 backend for Volta and Turing "
|
|
242
|
+
"GPUs.")
|
|
243
|
+
target_backend = _Backend.XFORMERS
|
|
244
|
+
elif dtype not in (torch.float16, torch.bfloat16):
|
|
245
|
+
logger.info(
|
|
246
|
+
"Cannot use FlashAttention-2 backend for dtype other than "
|
|
247
|
+
"torch.float16 or torch.bfloat16.")
|
|
248
|
+
target_backend = _Backend.XFORMERS
|
|
249
|
+
elif block_size % 16 != 0:
|
|
250
|
+
logger.info(
|
|
251
|
+
"Cannot use FlashAttention-2 backend for block size not "
|
|
252
|
+
"divisible by 16.")
|
|
253
|
+
target_backend = _Backend.XFORMERS
|
|
254
|
+
|
|
255
|
+
# FlashAttn is valid for the model, checking if the package is
|
|
256
|
+
# installed.
|
|
257
|
+
if target_backend == _Backend.FLASH_ATTN:
|
|
258
|
+
try:
|
|
259
|
+
import vllm.vllm_flash_attn # noqa: F401
|
|
260
|
+
from vllm.attention.backends.flash_attn import ( # noqa: F401
|
|
261
|
+
FlashAttentionBackend, flash_attn_supports_fp8)
|
|
262
|
+
|
|
263
|
+
supported_sizes = \
|
|
264
|
+
FlashAttentionBackend.get_supported_head_sizes()
|
|
265
|
+
if head_size not in supported_sizes:
|
|
266
|
+
logger.info(
|
|
267
|
+
"Cannot use FlashAttention-2 backend for head size %d.",
|
|
268
|
+
head_size)
|
|
269
|
+
target_backend = _Backend.XFORMERS
|
|
270
|
+
fp8_kv_cache = (kv_cache_dtype is not None
|
|
271
|
+
and kv_cache_dtype.startswith("fp8"))
|
|
272
|
+
if (fp8_kv_cache and not flash_attn_supports_fp8()):
|
|
273
|
+
logger.info(
|
|
274
|
+
"Cannot use FlashAttention backend for FP8 KV cache.")
|
|
275
|
+
logger.warning(
|
|
276
|
+
"Please use FlashInfer backend with FP8 KV Cache for "
|
|
277
|
+
"better performance by setting environment variable "
|
|
278
|
+
"VLLM_ATTENTION_BACKEND=FLASHINFER")
|
|
279
|
+
target_backend = _Backend.XFORMERS
|
|
280
|
+
except ImportError:
|
|
281
|
+
logger.info(
|
|
282
|
+
"Cannot use FlashAttention-2 backend because the "
|
|
283
|
+
"vllm.vllm_flash_attn package is not found. "
|
|
284
|
+
"Make sure that vllm_flash_attn was built and installed "
|
|
285
|
+
"(on by default).")
|
|
286
|
+
target_backend = _Backend.XFORMERS
|
|
287
|
+
|
|
288
|
+
if target_backend == _Backend.XFORMERS:
|
|
289
|
+
logger.info("Using XFormers backend.")
|
|
290
|
+
return "vllm.attention.backends.xformers.XFormersBackend"
|
|
291
|
+
|
|
292
|
+
logger.info("Using Flash Attention backend.")
|
|
293
|
+
return "vllm.attention.backends.flash_attn.FlashAttentionBackend"
|
|
294
|
+
|
|
295
|
+
@classmethod
|
|
296
|
+
def get_punica_wrapper(cls) -> str:
|
|
297
|
+
return "vllm.lora.punica_wrapper.punica_gpu.PunicaWrapperGPU"
|
|
298
|
+
|
|
299
|
+
@classmethod
|
|
300
|
+
def get_device_communicator_cls(cls) -> str:
|
|
301
|
+
return "vllm.distributed.device_communicators.cuda_communicator.CudaCommunicator" # noqa
|
|
302
|
+
|
|
303
|
+
@classmethod
|
|
304
|
+
def supports_fp8(cls) -> bool:
|
|
305
|
+
return cls.has_device_capability(89)
|
|
306
|
+
|
|
307
|
+
@classmethod
|
|
308
|
+
def supports_v1(cls, model_config: "ModelConfig") -> bool:
|
|
309
|
+
return True
|
|
310
|
+
|
|
311
|
+
@classmethod
|
|
312
|
+
def use_custom_allreduce(cls) -> bool:
|
|
313
|
+
return True
|
|
314
|
+
|
|
315
|
+
|
|
316
|
+
# NVML utils
|
|
317
|
+
# Note that NVML is not affected by `CUDA_VISIBLE_DEVICES`,
|
|
318
|
+
# all the related functions work on real physical device ids.
|
|
319
|
+
# the major benefit of using NVML is that it will not initialize CUDA
|
|
320
|
+
class NvmlCudaPlatform(CudaPlatformBase):
|
|
321
|
+
|
|
322
|
+
@classmethod
|
|
323
|
+
@with_nvml_context
|
|
324
|
+
def get_device_capability(cls,
|
|
325
|
+
device_id: int = 0
|
|
326
|
+
) -> Optional[DeviceCapability]:
|
|
327
|
+
try:
|
|
328
|
+
physical_device_id = device_id_to_physical_device_id(device_id)
|
|
329
|
+
handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
|
|
330
|
+
major, minor = pynvml.nvmlDeviceGetCudaComputeCapability(handle)
|
|
331
|
+
return DeviceCapability(major=major, minor=minor)
|
|
332
|
+
except RuntimeError:
|
|
333
|
+
return None
|
|
334
|
+
|
|
335
|
+
@classmethod
|
|
336
|
+
@with_nvml_context
|
|
337
|
+
def has_device_capability(
|
|
338
|
+
cls,
|
|
339
|
+
capability: Union[Tuple[int, int], int],
|
|
340
|
+
device_id: int = 0,
|
|
341
|
+
) -> bool:
|
|
342
|
+
try:
|
|
343
|
+
return super().has_device_capability(capability, device_id)
|
|
344
|
+
except RuntimeError:
|
|
345
|
+
return False
|
|
346
|
+
|
|
347
|
+
@classmethod
|
|
348
|
+
@with_nvml_context
|
|
349
|
+
def get_device_name(cls, device_id: int = 0) -> str:
|
|
350
|
+
physical_device_id = device_id_to_physical_device_id(device_id)
|
|
351
|
+
return cls._get_physical_device_name(physical_device_id)
|
|
352
|
+
|
|
353
|
+
@classmethod
|
|
354
|
+
@with_nvml_context
|
|
355
|
+
def get_device_uuid(cls, device_id: int = 0) -> str:
|
|
356
|
+
physical_device_id = device_id_to_physical_device_id(device_id)
|
|
357
|
+
handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
|
|
358
|
+
return pynvml.nvmlDeviceGetUUID(handle)
|
|
359
|
+
|
|
360
|
+
@classmethod
|
|
361
|
+
@with_nvml_context
|
|
362
|
+
def get_device_total_memory(cls, device_id: int = 0) -> int:
|
|
363
|
+
physical_device_id = device_id_to_physical_device_id(device_id)
|
|
364
|
+
handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
|
|
365
|
+
return int(pynvml.nvmlDeviceGetMemoryInfo(handle).total)
|
|
366
|
+
|
|
367
|
+
@classmethod
|
|
368
|
+
@with_nvml_context
|
|
369
|
+
def is_fully_connected(cls, physical_device_ids: List[int]) -> bool:
|
|
370
|
+
"""
|
|
371
|
+
query if the set of gpus are fully connected by nvlink (1 hop)
|
|
372
|
+
"""
|
|
373
|
+
handles = [
|
|
374
|
+
pynvml.nvmlDeviceGetHandleByIndex(i) for i in physical_device_ids
|
|
375
|
+
]
|
|
376
|
+
for i, handle in enumerate(handles):
|
|
377
|
+
for j, peer_handle in enumerate(handles):
|
|
378
|
+
if i < j:
|
|
379
|
+
try:
|
|
380
|
+
p2p_status = pynvml.nvmlDeviceGetP2PStatus(
|
|
381
|
+
handle,
|
|
382
|
+
peer_handle,
|
|
383
|
+
pynvml.NVML_P2P_CAPS_INDEX_NVLINK,
|
|
384
|
+
)
|
|
385
|
+
if p2p_status != pynvml.NVML_P2P_STATUS_OK:
|
|
386
|
+
return False
|
|
387
|
+
except pynvml.NVMLError:
|
|
388
|
+
logger.exception(
|
|
389
|
+
"NVLink detection failed. This is normal if"
|
|
390
|
+
" your machine has no NVLink equipped.")
