vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu might be problematic. Click here for more details.

Files changed (1103) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +170 -0
  3. vllm/_custom_ops.py +1536 -0
  4. vllm/_ipex_ops.py +241 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +105 -0
  9. vllm/adapter_commons/request.py +25 -0
  10. vllm/adapter_commons/utils.py +92 -0
  11. vllm/adapter_commons/worker_manager.py +38 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +38 -0
  14. vllm/assets/base.py +40 -0
  15. vllm/assets/image.py +31 -0
  16. vllm/assets/video.py +103 -0
  17. vllm/attention/__init__.py +19 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +306 -0
  20. vllm/attention/backends/blocksparse_attn.py +457 -0
  21. vllm/attention/backends/cpu_mla.py +303 -0
  22. vllm/attention/backends/flash_attn.py +999 -0
  23. vllm/attention/backends/flashinfer.py +1092 -0
  24. vllm/attention/backends/flashmla.py +242 -0
  25. vllm/attention/backends/hpu_attn.py +301 -0
  26. vllm/attention/backends/ipex_attn.py +396 -0
  27. vllm/attention/backends/mla/__init__.py +0 -0
  28. vllm/attention/backends/mla/common.py +1444 -0
  29. vllm/attention/backends/pallas.py +346 -0
  30. vllm/attention/backends/placeholder_attn.py +399 -0
  31. vllm/attention/backends/rocm_aiter_mla.py +412 -0
  32. vllm/attention/backends/rocm_flash_attn.py +969 -0
  33. vllm/attention/backends/torch_sdpa.py +691 -0
  34. vllm/attention/backends/triton_mla.py +113 -0
  35. vllm/attention/backends/utils.py +609 -0
  36. vllm/attention/backends/xformers.py +798 -0
  37. vllm/attention/layer.py +443 -0
  38. vllm/attention/ops/__init__.py +0 -0
  39. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
  41. vllm/attention/ops/blocksparse_attention/interface.py +238 -0
  42. vllm/attention/ops/blocksparse_attention/utils.py +244 -0
  43. vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
  44. vllm/attention/ops/flashmla.py +115 -0
  45. vllm/attention/ops/hpu_paged_attn.py +105 -0
  46. vllm/attention/ops/ipex_attn.py +193 -0
  47. vllm/attention/ops/merge_attn_states.py +42 -0
  48. vllm/attention/ops/nki_flash_attn.py +905 -0
  49. vllm/attention/ops/paged_attn.py +255 -0
  50. vllm/attention/ops/prefix_prefill.py +902 -0
  51. vllm/attention/ops/rocm_aiter_mla.py +42 -0
  52. vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
  53. vllm/attention/ops/triton_decode_attention.py +675 -0
  54. vllm/attention/ops/triton_flash_attention.py +1375 -0
  55. vllm/attention/ops/triton_merge_attn_states.py +96 -0
  56. vllm/attention/selector.py +186 -0
  57. vllm/attention/utils/fa_utils.py +54 -0
  58. vllm/beam_search.py +82 -0
  59. vllm/benchmarks/__init__.py +0 -0
  60. vllm/benchmarks/datasets.py +831 -0
  61. vllm/benchmarks/endpoint_request_func.py +160 -0
  62. vllm/benchmarks/latency.py +181 -0
  63. vllm/benchmarks/serve.py +925 -0
  64. vllm/benchmarks/throughput.py +608 -0
  65. vllm/benchmarks/utils.py +69 -0
  66. vllm/collect_env.py +795 -0
  67. vllm/compilation/__init__.py +0 -0
  68. vllm/compilation/backends.py +715 -0
  69. vllm/compilation/compiler_interface.py +437 -0
  70. vllm/compilation/counter.py +33 -0
  71. vllm/compilation/decorators.py +249 -0
  72. vllm/compilation/fix_functionalization.py +182 -0
  73. vllm/compilation/fusion.py +617 -0
  74. vllm/compilation/fx_utils.py +60 -0
  75. vllm/compilation/inductor_pass.py +114 -0
  76. vllm/compilation/monitor.py +38 -0
  77. vllm/compilation/multi_output_match.py +108 -0
  78. vllm/compilation/noop_elimination.py +135 -0
  79. vllm/compilation/pass_manager.py +74 -0
  80. vllm/compilation/sequence_parallelism.py +266 -0
  81. vllm/compilation/torch25_custom_graph_pass.py +41 -0
  82. vllm/compilation/vllm_inductor_pass.py +68 -0
  83. vllm/compilation/wrapper.py +129 -0
  84. vllm/config.py +4179 -0
  85. vllm/connections.py +170 -0
  86. vllm/core/__init__.py +0 -0
  87. vllm/core/block/__init__.py +0 -0
  88. vllm/core/block/block_table.py +398 -0
  89. vllm/core/block/common.py +370 -0
  90. vllm/core/block/cpu_gpu_block_allocator.py +440 -0
  91. vllm/core/block/interfaces.py +318 -0
  92. vllm/core/block/naive_block.py +465 -0
  93. vllm/core/block/prefix_caching_block.py +1134 -0
  94. vllm/core/block/utils.py +27 -0
  95. vllm/core/block_manager.py +520 -0
  96. vllm/core/evictor.py +156 -0
  97. vllm/core/interfaces.py +134 -0
  98. vllm/core/placeholder_block_space_manager.py +99 -0
  99. vllm/core/scheduler.py +2060 -0
  100. vllm/device_allocator/__init__.py +0 -0
  101. vllm/device_allocator/cumem.py +280 -0
  102. vllm/distributed/__init__.py +5 -0
  103. vllm/distributed/communication_op.py +40 -0
  104. vllm/distributed/device_communicators/__init__.py +0 -0
  105. vllm/distributed/device_communicators/base_device_communicator.py +151 -0
  106. vllm/distributed/device_communicators/cpu_communicator.py +139 -0
  107. vllm/distributed/device_communicators/cuda_communicator.py +131 -0
  108. vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
  109. vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
  110. vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
  111. vllm/distributed/device_communicators/hpu_communicator.py +45 -0
  112. vllm/distributed/device_communicators/neuron_communicator.py +19 -0
  113. vllm/distributed/device_communicators/pynccl.py +217 -0
  114. vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
  115. vllm/distributed/device_communicators/shm_broadcast.py +557 -0
  116. vllm/distributed/device_communicators/tpu_communicator.py +93 -0
  117. vllm/distributed/device_communicators/xpu_communicator.py +54 -0
  118. vllm/distributed/kv_transfer/README.md +29 -0
  119. vllm/distributed/kv_transfer/__init__.py +11 -0
  120. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  121. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  122. vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
  123. vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
  124. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
  125. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
  126. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
  132. vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
  133. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  134. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
  135. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
  136. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
  137. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  138. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  139. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
  140. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
  141. vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
  142. vllm/distributed/parallel_state.py +1209 -0
  143. vllm/distributed/utils.py +366 -0
  144. vllm/engine/__init__.py +0 -0
  145. vllm/engine/arg_utils.py +1724 -0
  146. vllm/engine/async_llm_engine.py +1261 -0
  147. vllm/engine/async_timeout.py +191 -0
  148. vllm/engine/llm_engine.py +2150 -0
  149. vllm/engine/metrics.py +717 -0
  150. vllm/engine/metrics_types.py +96 -0
  151. vllm/engine/multiprocessing/__init__.py +183 -0
  152. vllm/engine/multiprocessing/client.py +745 -0
  153. vllm/engine/multiprocessing/engine.py +450 -0
  154. vllm/engine/output_processor/__init__.py +0 -0
  155. vllm/engine/output_processor/interfaces.py +74 -0
  156. vllm/engine/output_processor/multi_step.py +210 -0
  157. vllm/engine/output_processor/single_step.py +136 -0
  158. vllm/engine/output_processor/stop_checker.py +130 -0
  159. vllm/engine/output_processor/util.py +27 -0
  160. vllm/engine/protocol.py +302 -0
  161. vllm/entrypoints/__init__.py +0 -0
  162. vllm/entrypoints/api_server.py +177 -0
  163. vllm/entrypoints/chat_utils.py +1259 -0
  164. vllm/entrypoints/cli/__init__.py +0 -0
  165. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  166. vllm/entrypoints/cli/benchmark/base.py +38 -0
  167. vllm/entrypoints/cli/benchmark/latency.py +29 -0
  168. vllm/entrypoints/cli/benchmark/main.py +53 -0
  169. vllm/entrypoints/cli/benchmark/serve.py +29 -0
  170. vllm/entrypoints/cli/benchmark/throughput.py +29 -0
  171. vllm/entrypoints/cli/collect_env.py +35 -0
  172. vllm/entrypoints/cli/main.py +59 -0
  173. vllm/entrypoints/cli/openai.py +175 -0
  174. vllm/entrypoints/cli/serve.py +59 -0
  175. vllm/entrypoints/cli/types.py +24 -0
  176. vllm/entrypoints/launcher.py +146 -0
  177. vllm/entrypoints/llm.py +1450 -0
  178. vllm/entrypoints/logger.py +44 -0
  179. vllm/entrypoints/openai/__init__.py +0 -0
  180. vllm/entrypoints/openai/api_server.py +1130 -0
  181. vllm/entrypoints/openai/cli_args.py +296 -0
  182. vllm/entrypoints/openai/logits_processors.py +89 -0
  183. vllm/entrypoints/openai/protocol.py +1806 -0
  184. vllm/entrypoints/openai/run_batch.py +439 -0
  185. vllm/entrypoints/openai/serving_chat.py +1210 -0
  186. vllm/entrypoints/openai/serving_completion.py +557 -0
  187. vllm/entrypoints/openai/serving_embedding.py +245 -0
  188. vllm/entrypoints/openai/serving_engine.py +569 -0
  189. vllm/entrypoints/openai/serving_models.py +314 -0
  190. vllm/entrypoints/openai/serving_pooling.py +237 -0
  191. vllm/entrypoints/openai/serving_score.py +439 -0
  192. vllm/entrypoints/openai/serving_tokenization.py +147 -0
  193. vllm/entrypoints/openai/serving_transcription.py +421 -0
  194. vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
  195. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
  196. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
  197. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
  198. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
  199. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
  200. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
  201. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
  202. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
  203. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
  204. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
  205. vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
  206. vllm/entrypoints/score_utils.py +49 -0
  207. vllm/entrypoints/ssl.py +74 -0
  208. vllm/entrypoints/utils.py +136 -0
  209. vllm/env_override.py +34 -0
  210. vllm/envs.py +800 -0
  211. vllm/executor/__init__.py +0 -0
  212. vllm/executor/executor_base.py +400 -0
  213. vllm/executor/mp_distributed_executor.py +243 -0
  214. vllm/executor/msgspec_utils.py +29 -0
  215. vllm/executor/multiproc_worker_utils.py +312 -0
  216. vllm/executor/ray_distributed_executor.py +700 -0
  217. vllm/executor/ray_utils.py +400 -0
  218. vllm/executor/uniproc_executor.py +141 -0
  219. vllm/forward_context.py +159 -0
  220. vllm/inputs/__init__.py +37 -0
  221. vllm/inputs/data.py +248 -0
  222. vllm/inputs/parse.py +121 -0
  223. vllm/inputs/preprocess.py +745 -0
  224. vllm/inputs/registry.py +212 -0
  225. vllm/jsontree.py +79 -0
  226. vllm/logger.py +210 -0
  227. vllm/logging_utils/__init__.py +7 -0
  228. vllm/logging_utils/formatter.py +17 -0
  229. vllm/logits_process.py +121 -0
  230. vllm/lora/__init__.py +0 -0
  231. vllm/lora/fully_sharded_layers.py +335 -0
  232. vllm/lora/layers.py +1263 -0
  233. vllm/lora/lora.py +198 -0
  234. vllm/lora/models.py +802 -0
  235. vllm/lora/ops/__init__.py +0 -0
  236. vllm/lora/ops/torch_ops/__init__.py +15 -0
  237. vllm/lora/ops/torch_ops/lora_ops.py +115 -0
  238. vllm/lora/ops/triton_ops/__init__.py +11 -0
  239. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  240. vllm/lora/ops/triton_ops/lora_expand.py +293 -0
  241. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
  242. vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
  243. vllm/lora/ops/triton_ops/utils.py +121 -0
  244. vllm/lora/peft_helper.py +115 -0
  245. vllm/lora/punica_wrapper/__init__.py +9 -0
  246. vllm/lora/punica_wrapper/punica_base.py +483 -0
  247. vllm/lora/punica_wrapper/punica_cpu.py +348 -0
  248. vllm/lora/punica_wrapper/punica_gpu.py +289 -0
  249. vllm/lora/punica_wrapper/punica_hpu.py +144 -0
  250. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  251. vllm/lora/punica_wrapper/utils.py +161 -0
  252. vllm/lora/request.py +97 -0
  253. vllm/lora/resolver.py +83 -0
  254. vllm/lora/utils.py +237 -0
  255. vllm/lora/worker_manager.py +251 -0
  256. vllm/model_executor/__init__.py +15 -0
  257. vllm/model_executor/custom_op.py +153 -0
  258. vllm/model_executor/guided_decoding/__init__.py +180 -0
  259. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  260. vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
  261. vllm/model_executor/guided_decoding/guided_fields.py +42 -0
  262. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
  263. vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
