vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu might be problematic. Click here for more details.

Files changed (1103) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1536 -0
  4. vllm/_ipex_ops.py +241 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +38 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +31 -0
  16. vllm/assets/video.py +103 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +303 -0
  22. vllm/attention/backends/flash_attn.py +999 -0
  23. vllm/attention/backends/flashinfer.py +1092 -0
  24. vllm/attention/backends/flashmla.py +242 -0
  25. vllm/attention/backends/hpu_attn.py +301 -0
  26. vllm/attention/backends/ipex_attn.py +396 -0
  27. vllm/attention/backends/mla/__init__.py +0 -0
  28. vllm/attention/backends/mla/common.py +1444 -0
  29. vllm/attention/backends/pallas.py +346 -0
  30. vllm/attention/backends/placeholder_attn.py +399 -0
  31. vllm/attention/backends/rocm_aiter_mla.py +412 -0
  32. vllm/attention/backends/rocm_flash_attn.py +969 -0
  33. vllm/attention/backends/torch_sdpa.py +691 -0
  34. vllm/attention/backends/triton_mla.py +113 -0
  35. vllm/attention/backends/utils.py +609 -0
  36. vllm/attention/backends/xformers.py +798 -0
  37. vllm/attention/layer.py +443 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  41. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  42. vllm/attention/ops/blocksparse_attention/utils.py +244 -0
  43. vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
  44. vllm/attention/ops/flashmla.py +115 -0
  45. vllm/attention/ops/hpu_paged_attn.py +105 -0
  46. vllm/attention/ops/ipex_attn.py +193 -0
  47. vllm/attention/ops/merge_attn_states.py +42 -0
  48. vllm/attention/ops/nki_flash_attn.py +905 -0
  49. vllm/attention/ops/paged_attn.py +255 -0
  50. vllm/attention/ops/prefix_prefill.py +902 -0
  51. vllm/attention/ops/rocm_aiter_mla.py +42 -0
  52. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  53. vllm/attention/ops/triton_decode_attention.py +675 -0
  54. vllm/attention/ops/triton_flash_attention.py +1375 -0
  55. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  56. vllm/attention/selector.py +186 -0
  57. vllm/attention/utils/fa_utils.py +54 -0
  58. vllm/beam_search.py +82 -0
  59. vllm/benchmarks/__init__.py +0 -0
  60. vllm/benchmarks/datasets.py +831 -0
  61. vllm/benchmarks/endpoint_request_func.py +160 -0
  62. vllm/benchmarks/latency.py +181 -0
  63. vllm/benchmarks/serve.py +925 -0
  64. vllm/benchmarks/throughput.py +608 -0
  65. vllm/benchmarks/utils.py +69 -0
  66. vllm/collect_env.py +795 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/backends.py +715 -0
  69. vllm/compilation/compiler_interface.py +437 -0
  70. vllm/compilation/counter.py +33 -0
  71. vllm/compilation/decorators.py +249 -0
  72. vllm/compilation/fix_functionalization.py +182 -0
  73. vllm/compilation/fusion.py +617 -0
  74. vllm/compilation/fx_utils.py +60 -0
  75. vllm/compilation/inductor_pass.py +114 -0
  76. vllm/compilation/monitor.py +38 -0
  77. vllm/compilation/multi_output_match.py +108 -0
  78. vllm/compilation/noop_elimination.py +135 -0
  79. vllm/compilation/pass_manager.py +74 -0
  80. vllm/compilation/sequence_parallelism.py +266 -0
  81. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  82. vllm/compilation/vllm_inductor_pass.py +68 -0
  83. vllm/compilation/wrapper.py +129 -0
  84. vllm/config.py +4179 -0
  85. vllm/connections.py +170 -0
  86. vllm/core/__init__.py +0 -0
  87. vllm/core/block/__init__.py +0 -0
  88. vllm/core/block/block_table.py +398 -0
  89. vllm/core/block/common.py +370 -0
  90. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  91. vllm/core/block/interfaces.py +318 -0
  92. vllm/core/block/naive_block.py +465 -0
  93. vllm/core/block/prefix_caching_block.py +1134 -0
  94. vllm/core/block/utils.py +27 -0
  95. vllm/core/block_manager.py +520 -0
  96. vllm/core/evictor.py +156 -0
  97. vllm/core/interfaces.py +134 -0
  98. vllm/core/placeholder_block_space_manager.py +99 -0
  99. vllm/core/scheduler.py +2060 -0
  100. vllm/device_allocator/__init__.py +0 -0
  101. vllm/device_allocator/cumem.py +280 -0
  102. vllm/distributed/__init__.py +5 -0
  103. vllm/distributed/communication_op.py +40 -0
  104. vllm/distributed/device_communicators/__init__.py +0 -0
  105. vllm/distributed/device_communicators/base_device_communicator.py +151 -0
  106. vllm/distributed/device_communicators/cpu_communicator.py +139 -0
  107. vllm/distributed/device_communicators/cuda_communicator.py +131 -0
  108. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  109. vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
  110. vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
  111. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  112. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  113. vllm/distributed/device_communicators/pynccl.py +217 -0
  114. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  115. vllm/distributed/device_communicators/shm_broadcast.py +557 -0
  116. vllm/distributed/device_communicators/tpu_communicator.py +93 -0
  117. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  118. vllm/distributed/kv_transfer/README.md +29 -0
  119. vllm/distributed/kv_transfer/__init__.py +11 -0
  120. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  121. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  122. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  123. vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
  124. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  125. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
  126. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  132. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  133. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  134. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  135. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  136. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  137. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  138. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  139. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  140. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  141. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  142. vllm/distributed/parallel_state.py +1209 -0
  143. vllm/distributed/utils.py +366 -0
  144. vllm/engine/__init__.py +0 -0
  145. vllm/engine/arg_utils.py +1724 -0
  146. vllm/engine/async_llm_engine.py +1261 -0
  147. vllm/engine/async_timeout.py +191 -0
  148. vllm/engine/llm_engine.py +2150 -0
  149. vllm/engine/metrics.py +717 -0
  150. vllm/engine/metrics_types.py +96 -0
  151. vllm/engine/multiprocessing/__init__.py +183 -0
  152. vllm/engine/multiprocessing/client.py +745 -0
  153. vllm/engine/multiprocessing/engine.py +450 -0
  154. vllm/engine/output_processor/__init__.py +0 -0
  155. vllm/engine/output_processor/interfaces.py +74 -0
  156. vllm/engine/output_processor/multi_step.py +210 -0
  157. vllm/engine/output_processor/single_step.py +136 -0
  158. vllm/engine/output_processor/stop_checker.py +130 -0
  159. vllm/engine/output_processor/util.py +27 -0
  160. vllm/engine/protocol.py +302 -0
  161. vllm/entrypoints/__init__.py +0 -0
  162. vllm/entrypoints/api_server.py +177 -0
  163. vllm/entrypoints/chat_utils.py +1259 -0
  164. vllm/entrypoints/cli/__init__.py +0 -0
  165. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  166. vllm/entrypoints/cli/benchmark/base.py +38 -0
  167. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  168. vllm/entrypoints/cli/benchmark/main.py +53 -0
  169. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  170. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  171. vllm/entrypoints/cli/collect_env.py +35 -0
  172. vllm/entrypoints/cli/main.py +59 -0
  173. vllm/entrypoints/cli/openai.py +175 -0
  174. vllm/entrypoints/cli/serve.py +59 -0
  175. vllm/entrypoints/cli/types.py +24 -0
  176. vllm/entrypoints/launcher.py +146 -0
  177. vllm/entrypoints/llm.py +1450 -0
  178. vllm/entrypoints/logger.py +44 -0
  179. vllm/entrypoints/openai/__init__.py +0 -0
  180. vllm/entrypoints/openai/api_server.py +1130 -0
  181. vllm/entrypoints/openai/cli_args.py +296 -0
  182. vllm/entrypoints/openai/logits_processors.py +89 -0
  183. vllm/entrypoints/openai/protocol.py +1806 -0
  184. vllm/entrypoints/openai/run_batch.py +439 -0
  185. vllm/entrypoints/openai/serving_chat.py +1210 -0
  186. vllm/entrypoints/openai/serving_completion.py +557 -0