|
|
391
|
+
return False
|
|
392
|
+
return True
|
|
393
|
+
|
|
394
|
+
@classmethod
|
|
395
|
+
def _get_physical_device_name(cls, device_id: int = 0) -> str:
|
|
396
|
+
handle = pynvml.nvmlDeviceGetHandleByIndex(device_id)
|
|
397
|
+
return pynvml.nvmlDeviceGetName(handle)
|
|
398
|
+
|
|
399
|
+
@classmethod
|
|
400
|
+
@with_nvml_context
|
|
401
|
+
def log_warnings(cls):
|
|
402
|
+
device_ids: int = pynvml.nvmlDeviceGetCount()
|
|
403
|
+
if device_ids > 1:
|
|
404
|
+
device_names = [
|
|
405
|
+
cls._get_physical_device_name(i) for i in range(device_ids)
|
|
406
|
+
]
|
|
407
|
+
if (len(set(device_names)) > 1
|
|
408
|
+
and os.environ.get("CUDA_DEVICE_ORDER") != "PCI_BUS_ID"):
|
|
409
|
+
logger.warning(
|
|
410
|
+
"Detected different devices in the system: %s. Please"
|
|
411
|
+
" make sure to set `CUDA_DEVICE_ORDER=PCI_BUS_ID` to "
|
|
412
|
+
"avoid unexpected behavior.",
|
|
413
|
+
", ".join(device_names),
|
|
414
|
+
)
|
|
415
|
+
|
|
416
|
+
|
|
417
|
+
class NonNvmlCudaPlatform(CudaPlatformBase):
|
|
418
|
+
|
|
419
|
+
@classmethod
|
|
420
|
+
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
|
421
|
+
major, minor = torch.cuda.get_device_capability(device_id)
|
|
422
|
+
return DeviceCapability(major=major, minor=minor)
|
|
423
|
+
|
|
424
|
+
@classmethod
|
|
425
|
+
def get_device_name(cls, device_id: int = 0) -> str:
|
|
426
|
+
return torch.cuda.get_device_name(device_id)
|
|
427
|
+
|
|
428
|
+
@classmethod
|
|
429
|
+
def get_device_total_memory(cls, device_id: int = 0) -> int:
|
|
430
|
+
device_props = torch.cuda.get_device_properties(device_id)
|
|
431
|
+
return device_props.total_memory
|
|
432
|
+
|
|
433
|
+
@classmethod
|
|
434
|
+
def is_fully_connected(cls, physical_device_ids: List[int]) -> bool:
|
|
435
|
+
logger.exception(
|
|
436
|
+
"NVLink detection not possible, as context support was"
|
|
437
|
+
" not found. Assuming no NVLink available.")
|
|
438
|
+
return False
|
|
439
|
+
|
|
440
|
+
|
|
441
|
+
# Autodetect either NVML-enabled or non-NVML platform
|
|
442
|
+
# based on whether NVML is available.
|
|
443
|
+
nvml_available = False
|
|
444
|
+
try:
|
|
445
|
+
try:
|
|
446
|
+
pynvml.nvmlInit()
|
|
447
|
+
nvml_available = True
|
|
448
|
+
except Exception:
|
|
449
|
+
# On Jetson, NVML is not supported.
|
|
450
|
+
nvml_available = False
|
|
451
|
+
finally:
|
|
452
|
+
if nvml_available:
|
|
453
|
+
pynvml.nvmlShutdown()
|
|
454
|
+
|
|
455
|
+
CudaPlatform = NvmlCudaPlatform if nvml_available else NonNvmlCudaPlatform
|
|
456
|
+
|
|
457
|
+
try:
|
|
458
|
+
from sphinx.ext.autodoc.mock import _MockModule
|
|
459
|
+
|
|
460
|
+
if not isinstance(pynvml, _MockModule):
|
|
461
|
+
CudaPlatform.log_warnings()
|
|
462
|
+
except ModuleNotFoundError:
|
|
463
|
+
CudaPlatform.log_warnings()
|
vllm/platforms/hpu.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
from typing import TYPE_CHECKING, Optional
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from vllm import envs
|
|
9
|
+
from vllm.logger import init_logger
|
|
10
|
+
|
|
11
|
+
from .interface import Platform, PlatformEnum, _Backend
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from vllm.config import VllmConfig
|
|
15
|
+
else:
|
|
16
|
+
VllmConfig = None
|
|
17
|
+
|
|
18
|
+
logger = init_logger(__name__)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class HpuPlatform(Platform):
|
|
22
|
+
_enum = PlatformEnum.HPU
|
|
23
|
+
device_name: str = "hpu"
|
|
24
|
+
device_type: str = "hpu"
|
|
25
|
+
dispatch_key: str = "HPU"
|
|
26
|
+
ray_device_key: str = "HPU"
|
|
27
|
+
device_control_env_var: str = "HABANA_VISIBLE_MODULES"
|
|
28
|
+
|
|
29
|
+
@classmethod
|
|
30
|
+
def get_attn_backend_cls(cls, selected_backend: _Backend, head_size: int,
|
|
31
|
+
dtype: torch.dtype, kv_cache_dtype: Optional[str],
|
|
32
|
+
block_size: int, use_v1: bool,
|
|
33
|
+
use_mla: bool) -> str:
|
|
34
|
+
logger.info("Using HPUAttention backend.")