  264. vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
  265. vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
  266. vllm/model_executor/guided_decoding/utils.py +241 -0
  267. vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
  268. vllm/model_executor/layers/__init__.py +0 -0
  269. vllm/model_executor/layers/activation.py +368 -0
  270. vllm/model_executor/layers/fused_moe/__init__.py +51 -0
  271. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  272. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  273. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  274. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  275. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  276. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  277. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  278. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  279. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  280. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  281. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  282. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  283. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  284. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  285. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  286. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  287. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  288. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  289. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  290. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  426. vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
  427. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
  428. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
  429. vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
  430. vllm/model_executor/layers/fused_moe/layer.py +949 -0
  431. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  432. vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
  433. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
  434. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
  435. vllm/model_executor/layers/fused_moe/utils.py +48 -0
  436. vllm/model_executor/layers/layernorm.py +277 -0
  437. vllm/model_executor/layers/lightning_attn.py +651 -0
  438. vllm/model_executor/layers/linear.py +1518 -0
  439. vllm/model_executor/layers/logits_processor.py +196 -0
  440. vllm/model_executor/layers/mamba/__init__.py +0 -0
  441. vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
  442. vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
  443. vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
  444. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  445. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
  446. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
  447. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
  448. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
  449. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
  450. vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
  451. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
  452. vllm/model_executor/layers/pooler.py +336 -0
  453. vllm/model_executor/layers/quantization/__init__.py +153 -0
  454. vllm/model_executor/layers/quantization/aqlm.py +374 -0
  455. vllm/model_executor/layers/quantization/awq.py +184 -0
  456. vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
  457. vllm/model_executor/layers/quantization/awq_triton.py +319 -0
  458. vllm/model_executor/layers/quantization/base_config.py +145 -0
  459. vllm/model_executor/layers/quantization/bitblas.py +459 -0
  460. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  461. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  462. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
  463. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
  464. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
  465. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
  466. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
  467. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
  468. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
  469. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
  470. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
  471. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
  472. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
  473. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
  474. vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
  475. vllm/model_executor/layers/quantization/experts_int8.py +194 -0
  476. vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
  477. vllm/model_executor/layers/quantization/fp8.py +832 -0
  478. vllm/model_executor/layers/quantization/gguf.py +408 -0
  479. vllm/model_executor/layers/quantization/gptq.py +276 -0
  480. vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
  481. vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
  482. vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
  483. vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
  484. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  485. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  486. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
  487. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
  488. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  489. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
  490. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
  491. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
  492. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
  493. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
  494. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
  495. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
  496. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
  497. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
  498. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  499. vllm/model_executor/layers/quantization/kv_cache.py +137 -0
  500. vllm/model_executor/layers/quantization/marlin.py +259 -0
  501. vllm/model_executor/layers/quantization/modelopt.py +410 -0
  502. vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
  503. vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
  504. vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
  505. vllm/model_executor/layers/quantization/qqq.py +273 -0
  506. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  507. vllm/model_executor/layers/quantization/quark/quark.py +385 -0
  508. vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
  509. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
  510. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
  511. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
  512. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
  513. vllm/model_executor/layers/quantization/quark/utils.py +102 -0
  514. vllm/model_executor/layers/quantization/schema.py +85 -0
  515. vllm/model_executor/layers/quantization/torchao.py +127 -0
  516. vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
  517. vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
  518. vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
  519. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
  520. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  521. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  522. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  523. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  524. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  525. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  526. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  527. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  528. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  529. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  530. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  531. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  532. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  533. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  534. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  535. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  536. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  537. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  538. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  539. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  540. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  541. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  542. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  543. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  544. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  545. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  546. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  547. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  548. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  549. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  550. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  551. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  552. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  553. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  554. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  555. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  556. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  557. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  558. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  559. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  560. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
  723. vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
  724. vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
  725. vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
  726. vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
  727. vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
  728. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
  729. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
  730. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  731. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
  732. vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
  733. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
  734. vllm/model_executor/layers/rejection_sampler.py +400 -0
  735. vllm/model_executor/layers/resampler.py +269 -0
  736. vllm/model_executor/layers/rotary_embedding.py +1598 -0
  737. vllm/model_executor/layers/sampler.py +1221 -0
  738. vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
  739. vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
  740. vllm/model_executor/layers/utils.py +99 -0
  741. vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
  742. vllm/model_executor/model_loader/__init__.py +20 -0
  743. vllm/model_executor/model_loader/loader.py +1542 -0
  744. vllm/model_executor/model_loader/neuron.py +243 -0
  745. vllm/model_executor/model_loader/tensorizer.py +468 -0
  746. vllm/model_executor/model_loader/utils.py +171 -0
  747. vllm/model_executor/model_loader/weight_utils.py +749 -0
  748. vllm/model_executor/models/__init__.py +27 -0
  749. vllm/model_executor/models/adapters.py +247 -0
  750. vllm/model_executor/models/arctic.py +559 -0
  751. vllm/model_executor/models/aria.py +656 -0
  752. vllm/model_executor/models/aya_vision.py +461 -0
  753. vllm/model_executor/models/baichuan.py +469 -0
  754. vllm/model_executor/models/bamba.py +542 -0
  755. vllm/model_executor/models/bart.py +936 -0
  756. vllm/model_executor/models/bert.py +725 -0
  757. vllm/model_executor/models/blip.py +337 -0
  758. vllm/model_executor/models/blip2.py +717 -0
  759. vllm/model_executor/models/bloom.py +358 -0
  760. vllm/model_executor/models/chameleon.py +1135 -0
  761. vllm/model_executor/models/chatglm.py +476 -0
  762. vllm/model_executor/models/clip.py +410 -0
  763. vllm/model_executor/models/commandr.py +466 -0
  764. vllm/model_executor/models/constant_size_cache.py +136 -0
  765. vllm/model_executor/models/dbrx.py +469 -0
  766. vllm/model_executor/models/deepseek.py +484 -0
  767. vllm/model_executor/models/deepseek_mtp.py +266 -0
  768. vllm/model_executor/models/deepseek_v2.py +830 -0
  769. vllm/model_executor/models/deepseek_vl2.py +647 -0
  770. vllm/model_executor/models/eagle.py +247 -0
  771. vllm/model_executor/models/exaone.py +548 -0
  772. vllm/model_executor/models/fairseq2_llama.py +153 -0
  773. vllm/model_executor/models/falcon.py +508 -0
  774. vllm/model_executor/models/florence2.py +1102 -0
  775. vllm/model_executor/models/fuyu.py +388 -0
  776. vllm/model_executor/models/gemma.py +423 -0