  187. vllm/entrypoints/openai/serving_embedding.py +245 -0
  188. vllm/entrypoints/openai/serving_engine.py +569 -0
  189. vllm/entrypoints/openai/serving_models.py +314 -0
  190. vllm/entrypoints/openai/serving_pooling.py +237 -0
  191. vllm/entrypoints/openai/serving_score.py +439 -0
  192. vllm/entrypoints/openai/serving_tokenization.py +147 -0
  193. vllm/entrypoints/openai/serving_transcription.py +421 -0
  194. vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
  195. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  196. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
  197. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
  198. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  199. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
  200. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
  201. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
  202. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  203. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
  204. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
  205. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  206. vllm/entrypoints/score_utils.py +49 -0
  207. vllm/entrypoints/ssl.py +74 -0
  208. vllm/entrypoints/utils.py +136 -0
  209. vllm/env_override.py +34 -0
  210. vllm/envs.py +800 -0
  211. vllm/executor/__init__.py +0 -0
  212. vllm/executor/executor_base.py +400 -0
  213. vllm/executor/mp_distributed_executor.py +243 -0
  214. vllm/executor/msgspec_utils.py +29 -0
  215. vllm/executor/multiproc_worker_utils.py +312 -0
  216. vllm/executor/ray_distributed_executor.py +700 -0
  217. vllm/executor/ray_utils.py +400 -0
  218. vllm/executor/uniproc_executor.py +141 -0
  219. vllm/forward_context.py +159 -0
  220. vllm/inputs/__init__.py +37 -0
  221. vllm/inputs/data.py +248 -0
  222. vllm/inputs/parse.py +121 -0
  223. vllm/inputs/preprocess.py +745 -0
  224. vllm/inputs/registry.py +212 -0
  225. vllm/jsontree.py +79 -0
  226. vllm/logger.py +210 -0
  227. vllm/logging_utils/__init__.py +7 -0
  228. vllm/logging_utils/formatter.py +17 -0
  229. vllm/logits_process.py +121 -0
  230. vllm/lora/__init__.py +0 -0
  231. vllm/lora/fully_sharded_layers.py +335 -0
  232. vllm/lora/layers.py +1263 -0
  233. vllm/lora/lora.py +198 -0
  234. vllm/lora/models.py +802 -0
  235. vllm/lora/ops/__init__.py +0 -0
  236. vllm/lora/ops/torch_ops/__init__.py +15 -0
  237. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  238. vllm/lora/ops/triton_ops/__init__.py +11 -0
  239. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  240. vllm/lora/ops/triton_ops/lora_expand.py +293 -0
  241. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  242. vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
  243. vllm/lora/ops/triton_ops/utils.py +121 -0
  244. vllm/lora/peft_helper.py +115 -0
  245. vllm/lora/punica_wrapper/__init__.py +9 -0
  246. vllm/lora/punica_wrapper/punica_base.py +483 -0
  247. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  248. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  249. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  250. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  251. vllm/lora/punica_wrapper/utils.py +161 -0
  252. vllm/lora/request.py +97 -0
  253. vllm/lora/resolver.py +83 -0
  254. vllm/lora/utils.py +237 -0
  255. vllm/lora/worker_manager.py +251 -0
  256. vllm/model_executor/__init__.py +15 -0
  257. vllm/model_executor/custom_op.py +153 -0
  258. vllm/model_executor/guided_decoding/__init__.py +180 -0
  259. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  260. vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
  261. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  262. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  263. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  264. vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
  265. vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
  266. vllm/model_executor/guided_decoding/utils.py +241 -0
  267. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  268. vllm/model_executor/layers/__init__.py +0 -0
  269. vllm/model_executor/layers/activation.py +368 -0
  270. vllm/model_executor/layers/fused_moe/__init__.py +51 -0
  271. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  272. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  273. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  274. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  275. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  276. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  277. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  278. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  279. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  280. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  281. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  282. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  283. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  284. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  285. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  286. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  287. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  426. vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
  427. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
  428. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
  429. vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
  430. vllm/model_executor/layers/fused_moe/layer.py +949 -0
  431. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  432. vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
  433. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  434. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
  435. vllm/model_executor/layers/fused_moe/utils.py +48 -0
  436. vllm/model_executor/layers/layernorm.py +277 -0
  437. vllm/model_executor/layers/lightning_attn.py +651 -0
  438. vllm/model_executor/layers/linear.py +1518 -0
  439. vllm/model_executor/layers/logits_processor.py +196 -0
  440. vllm/model_executor/layers/mamba/__init__.py +0 -0
  441. vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
  442. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  443. vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
  444. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  445. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  446. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
  447. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  448. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  449. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  450. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  451. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  452. vllm/model_executor/layers/pooler.py +336 -0
  453. vllm/model_executor/layers/quantization/__init__.py +153 -0
  454. vllm/model_executor/layers/quantization/aqlm.py +374 -0
  455. vllm/model_executor/layers/quantization/awq.py +184 -0
  456. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  457. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  458. vllm/model_executor/layers/quantization/base_config.py +145 -0
  459. vllm/model_executor/layers/quantization/bitblas.py +459 -0
  460. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  461. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  462. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
  463. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
  464. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
  465. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  466. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  467. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  468. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
  469. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  470. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  471. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  472. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  473. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
  474. vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
  475. vllm/model_executor/layers/quantization/experts_int8.py +194 -0
  476. vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
  477. vllm/model_executor/layers/quantization/fp8.py +832 -0
  478. vllm/model_executor/layers/quantization/gguf.py +408 -0