|
|
35
|
+
return "vllm.attention.backends.hpu_attn.HPUAttentionBackend"
|
|
36
|
+
|
|
37
|
+
@classmethod
|
|
38
|
+
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
|
|
39
|
+
return True
|
|
40
|
+
|
|
41
|
+
@staticmethod
|
|
42
|
+
def inference_mode():
|
|
43
|
+
return torch.no_grad()
|
|
44
|
+
|
|
45
|
+
@classmethod
|
|
46
|
+
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
|
|
47
|
+
|
|
48
|
+
scheduler_config = vllm_config.scheduler_config
|
|
49
|
+
parallel_config = vllm_config.parallel_config
|
|
50
|
+
if scheduler_config.is_multi_step:
|
|
51
|
+
parallel_config.worker_cls = \
|
|
52
|
+
"vllm.worker.multi_step_hpu_worker.MultiStepHPUWorker"
|
|
53
|
+
|
|
54
|
+
if vllm_config.speculative_config is not None:
|
|
55
|
+
raise NotImplementedError(
|
|
56
|
+
"Speculative decoding is not implemented for HPU")
|
|
57
|
+
|
|
58
|
+
if parallel_config.worker_cls == "auto":
|
|
59
|
+
parallel_config.worker_cls = "vllm.worker.hpu_worker.HPUWorker"
|
|
60
|
+
|
|
61
|
+
# NOTE(kzawora): default block size for Gaudi should be 128
|
|
62
|
+
# smaller sizes still work, but very inefficiently
|
|
63
|
+
cache_config = vllm_config.cache_config
|
|
64
|
+
if cache_config and cache_config.block_size is None:
|
|
65
|
+
cache_config.block_size = 128
|
|
66
|
+
if (parallel_config.distributed_executor_backend == 'mp'
|
|
67
|
+
and envs.VLLM_WORKER_MULTIPROC_METHOD == 'fork'):
|
|
68
|
+
if os.environ.get("VLLM_WORKER_MULTIPROC_METHOD",
|
|
69
|
+
None) is not None:
|
|
70
|
+
logger.warning("On HPU, VLLM_WORKER_MULTIPROC_METHOD=fork "
|
|
71
|
+
"might cause application hangs on exit. Using "
|
|
72
|
+
"VLLM_WORKER_MULTIPROC_METHOD=fork anyway, "
|
|
73
|
+
"as it was explicitly requested.")
|
|
74
|
+
else:
|
|
75
|
+
logger.warning(
|
|
76
|
+
"On HPU, VLLM_WORKER_MULTIPROC_METHOD=fork "
|
|
77
|
+
"might cause application hangs on exit. Setting "
|
|
78
|
+
"VLLM_WORKER_MULTIPROC_METHOD to 'spawn'. "
|
|
79
|
+
"To override that behavior, please set "
|
|
80
|
+
"VLLM_WORKER_MULTIPROC_METHOD=fork explicitly.")
|
|
81
|
+
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
|
|
82
|
+
|
|
83
|
+
@classmethod
|
|
84
|
+
def is_pin_memory_available(cls):
|
|
85
|
+
logger.warning("Pin memory is not supported on HPU.")
|
|
86
|
+
return False
|
|
87
|
+
|
|
88
|
+
@classmethod
|
|
89
|
+
def get_punica_wrapper(cls) -> str:
|
|
90
|
+
return "vllm.lora.punica_wrapper.punica_hpu.PunicaWrapperHPU"
|
|
91
|
+
|
|
92
|
+
@classmethod
|
|
93
|
+
def get_device_communicator_cls(cls) -> str:
|
|
94
|
+
return "vllm.distributed.device_communicators.hpu_communicator.HpuCommunicator" # noqa
|