  777. vllm/model_executor/models/gemma2.py +423 -0
  778. vllm/model_executor/models/gemma3.py +531 -0
  779. vllm/model_executor/models/gemma3_mm.py +716 -0
  780. vllm/model_executor/models/glm.py +22 -0
  781. vllm/model_executor/models/glm4.py +303 -0
  782. vllm/model_executor/models/glm4v.py +647 -0
  783. vllm/model_executor/models/gpt2.py +313 -0
  784. vllm/model_executor/models/gpt_bigcode.py +336 -0
  785. vllm/model_executor/models/gpt_j.py +337 -0
  786. vllm/model_executor/models/gpt_neox.py +330 -0
  787. vllm/model_executor/models/granite.py +494 -0
  788. vllm/model_executor/models/granite_speech.py +777 -0
  789. vllm/model_executor/models/granitemoe.py +435 -0
  790. vllm/model_executor/models/granitemoeshared.py +339 -0
  791. vllm/model_executor/models/gritlm.py +245 -0
  792. vllm/model_executor/models/grok1.py +560 -0
  793. vllm/model_executor/models/h2ovl.py +542 -0
  794. vllm/model_executor/models/idefics2_vision_model.py +387 -0
  795. vllm/model_executor/models/idefics3.py +767 -0
  796. vllm/model_executor/models/interfaces.py +569 -0
  797. vllm/model_executor/models/interfaces_base.py +163 -0
  798. vllm/model_executor/models/intern_vit.py +476 -0
  799. vllm/model_executor/models/internlm2.py +453 -0
  800. vllm/model_executor/models/internlm2_ve.py +146 -0
  801. vllm/model_executor/models/internvl.py +945 -0
  802. vllm/model_executor/models/jais.py +371 -0
  803. vllm/model_executor/models/jamba.py +590 -0
  804. vllm/model_executor/models/kimi_vl.py +577 -0
  805. vllm/model_executor/models/llama.py +619 -0
  806. vllm/model_executor/models/llama4.py +530 -0
  807. vllm/model_executor/models/llama_eagle.py +152 -0
  808. vllm/model_executor/models/llama_eagle3.py +232 -0
  809. vllm/model_executor/models/llava.py +869 -0
  810. vllm/model_executor/models/llava_next.py +582 -0
  811. vllm/model_executor/models/llava_next_video.py +470 -0
  812. vllm/model_executor/models/llava_onevision.py +954 -0
  813. vllm/model_executor/models/mamba.py +271 -0
  814. vllm/model_executor/models/mamba2.py +302 -0
  815. vllm/model_executor/models/mamba_cache.py +76 -0
  816. vllm/model_executor/models/medusa.py +210 -0
  817. vllm/model_executor/models/minicpm.py +592 -0
  818. vllm/model_executor/models/minicpm3.py +229 -0
  819. vllm/model_executor/models/minicpmo.py +725 -0
  820. vllm/model_executor/models/minicpmv.py +1287 -0
  821. vllm/model_executor/models/minimax_cache.py +35 -0
  822. vllm/model_executor/models/minimax_text_01.py +1261 -0
  823. vllm/model_executor/models/mistral3.py +598 -0
  824. vllm/model_executor/models/mixtral.py +485 -0
  825. vllm/model_executor/models/mixtral_quant.py +447 -0
  826. vllm/model_executor/models/mllama.py +1623 -0
  827. vllm/model_executor/models/mllama4.py +838 -0
  828. vllm/model_executor/models/mlp_speculator.py +205 -0
  829. vllm/model_executor/models/modernbert.py +325 -0
  830. vllm/model_executor/models/module_mapping.py +71 -0
  831. vllm/model_executor/models/molmo.py +1567 -0
  832. vllm/model_executor/models/moonvit.py +628 -0
  833. vllm/model_executor/models/mpt.py +329 -0
  834. vllm/model_executor/models/nemotron.py +506 -0
  835. vllm/model_executor/models/nemotron_nas.py +446 -0
  836. vllm/model_executor/models/nvlm_d.py +212 -0
  837. vllm/model_executor/models/olmo.py +390 -0
  838. vllm/model_executor/models/olmo2.py +412 -0
  839. vllm/model_executor/models/olmoe.py +449 -0
  840. vllm/model_executor/models/opt.py +410 -0
  841. vllm/model_executor/models/orion.py +356 -0
  842. vllm/model_executor/models/paligemma.py +397 -0
  843. vllm/model_executor/models/persimmon.py +342 -0
  844. vllm/model_executor/models/phi.py +354 -0
  845. vllm/model_executor/models/phi3.py +18 -0
  846. vllm/model_executor/models/phi3_small.py +463 -0
  847. vllm/model_executor/models/phi3v.py +722 -0
  848. vllm/model_executor/models/phi4mm.py +1263 -0
  849. vllm/model_executor/models/phi4mm_audio.py +1232 -0
  850. vllm/model_executor/models/phi4mm_utils.py +1883 -0
  851. vllm/model_executor/models/phimoe.py +666 -0
  852. vllm/model_executor/models/pixtral.py +1281 -0
  853. vllm/model_executor/models/plamo2.py +736 -0
  854. vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
  855. vllm/model_executor/models/qwen.py +360 -0
  856. vllm/model_executor/models/qwen2.py +552 -0
  857. vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
  858. vllm/model_executor/models/qwen2_5_vl.py +1136 -0
  859. vllm/model_executor/models/qwen2_audio.py +402 -0
  860. vllm/model_executor/models/qwen2_moe.py +531 -0
  861. vllm/model_executor/models/qwen2_rm.py +130 -0
  862. vllm/model_executor/models/qwen2_vl.py +1409 -0
  863. vllm/model_executor/models/qwen3.py +319 -0
  864. vllm/model_executor/models/qwen3_moe.py +528 -0
  865. vllm/model_executor/models/qwen_vl.py +784 -0
  866. vllm/model_executor/models/registry.py +611 -0
  867. vllm/model_executor/models/roberta.py +332 -0
  868. vllm/model_executor/models/siglip.py +522 -0
  869. vllm/model_executor/models/skyworkr1v.py +949 -0
  870. vllm/model_executor/models/smolvlm.py +51 -0
  871. vllm/model_executor/models/solar.py +504 -0
  872. vllm/model_executor/models/stablelm.py +349 -0
  873. vllm/model_executor/models/starcoder2.py +355 -0
  874. vllm/model_executor/models/telechat2.py +139 -0
  875. vllm/model_executor/models/teleflm.py +78 -0
  876. vllm/model_executor/models/transformers.py +442 -0
  877. vllm/model_executor/models/ultravox.py +655 -0
  878. vllm/model_executor/models/utils.py +714 -0
  879. vllm/model_executor/models/vision.py +149 -0
  880. vllm/model_executor/models/whisper.py +746 -0
  881. vllm/model_executor/models/zamba2.py +1008 -0
  882. vllm/model_executor/parameter.py +458 -0
  883. vllm/model_executor/pooling_metadata.py +71 -0
  884. vllm/model_executor/sampling_metadata.py +596 -0
  885. vllm/model_executor/utils.py +53 -0
  886. vllm/multimodal/__init__.py +31 -0
  887. vllm/multimodal/audio.py +105 -0
  888. vllm/multimodal/base.py +218 -0
  889. vllm/multimodal/hasher.py +103 -0
  890. vllm/multimodal/image.py +77 -0
  891. vllm/multimodal/inputs.py +843 -0
  892. vllm/multimodal/parse.py +454 -0
  893. vllm/multimodal/processing.py +1760 -0
  894. vllm/multimodal/profiling.py +274 -0
  895. vllm/multimodal/registry.py +321 -0
  896. vllm/multimodal/utils.py +386 -0
  897. vllm/multimodal/video.py +166 -0
  898. vllm/outputs.py +521 -0
  899. vllm/platforms/__init__.py +286 -0
  900. vllm/platforms/cpu.py +182 -0
  901. vllm/platforms/cuda.py +463 -0
  902. vllm/platforms/hpu.py +94 -0
  903. vllm/platforms/interface.py +427 -0
  904. vllm/platforms/neuron.py +69 -0
  905. vllm/platforms/rocm.py +346 -0
  906. vllm/platforms/tpu.py +174 -0
  907. vllm/platforms/xpu.py +142 -0
  908. vllm/plugins/__init__.py +82 -0
  909. vllm/pooling_params.py +53 -0
  910. vllm/profiler/__init__.py +7 -0
  911. vllm/profiler/layerwise_profile.py +374 -0
  912. vllm/profiler/utils.py +147 -0
  913. vllm/prompt_adapter/__init__.py +0 -0
  914. vllm/prompt_adapter/layers.py +82 -0
  915. vllm/prompt_adapter/models.py +357 -0
  916. vllm/prompt_adapter/request.py +36 -0
  917. vllm/prompt_adapter/utils.py +97 -0
  918. vllm/prompt_adapter/worker_manager.py +178 -0
  919. vllm/py.typed +2 -0
  920. vllm/reasoning/__init__.py +12 -0
  921. vllm/reasoning/abs_reasoning_parsers.py +189 -0
  922. vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
  923. vllm/reasoning/granite_reasoning_parser.py +362 -0
  924. vllm/sampling_params.py +598 -0
  925. vllm/scalar_type.py +335 -0
  926. vllm/scripts.py +14 -0
  927. vllm/sequence.py +1486 -0
  928. vllm/spec_decode/__init__.py +0 -0
  929. vllm/spec_decode/batch_expansion.py +505 -0
  930. vllm/spec_decode/draft_model_runner.py +335 -0
  931. vllm/spec_decode/interfaces.py +98 -0
  932. vllm/spec_decode/medusa_worker.py +137 -0
  933. vllm/spec_decode/metrics.py +212 -0
  934. vllm/spec_decode/mlp_speculator_worker.py +93 -0
  935. vllm/spec_decode/mqa_scorer.py +159 -0
  936. vllm/spec_decode/multi_step_worker.py +416 -0
  937. vllm/spec_decode/ngram_worker.py +195 -0
  938. vllm/spec_decode/proposer_worker_base.py +58 -0
  939. vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
  940. vllm/spec_decode/spec_decode_worker.py +1324 -0
  941. vllm/spec_decode/target_model_runner.py +44 -0
  942. vllm/spec_decode/top1_proposer.py +274 -0
  943. vllm/spec_decode/util.py +276 -0
  944. vllm/test_utils.py +129 -0
  945. vllm/third_party/__init__.py +0 -0
  946. vllm/third_party/pynvml.py +6139 -0
  947. vllm/tracing.py +130 -0
  948. vllm/transformers_utils/__init__.py +19 -0
  949. vllm/transformers_utils/config.py +813 -0
  950. vllm/transformers_utils/configs/__init__.py +52 -0
  951. vllm/transformers_utils/configs/arctic.py +206 -0
  952. vllm/transformers_utils/configs/chatglm.py +71 -0
  953. vllm/transformers_utils/configs/cohere2.py +194 -0
  954. vllm/transformers_utils/configs/dbrx.py +280 -0
  955. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  956. vllm/transformers_utils/configs/eagle.py +65 -0
  957. vllm/transformers_utils/configs/exaone.py +191 -0
  958. vllm/transformers_utils/configs/falcon.py +89 -0
  959. vllm/transformers_utils/configs/h2ovl.py +15 -0
  960. vllm/transformers_utils/configs/internvl.py +53 -0
  961. vllm/transformers_utils/configs/jais.py +237 -0
  962. vllm/transformers_utils/configs/kimi_vl.py +36 -0
  963. vllm/transformers_utils/configs/medusa.py +62 -0
  964. vllm/transformers_utils/configs/mllama.py +30 -0
  965. vllm/transformers_utils/configs/mlp_speculator.py +67 -0
  966. vllm/transformers_utils/configs/moonvit.py +32 -0
  967. vllm/transformers_utils/configs/mpt.py +179 -0
  968. vllm/transformers_utils/configs/nemotron.py +204 -0
  969. vllm/transformers_utils/configs/nvlm_d.py +14 -0
  970. vllm/transformers_utils/configs/skyworkr1v.py +53 -0
  971. vllm/transformers_utils/configs/solar.py +246 -0
  972. vllm/transformers_utils/configs/telechat2.py +63 -0
  973. vllm/transformers_utils/configs/ultravox.py +107 -0
  974. vllm/transformers_utils/detokenizer.py +167 -0
  975. vllm/transformers_utils/detokenizer_utils.py +188 -0
  976. vllm/transformers_utils/processor.py +210 -0
  977. vllm/transformers_utils/processors/__init__.py +6 -0
  978. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  979. vllm/transformers_utils/s3_utils.py +161 -0
  980. vllm/transformers_utils/tokenizer.py +291 -0
  981. vllm/transformers_utils/tokenizer_base.py +146 -0
  982. vllm/transformers_utils/tokenizer_group.py +110 -0
  983. vllm/transformers_utils/tokenizers/__init__.py +9 -0
  984. vllm/transformers_utils/tokenizers/mistral.py +483 -0
  985. vllm/transformers_utils/utils.py +98 -0
  986. vllm/triton_utils/__init__.py +5 -0
  987. vllm/triton_utils/importing.py +53 -0
  988. vllm/usage/__init__.py +0 -0
  989. vllm/usage/usage_lib.py +255 -0
  990. vllm/utils.py +2692 -0
  991. vllm/v1/__init__.py +0 -0
  992. vllm/v1/attention/__init__.py +0 -0
  993. vllm/v1/attention/backends/__init__.py +0 -0
  994. vllm/v1/attention/backends/flash_attn.py +783 -0
  995. vllm/v1/attention/backends/flashinfer.py +638 -0
  996. vllm/v1/attention/backends/mla/__init__.py +0 -0
  997. vllm/v1/attention/backends/mla/common.py +974 -0
  998. vllm/v1/attention/backends/mla/flashmla.py +149 -0
  999. vllm/v1/attention/backends/mla/triton_mla.py +118 -0
  1000. vllm/v1/attention/backends/pallas.py +221 -0
  1001. vllm/v1/attention/backends/triton_attn.py +198 -0
  1002. vllm/v1/core/__init__.py +0 -0
  1003. vllm/v1/core/block_pool.py +281 -0
  1004. vllm/v1/core/encoder_cache_manager.py +149 -0
  1005. vllm/v1/core/kv_cache_manager.py +385 -0
  1006. vllm/v1/core/kv_cache_utils.py +744 -0
  1007. vllm/v1/core/sched/__init__.py +0 -0
  1008. vllm/v1/core/sched/interface.py +134 -0
  1009. vllm/v1/core/sched/output.py +126 -0
  1010. vllm/v1/core/sched/scheduler.py +838 -0
  1011. vllm/v1/core/sched/utils.py +22 -0
  1012. vllm/v1/core/specialized_manager.py +161 -0
  1013. vllm/v1/engine/__init__.py +166 -0
  1014. vllm/v1/engine/async_llm.py +532 -0
  1015. vllm/v1/engine/core.py +701 -0
  1016. vllm/v1/engine/core_client.py +942 -0
  1017. vllm/v1/engine/detokenizer.py +260 -0
  1018. vllm/v1/engine/exceptions.py +16 -0
  1019. vllm/v1/engine/llm_engine.py +285 -0
  1020. vllm/v1/engine/logprobs.py +198 -0
  1021. vllm/v1/engine/mm_input_cache.py +82 -0
  1022. vllm/v1/engine/output_processor.py +420 -0
  1023. vllm/v1/engine/parallel_sampling.py +132 -0
  1024. vllm/v1/engine/processor.py +387 -0
  1025. vllm/v1/executor/__init__.py +0 -0
  1026. vllm/v1/executor/abstract.py +112 -0
  1027. vllm/v1/executor/multiproc_executor.py +480 -0
  1028. vllm/v1/executor/ray_distributed_executor.py +61 -0
  1029. vllm/v1/kv_cache_interface.py +166 -0