  479. vllm/model_executor/layers/quantization/gptq.py +276 -0
  480. vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
  481. vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
  482. vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
  483. vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
  484. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  485. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  486. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  487. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  488. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  489. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  490. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  491. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  492. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
  493. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  494. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  495. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  496. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  497. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  498. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  499. vllm/model_executor/layers/quantization/kv_cache.py +137 -0
  500. vllm/model_executor/layers/quantization/marlin.py +259 -0
  501. vllm/model_executor/layers/quantization/modelopt.py +410 -0
  502. vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
  503. vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
  504. vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
  505. vllm/model_executor/layers/quantization/qqq.py +273 -0
  506. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  507. vllm/model_executor/layers/quantization/quark/quark.py +385 -0
  508. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  509. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
  510. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  511. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
  512. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  513. vllm/model_executor/layers/quantization/quark/utils.py +102 -0
  514. vllm/model_executor/layers/quantization/schema.py +85 -0
  515. vllm/model_executor/layers/quantization/torchao.py +127 -0
  516. vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
  517. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  518. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  519. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
  520. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  521. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  522. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  523. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  524. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  525. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  526. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  527. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  528. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  529. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  530. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  531. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  532. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  533. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  534. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  535. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  536. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  537. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  538. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  539. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  540. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  541. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  542. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  543. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  544. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  545. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  546. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  547. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  548. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  549. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  550. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  551. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
  723. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  724. vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
  725. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  726. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  727. vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
  728. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
  729. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  730. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  731. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
  732. vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
  733. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  734. vllm/model_executor/layers/rejection_sampler.py +400 -0
  735. vllm/model_executor/layers/resampler.py +269 -0
  736. vllm/model_executor/layers/rotary_embedding.py +1598 -0
  737. vllm/model_executor/layers/sampler.py +1221 -0
  738. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  739. vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
  740. vllm/model_executor/layers/utils.py +99 -0
  741. vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
  742. vllm/model_executor/model_loader/__init__.py +20 -0
  743. vllm/model_executor/model_loader/loader.py +1542 -0
  744. vllm/model_executor/model_loader/neuron.py +243 -0
  745. vllm/model_executor/model_loader/tensorizer.py +468 -0
  746. vllm/model_executor/model_loader/utils.py +171 -0
  747. vllm/model_executor/model_loader/weight_utils.py +749 -0
  748. vllm/model_executor/models/__init__.py +27 -0
  749. vllm/model_executor/models/adapters.py +247 -0
  750. vllm/model_executor/models/arctic.py +559 -0
  751. vllm/model_executor/models/aria.py +656 -0
  752. vllm/model_executor/models/aya_vision.py +461 -0
  753. vllm/model_executor/models/baichuan.py +469 -0
  754. vllm/model_executor/models/bamba.py +542 -0
  755. vllm/model_executor/models/bart.py +936 -0
  756. vllm/model_executor/models/bert.py +725 -0
  757. vllm/model_executor/models/blip.py +337 -0
  758. vllm/model_executor/models/blip2.py +717 -0
  759. vllm/model_executor/models/bloom.py +358 -0
  760. vllm/model_executor/models/chameleon.py +1135 -0
  761. vllm/model_executor/models/chatglm.py +476 -0
  762. vllm/model_executor/models/clip.py +410 -0
  763. vllm/model_executor/models/commandr.py +466 -0
  764. vllm/model_executor/models/constant_size_cache.py +136 -0
  765. vllm/model_executor/models/dbrx.py +469 -0
  766. vllm/model_executor/models/deepseek.py +484 -0
  767. vllm/model_executor/models/deepseek_mtp.py +266 -0
  768. vllm/model_executor/models/deepseek_v2.py +830 -0
  769. vllm/model_executor/models/deepseek_vl2.py +647 -0
  770. vllm/model_executor/models/eagle.py +247 -0
  771. vllm/model_executor/models/exaone.py +548 -0
  772. vllm/model_executor/models/fairseq2_llama.py +153 -0
  773. vllm/model_executor/models/falcon.py +508 -0
  774. vllm/model_executor/models/florence2.py +1102 -0
  775. vllm/model_executor/models/fuyu.py +388 -0
  776. vllm/model_executor/models/gemma.py +423 -0
  777. vllm/model_executor/models/gemma2.py +423 -0
  778. vllm/model_executor/models/gemma3.py +531 -0
  779. vllm/model_executor/models/gemma3_mm.py +716 -0
  780. vllm/model_executor/models/glm.py +22 -0
  781. vllm/model_executor/models/glm4.py +303 -0
  782. vllm/model_executor/models/glm4v.py +647 -0
  783. vllm/model_executor/models/gpt2.py +313 -0
  784. vllm/model_executor/models/gpt_bigcode.py +336 -0
  785. vllm/model_executor/models/gpt_j.py +337 -0
  786. vllm/model_executor/models/gpt_neox.py +330 -0
  787. vllm/model_executor/models/granite.py +494 -0
  788. vllm/model_executor/models/granite_speech.py +777 -0
  789. vllm/model_executor/models/granitemoe.py +435 -0
  790. vllm/model_executor/models/granitemoeshared.py +339 -0
  791. vllm/model_executor/models/gritlm.py +245 -0
  792. vllm/model_executor/models/grok1.py +560 -0
  793. vllm/model_executor/models/h2ovl.py +542 -0
  794. vllm/model_executor/models/idefics2_vision_model.py +387 -0
  795. vllm/model_executor/models/idefics3.py +767 -0
  796. vllm/model_executor/models/interfaces.py +569 -0
  797. vllm/model_executor/models/interfaces_base.py +163 -0
  798. vllm/model_executor/models/intern_vit.py +476 -0
  799. vllm/model_executor/models/internlm2.py +453 -0
  800. vllm/model_executor/models/internlm2_ve.py +146 -0
  801. vllm/model_executor/models/internvl.py +945 -0
  802. vllm/model_executor/models/jais.py +371 -0
  803. vllm/model_executor/models/jamba.py +590 -0
  804. vllm/model_executor/models/kimi_vl.py +577 -0
  805. vllm/model_executor/models/llama.py +619 -0
  806. vllm/model_executor/models/llama4.py +530 -0
  807. vllm/model_executor/models/llama_eagle.py +152 -0
  808. vllm/model_executor/models/llama_eagle3.py +232 -0
  809. vllm/model_executor/models/llava.py +869 -0
  810. vllm/model_executor/models/llava_next.py +582 -0
  811. vllm/model_executor/models/llava_next_video.py +470 -0
  812. vllm/model_executor/models/llava_onevision.py +954 -0
  813. vllm/model_executor/models/mamba.py +271 -0
  814. vllm/model_executor/models/mamba2.py +302 -0
  815. vllm/model_executor/models/mamba_cache.py +76 -0
  816. vllm/model_executor/models/medusa.py +210 -0
  817. vllm/model_executor/models/minicpm.py +592 -0
  818. vllm/model_executor/models/minicpm3.py +229 -0
  819. vllm/model_executor/models/minicpmo.py +725 -0
  820. vllm/model_executor/models/minicpmv.py +1287 -0
  821. vllm/model_executor/models/minimax_cache.py +35 -0
  822. vllm/model_executor/models/minimax_text_01.py +1261 -0
  823. vllm/model_executor/models/mistral3.py +598 -0
  824. vllm/model_executor/models/mixtral.py +485 -0
  825. vllm/model_executor/models/mixtral_quant.py +447 -0
  826. vllm/model_executor/models/mllama.py +1623 -0
  827. vllm/model_executor/models/mllama4.py +838 -0
  828. vllm/model_executor/models/mlp_speculator.py +205 -0
  829. vllm/model_executor/models/modernbert.py +325 -0
  830. vllm/model_executor/models/module_mapping.py +71 -0
  831. vllm/model_executor/models/molmo.py +1567 -0
  832. vllm/model_executor/models/moonvit.py +628 -0
  833. vllm/model_executor/models/mpt.py +329 -0
  834. vllm/model_executor/models/nemotron.py +506 -0
  835. vllm/model_executor/models/nemotron_nas.py +446 -0
  836. vllm/model_executor/models/nvlm_d.py +212 -0
  837. vllm/model_executor/models/olmo.py +390 -0
  838. vllm/model_executor/models/olmo2.py +412 -0
  839. vllm/model_executor/models/olmoe.py +449 -0
  840. vllm/model_executor/models/opt.py +410 -0
  841. vllm/model_executor/models/orion.py +356 -0
  842. vllm/model_executor/models/paligemma.py +397 -0
  843. vllm/model_executor/models/persimmon.py +342 -0
  844. vllm/model_executor/models/phi.py +354 -0
  845. vllm/model_executor/models/phi3.py +18 -0
  846. vllm/model_executor/models/phi3_small.py +463 -0
  847. vllm/model_executor/models/phi3v.py +722 -0
  848. vllm/model_executor/models/phi4mm.py +1263 -0
  849. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  850. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  851. vllm/model_executor/models/phimoe.py +666 -0
  852. vllm/model_executor/models/pixtral.py +1281 -0
  853. vllm/model_executor/models/plamo2.py +736 -0
  854. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  855. vllm/model_executor/models/qwen.py +360 -0
  856. vllm/model_executor/models/qwen2.py +552 -0
  857. vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
  858. vllm/model_executor/models/qwen2_5_vl.py +1136 -0
  859. vllm/model_executor/models/qwen2_audio.py +402 -0
  860. vllm/model_executor/models/qwen2_moe.py +531 -0
  861. vllm/model_executor/models/qwen2_rm.py +130 -0
  862. vllm/model_executor/models/qwen2_vl.py +1409 -0
  863. vllm/model_executor/models/qwen3.py +319 -0
  864. vllm/model_executor/models/qwen3_moe.py +528 -0
  865. vllm/model_executor/models/qwen_vl.py +784 -0
  866. vllm/model_executor/models/registry.py +611 -0
  867. vllm/model_executor/models/roberta.py +332 -0
  868. vllm/model_executor/models/siglip.py +522 -0
  869. vllm/model_executor/models/skyworkr1v.py +949 -0
  870. vllm/model_executor/models/smolvlm.py +51 -0
  871. vllm/model_executor/models/solar.py +504 -0
  872. vllm/model_executor/models/stablelm.py +349 -0
  873. vllm/model_executor/models/starcoder2.py +355 -0
  874. vllm/model_executor/models/telechat2.py +139 -0
  875. vllm/model_executor/models/teleflm.py +78 -0
  876. vllm/model_executor/models/transformers.py +442 -0
  877. vllm/model_executor/models/ultravox.py +655 -0
  878. vllm/model_executor/models/utils.py +714 -0
  879. vllm/model_executor/models/vision.py +149 -0
  880. vllm/model_executor/models/whisper.py +746 -0
  881. vllm/model_executor/models/zamba2.py +1008 -0
  882. vllm/model_executor/parameter.py +458 -0
  883. vllm/model_executor/pooling_metadata.py +71 -0
  884. vllm/model_executor/sampling_metadata.py +596 -0
  885. vllm/model_executor/utils.py +53 -0
  886. vllm/multimodal/__init__.py +31 -0
  887. vllm/multimodal/audio.py +105 -0
  888. vllm/multimodal/base.py +218 -0
  889. vllm/multimodal/hasher.py +103 -0
  890. vllm/multimodal/image.py +77 -0
  891. vllm/multimodal/inputs.py +843 -0
  892. vllm/multimodal/parse.py +454 -0
  893. vllm/multimodal/processing.py +1760 -0
  894. vllm/multimodal/profiling.py +274 -0
  895. vllm/multimodal/registry.py +321 -0
  896. vllm/multimodal/utils.py +386 -0
  897. vllm/multimodal/video.py +166 -0
  898. vllm/outputs.py +521 -0
  899. vllm/platforms/__init__.py +286 -0
  900. vllm/platforms/cpu.py +182 -0
  901. vllm/platforms/cuda.py +463 -0
  902. vllm/platforms/hpu.py +94 -0
  903. vllm/platforms/interface.py +427 -0
  904. vllm/platforms/neuron.py +69 -0
  905. vllm/platforms/rocm.py +346 -0
  906. vllm/platforms/tpu.py +174 -0
  907. vllm/platforms/xpu.py +142 -0
  908. vllm/plugins/__init__.py +82 -0
  909. vllm/pooling_params.py +53 -0
  910. vllm/profiler/__init__.py +7 -0
  911. vllm/profiler/layerwise_profile.py +374 -0
  912. vllm/profiler/utils.py +147 -0
  913. vllm/prompt_adapter/__init__.py +0 -0
  914. vllm/prompt_adapter/layers.py +82 -0
  915. vllm/prompt_adapter/models.py +357 -0
  916. vllm/prompt_adapter/request.py +36 -0
  917. vllm/prompt_adapter/utils.py +97 -0
  918. vllm/prompt_adapter/worker_manager.py +178 -0
  919. vllm/py.typed +2 -0
  920. vllm/reasoning/__init__.py +12 -0
  921. vllm/reasoning/abs_reasoning_parsers.py +189 -0
  922. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  923. vllm/reasoning/granite_reasoning_parser.py +362 -0
  924. vllm/sampling_params.py +598 -0
  925. vllm/scalar_type.py +335 -0
  926. vllm/scripts.py +14 -0
  927. vllm/sequence.py +1486 -0
  928. vllm/spec_decode/__init__.py +0 -0
  929. vllm/spec_decode/batch_expansion.py +505 -0
  930. vllm/spec_decode/draft_model_runner.py +335 -0
  931. vllm/spec_decode/interfaces.py +98 -0
  932. vllm/spec_decode/medusa_worker.py +137 -0
  933. vllm/spec_decode/metrics.py +212 -0
  934. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  935. vllm/spec_decode/mqa_scorer.py +159 -0
  936. vllm/spec_decode/multi_step_worker.py +416 -0
  937. vllm/spec_decode/ngram_worker.py +195 -0
  938. vllm/spec_decode/proposer_worker_base.py +58 -0
  939. vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
  940. vllm/spec_decode/spec_decode_worker.py +1324 -0
  941. vllm/spec_decode/target_model_runner.py +44 -0
  942. vllm/spec_decode/top1_proposer.py +274 -0
  943. vllm/spec_decode/util.py +276 -0
  944. vllm/test_utils.py +129 -0
  945. vllm/third_party/__init__.py +0 -0
  946. vllm/third_party/pynvml.py +6139 -0
  947. vllm/tracing.py +130 -0
  948. vllm/transformers_utils/__init__.py +19 -0
  949. vllm/transformers_utils/config.py +813 -0
  950. vllm/transformers_utils/configs/__init__.py +52 -0
  951. vllm/transformers_utils/configs/arctic.py +206 -0
  952. vllm/transformers_utils/configs/chatglm.py +71 -0
  953. vllm/transformers_utils/configs/cohere2.py +194 -0
  954. vllm/transformers_utils/configs/dbrx.py +280 -0
  955. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  956. vllm/transformers_utils/configs/eagle.py +65 -0
  957. vllm/transformers_utils/configs/exaone.py +191 -0
  958. vllm/transformers_utils/configs/falcon.py +89 -0
  959. vllm/transformers_utils/configs/h2ovl.py +15 -0
  960. vllm/transformers_utils/configs/internvl.py +53 -0
  961. vllm/transformers_utils/configs/jais.py +237 -0
  962. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  963. vllm/transformers_utils/configs/medusa.py +62 -0
  964. vllm/transformers_utils/configs/mllama.py +30 -0