  1030. vllm/v1/metrics/__init__.py +0 -0
  1031. vllm/v1/metrics/loggers.py +498 -0
  1032. vllm/v1/metrics/stats.py +238 -0
  1033. vllm/v1/outputs.py +111 -0
  1034. vllm/v1/request.py +178 -0
  1035. vllm/v1/sample/__init__.py +0 -0
  1036. vllm/v1/sample/metadata.py +43 -0
  1037. vllm/v1/sample/ops/__init__.py +0 -0
  1038. vllm/v1/sample/ops/bad_words.py +38 -0
  1039. vllm/v1/sample/ops/penalties.py +58 -0
  1040. vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
  1041. vllm/v1/sample/rejection_sampler.py +631 -0
  1042. vllm/v1/sample/sampler.py +270 -0
  1043. vllm/v1/sample/tpu/__init__.py +0 -0
  1044. vllm/v1/sample/tpu/metadata.py +118 -0
  1045. vllm/v1/sample/tpu/sampler.py +154 -0
  1046. vllm/v1/serial_utils.py +274 -0
  1047. vllm/v1/spec_decode/__init__.py +0 -0
  1048. vllm/v1/spec_decode/eagle.py +318 -0
  1049. vllm/v1/spec_decode/metadata.py +61 -0
  1050. vllm/v1/spec_decode/metrics.py +164 -0
  1051. vllm/v1/spec_decode/ngram_proposer.py +131 -0
  1052. vllm/v1/spec_decode/utils.py +18 -0
  1053. vllm/v1/stats/__init__.py +0 -0
  1054. vllm/v1/stats/common.py +453 -0
  1055. vllm/v1/structured_output/__init__.py +113 -0
  1056. vllm/v1/structured_output/backend_guidance.py +215 -0
  1057. vllm/v1/structured_output/backend_types.py +96 -0
  1058. vllm/v1/structured_output/backend_xgrammar.py +299 -0
  1059. vllm/v1/structured_output/request.py +84 -0
  1060. vllm/v1/structured_output/utils.py +174 -0
  1061. vllm/v1/utils.py +249 -0
  1062. vllm/v1/worker/__init__.py +0 -0
  1063. vllm/v1/worker/block_table.py +87 -0
  1064. vllm/v1/worker/gpu_input_batch.py +677 -0
  1065. vllm/v1/worker/gpu_model_runner.py +1776 -0
  1066. vllm/v1/worker/gpu_worker.py +349 -0
  1067. vllm/v1/worker/lora_model_runner_mixin.py +145 -0
  1068. vllm/v1/worker/tpu_model_runner.py +1419 -0
  1069. vllm/v1/worker/tpu_worker.py +260 -0
  1070. vllm/v1/worker/utils.py +74 -0
  1071. vllm/v1/worker/worker_base.py +64 -0
  1072. vllm/version.py +40 -0
  1073. vllm/vllm_flash_attn/.gitkeep +0 -0
  1074. vllm/worker/__init__.py +0 -0
  1075. vllm/worker/cache_engine.py +144 -0
  1076. vllm/worker/cpu_enc_dec_model_runner.py +323 -0
  1077. vllm/worker/cpu_model_runner.py +668 -0
  1078. vllm/worker/cpu_pooling_model_runner.py +122 -0
  1079. vllm/worker/cpu_worker.py +400 -0
  1080. vllm/worker/enc_dec_model_runner.py +542 -0
  1081. vllm/worker/hpu_model_runner.py +2221 -0
  1082. vllm/worker/hpu_worker.py +483 -0
  1083. vllm/worker/model_runner.py +2056 -0
  1084. vllm/worker/model_runner_base.py +281 -0
  1085. vllm/worker/multi_step_hpu_worker.py +122 -0
  1086. vllm/worker/multi_step_model_runner.py +908 -0
  1087. vllm/worker/multi_step_tpu_worker.py +107 -0
  1088. vllm/worker/multi_step_worker.py +196 -0
  1089. vllm/worker/neuron_model_runner.py +336 -0
  1090. vllm/worker/neuron_worker.py +138 -0
  1091. vllm/worker/pooling_model_runner.py +200 -0
  1092. vllm/worker/tpu_model_runner.py +908 -0
  1093. vllm/worker/tpu_worker.py +332 -0
  1094. vllm/worker/utils.py +52 -0
  1095. vllm/worker/worker.py +570 -0
  1096. vllm/worker/worker_base.py +644 -0
  1097. vllm/worker/xpu_model_runner.py +603 -0
  1098. vllm/worker/xpu_worker.py +185 -0
  1099. vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
  1100. vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
  1101. vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
  1102. vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
  1103. vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1567 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ import math
4
+ from collections.abc import Iterable, Mapping, Sequence
5
+ from dataclasses import dataclass
6
+ from functools import cached_property, partial
7
+ from typing import List, Optional, Set, Tuple, TypedDict, Union
8
+
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ from einops import rearrange
14
+ from transformers import (BatchFeature, PretrainedConfig, ProcessorMixin,
15
+ TensorType)
16
+ from transformers.image_utils import ImageInput
17
+ from transformers.tokenization_utils_base import TextInput
18
+
19
+ from vllm.attention import Attention
20
+ from vllm.attention.layer import MultiHeadAttention
21
+ from vllm.compilation.decorators import support_torch_compile
22
+ from vllm.config import CacheConfig, VllmConfig
23
+ from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
24
+ get_tensor_model_parallel_world_size,
25
+ split_tensor_along_last_dim,
26
+ tensor_model_parallel_all_gather)
27
+ from vllm.model_executor import SamplingMetadata
28
+ from vllm.model_executor.layers.activation import (MulAndSilu, QuickGELU,
29
+ SiluAndMul)
30
+ from vllm.model_executor.layers.layernorm import RMSNorm
31
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
32
+ MergedColumnParallelLinear,
33
+ QKVParallelLinear,
34
+ RowParallelLinear)
35
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
36
+ from vllm.model_executor.layers.quantization import QuantizationConfig
37
+ from vllm.model_executor.layers.rotary_embedding import get_rope
38
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
39
+ ParallelLMHead, VocabParallelEmbedding)
40
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
41
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
42
+ from vllm.multimodal import MULTIMODAL_REGISTRY
43
+ from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
44
+ MultiModalKwargs)
45
+ from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
46
+ MultiModalDataItems)
47
+ from vllm.multimodal.processing import (BaseMultiModalProcessor,
48
+ BaseProcessingInfo, PromptIndexTargets,
49
+ PromptInsertion, PromptUpdate,
50
+ PromptUpdateDetails)
51
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
52
+ from vllm.sequence import IntermediateTensors
53
+
54
+ from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
55
+ SupportsMultiModal, SupportsPP, SupportsQuant)
56
+ from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
57
+ is_pp_missing_parameter,
58
+ make_empty_intermediate_tensors_factory, make_layers,
59
+ maybe_prefix, merge_multimodal_embeddings)
60
+
61
+ # TODO: hard-coded for now. Consider making it configurable.
62
+ VIT_LAYERS = [-2, -9]
63
+ NUM_PREFIX_TOKENS = 1
64
+ ADDITIONAL_VOCAB_SIZE = 128
65
+ IMAGE_PATCH_TOKEN = "<im_patch>"
66
+ IM_COL_TOKEN = "<im_col>"
67
+ IM_START_TOKEN = "<im_start>"
68
+ IM_END_TOKEN = "<im_end>"
69
+ POOLING_SIZE = 2
70
+
71
+
72
+ class MolmoImageInputs(TypedDict):
73
+ images: Union[torch.Tensor, list[torch.Tensor]]
74
+ """Shape: `(batch_size * num_images, num_crops, num_patch, patch_dim)`"""
75
+
76
+ image_masks: Optional[Union[torch.Tensor, list[torch.Tensor]]]
77
+ """Shape: `(batch_size * num_images, num_crops, num_patch)`"""
78
+
79
+ feat_is_patch: Union[torch.Tensor, list[torch.Tensor]]
80
+ """
81
+ A boolean mask indicating which image features correspond
82
+ to patch tokens.
83
+
84
+ Shape: `(batch_size * num_images, num_crops, num_patch)`
85
+ """
86
+
87
+ num_crops: torch.Tensor
88
+ """Shape: `(batch_size * num_images)`"""
89
+
90
+
91
+ @dataclass
92
+ class VisionBackboneConfig:
93
+ image_default_input_size: Tuple[int, int] = (336, 336)
94
+ image_patch_size: int = 14
95
+ image_pos_patch_size: int = 14
96
+ image_emb_dim: int = 1024
97
+ image_num_heads: int = 16
98
+ image_num_key_value_heads: int = 16
99
+ image_num_layers: int = 23
100
+ image_mlp_dim: int = 4096
101
+ image_mlp_activations: str = "quick_gelu"
102
+ image_num_pos: int = 577
103
+ image_norm_eps: float = 1e-5
104
+
105
+ def __post_init__(self):
106
+ self.image_default_input_size = tuple(
107
+ self.image_default_input_size) # type: ignore[assignment]
108
+
109
+ @property
110
+ def image_num_patch(self):
111
+ h, w = self.image_default_input_size
112
+ return h // self.image_patch_size, w // self.image_patch_size
113
+
114
+
115
+ class ViTMLP(nn.Module):
116
+ """MLP used in Vision Transformer."""
117
+
118
+ def __init__(
119
+ self,
120
+ config: VisionBackboneConfig,
121
+ quant_config: Optional[QuantizationConfig] = None,
122
+ ):
123
+ super().__init__()
124
+ self.w1 = ColumnParallelLinear(
125
+ config.image_emb_dim,
126
+ config.image_mlp_dim,
127
+ bias=True,
128
+ quant_config=quant_config,
129
+ )
130
+ # Activation function.
131
+ assert config.image_mlp_activations == "quick_gelu"
132
+ self.act = QuickGELU()
133
+ self.w2 = RowParallelLinear(
134
+ config.image_mlp_dim,
135
+ config.image_emb_dim,
136
+ bias=True,
137
+ quant_config=quant_config,
138
+ )
139
+
140
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
141
+ x, _ = self.w1(x)
142
+ x = self.act(x)
143
+ x, _ = self.w2(x)
144
+ return x
145
+
146
+
147
+ class MultiHeadDotProductAttention(nn.Module):
148
+ """Multi-head attention used in Vision Transformer."""
149
+
150
+ def __init__(
151
+ self,
152
+ config: VisionBackboneConfig,
153
+ use_bias: bool = True,
154
+ nlayers: int = 1,
155
+ quant_config: Optional[QuantizationConfig] = None,
156
+ ):
157
+ super().__init__()
158
+
159
+ self.hidden_size = config.image_emb_dim
160
+ self.total_num_heads = config.image_num_heads
161
+ tp_size = get_tensor_model_parallel_world_size()
162
+
163
+ assert self.hidden_size % self.total_num_heads == 0
164
+ assert self.total_num_heads % tp_size == 0
165
+
166
+ self.num_heads = self.total_num_heads // tp_size
167
+ self.head_dim = self.hidden_size // self.total_num_heads
168
+
169
+ self.total_num_kv_heads = config.image_num_key_value_heads
170
+ if self.total_num_kv_heads >= tp_size:
171
+ assert self.total_num_kv_heads % tp_size == 0
172
+ else:
173
+ assert tp_size % self.total_num_kv_heads == 0
174
+
175
+ self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
176
+
177
+ self.wq = ColumnParallelLinear(
178
+ nlayers * self.hidden_size,
179
+ self.total_num_heads * self.head_dim,
180
+ bias=use_bias,
181
+ quant_config=quant_config,
182
+ )
183
+ self.wk = ColumnParallelLinear(
184
+ nlayers * self.hidden_size,
185
+ self.total_num_kv_heads * self.head_dim,
186
+ bias=use_bias,
187
+ quant_config=quant_config,
188
+ )
189
+ self.wv = ColumnParallelLinear(
190
+ nlayers * self.hidden_size,
191
+ self.total_num_kv_heads * self.head_dim,
192
+ bias=use_bias,
193
+ quant_config=quant_config,
194
+ )
195
+ self.wo = RowParallelLinear(
196
+ self.total_num_heads * self.head_dim,
197
+ self.hidden_size,
198
+ bias=use_bias,
199
+ quant_config=quant_config,
200
+ )
201
+
202
+ self.scale = self.head_dim**-0.5
203
+ self.attn = MultiHeadAttention(self.num_heads,
204
+ self.head_dim,
205
+ self.scale,
206
+ num_kv_heads=self.num_kv_heads)
207
+
208
+ def forward(self,
209
+ inputs_q: torch.Tensor,
210
+ inputs_kv: Optional[torch.Tensor] = None) -> torch.Tensor:
211
+
212
+ if inputs_kv is not None:
213
+ inputs_k = inputs_kv
214
+ inputs_v = inputs_kv
215
+ else:
216
+ inputs_k = inputs_q
217
+ inputs_v = inputs_q
218
+
219
+ xq, _ = self.wq(inputs_q)
220
+ xk, _ = self.wk(inputs_k)
221
+ xv, _ = self.wv(inputs_v)
222
+
223
+ output = self.attn(xq, xk, xv)
224
+ output, _ = self.wo(output)
225
+
226
+ return output
227
+
228
+
229
+ class ResidualAttentionBlock(nn.Module):
230
+ """Residual attention block used in Vision Transformer."""
231
+
232
+ def __init__(
233
+ self,
234
+ config: VisionBackboneConfig,
235
+ quant_config: Optional[QuantizationConfig] = None,
236
+ ):
237
+ super().__init__()
238
+ self.attention = MultiHeadDotProductAttention(
239
+ config, quant_config=quant_config)
240
+ self.feed_forward = ViTMLP(config, quant_config)
241
+ self.attention_norm = nn.LayerNorm(
242
+ config.image_emb_dim,
243
+ eps=config.image_norm_eps,
244
+ )
245
+ self.ffn_norm = nn.LayerNorm(
246
+ config.image_emb_dim,
247
+ eps=config.image_norm_eps,
248
+ )
249
+
250
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
251
+ x = x + self.attention(self.attention_norm(x))
252
+ x = x + self.feed_forward(self.ffn_norm(x))
253
+ return x
254
+
255
+
256
+ class BlockCollection(nn.Module):
257
+ """Collection of residual attention blocks used in Vision Transformer."""
258
+
259
+ def __init__(
260
+ self,
261
+ config: VisionBackboneConfig,
262
+ quant_config: Optional[QuantizationConfig] = None,
263
+ ):
264
+ super().__init__()
265
+ self.resblocks = nn.ModuleList([
266
+ ResidualAttentionBlock(config, quant_config)
267
+ for _ in range(config.image_num_layers)
268
+ ])
269
+
270
+ def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
271
+ hidden_states = []
272
+ for r in self.resblocks:
273
+ x = r(x)
274
+ hidden_states.append(x)
275
+ return hidden_states
276
+
277
+
278
+ def _expand_token(token: torch.Tensor, batch_size: int) -> torch.Tensor:
279
+ return token.view(1, 1, -1).expand(batch_size, -1, -1)
280
+
281
+
282
+ class VisionTransformer(nn.Module):
283
+ """Vision Transformer used in Vision Backbone."""