  965. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  966. vllm/transformers_utils/configs/moonvit.py +32 -0
  967. vllm/transformers_utils/configs/mpt.py +179 -0
  968. vllm/transformers_utils/configs/nemotron.py +204 -0
  969. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  970. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  971. vllm/transformers_utils/configs/solar.py +246 -0
  972. vllm/transformers_utils/configs/telechat2.py +63 -0
  973. vllm/transformers_utils/configs/ultravox.py +107 -0
  974. vllm/transformers_utils/detokenizer.py +167 -0
  975. vllm/transformers_utils/detokenizer_utils.py +188 -0
  976. vllm/transformers_utils/processor.py +210 -0
  977. vllm/transformers_utils/processors/__init__.py +6 -0
  978. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  979. vllm/transformers_utils/s3_utils.py +161 -0
  980. vllm/transformers_utils/tokenizer.py +291 -0
  981. vllm/transformers_utils/tokenizer_base.py +146 -0
  982. vllm/transformers_utils/tokenizer_group.py +110 -0
  983. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  984. vllm/transformers_utils/tokenizers/mistral.py +483 -0
  985. vllm/transformers_utils/utils.py +98 -0
  986. vllm/triton_utils/__init__.py +5 -0
  987. vllm/triton_utils/importing.py +53 -0
  988. vllm/usage/__init__.py +0 -0
  989. vllm/usage/usage_lib.py +255 -0
  990. vllm/utils.py +2692 -0
  991. vllm/v1/__init__.py +0 -0
  992. vllm/v1/attention/__init__.py +0 -0
  993. vllm/v1/attention/backends/__init__.py +0 -0
  994. vllm/v1/attention/backends/flash_attn.py +783 -0
  995. vllm/v1/attention/backends/flashinfer.py +638 -0
  996. vllm/v1/attention/backends/mla/__init__.py +0 -0
  997. vllm/v1/attention/backends/mla/common.py +974 -0
  998. vllm/v1/attention/backends/mla/flashmla.py +149 -0
  999. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1000. vllm/v1/attention/backends/pallas.py +221 -0
  1001. vllm/v1/attention/backends/triton_attn.py +198 -0
  1002. vllm/v1/core/__init__.py +0 -0
  1003. vllm/v1/core/block_pool.py +281 -0
  1004. vllm/v1/core/encoder_cache_manager.py +149 -0
  1005. vllm/v1/core/kv_cache_manager.py +385 -0
  1006. vllm/v1/core/kv_cache_utils.py +744 -0
  1007. vllm/v1/core/sched/__init__.py +0 -0
  1008. vllm/v1/core/sched/interface.py +134 -0
  1009. vllm/v1/core/sched/output.py +126 -0
  1010. vllm/v1/core/sched/scheduler.py +838 -0
  1011. vllm/v1/core/sched/utils.py +22 -0
  1012. vllm/v1/core/specialized_manager.py +161 -0
  1013. vllm/v1/engine/__init__.py +166 -0
  1014. vllm/v1/engine/async_llm.py +532 -0
  1015. vllm/v1/engine/core.py +701 -0
  1016. vllm/v1/engine/core_client.py +942 -0
  1017. vllm/v1/engine/detokenizer.py +260 -0
  1018. vllm/v1/engine/exceptions.py +16 -0
  1019. vllm/v1/engine/llm_engine.py +285 -0
  1020. vllm/v1/engine/logprobs.py +198 -0
  1021. vllm/v1/engine/mm_input_cache.py +82 -0
  1022. vllm/v1/engine/output_processor.py +420 -0
  1023. vllm/v1/engine/parallel_sampling.py +132 -0
  1024. vllm/v1/engine/processor.py +387 -0
  1025. vllm/v1/executor/__init__.py +0 -0
  1026. vllm/v1/executor/abstract.py +112 -0
  1027. vllm/v1/executor/multiproc_executor.py +480 -0
  1028. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1029. vllm/v1/kv_cache_interface.py +166 -0
  1030. vllm/v1/metrics/__init__.py +0 -0
  1031. vllm/v1/metrics/loggers.py +498 -0
  1032. vllm/v1/metrics/stats.py +238 -0
  1033. vllm/v1/outputs.py +111 -0
  1034. vllm/v1/request.py +178 -0
  1035. vllm/v1/sample/__init__.py +0 -0
  1036. vllm/v1/sample/metadata.py +43 -0
  1037. vllm/v1/sample/ops/__init__.py +0 -0
  1038. vllm/v1/sample/ops/bad_words.py +38 -0
  1039. vllm/v1/sample/ops/penalties.py +58 -0
  1040. vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
  1041. vllm/v1/sample/rejection_sampler.py +631 -0
  1042. vllm/v1/sample/sampler.py +270 -0
  1043. vllm/v1/sample/tpu/__init__.py +0 -0
  1044. vllm/v1/sample/tpu/metadata.py +118 -0
  1045. vllm/v1/sample/tpu/sampler.py +154 -0
  1046. vllm/v1/serial_utils.py +274 -0
  1047. vllm/v1/spec_decode/__init__.py +0 -0
  1048. vllm/v1/spec_decode/eagle.py +318 -0
  1049. vllm/v1/spec_decode/metadata.py +61 -0
  1050. vllm/v1/spec_decode/metrics.py +164 -0
  1051. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1052. vllm/v1/spec_decode/utils.py +18 -0
  1053. vllm/v1/stats/__init__.py +0 -0
  1054. vllm/v1/stats/common.py +453 -0
  1055. vllm/v1/structured_output/__init__.py +113 -0
  1056. vllm/v1/structured_output/backend_guidance.py +215 -0
  1057. vllm/v1/structured_output/backend_types.py +96 -0
  1058. vllm/v1/structured_output/backend_xgrammar.py +299 -0
  1059. vllm/v1/structured_output/request.py +84 -0
  1060. vllm/v1/structured_output/utils.py +174 -0
  1061. vllm/v1/utils.py +249 -0
  1062. vllm/v1/worker/__init__.py +0 -0
  1063. vllm/v1/worker/block_table.py +87 -0
  1064. vllm/v1/worker/gpu_input_batch.py +677 -0
  1065. vllm/v1/worker/gpu_model_runner.py +1776 -0
  1066. vllm/v1/worker/gpu_worker.py +349 -0
  1067. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1068. vllm/v1/worker/tpu_model_runner.py +1419 -0
  1069. vllm/v1/worker/tpu_worker.py +260 -0
  1070. vllm/v1/worker/utils.py +74 -0
  1071. vllm/v1/worker/worker_base.py +64 -0
  1072. vllm/version.py +40 -0
  1073. vllm/vllm_flash_attn/.gitkeep +0 -0
  1074. vllm/worker/__init__.py +0 -0
  1075. vllm/worker/cache_engine.py +144 -0
  1076. vllm/worker/cpu_enc_dec_model_runner.py +323 -0
  1077. vllm/worker/cpu_model_runner.py +668 -0
  1078. vllm/worker/cpu_pooling_model_runner.py +122 -0
  1079. vllm/worker/cpu_worker.py +400 -0
  1080. vllm/worker/enc_dec_model_runner.py +542 -0
  1081. vllm/worker/hpu_model_runner.py +2221 -0
  1082. vllm/worker/hpu_worker.py +483 -0
  1083. vllm/worker/model_runner.py +2056 -0
  1084. vllm/worker/model_runner_base.py +281 -0
  1085. vllm/worker/multi_step_hpu_worker.py +122 -0
  1086. vllm/worker/multi_step_model_runner.py +908 -0
  1087. vllm/worker/multi_step_tpu_worker.py +107 -0
  1088. vllm/worker/multi_step_worker.py +196 -0
  1089. vllm/worker/neuron_model_runner.py +336 -0
  1090. vllm/worker/neuron_worker.py +138 -0
  1091. vllm/worker/pooling_model_runner.py +200 -0
  1092. vllm/worker/tpu_model_runner.py +908 -0
  1093. vllm/worker/tpu_worker.py +332 -0
  1094. vllm/worker/utils.py +52 -0
  1095. vllm/worker/worker.py +570 -0
  1096. vllm/worker/worker_base.py +644 -0
  1097. vllm/worker/xpu_model_runner.py +603 -0
  1098. vllm/worker/xpu_worker.py +185 -0
  1099. vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
  1100. vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
  1101. vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
  1102. vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
  1103. vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,30 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ from transformers.models.mllama import configuration_mllama as mllama_hf_config
4
+
5
+
6
+ class MllamaTextConfig(mllama_hf_config.MllamaTextConfig):
7
+ '''
8
+ Use this class to override is_encoder_decoder:
9
+ - transformers regards mllama as is_encoder_decoder=False
10
+ - vllm needs is_encoder_decoder=True to enable cross-attention
11
+ '''
12
+
13
+ def __init__(
14
+ self,
15
+ **kwargs,
16
+ ):
17
+ super().__init__(**kwargs)
18
+ self.is_encoder_decoder = True
19
+
20
+
21
+ class MllamaConfig(mllama_hf_config.MllamaConfig):
22
+
23
+ def __init__(
24
+ self,
25
+ text_config=None,
26
+ **kwargs,
27
+ ):
28
+ if isinstance(text_config, dict):
29
+ text_config = MllamaTextConfig(**text_config)
30
+ super().__init__(text_config=text_config, **kwargs)
@@ -0,0 +1,67 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ from typing import List, Optional
4
+
5
+ from transformers import PretrainedConfig
6
+
7
+
8
+ class MLPSpeculatorConfig(PretrainedConfig):
9
+ model_type = "mlp_speculator"
10
+
11
+ attribute_map = {
12
+ "hidden_size": "emb_dim",
13
+ }
14
+
15
+ def __init__(self,
16
+ vocab_size: int = 32000,
17
+ emb_dim: int = 4096,
18
+ inner_dim: int = 0,
19
+ n_predict: int = 3,
20
+ top_k_tokens_per_head: Optional[List[int]] = None,
21
+ n_candidates: int = 5,
22
+ tie_weights: bool = False,
23
+ scale_input: bool = False,
24
+ **kwargs):
25
+ """
26
+ Initialize an MLPSpeculatorConfig
27
+
28
+ Args:
29
+ vocab_size: int
30
+ the model vocab size
31
+ emb_dim: int
32
+ the model embedding dimension
33
+ inner_dim: int
34
+ the inner dimension of the model. If 0, will be the emb_dim.
35
+ n_predict: int
36
+ the number of lookaheads for the speculator
37
+ top_k_tokens_per_head: List[int]
38
+ Number of tokens to consider from each head when forming the
39
+ candidate tree.
40
+ For each candidate branch in the tree, head n produces topk[n]
41
+ additional sub-branches.
42
+ NOTE: This parameter is currently unused.
43
+ n_candidates: int
44
+ number of child candidates to create per sequence
45
+ tie_weights: bool
46
+ If true, use a single set of weights for every model
47
+ head/stage after the first. The initial projection
48
+ from the base model may have a different size, so that
49
+ stays separate.
50
+ scale_input: bool
51
+ if True, will scale the initial hidden states from
52
+ the base model.
53
+ """
54
+ if top_k_tokens_per_head is None:
55
+ top_k_tokens_per_head = [5, 4, 3]
56
+ assert len(top_k_tokens_per_head) == n_predict
57
+ self.vocab_size = vocab_size
58
+ self.emb_dim = emb_dim
59
+ self.inner_dim = inner_dim
60
+ self.n_predict = n_predict
61
+ self.top_k_tokens_per_head = top_k_tokens_per_head
62
+ self.n_candidates = n_candidates
63
+ self.num_lookahead_tokens = n_predict
64
+ self.tie_weights = tie_weights
65
+ self.scale_input = scale_input
66
+
67
+ super().__init__(**kwargs)
@@ -0,0 +1,32 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # Adapted from https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct/blob/main/configuration_kimi_vl.py
3
+ from transformers.configuration_utils import PretrainedConfig
4
+
5
+
6
+ class MoonViTConfig(PretrainedConfig):
7
+ model_type = "moonvit"
8
+
9
+ def __init__(
10
+ self,
11
+ patch_size: int = 14,
12
+ init_pos_emb_height: int = 64,
13
+ init_pos_emb_width: int = 64,
14
+ num_attention_heads: int = 16,
15
+ num_hidden_layers: int = 27,
16
+ hidden_size: int = 1152,
17
+ intermediate_size: int = 4304,
18
+ merge_kernel_size: tuple[int, int] = (2, 2),
19
+ **kwargs,
20
+ ):
21
+ super().__init__(**kwargs)
22
+ self.patch_size = patch_size
23
+ # Positional embedding config
24
+ self.init_pos_emb_height = init_pos_emb_height
25
+ self.init_pos_emb_width = init_pos_emb_width
26
+ # Transformer config
27
+ self.num_hidden_layers = num_hidden_layers
28
+ self.num_attention_heads = num_attention_heads
29
+ self.hidden_size = hidden_size
30
+ self.intermediate_size = intermediate_size
31
+ # Patch merger config
32
+ self.merge_kernel_size = merge_kernel_size
@@ -0,0 +1,179 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ # Copied from
4
+ # https://huggingface.co/mosaicml/mpt-7b/blob/main/configuration_mpt.py
5
+ """A HuggingFace-style model configuration."""
6
+ import warnings
7
+ from typing import Any, Dict, Optional, Union
8
+
9
+ from transformers import PretrainedConfig
10
+
11
+ attn_config_defaults: Dict = {
12
+ 'attn_type': 'multihead_attention',
13
+ 'attn_pdrop': 0.0,
14
+ 'attn_impl': 'triton',
15
+ 'qk_ln': False,
16
+ 'clip_qkv': None,
17
+ 'softmax_scale': None,
18
+ 'prefix_lm': False,
19
+ 'attn_uses_sequence_id': False,
20
+ 'alibi': False,
21
+ 'alibi_bias_max': 8
22
+ }
23
+ ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
24
+ init_config_defaults: Dict = {
25
+ 'name': 'kaiming_normal_',
26
+ 'fan_mode': 'fan_in',
27
+ 'init_nonlinearity': 'relu',
28
+ 'init_div_is_residual': True,
29
+ 'emb_init_std': None,
30
+ 'emb_init_uniform_lim': None,
31
+ 'init_std': None,
32
+ 'init_gain': 0.0
33
+ }
34
+
35
+
36
+ class MPTConfig(PretrainedConfig):
37
+ model_type = 'mpt'
38
+ attribute_map = {
39
+ 'num_attention_heads': 'n_heads',
40
+ 'hidden_size': 'd_model',
41
+ 'num_hidden_layers': 'n_layers',
42
+ }
43
+
44
+ # pylint: disable=dangerous-default-value
45
+ def __init__(self,
46
+ d_model: int = 2048,
47
+ n_heads: int = 16,
48
+ n_layers: int = 24,
49
+ expansion_ratio: int = 4,
50
+ max_seq_len: int = 2048,
51
+ vocab_size: int = 50368,
52
+ resid_pdrop: float = 0.0,
53
+ emb_pdrop: float = 0.0,
54
+ learned_pos_emb: bool = True,
55
+ attn_config: Dict = attn_config_defaults,
56
+ ffn_config: Dict = ffn_config_defaults,
57
+ init_device: str = 'cpu',
58
+ logit_scale: Optional[Union[float, str]] = None,
59
+ no_bias: bool = False,
60
+ embedding_fraction: float = 1.0,
61
+ norm_type: str = 'low_precision_layernorm',
62
+ use_cache: bool = False,
63
+ init_config: Dict = init_config_defaults,
64
+ fc_type: str = 'torch',
65
+ verbose: Optional[int] = None,
66
+ **kwargs: Any):
67
+ self.d_model = d_model
68
+ self.n_heads = n_heads
69
+ self.n_layers = n_layers
70
+ self.expansion_ratio = expansion_ratio
71
+ self.max_seq_len = max_seq_len
72
+ self.vocab_size = vocab_size
73
+ self.resid_pdrop = resid_pdrop
74
+ self.emb_pdrop = emb_pdrop
75
+ self.learned_pos_emb = learned_pos_emb
76
+ self.attn_config = attn_config
77
+ self.ffn_config = ffn_config
78
+ self.init_device = init_device
79
+ self.logit_scale = logit_scale
80
+ self.no_bias = no_bias
81
+ self.embedding_fraction = embedding_fraction
82
+ self.norm_type = norm_type
83
+ self.use_cache = use_cache
84
+ self.init_config = init_config
85
+ self.fc_type = fc_type
86
+ if verbose is not None:
87
+ warnings.warn(DeprecationWarning(
88
+ 'verbose argument for MPTConfig is now ignored and '
89
+ 'will be removed. Use python_log_level instead.'),
90
+ stacklevel=2)
91
+ if 'name' in kwargs:
92
+ del kwargs['name']
93
+ if 'loss_fn' in kwargs:
94
+ del kwargs['loss_fn']
95
+ if self.attn_config.get('alibi', False):
96
+ self.learned_pos_emb = False
97
+ warnings.warn(
98
+ f'alibi is turned on, setting `learned_pos_emb` '
99
+ f'to {self.learned_pos_emb}`',
100
+ stacklevel=2)
101
+ super().__init__(**kwargs)
102
+ self._validate_config()
103
+
104
+ def _set_config_defaults(
105
+ self, config: Dict[str, Any],
106
+ config_defaults: Dict[str, Any]) -> Dict[str, Any]:
107
+ for (k, v) in config_defaults.items():
108
+ if k not in config:
109
+ config[k] = v
110
+ return config
111
+
112
+ def _validate_config(self) -> None:
113
+ self.attn_config = self._set_config_defaults(self.attn_config,
114
+ attn_config_defaults)
115
+ self.ffn_config = self._set_config_defaults(self.ffn_config,
116
+ ffn_config_defaults)
117