284
+
285
+ def __init__(
286
+ self,
287
+ config: VisionBackboneConfig,
288
+ quant_config: Optional[QuantizationConfig] = None,
289
+ ):
290
+ super().__init__()
291
+ scale = config.image_emb_dim**-0.5
292
+ self.patch_num = config.image_num_patch
293
+ self.class_embedding = nn.Parameter(
294
+ torch.randn(config.image_emb_dim) * scale)
295
+ self.num_prefix_tokens: int = NUM_PREFIX_TOKENS
296
+ self.positional_embedding = nn.Parameter(
297
+ torch.randn(config.image_num_pos, config.image_emb_dim) * scale)
298
+ image_patch_size = config.image_patch_size
299
+ self.patch_embedding = nn.Linear(
300
+ image_patch_size * image_patch_size * 3,
301
+ config.image_emb_dim,
302
+ bias=False,
303
+ )
304
+ self.pre_ln = nn.LayerNorm(config.image_emb_dim,
305
+ eps=config.image_norm_eps)
306
+ self.transformer = BlockCollection(config, quant_config)
307
+
308
+ def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor:
309
+ cls_emb = self.positional_embedding[0:1]
310
+ pos_emb = self.positional_embedding[1:]
311
+
312
+ pos_emb = pos_emb.reshape(
313
+ (int(math.sqrt(pos_emb.shape[0])),
314
+ int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1]))
315
+
316
+ (patch_num_0, patch_num_1) = patch_num
317
+
318
+ if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
319
+ # from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
320
+ pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
321
+ pos_emb = F.interpolate(
322
+ pos_emb,
323
+ size=(patch_num_0, patch_num_1),
324
+ mode="bicubic",
325
+ align_corners=False,
326
+ antialias=True,
327
+ )
328
+ pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0)
329
+
330
+ pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1])
331
+ x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]],
332
+ dim=1).to(x.dtype)
333
+ return x
334
+
335
+ def forward(self,
336
+ x: torch.Tensor,
337
+ patch_num: Optional[int] = None) -> List[torch.Tensor]:
338
+ """
339
+ : param x: (batch_size, num_patch, n_pixels)
340
+ """
341
+ if patch_num is None:
342
+ patch_num = self.patch_num
343
+ B, N, D = x.shape
344
+
345
+ x = self.patch_embedding(x)
346
+
347
+ # class embeddings and positional embeddings
348
+ x = torch.cat(
349
+ [_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x],
350
+ dim=1)
351
+ x = self.add_pos_emb(x, patch_num)
352
+
353
+ x = self.pre_ln(x)
354
+
355
+ hidden_states = self.transformer(x)
356
+ return hidden_states
357
+
358
+
359
+ class MolmoAttention(nn.Module):
360
+ """Molmo's LLM attention."""
361
+
362
+ def __init__(
363
+ self,
364
+ config: PretrainedConfig,
365
+ cache_config: Optional[CacheConfig] = None,
366
+ quant_config: Optional[QuantizationConfig] = None,
367
+ prefix: str = "",
368
+ ) -> None:
369
+ super().__init__()
370
+ self.hidden_size = config.hidden_size
371
+ self.tp_size = get_tensor_model_parallel_world_size()
372
+ self.total_num_heads = config.num_attention_heads
373
+
374
+ assert self.hidden_size % self.total_num_heads == 0
375
+ assert self.total_num_heads % self.tp_size == 0
376
+
377
+ self.num_heads = self.total_num_heads // self.tp_size
378
+ self.total_num_kv_heads = config.num_key_value_heads \
379
+ or self.total_num_heads
380
+ if self.total_num_kv_heads >= self.tp_size:
381
+ assert self.total_num_kv_heads % self.tp_size == 0
382
+ else:
383
+ assert self.tp_size % self.total_num_kv_heads == 0
384
+
385
+ self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size)
386
+ self.head_dim = self.hidden_size // self.total_num_heads
387
+ self.q_size = self.num_heads * self.head_dim
388
+ self.kv_size = self.num_kv_heads * self.head_dim
389
+ self.max_position_embeddings = config.max_position_embeddings
390
+ self.rope_theta = config.rope_theta
391
+
392
+ # Attention input projection. Projects x -> (q, k, v)
393
+ self.qkv_proj = QKVParallelLinear(
394
+ self.hidden_size,
395
+ self.head_dim,
396
+ self.total_num_heads,
397
+ self.total_num_kv_heads,
398
+ bias=config.qkv_bias,
399
+ quant_config=quant_config,
400
+ )
401
+
402
+ self.tp_rank: Optional[int] = None
403
+ self.k_norm: Optional[nn.Module] = None
404
+ self.q_norm: Optional[nn.Module] = None
405
+ if config.attention_layer_norm:
406
+ self.tp_rank = get_tensor_model_parallel_rank()
407
+ self.k_norm = RMSNorm(self.total_num_kv_heads * self.head_dim,
408
+ eps=config.layer_norm_eps)
409
+ self.q_norm = RMSNorm(config.hidden_size,
410
+ eps=config.layer_norm_eps)
411
+
412
+ # Rotary embeddings.
413
+ self.rotary_emb = get_rope(
414
+ self.head_dim,
415
+ rotary_dim=self.head_dim,
416
+ max_position=self.max_position_embeddings,
417
+ base=self.rope_theta,
418
+ )
419
+ self.scaling = self.head_dim**-0.5
420
+ self.attn = Attention(self.num_heads,
421
+ self.head_dim,
422
+ self.scaling,
423
+ num_kv_heads=self.num_kv_heads,
424
+ cache_config=cache_config,
425
+ quant_config=quant_config,
426
+ prefix=f"{prefix}.attn")
427
+
428
+ # Attention output projection.
429
+ self.o_proj = RowParallelLinear(
430
+ self.total_num_heads * self.head_dim,
431
+ self.hidden_size,
432
+ bias=False,
433
+ quant_config=quant_config,
434
+ )
435
+
436
+ def _apply_qk_norm(self, q: torch.Tensor,
437
+ k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
438
+ if self.tp_size > 1:
439
+ q = tensor_model_parallel_all_gather(q.contiguous())
440
+ k = tensor_model_parallel_all_gather(k.contiguous())
441
+ q = self.q_norm.forward_native(q)
442
+ k = self.k_norm.forward_native(k)
443
+ if self.tp_size > 1:
444
+ splitter = partial(split_tensor_along_last_dim,
445
+ num_partitions=self.tp_size)
446
+ q = splitter(q)[self.tp_rank]
447
+ k = splitter(k)[self.tp_rank]
448
+ return q, k
449
+
450
+ def forward(
451
+ self,
452
+ positions: torch.Tensor,
453
+ hidden_states: torch.Tensor,
454
+ ) -> torch.Tensor:
455
+ qkv, _ = self.qkv_proj(hidden_states)
456
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
457
+ if self.q_norm is not None and self.k_norm is not None:
458
+ q, k = self._apply_qk_norm(q, k)
459
+ q, k = self.rotary_emb(positions, q, k)
460
+ attn_output = self.attn(q, k, v)
461
+ output, _ = self.o_proj(attn_output)
462
+ return output
463
+
464
+
465
+ class LanguageModelMLP(nn.Module):
466
+ """Molmo's LLM mlp."""
467
+
468
+ def __init__(self,
469
+ config: PretrainedConfig,
470
+ input_dim: Optional[int] = None,
471
+ quant_config: Optional[QuantizationConfig] = None) -> None:
472
+ super().__init__()
473
+ self.hidden_size = config.hidden_size
474
+ self.intermediate_size = config.intermediate_size // 2
475
+
476
+ self.gate_up_proj = MergedColumnParallelLinear(
477
+ input_dim or self.hidden_size,
478
+ [self.intermediate_size] * 2,
479
+ bias=False,
480
+ quant_config=quant_config,
481
+ )
482
+ # Activation function.
483
+ self.act_fn = MulAndSilu()
484
+ # Feed-forward output projection.
485
+ self.down_proj = RowParallelLinear(
486
+ self.intermediate_size,
487
+ self.hidden_size,
488
+ bias=False,
489
+ quant_config=quant_config,
490
+ )
491
+
492
+ def forward(
493
+ self,
494
+ x: torch.Tensor,
495
+ ) -> torch.Tensor:
496
+ gate_up, _ = self.gate_up_proj(x)
497
+ x = self.act_fn(gate_up)
498
+ x, _ = self.down_proj(x)
499
+ return x
500
+
501
+
502
+ class ImageProjectorMLP(nn.Module):
503
+ """Molmo's image_projector mlp."""
504
+
505
+ def __init__(
506
+ self,
507
+ config: PretrainedConfig,
508
+ input_dim: Optional[int] = None,
509
+ quant_config: Optional[QuantizationConfig] = None,
510
+ ) -> None:
511
+ super().__init__()
512
+ self.hidden_size = config.hidden_size
513
+ self.intermediate_size = config.intermediate_size // 2
514
+
515
+ self.merged_linear = MergedColumnParallelLinear(
516
+ input_dim or self.hidden_size,
517
+ [self.intermediate_size] * 2,
518
+ bias=False,
519
+ quant_config=quant_config,
520
+ )
521
+ # Activation function.
522
+ self.act_fn = SiluAndMul()
523
+
524
+ # Feed-forward output projection.
525
+ self.down_proj = RowParallelLinear(
526
+ self.intermediate_size,
527
+ self.hidden_size,
528
+ bias=False,
529
+ quant_config=quant_config,
530
+ )
531
+
532
+ def forward(
533
+ self,
534
+ x: torch.Tensor,
535
+ ) -> torch.Tensor:
536
+ gate_up, _ = self.merged_linear(x)
537
+ x = self.act_fn(gate_up)
538
+ x, _ = self.down_proj(x)
539
+ return x
540
+
541
+
542
+ class MolmoDecoderLayer(nn.Module):
543
+
544
+ def __init__(
545
+ self,
546
+ config: PretrainedConfig,
547
+ cache_config: Optional[CacheConfig] = None,
548
+ quant_config: Optional[QuantizationConfig] = None,
549
+ prefix: str = "",
550
+ ) -> None:
551
+ super().__init__()
552
+ # Attention block.
553
+ self.self_attn = MolmoAttention(config,
554
+ cache_config,
555
+ quant_config,
556
+ prefix=f"{prefix}.self_attn")
557
+
558
+ # MLP block.