+ self.init_config = self._set_config_defaults(self.init_config,
118
+ init_config_defaults)
119
+ if self.d_model % self.n_heads != 0:
120
+ raise ValueError('d_model must be divisible by n_heads')
121
+ if any(
122
+ prob < 0 or prob > 1 for prob in
123
+ [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop
124
+ ]):
125
+ raise ValueError(
126
+ "self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are "
127
+ "probabilities and must be between 0 and 1")
128
+ if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
129
+ raise ValueError(
130
+ f"Unknown attn_impl={self.attn_config['attn_impl']}")
131
+ if self.attn_config['prefix_lm'] and self.attn_config[
132
+ 'attn_impl'] not in ['torch', 'triton']:
133
+ raise NotImplementedError(
134
+ 'prefix_lm only implemented with torch and triton attention.')
135
+ if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in [
136
+ 'torch', 'triton'
137
+ ]:
138
+ raise NotImplementedError(
139
+ 'alibi only implemented with torch and triton attention.')
140
+ if self.attn_config['attn_uses_sequence_id'] and self.attn_config[
141
+ 'attn_impl'] not in ['torch', 'triton']:
142
+ raise NotImplementedError(
143
+ 'attn_uses_sequence_id only implemented with torch '
144
+ 'and triton attention.')
145
+ if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
146
+ raise ValueError(
147
+ 'model.embedding_fraction must be between 0 (exclusive) '
148
+ 'and 1 (inclusive)!')
149
+ if isinstance(self.logit_scale,
150
+ str) and self.logit_scale != 'inv_sqrt_d_model':
151
+ raise ValueError(
152
+ f"self.logit_scale={self.logit_scale!r} is not recognized as "
153
+ "an option; use numeric value or 'inv_sqrt_d_model'.")
154
+ if self.init_config.get('name', None) is None:
155
+ raise ValueError(
156
+ f"self.init_config={self.init_config!r} 'name' needs to be set."
157
+ )
158
+ if not self.learned_pos_emb and (not self.attn_config['alibi']):
159
+ warnings.warn(
160
+ 'Positional information not being provided to the model.',
161
+ stacklevel=2)
162
+ if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
163
+ try:
164
+ # pylint: disable=import-outside-toplevel
165
+ import transformer_engine.pytorch as te
166
+ del te
167
+ except Exception as exc:
168
+ raise ImportError(
169
+ 'TransformerEngine import fail. `fc_type: te` requires '
170
+ 'TransformerEngine be installed. '
171
+ 'The required version of transformer_engine also requires '
172
+ 'FlashAttention v1.0.6 is installed:\n'
173
+ 'pip install flash-attn==1.0.6 --no-build-isolation \n'
174
+ 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156'
175
+ ) from exc
176
+ if self.ffn_config['ffn_type'] == 'mptmlp':
177
+ self.ffn_config['fc_type'] = self.fc_type
178
+ elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
179
+ self.ffn_config['bias'] = not self.no_bias
@@ -0,0 +1,204 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ # Copyright 2024 HuggingFace Inc. team. All rights reserved.
4
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """Nemotron model configuration"""
18
+
19
+ from transformers import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class NemotronConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a
28
+ [`NemotronModel`]. It is used to instantiate an Nemotron model
29
+ according to the specified arguments, defining the model architecture.
30
+ Instantiating a configuration with the defaults will yield a similar
31
+ configuration to that of the Nemotron-8B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be
34
+ used to control the model outputs. Read the documentation from
35
+ [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 256000):
40
+ Vocabulary size of the Nemotron model. Defines the number of
41
+ different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`NemotronModel`]
43
+ hidden_size (`int`, *optional*, defaults to 6144):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 24576):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 48):
50
+ Number of attention heads for each attention layer in the
51
+ Transformer decoder.
52
+ head_dim (`int`, *optional*):
53
+ Projection weights dimension in multi-head attention. Set to
54
+ hidden_size // num_attention_heads if None
55
+ num_key_value_heads (`int`, *optional*):
56
+ This is the number of key_value heads that should be used to
57
+ implement Grouped Query Attention. If
58
+ `num_key_value_heads=num_attention_heads`, the model will use
59
+ Multi Head Attention (MHA), if
60
+ `num_key_value_heads=1 the model will use Multi Query Attention
61
+ (MQA) otherwise GQA is used. When converting a multi-head
62
+ checkpoint to a GQA checkpoint, each group key and value
63
+ head should be constructed by meanpooling all the original
64
+ heads within that group. For more details checkout
65
+ [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it
66
+ is not specified, will default to `num_attention_heads`.
67
+ hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
68
+ The non-linear activation function (function or string) in the
69
+ decoder.
70
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
71
+ The maximum sequence length that this model might ever be used
72
+ with.
73
+ initializer_range (`float`, *optional*, defaults to 0.0134):
74
+ The standard deviation of the truncated_normal_initializer for
75
+ initializing all weight matrices.
76
+ norm_eps (`float`, *optional*, defaults to 1e-05):
77
+ The epsilon used by the normalization layers.
78
+ use_cache (`bool`, *optional*, defaults to `True`):
79
+ Whether or not the model should return the last key/values
80
+ attentions (not used by all models). Only relevant if
81
+ `config.is_decoder=True`.
82
+ pad_token_id (`int`, *optional*):
83
+ Padding token id.
84
+ bos_token_id (`int`, *optional*, defaults to 2):
85
+ Beginning of stream token id.
86
+ eos_token_id (`int`, *optional*, defaults to 3):
87
+ End of stream token id.
88
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
89
+ Whether to tie weight embeddings
90
+ rope_theta (`float`, *optional*, defaults to 10000.0):
91
+ The base period of the RoPE embeddings.