559
+ self.mlp = LanguageModelMLP(config, quant_config=quant_config)
560
+
561
+ # LayerNorm
562
+ assert config.layer_norm_type == "rms"
563
+ self.input_layernorm = RMSNorm(config.hidden_size,
564
+ eps=config.layer_norm_eps)
565
+ self.post_attention_layernorm = RMSNorm(config.hidden_size,
566
+ eps=config.layer_norm_eps)
567
+
568
+ def forward(
569
+ self,
570
+ positions: torch.Tensor,
571
+ hidden_states: torch.Tensor,
572
+ residual: Optional[torch.Tensor],
573
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
574
+ # Self Attention
575
+ if residual is None:
576
+ residual = hidden_states
577
+ hidden_states = self.input_layernorm(hidden_states)
578
+ else:
579
+ hidden_states, residual = self.input_layernorm(
580
+ hidden_states, residual)
581
+ hidden_states = self.self_attn(
582
+ positions=positions,
583
+ hidden_states=hidden_states,
584
+ )
585
+
586
+ hidden_states, residual = self.post_attention_layernorm(
587
+ hidden_states, residual)
588
+ hidden_states = self.mlp(hidden_states)
589
+ return hidden_states, residual
590
+
591
+
592
+ class MolmoDecoderNormAfterLayer(MolmoDecoderLayer):
593
+
594
+ def forward(
595
+ self,
596
+ positions: torch.Tensor,
597
+ hidden_states: torch.Tensor,
598
+ residual: Optional[torch.Tensor],
599
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
600
+ # Self Attention
601
+ residual = hidden_states
602
+ hidden_states = self.self_attn(
603
+ positions=positions,
604
+ hidden_states=hidden_states,
605
+ )
606
+
607
+ hidden_states = self.input_layernorm(hidden_states)
608
+ hidden_states = hidden_states + residual
609
+ residual = hidden_states
610
+
611
+ hidden_states = self.mlp(hidden_states)
612
+ hidden_states = self.post_attention_layernorm(hidden_states)
613
+ hidden_states = hidden_states + residual
614
+ residual = None
615
+ return hidden_states, residual
616
+
617
+
618
+ class MolmoVisionBackbone(nn.Module, SupportsQuant):
619
+ packed_modules_mapping = {"merged_linear": ["gate_proj", "up_proj"]}
620
+
621
+ def __init__(
622
+ self,
623
+ config: PretrainedConfig,
624
+ vision_config: VisionBackboneConfig,
625
+ quant_config: Optional[QuantizationConfig] = None,
626
+ ) -> None:
627
+ super().__init__()
628
+ self.vit_layers = VIT_LAYERS
629
+ self.image_num_patch = vision_config.image_num_patch
630
+ self.llm_patches_per_crop = (
631
+ (self.image_num_patch[0] + 1) // POOLING_SIZE,
632
+ (self.image_num_patch[1] + 1) // POOLING_SIZE,
633
+ )
634
+ self.image_vit = VisionTransformer(vision_config,
635
+ quant_config=quant_config)
636
+ self.num_prefix_tokens = self.image_vit.num_prefix_tokens
637
+ assert self.num_prefix_tokens in {
638
+ 0, 1
639
+ }, "Only 0 or 1 prefix tokens are supported"
640
+ self.image_pooling_2d = MultiHeadDotProductAttention(
641
+ vision_config,
642
+ nlayers=len(self.vit_layers),
643
+ quant_config=quant_config)
644
+ self.image_projector = ImageProjectorMLP(
645
+ config,
646
+ input_dim=vision_config.image_emb_dim,
647
+ quant_config=quant_config,
648
+ )
649
+
650
+ image_dim = vision_config.image_emb_dim * len(self.vit_layers)
651
+ self.pad_embed = nn.Parameter(torch.zeros((2, image_dim)))
652
+
653
+ @property
654
+ def dtype(self) -> torch.dtype:
655
+ return self.image_vit.patch_embedding.weight.dtype
656
+
657
+ @property
658
+ def device(self) -> torch.device:
659
+ return self.image_vit.patch_embedding.weight.device
660
+
661
+ def encode_image(self, images: torch.Tensor) -> torch.Tensor:
662
+ """
663
+ : param images: (batch_size, num_crops, num_patch, n_pixels)
664
+ """
665
+ B, T, N, D = images.shape
666
+
667
+ mask = ~torch.all(
668
+ images.view(B * T, N, D) == -1, dim=(1, 2), keepdim=True)
669
+
670
+ images = images.view(B * T, N, D)
671
+ image_features = self.image_vit(images)
672
+
673
+ if self.vit_layers is not None:
674
+ features = []
675
+ for layer in self.vit_layers:
676
+ features.append(image_features[layer])
677
+ image_features = torch.cat(features, dim=-1)
678
+ else:
679
+ image_features = image_features[-1]
680
+
681
+ if self.num_prefix_tokens > 0:
682
+ image_features = image_features[:, 1:]
683
+
684
+ image_features = image_features * mask
685
+ image_features = image_features.view(B, T, N, -1)
686
+
687
+ return image_features
688
+
689
+ def forward(
690
+ self,
691
+ images: torch.Tensor,
692
+ image_masks: torch.Tensor,
693
+ ) -> torch.Tensor:
694
+ # image_features: (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim) # noqa: E501
695
+ batch_size, num_image = images.shape[:2]
696
+ images = images.to(device=self.device, dtype=self.dtype)
697
+ image_features = self.encode_image(images)
698
+
699
+ og_dtype = image_features.dtype
700
+ assert image_masks is not None
701
+ pad_embed = self.pad_embed[:, None, None, None, :]
702
+ all_pad = image_masks == 0
703
+ partial_pad = torch.logical_and(
704
+ image_masks < 1,
705
+ torch.logical_not(all_pad)).to(dtype=torch.float32)
706
+ all_pad = all_pad.to(dtype=torch.float32)
707
+ image_features = image_features + pad_embed[0] * torch.unsqueeze(
708
+ all_pad, -1)
709
+ image_features = image_features + pad_embed[1] * torch.unsqueeze(
710
+ partial_pad, -1)
711
+
712
+ image_features = image_features.to(og_dtype)
713
+
714
+ image_features = image_features.reshape(
715
+ (batch_size, num_image) + self.image_num_patch + (-1, ), )
716
+
717
+ if (missing_w := self.image_num_patch[0] % POOLING_SIZE):
718
+ # Padding for image pooling (see below)
719
+ image_features = F.pad(
720
+ image_features,
721
+ (0, 0, 0, missing_w, 0, missing_w, 0, 0, 0, 0),
722
+ )
723
+
724
+ # image pooling
725
+ image_features = rearrange(
726
+ image_features,
727
+ 'b n (h dh) (w dw) c -> (b n h w) (dh dw) c',
728
+ dh=POOLING_SIZE,
729
+ dw=POOLING_SIZE,
730
+ )
731
+
732
+ query = image_features.mean(-2, keepdim=True)
733
+ image_features = self.image_pooling_2d(query, image_features)
734
+
735
+ h, w = self.llm_patches_per_crop
736
+ image_features = image_features.view(batch_size, num_image, h * w, -1)
737
+
738
+ image_features = self.image_projector(image_features)
739
+
740
+ # image_features: (batch_size, num_image, num_patch, d_model)
741
+ return image_features
742
+
743
+ def load_weights(self, weights: Iterable[Tuple[str,
744
+ torch.Tensor]]) -> Set[str]:
745
+ stacked_params_mapping = [
746
+ # (param_name, shard_name, shard_id)
747
+ ("merged_linear", "gate_proj", 0),
748
+ ("merged_linear", "up_proj", 1),
749
+ ]
750
+ params_dict = dict(self.named_parameters())
751
+ loaded_params: Set[str] = set()
752
+
753
+ for name, loaded_weight in weights:
754
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
755
+ if weight_name not in name:
756
+ continue
757
+ name = name.replace(weight_name, param_name)
758
+ # Skip loading extra bias for GPTQ models.
759
+ if name.endswith(".bias") and name not in params_dict:
760
+ continue
761
+ if is_pp_missing_parameter(name, self):
762
+ continue
763
+ param = params_dict[name]
764
+ weight_loader = param.weight_loader
765
+ weight_loader(param, loaded_weight, shard_id)
766
+ break
767
+ else:
768
+ if name.endswith(".bias") and name not in params_dict:
769
+ continue
770
+ if is_pp_missing_parameter(name, self):
771
+ continue
772
+ param = params_dict[name]
773
+ weight_loader = getattr(param, "weight_loader",
774
+ default_weight_loader)
775
+ weight_loader(param, loaded_weight)
776
+ loaded_params.add(name)
777
+ return loaded_params
778
+
779
+
780
+ @support_torch_compile
781
+ class MolmoModel(nn.Module, SupportsQuant):
782
+
783
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
784
+ super().__init__()
785
+
786
+ config = vllm_config.model_config.hf_config
787
+ cache_config = vllm_config.cache_config
788
+ quant_config = vllm_config.quant_config
789
+
790
+ self.config = config
791
+
792
+ self.embedding_size = config.embedding_size or config.vocab_size
793
+ self.embedding_size += ADDITIONAL_VOCAB_SIZE
794
+ self.embed_tokens = VocabParallelEmbedding(
795
+ self.embedding_size,
796
+ config.hidden_size,
797
+ quant_config=quant_config,
798
+ )
799
+
800
+ decoder_layer = MolmoDecoderNormAfterLayer if config.norm_after \
801
+ else MolmoDecoderLayer
802
+ self.start_layer, self.end_layer, self.layers = make_layers(
803
+ config.num_hidden_layers,
804
+ lambda prefix: decoder_layer(
805
+ config, cache_config, quant_config, prefix=prefix),
806
+ prefix=f"{prefix}.layers",
807
+ )
808
+
809
+ assert config.layer_norm_type == "rms"
810
+ self.norm = RMSNorm(config.hidden_size, config.layer_norm_eps)
811
+
812
+ self.make_empty_intermediate_tensors = (
813
+ make_empty_intermediate_tensors_factory(
814
+ ["hidden_states", "residual"], config.hidden_size))
815
+
816
+ def get_input_embeddings(
817
+ self,
818
+ input_ids: torch.Tensor,
819
+ ) -> torch.Tensor:
820
+ return self.embed_tokens(input_ids)
821
+
822
+ def forward(
823
+ self,
824
+ input_ids: torch.Tensor,
825
+ positions: torch.Tensor,
826
+ intermediate_tensors: Optional[IntermediateTensors] = None,
827
+ inputs_embeds: Optional[torch.Tensor] = None,
828
+ ) -> torch.Tensor:
829
+ if get_pp_group().is_first_rank:
830
+ if inputs_embeds is not None:
831
+ hidden_states = inputs_embeds
832
+ else:
833
+ hidden_states = self.embed_tokens(input_ids)
834
+ residual = None
835
+ else:
836
+ assert intermediate_tensors is not None
837
+ hidden_states = intermediate_tensors["hidden_states"]
838
+ residual = intermediate_tensors["residual"]
839
+
840
+ # Apply blocks one-by-one.
841
+ for layer in self.layers[self.start_layer:self.end_layer]:
842
+ hidden_states, residual = layer(
843
+ positions,
844
+ hidden_states,
845
+ residual,
846
+ )
847
+ if not get_pp_group().is_last_rank:
848
+ return IntermediateTensors({
849
+ "hidden_states": hidden_states,
850
+ "residual": residual
851
+ })
852
+ if residual is not None:
853
+ hidden_states, _ = self.norm(hidden_states, residual)
854
+ else:
855
+ hidden_states = self.norm(hidden_states)
856
+ return hidden_states
857
+
858
+ def load_weights(self, weights: Iterable[Tuple[str,
859
+ torch.Tensor]]) -> Set[str]:
860
+ params_dict = dict(self.named_parameters())
861
+ loaded_params: Set[str] = set()
862
+
863
+ for name, loaded_weight in weights:
864
+ if name.endswith(".bias") and name not in params_dict:
865
+ continue
866
+ if is_pp_missing_parameter(name, self):
867
+ continue
868
+
869
+ param = params_dict[name]
870
+ weight_loader = getattr(param, "weight_loader",
871
+ default_weight_loader)
872
+ weight_loader(param, loaded_weight)
873
+ loaded_params.add(name)
874
+ return loaded_params
875
+
876
+
877
+ def _lowest_multiple(x: int, k: int) -> int:
878
+ return (x // k) * k
879
+
880
+
881
+ def get_num_patches(
882
+ num_tiles: int,
883
+ *,
884
+ crop_patches: int,
885
+ left_margin: int,
886
+ right_margin: int,
887
+ pooling_size: int,
888
+ ) -> int:
889
+ if num_tiles == 1:
890
+ return _lowest_multiple(crop_patches + pooling_size - 1, pooling_size)
891
+
892
+ crop_window_patches = crop_patches - (left_margin + right_margin)
893
+
894
+ left_num = _lowest_multiple(
895
+ crop_window_patches + left_margin + pooling_size - 1,
896
+ pooling_size,
897
+ )
898
+ middle_num = _lowest_multiple(
899
+ crop_window_patches + pooling_size - 1,
900
+ pooling_size,
901
+ )
902
+ right_num = _lowest_multiple(
903
+ crop_window_patches + right_margin + pooling_size - 1,
904
+ pooling_size,
905
+ )
906
+
907
+ return left_num + (num_tiles - 2) * middle_num + right_num
908
+
909
+
910
+ def get_patches_grid_size(
911
+ *,
912
+ tiling_h: int,
913
+ tiling_w: int,
914
+ crop_patches: int,
915
+ left_margin: int,
916
+ right_margin: int,
917
+ pooling_size: int,
918
+ ) -> tuple[int, int]:
919
+ nrows = get_num_patches(
920
+ tiling_h,
921
+ crop_patches=crop_patches,
922
+ left_margin=left_margin,
923
+ right_margin=right_margin,
924
+ pooling_size=pooling_size,
925
+ )
926
+ ncols = get_num_patches(
927
+ tiling_w,
928
+ crop_patches=crop_patches,
929
+ left_margin=left_margin,
930
+ right_margin=right_margin,
931
+ pooling_size=pooling_size,
932
+ )
933
+
934
+ return nrows, ncols
935
+
936
+
937
+ def get_candidate_tilings(max_num: int) -> list[tuple[int, int]]:
938
+ tilings = [(i, j) for i in range(1, max_num + 1)
939
+ for j in range(1, max_num + 1) if i * j <= max_num]
940
+ return sorted(tilings, key=lambda x: x[0] * x[1])
941
+
942
+
943
+ def select_tiling(
944
+ *,
945
+ height: int,
946
+ width: int,
947
+ patch_size: int,
948
+ max_num_patches: int,
949
+ ):
950
+ tilings = get_candidate_tilings(max_num_patches)
951
+ candidate_tilings = np.array(tilings, dtype=np.int32)
952
+ candidate_resolutions = candidate_tilings * patch_size
953
+
954
+ original_size = np.array([height, width], dtype=np.float32)
955
+ required_scale_d = candidate_resolutions.astype(np.float32) / original_size
956
+ required_scale = required_scale_d.min(axis=-1, keepdims=True)
957
+
958
+ if (required_scale < 1).all():
959
+ ix = required_scale.argmax()
960
+ else:
961
+ ix = np.where(required_scale < 1.0, 10e9, required_scale).argmin()
962
+
963
+ return candidate_tilings[ix]
964
+
965
+
966
+ class MolmoProcessorWrapper:
967
+ """
968
+ Wraps :class:`MolmoProcessor` so that it can be called directly.
969
+
970
+ The original definition can be found here:
971
+ https://huggingface.co/allenai/Molmo-7B-D-0924/blob/main/preprocessing_molmo.py
972
+ """
973
+
974
+ def __init__(self, processor: ProcessorMixin):
975
+ super().__init__()
976
+
977
+ self.processor = processor
978
+
979
+ @cached_property
980
+ def vocab(self) -> dict[str, int]:
981
+ return self.processor.tokenizer.vocab # type: ignore
982
+
983
+ @cached_property
984
+ def max_crops(self) -> int:
985
+ image_processor = self.processor.image_processor # type: ignore
986
+
987
+ max_crops = image_processor.max_crops
988
+ assert isinstance(max_crops, int)
989
+
990
+ return max_crops
991
+
992
+ @cached_property
993
+ def base_image_input_size(self) -> tuple[int, int]:
994
+ image_processor = self.processor.image_processor # type: ignore
995
+
996
+ base_image_input_size = image_processor.base_image_input_size
997
+ if isinstance(base_image_input_size, int):
998
+ return base_image_input_size, base_image_input_size
999
+
1000
+ return tuple(base_image_input_size)
1001
+
1002
+ @cached_property
1003
+ def image_patch_size(self) -> int:
1004
+ image_processor = self.processor.image_processor # type: ignore
1005
+
1006
+ image_patch_size = image_processor.image_patch_size
1007
+ assert isinstance(image_patch_size, int)
1008
+
1009
+ return image_patch_size
1010
+
1011
+ @cached_property
1012
+ def overlap_margins(self) -> tuple[int, int]:
1013
+ image_processor = self.processor.image_processor # type: ignore
1014
+
1015
+ left_margin, right_margin = image_processor.overlap_margins
1016
+ assert isinstance(left_margin, int)
1017
+ assert isinstance(right_margin, int)
1018
+
1019
+ return left_margin, right_margin
1020
+
1021
+ @cached_property
1022
+ def image_token_length_w(self) -> int:
1023
+ image_processor = self.processor.image_processor # type: ignore
1024
+
1025
+ image_token_length_w = image_processor.image_token_length_w
1026
+ assert isinstance(image_token_length_w, int)
1027
+
1028
+ return image_token_length_w
1029
+
1030
+ @cached_property
1031
+ def image_token_length_h(self) -> int:
1032
+ image_processor = self.processor.image_processor # type: ignore
1033
+
1034
+ image_token_length_h = image_processor.image_token_length_h
1035
+ assert isinstance(image_token_length_h, int)
1036
+
1037
+ return image_token_length_h
1038
+
1039
+ @property
1040
+ def message_format(self) -> Optional[str]:
1041
+ return "role"
1042
+
1043
+ @property
1044
+ def always_start_with_space(self) -> bool:
1045
+ return True
1046
+
1047
+ @cached_property
1048
+ def image_patch_id(self) -> int:
1049
+ return self.vocab[IMAGE_PATCH_TOKEN]
1050
+
1051
+ @cached_property
1052
+ def im_col_id(self) -> int:
1053
+ return self.vocab[IM_COL_TOKEN]
1054
+
1055
+ @cached_property
1056
+ def im_start_id(self) -> int:
1057
+ return self.vocab[IM_START_TOKEN]
1058
+
1059
+ @cached_property
1060
+ def im_end_id(self) -> int:
1061
+ return self.vocab[IM_END_TOKEN]
1062
+
1063
+ @property
1064
+ def pooling_size(self) -> int:
1065
+ return POOLING_SIZE
1066
+
1067
+ def select_tiling(
1068
+ self,
1069
+ *,
1070
+ image_width: int,
1071
+ image_height: int,
1072
+ ) -> tuple[int, int]:
1073
+ max_crops = self.max_crops
1074
+ left_margin, right_margin = self.overlap_margins
1075
+ base_image_input_size = self.base_image_input_size
1076
+ base_image_input_d = self.image_patch_size
1077
+
1078
+ total_margin_pixels = base_image_input_d * (right_margin + left_margin)
1079
+ crop_patches = base_image_input_size[0] // base_image_input_d
1080
+ crop_window_patches = crop_patches - (right_margin + left_margin)
1081
+ crop_window_size = crop_window_patches * base_image_input_d
1082
+ tiling_h, tiling_w = select_tiling(
1083
+ height=image_height - total_margin_pixels,
1084
+ width=image_width - total_margin_pixels,
1085
+ patch_size=crop_window_size,
1086
+ max_num_patches=max_crops,
1087
+ )
1088
+
1089
+ return tiling_w, tiling_h
1090
+
1091
+ def get_patches_grid_size(
1092
+ self,
1093
+ *,
1094
+ image_width: int,
1095
+ image_height: int,
1096
+ ) -> tuple[int, int]:
1097
+ left_margin, right_margin = self.overlap_margins
1098
+ base_image_input_size = self.base_image_input_size
1099
+ base_image_input_d = self.image_patch_size
1100
+ pooling_size = self.pooling_size
1101
+
1102
+ crop_patches = base_image_input_size[0] // base_image_input_d
1103
+ tiling_w, tiling_h = self.select_tiling(
1104
+ image_height=image_height,
1105
+ image_width=image_width,
1106
+ )
1107
+
1108
+ nrows, ncols = get_patches_grid_size(
1109
+ tiling_h=tiling_h,
1110
+ tiling_w=tiling_w,
1111
+ crop_patches=crop_patches,
1112
+ left_margin=left_margin,
1113
+ right_margin=right_margin,
1114
+ pooling_size=pooling_size,
1115
+ )
1116
+
1117
+ return ncols, nrows
1118
+
1119
+ def __call__(
1120
+ self,
1121
+ text: Optional[Union[TextInput, list[TextInput]]] = None,
1122
+ images: Optional[Union[ImageInput, list[ImageInput]]] = None,
1123
+ return_tensors: Optional[Union[str, TensorType]] = None,
1124
+ **kwargs,
1125
+ ) -> BatchFeature:
1126
+ outputs = self.processor.process( # type: ignore
1127
+ text, images, **kwargs)
1128
+
1129
+ if images is None:
1130
+ images = []
1131
+ if not isinstance(images, list):
1132
+ images = [images]
1133
+
1134
+ input_ids: torch.Tensor = outputs.pop("input_ids")
1135
+ outputs["input_ids"] = input_ids.unsqueeze(0)
1136
+
1137
+ image_input_idx = outputs.pop("image_input_idx", None)
1138
+ if image_input_idx is not None:
1139
+ feat_is_patch = image_input_idx >= 0
1140
+
1141
+ tilings = [
1142
+ self.select_tiling(
1143
+ image_width=image.size[0],
1144
+ image_height=image.size[1],
1145
+ ) for image in images
1146
+ ]
1147
+ # For each image: tiling_h * tiling_w + extra
1148
+ num_crops = torch.tensor(tilings).prod(-1) + 1
1149
+ assert num_crops.sum() == len(feat_is_patch)
1150
+
1151
+ outputs["feat_is_patch"] = feat_is_patch
1152
+ outputs["num_crops"] = num_crops
1153
+ outputs["img_patch_id"] = self.image_patch_id
1154
+
1155
+ return BatchFeature(outputs)
1156
+
1157
+
1158
+ class MolmoProcessingInfo(BaseProcessingInfo):
1159
+
1160
+ def get_hf_processor(self, **kwargs: object) -> MolmoProcessorWrapper:
1161
+ processor = self.ctx.get_hf_processor(**kwargs)
1162
+ return MolmoProcessorWrapper(processor)
1163
+
1164
+ def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
1165
+ return {"image": None}
1166
+
1167
+ def get_num_image_tokens(
1168
+ self,
1169
+ *,
1170
+ image_width: int,
1171
+ image_height: int,
1172
+ processor: Optional[MolmoProcessorWrapper],
1173
+ ) -> int:
1174
+ if processor is None:
1175
+ processor = self.get_hf_processor()
1176
+
1177
+ ncols, nrows = processor.get_patches_grid_size(
1178
+ image_width=image_width,
1179
+ image_height=image_height,
1180
+ )
1181
+ pooling_size = processor.pooling_size
1182
+
1183
+ image_token_length_w = processor.image_token_length_w
1184
+ image_token_length_h = processor.image_token_length_h
1185
+
1186
+ extra = image_token_length_w * image_token_length_h
1187
+ joint = ((ncols + 1) // pooling_size) * ((nrows + 1) // pooling_size)
1188
+
1189
+ return extra + joint
1190
+
1191
+ def get_image_size_with_most_features(self) -> ImageSize:
1192
+ processor = self.get_hf_processor()
1193
+
1194
+ tilings = get_candidate_tilings(processor.max_crops)
1195
+ base_h, base_w = processor.base_image_input_size
1196
+
1197
+ largest_feature_size, largest_feature_pinpoint = 0, None
1198
+ for wr, hr in tilings:
1199
+ width, height = base_w * wr, base_h * hr
1200
+
1201
+ feat_size = self.get_num_image_tokens(
1202
+ image_width=width,
1203
+ image_height=height,
1204
+ processor=processor,
1205
+ )
1206
+ if feat_size > largest_feature_size:
1207
+ largest_feature_size = feat_size
1208
+ largest_feature_pinpoint = ImageSize(width=width,
1209
+ height=height)
1210
+
1211
+ if largest_feature_size == 0 or largest_feature_pinpoint is None:
1212
+ raise ValueError("Cannot have a largest feature size of 0!")