92
+ partial_rotary_factor (`float`, *optional*, defaults to 0.5):
93
+ Percentage of the query and keys which will have rotary embedding.
94
+ attention_bias (`bool`, *optional*, defaults to `False`):
95
+ Whether to use a bias in the query, key, value and output
96
+ projection layers during self-attention.
97
+ attention_dropout (`float`, *optional*, defaults to 0.0):
98
+ The dropout ratio for the attention probabilities.
99
+ mlp_bias (`bool`, *optional*, defaults to `False`):
100
+ Whether to use a bias in up_proj and down_proj layers in the MLP
101
+ layers.
102
+
103
+ ```python
104
+ >>> from transformers import NemotronModel, NemotronConfig
105
+ >>> # Initializing a Nemotron nemotron-15b style configuration
106
+ >>> configuration = NemotronConfig()
107
+ >>> # Initializing a model from the nemotron-15b style configuration
108
+ >>> model = NemotronModel(configuration)
109
+ >>> # Accessing the model configuration
110
+ >>> configuration = model.config
111
+ ```"""
112
+
113
+ model_type = "nemotron"
114
+ keys_to_ignore_at_inference = ["past_key_values"]
115
+
116
+ def __init__(
117
+ self,
118
+ vocab_size=256000,
119
+ hidden_size=6144,
120
+ intermediate_size=24576,
121
+ num_hidden_layers=32,
122
+ num_attention_heads=48,
123
+ head_dim=None,
124
+ num_key_value_heads=None,
125
+ hidden_act="relu2",
126
+ max_position_embeddings=4096,
127
+ initializer_range=0.0134,
128
+ norm_eps=1e-5,
129
+ use_cache=True,
130
+ pad_token_id=None,
131
+ bos_token_id=2,
132
+ eos_token_id=3,
133
+ tie_word_embeddings=False,
134
+ rope_theta=10000.0,
135
+ rope_scaling=None,
136
+ partial_rotary_factor=0.5,
137
+ attention_bias=False,
138
+ attention_dropout=0.0,
139
+ mlp_bias=False,
140
+ **kwargs,
141
+ ):
142
+ self.vocab_size = vocab_size
143
+ self.max_position_embeddings = max_position_embeddings
144
+ self.hidden_size = hidden_size
145
+ self.intermediate_size = intermediate_size
146
+ self.num_hidden_layers = num_hidden_layers
147
+ self.num_attention_heads = num_attention_heads
148
+ head_dim = head_dim or kwargs.get("kv_channels")
149
+ self.head_dim = head_dim if head_dim is not None else (
150
+ hidden_size // num_attention_heads)
151
+
152
+ # for backward compatibility
153
+ if num_key_value_heads is None:
154
+ num_key_value_heads = num_attention_heads
155
+
156
+ self.num_key_value_heads = num_key_value_heads
157
+ self.hidden_act = hidden_act
158
+ self.initializer_range = initializer_range
159
+ self.norm_eps = norm_eps
160
+ self.use_cache = use_cache
161
+ self.rope_theta = rope_theta
162
+ self.rope_scaling = rope_scaling
163
+ # for backward compatibility
164
+ partial_rotary_factor = kwargs.get("rope_percent") or kwargs.get(
165
+ "rope_percentage") or partial_rotary_factor
166
+ self.partial_rotary_factor = partial_rotary_factor
167
+ self._rope_scaling_validation()
168
+ self.attention_bias = attention_bias
169
+ self.attention_dropout = attention_dropout
170
+ self.mlp_bias = mlp_bias
171
+
172
+ super().__init__(
173
+ pad_token_id=pad_token_id,
174
+ bos_token_id=bos_token_id,
175
+ eos_token_id=eos_token_id,
176
+ tie_word_embeddings=tie_word_embeddings,
177
+ **kwargs,
178
+ )
179
+
180
+ def _rope_scaling_validation(self):
181
+ """
182
+ Validate the `rope_scaling` configuration.
183
+ """
184
+ if self.rope_scaling is None:
185
+ return
186
+
187
+ if not isinstance(self.rope_scaling, dict) or len(
188
+ self.rope_scaling) != 2:
189
+ raise ValueError(
190
+ "`rope_scaling` must be a dictionary with two fields, "
191
+ f"`type` and `factor`, got {self.rope_scaling}")
192
+ rope_scaling_type = self.rope_scaling.get("type", None)
193
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
194
+ if rope_scaling_type is None or rope_scaling_type not in [
195
+ "linear", "dynamic"
196
+ ]:
197
+ raise ValueError(
198
+ "`rope_scaling`'s type field must be one of ['linear', "
199
+ f"'dynamic'], got {rope_scaling_type}")
200
+ if rope_scaling_factor is None or not isinstance(
201
+ rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
202
+ raise ValueError(
203
+ "`rope_scaling`'s factor field must be a float > 1, got "
204
+ f"{rope_scaling_factor}")
@@ -0,0 +1,14 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ # Adapted from
4
+ # https://huggingface.co/nvidia/NVLM-D-72B/blob/main/configuration_nvlm_d.py
5
+ # --------------------------------------------------------
6
+ # NVLM-D
7
+ # Copyright (c) 2024 NVIDIA
8
+ # Licensed under Apache 2.0 License [see LICENSE for details]
9
+ # --------------------------------------------------------
10
+ from .internvl import InternVLChatConfig
11
+
12
+
13
+ class NVLM_D_Config(InternVLChatConfig):
14
+ model_type = 'NVLM_D'
@@ -0,0 +1,53 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ # Adapted from
4
+ # https://huggingface.co/Skywork/Skywork-R1V-38B/blob/main/configuration_skywork_chat.py
5
+ # --------------------------------------------------------
6
+ # SkyworkR1V
7
+ # Copyright (c) 2025 Skywork
8
+ # Licensed under The MIT License [see LICENSE for details]
9
+ # --------------------------------------------------------
10
+ from transformers.configuration_utils import PretrainedConfig
11
+
12
+
13
+ class SkyworkR1VChatConfig(PretrainedConfig):
14
+ model_type = 'internvl_chat'
15
+ is_composition = True
16
+
17
+ def __init__(self,
18
+ vision_config=None,
19
+ llm_config=None,
20
+ use_backbone_lora=0,
21
+ use_llm_lora=0,
22
+ select_layer=-1,
23
+ force_image_size=None,
24
+ downsample_ratio=0.5,
25
+ template=None,
26
+ dynamic_image_size=False,
27
+ use_thumbnail=False,
28
+ ps_version='v1',
29
+ min_dynamic_patch=1,
30
+ max_dynamic_patch=6,
31
+ **kwargs):
32
+ super().__init__(**kwargs)
33
+
34
+ if vision_config is None:
35
+ vision_config = {}
36
+
37
+ if llm_config is None:
38
+ llm_config = {}
39
+
40
+ self.vision_config = PretrainedConfig(**vision_config)
41
+ self.text_config = PretrainedConfig(**llm_config)
42
+
43
+ self.use_backbone_lora = use_backbone_lora
44
+ self.use_llm_lora = use_llm_lora
45
+ self.select_layer = select_layer
46
+ self.force_image_size = force_image_size
47
+ self.downsample_ratio = downsample_ratio
48
+ self.template = template
49
+ self.dynamic_image_size = dynamic_image_size
50
+ self.use_thumbnail = use_thumbnail
51
+ self.ps_version = ps_version # pixel shuffle version
52
+ self.min_dynamic_patch = min_dynamic_patch
53
+ self.max_dynamic_patch = max_dynamic_patch