1213
+
1214
+ return largest_feature_pinpoint
1215
+
1216
+
1217
+ class MolmoDummyInputsBuilder(BaseDummyInputsBuilder[MolmoProcessingInfo]):
1218
+
1219
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
1220
+ return ""
1221
+
1222
+ def get_dummy_mm_data(
1223
+ self,
1224
+ seq_len: int,
1225
+ mm_counts: Mapping[str, int],
1226
+ ) -> MultiModalDataDict:
1227
+ target_width, target_height = \
1228
+ self.info.get_image_size_with_most_features()
1229
+ num_images = mm_counts.get("image", 0)
1230
+
1231
+ return {
1232
+ "image":
1233
+ self._get_dummy_images(width=target_width,
1234
+ height=target_height,
1235
+ num_images=num_images)
1236
+ }
1237
+
1238
+
1239
+ class MolmoMultiModalProcessor(BaseMultiModalProcessor[MolmoProcessingInfo]):
1240
+
1241
+ def _apply_hf_processor_tokens_only(
1242
+ self,
1243
+ prompt_tokens: list[int],
1244
+ ) -> list[int]:
1245
+ processor = self.info.get_hf_processor()
1246
+
1247
+ # Apply the chat template to the tokens
1248
+ tokens = processor.processor.get_tokens_input( # type: ignore
1249
+ self.info.get_tokenizer().decode(prompt_tokens),
1250
+ message_format=processor.message_format,
1251
+ always_start_with_space=processor.always_start_with_space,
1252
+ )
1253
+
1254
+ processed_data = self.info.ctx.call_hf_processor(
1255
+ processor, # type: ignore
1256
+ dict(tokens=tokens),
1257
+ )
1258
+ prompt_ids, = processed_data.pop("input_ids").tolist()
1259
+
1260
+ return prompt_ids
1261
+
1262
+ def _get_mm_fields_config(
1263
+ self,
1264
+ hf_inputs: BatchFeature,
1265
+ hf_processor_mm_kwargs: Mapping[str, object],
1266
+ ) -> Mapping[str, MultiModalFieldConfig]:
1267
+ num_crops = hf_inputs.get("num_crops", torch.empty(0))
1268
+ num_images = len(num_crops)
1269
+
1270
+ return dict(
1271
+ images=MultiModalFieldConfig.flat_from_sizes("image", num_crops),
1272
+ image_masks=MultiModalFieldConfig.flat_from_sizes(
1273
+ "image", num_crops),
1274
+ feat_is_patch=MultiModalFieldConfig.flat_from_sizes(
1275
+ "image", num_crops),
1276
+ num_crops=MultiModalFieldConfig.batched("image"),
1277
+ img_patch_id=MultiModalFieldConfig.shared("image", num_images),
1278
+ )
1279
+
1280
+ def _get_prompt_updates(
1281
+ self,
1282
+ mm_items: MultiModalDataItems,
1283
+ hf_processor_mm_kwargs: Mapping[str, object],
1284
+ out_mm_kwargs: MultiModalKwargs,
1285
+ ) -> Sequence[PromptUpdate]:
1286
+ processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
1287
+
1288
+ image_token_length_w = processor.image_token_length_w
1289
+ image_token_length_h = processor.image_token_length_h
1290
+ pooling_size = processor.pooling_size
1291
+
1292
+ img_patch_id = processor.image_patch_id
1293
+ img_col_id = processor.im_col_id
1294
+ img_start_id = processor.im_start_id
1295
+ img_end_id = processor.im_end_id
1296
+
1297
+ extra_row = [img_patch_id] * image_token_length_w + [img_col_id]
1298
+ extra_joint = ([img_start_id] + extra_row * image_token_length_h +
1299
+ [img_end_id])
1300
+
1301
+ def get_insertion_molmo(item_idx: int):
1302
+ images = mm_items.get_items("image", ImageProcessorItems)
1303
+ image_size = images.get_image_size(item_idx)
1304
+
1305
+ ncols, nrows = processor.get_patches_grid_size(
1306
+ image_width=image_size.width,
1307
+ image_height=image_size.height,
1308
+ )
1309
+
1310
+ joint_row = ([img_patch_id] * ((ncols + 1) // pooling_size) +
1311
+ [img_col_id])
1312
+ joint = ([img_start_id] + joint_row *
1313
+ ((nrows + 1) // pooling_size) + [img_end_id])
1314
+
1315
+ return PromptUpdateDetails.select_token_id(
1316
+ extra_joint + joint,
1317
+ embed_token_id=img_patch_id,
1318
+ )
1319
+
1320
+ return [
1321
+ PromptInsertion(
1322
+ modality="image",
1323
+ target=PromptIndexTargets.prefix("<|endoftext|>"),
1324
+ insertion=get_insertion_molmo,
1325
+ )
1326
+ ]
1327
+
1328
+
1329
+ @MULTIMODAL_REGISTRY.register_processor(MolmoMultiModalProcessor,
1330
+ info=MolmoProcessingInfo,
1331
+ dummy_inputs=MolmoDummyInputsBuilder)
1332
+ class MolmoForCausalLM(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA,
1333
+ SupportsQuant):
1334
+ hf_to_vllm_mapper = WeightsMapper(
1335
+ orig_to_new_substr={
1336
+ # vision backbone mapping
1337
+ "image_projector.w1.": "image_projector.gate_proj.",
1338
+ "image_projector.w3.": "image_projector.up_proj.",
1339
+ "image_projector.w2.": "image_projector.down_proj.",
1340
+ # language backbone mapping
1341
+ "att_proj": "self_attn.qkv_proj",
1342
+ "attn_out": "self_attn.o_proj",
1343
+ "q_norm": "self_attn.q_norm",
1344
+ "k_norm": "self_attn.k_norm",
1345
+ "ff_proj": "mlp.gate_up_proj",
1346
+ "ff_out": "mlp.down_proj",
1347
+ "attn_norm": "input_layernorm",
1348
+ "ff_norm": "post_attention_layernorm",
1349
+ },
1350
+ orig_to_new_prefix={
1351
+ # vision backbone mapping
1352
+ "model.vision_backbone.": "vision_backbone.",
1353
+ # language backbone mapping
1354
+ "model.transformer.blocks.": "model.layers.",
1355
+ "model.transformer.ln_f.": "model.norm.",
1356
+ # lm_head is renamed to model.transformer.mlp.down_proj firstly,
1357
+ # we need to run a second renaming for it
1358
+ "model.transformer.mlp.down_proj.": "lm_head.",
1359
+ },
1360
+ )
1361
+
1362
+ packed_modules_mapping = {
1363
+ "qkv_proj": ["qkv_proj"],
1364
+ "gate_up_proj": ["gate_up_proj"], # language model
1365
+ "merged_linear": ["gate_proj", "up_proj"] # image_projector
1366
+ }
1367
+
1368
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1369
+ super().__init__()
1370
+ config = vllm_config.model_config.hf_config
1371
+ quant_config = vllm_config.quant_config
1372
+ multimodal_config = vllm_config.model_config.multimodal_config
1373
+ lora_config = vllm_config.lora_config
1374
+ self.config = config
1375
+ self.multimodal_config = multimodal_config
1376
+ self.lora_config = lora_config
1377
+
1378
+ vision_config = VisionBackboneConfig()
1379
+ self.vision_backbone = MolmoVisionBackbone(config, vision_config,
1380
+ quant_config)
1381
+ self.model = MolmoModel(vllm_config=vllm_config,
1382
+ prefix=maybe_prefix(prefix, "model"))
1383
+ self.img_patch_id = None
1384
+
1385
+ if self.config.weight_tying:
1386
+ self.lm_head = self.model.transformer.wte
1387
+ else:
1388
+ self.lm_head = ParallelLMHead(
1389
+ config.embedding_size or config.vocab_size,
1390
+ config.hidden_size,
1391
+ quant_config=quant_config,
1392
+ )
1393
+
1394
+ self.logits_processor = LogitsProcessor(config.embedding_size
1395
+ or config.vocab_size)
1396
+
1397
+ self.make_empty_intermediate_tensors = (
1398
+ self.model.make_empty_intermediate_tensors)
1399
+
1400
+ def _parse_and_validate_image_input(
1401
+ self,
1402
+ **kwargs: object,
1403
+ ) -> Optional[MolmoImageInputs]:
1404
+ images = kwargs.pop("images", None)
1405
+ if images is None:
1406
+ return None
1407
+
1408
+ if not isinstance(images, (torch.Tensor, list)):
1409
+ raise ValueError("Incorrect type of images. "
1410
+ f"Got type: {type(images)}")
1411
+
1412
+ image_masks = kwargs.pop("image_masks", None)
1413
+ if not (image_masks is None or isinstance(image_masks,
1414
+ (torch.Tensor, list))):
1415
+ raise ValueError("Incorrect type of image_masks. "
1416
+ f"Got type: {type(image_masks)}")
1417
+
1418
+ feat_is_patch = kwargs.pop("feat_is_patch", None)
1419
+ if not isinstance(feat_is_patch, (torch.Tensor, list)):
1420
+ raise ValueError("Incorrect type of feat_is_patch. "
1421
+ f"Got type: {type(feat_is_patch)}")
1422
+
1423
+ num_crops = kwargs.pop("num_crops", None)
1424
+ if not isinstance(num_crops, (torch.Tensor, list)):
1425
+ raise ValueError("Incorrect type of num_crops. "
1426
+ f"Got type: {type(num_crops)}")
1427
+
1428
+ img_patch_id = kwargs.pop("img_patch_id", None)
1429
+ if not isinstance(img_patch_id, torch.Tensor):
1430
+ raise ValueError("Incorrect type of img_patch_id. "
1431
+ f"Got type: {type(img_patch_id)}")
1432
+ self.img_patch_id = img_patch_id.flatten().unique().item()
1433
+
1434
+ num_crops = flatten_bn(num_crops, concat=True)
1435
+
1436
+ return MolmoImageInputs(
1437
+ images=images,
1438
+ image_masks=image_masks,
1439
+ feat_is_patch=feat_is_patch,
1440
+ num_crops=num_crops,
1441
+ )
1442
+
1443
+ def _process_image_input(
1444
+ self,
1445
+ image_input: MolmoImageInputs,
1446
+ ) -> list[torch.Tensor]:
1447
+ images = image_input["images"]
1448
+ image_masks = image_input["image_masks"]
1449
+ feat_is_patch = image_input["feat_is_patch"]
1450
+ num_crops = image_input["num_crops"]
1451
+
1452
+ # Call the vision backbone on the whole batch at once
1453
+ images_flat = flatten_bn(images, concat=True)
1454
+ image_masks_flat = (None if image_masks is None else flatten_bn(
1455
+ image_masks, concat=True))
1456
+ feat_is_patch_flat = flatten_bn(feat_is_patch, concat=True)
1457
+
1458
+ image_features_flat = self.vision_backbone(
1459
+ images=images_flat.unsqueeze(0),
1460
+ image_masks=(None if image_masks_flat is None else
1461
+ image_masks_flat.unsqueeze(0)),
1462
+ ).squeeze(0)
1463
+
1464
+ # Only the features corresponding to patch tokens are relevant
1465
+ return [
1466
+ feats[f_is_patch] for feats, f_is_patch in zip(
1467
+ image_features_flat.split(num_crops.tolist()),
1468
+ feat_is_patch_flat.split(num_crops.tolist()),
1469
+ )
1470
+ ]
1471
+
1472
+ def get_language_model(self) -> torch.nn.Module:
1473
+ return self.model
1474
+
1475
+ def get_multimodal_embeddings(
1476
+ self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
1477
+ image_input = self._parse_and_validate_image_input(**kwargs)
1478
+ if image_input is None:
1479
+ return None
1480
+
1481
+ return self._process_image_input(image_input)
1482
+
1483
+ def get_input_embeddings(
1484
+ self,
1485
+ input_ids: torch.Tensor,
1486
+ multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
1487
+ ) -> torch.Tensor:
1488
+ inputs_embeds = self.model.get_input_embeddings(input_ids)
1489
+ if multimodal_embeddings is not None:
1490
+ assert self.img_patch_id is not None
1491
+
1492
+ inputs_embeds = merge_multimodal_embeddings(
1493
+ input_ids,
1494
+ inputs_embeds,
1495
+ multimodal_embeddings,
1496
+ self.img_patch_id,
1497
+ )
1498
+ return inputs_embeds
1499
+
1500
+ def forward(
1501
+ self,
1502
+ input_ids: torch.LongTensor,
1503
+ positions: torch.LongTensor,
1504
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1505
+ inputs_embeds: Optional[torch.Tensor] = None,
1506
+ **kwargs: object,
1507
+ ) -> torch.Tensor:
1508
+
1509
+ if intermediate_tensors is not None:
1510
+ inputs_embeds = None
1511
+
1512
+ # NOTE: In v1, inputs_embeds is always generated at model runner, this
1513
+ # condition is for v0 compatibility.
1514
+ elif inputs_embeds is None:
1515
+ vision_embeddings = self.get_multimodal_embeddings(**kwargs)
1516
+ inputs_embeds = self.get_input_embeddings(input_ids,
1517
+ vision_embeddings)
1518
+ input_ids = None
1519
+
1520
+ hidden_states = self.model(input_ids,
1521
+ positions,
1522
+ intermediate_tensors,
1523
+ inputs_embeds=inputs_embeds)
1524
+
1525
+ return hidden_states
1526
+
1527
+ def compute_logits(self, hidden_states: torch.Tensor,
1528
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
1529
+ logits = self.logits_processor(self.lm_head, hidden_states,
1530
+ sampling_metadata)
1531
+ return logits
1532
+
1533
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
1534
+
1535
+ loader = AutoWeightsLoader(self)
1536
+ weights = _get_weights_with_merged_embedding(weights)
1537
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
1538
+
1539
+ def get_mm_mapping(self) -> MultiModelKeys:
1540
+ """
1541
+ Get the module prefix in multimodal models
1542
+ """
1543
+ return MultiModelKeys.from_string_field(
1544
+ language_model="model",
1545
+ connector="vision_backbone.image_projector",
1546
+ tower_model="vision_backbone",
1547
+ )
1548
+
1549
+
1550
+ def _get_weights_with_merged_embedding(
1551
+ weights: Iterable[Tuple[str, torch.Tensor]]
1552
+ ) -> Iterable[Tuple[str, torch.Tensor]]:
1553
+ embedding_weights = {}
1554
+ for name, weight in weights:
1555
+ if "wte.embedding" in name:
1556
+ embedding_weights["embedding"] = weight
1557
+ elif "wte.new_embedding" in name:
1558
+ embedding_weights["new_embedding"] = weight
1559
+ else:
1560
+ yield (name, weight)
1561
+ # this is compatible with most of quantization,
1562
+ # because they won't quantize embed_tokens
1563
+ embedding_weights = torch.cat(
1564
+ [embedding_weights["embedding"], embedding_weights["new_embedding"]],
1565
+ dim=0,
1566
+ )
1567
+ yield ("model.embed_tokens.weight", embedding_weights)