vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of vllm-cpu might be problematic. Click here for more details.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +170 -0
- vllm/_custom_ops.py +1536 -0
- vllm/_ipex_ops.py +241 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +105 -0
- vllm/adapter_commons/request.py +25 -0
- vllm/adapter_commons/utils.py +92 -0
- vllm/adapter_commons/worker_manager.py +38 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +38 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +31 -0
- vllm/assets/video.py +103 -0
- vllm/attention/__init__.py +19 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +306 -0
- vllm/attention/backends/blocksparse_attn.py +457 -0
- vllm/attention/backends/cpu_mla.py +303 -0
- vllm/attention/backends/flash_attn.py +999 -0
- vllm/attention/backends/flashinfer.py +1092 -0
- vllm/attention/backends/flashmla.py +242 -0
- vllm/attention/backends/hpu_attn.py +301 -0
- vllm/attention/backends/ipex_attn.py +396 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1444 -0
- vllm/attention/backends/pallas.py +346 -0
- vllm/attention/backends/placeholder_attn.py +399 -0
- vllm/attention/backends/rocm_aiter_mla.py +412 -0
- vllm/attention/backends/rocm_flash_attn.py +969 -0
- vllm/attention/backends/torch_sdpa.py +691 -0
- vllm/attention/backends/triton_mla.py +113 -0
- vllm/attention/backends/utils.py +609 -0
- vllm/attention/backends/xformers.py +798 -0
- vllm/attention/layer.py +443 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
- vllm/attention/ops/blocksparse_attention/interface.py +238 -0
- vllm/attention/ops/blocksparse_attention/utils.py +244 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
- vllm/attention/ops/flashmla.py +115 -0
- vllm/attention/ops/hpu_paged_attn.py +105 -0
- vllm/attention/ops/ipex_attn.py +193 -0
- vllm/attention/ops/merge_attn_states.py +42 -0
- vllm/attention/ops/nki_flash_attn.py +905 -0
- vllm/attention/ops/paged_attn.py +255 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +42 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
- vllm/attention/ops/triton_decode_attention.py +675 -0
- vllm/attention/ops/triton_flash_attention.py +1375 -0
- vllm/attention/ops/triton_merge_attn_states.py +96 -0
- vllm/attention/selector.py +186 -0
- vllm/attention/utils/fa_utils.py +54 -0
- vllm/beam_search.py +82 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +831 -0
- vllm/benchmarks/endpoint_request_func.py +160 -0
- vllm/benchmarks/latency.py +181 -0
- vllm/benchmarks/serve.py +925 -0
- vllm/benchmarks/throughput.py +608 -0
- vllm/benchmarks/utils.py +69 -0
- vllm/collect_env.py +795 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/backends.py +715 -0
- vllm/compilation/compiler_interface.py +437 -0
- vllm/compilation/counter.py +33 -0
- vllm/compilation/decorators.py +249 -0
- vllm/compilation/fix_functionalization.py +182 -0
- vllm/compilation/fusion.py +617 -0
- vllm/compilation/fx_utils.py +60 -0
- vllm/compilation/inductor_pass.py +114 -0
- vllm/compilation/monitor.py +38 -0
- vllm/compilation/multi_output_match.py +108 -0
- vllm/compilation/noop_elimination.py +135 -0
- vllm/compilation/pass_manager.py +74 -0
- vllm/compilation/sequence_parallelism.py +266 -0
- vllm/compilation/torch25_custom_graph_pass.py +41 -0
- vllm/compilation/vllm_inductor_pass.py +68 -0
- vllm/compilation/wrapper.py +129 -0
- vllm/config.py +4179 -0
- vllm/connections.py +170 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +398 -0
- vllm/core/block/common.py +370 -0
- vllm/core/block/cpu_gpu_block_allocator.py +440 -0
- vllm/core/block/interfaces.py +318 -0
- vllm/core/block/naive_block.py +465 -0
- vllm/core/block/prefix_caching_block.py +1134 -0
- vllm/core/block/utils.py +27 -0
- vllm/core/block_manager.py +520 -0
- vllm/core/evictor.py +156 -0
- vllm/core/interfaces.py +134 -0
- vllm/core/placeholder_block_space_manager.py +99 -0
- vllm/core/scheduler.py +2060 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +280 -0
- vllm/distributed/__init__.py +5 -0
- vllm/distributed/communication_op.py +40 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/base_device_communicator.py +151 -0
- vllm/distributed/device_communicators/cpu_communicator.py +139 -0
- vllm/distributed/device_communicators/cuda_communicator.py +131 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
- vllm/distributed/device_communicators/hpu_communicator.py +45 -0
- vllm/distributed/device_communicators/neuron_communicator.py +19 -0
- vllm/distributed/device_communicators/pynccl.py +217 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
- vllm/distributed/device_communicators/shm_broadcast.py +557 -0
- vllm/distributed/device_communicators/tpu_communicator.py +93 -0
- vllm/distributed/device_communicators/xpu_communicator.py +54 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +11 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
- vllm/distributed/parallel_state.py +1209 -0
- vllm/distributed/utils.py +366 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1724 -0
- vllm/engine/async_llm_engine.py +1261 -0
- vllm/engine/async_timeout.py +191 -0
- vllm/engine/llm_engine.py +2150 -0
- vllm/engine/metrics.py +717 -0
- vllm/engine/metrics_types.py +96 -0
- vllm/engine/multiprocessing/__init__.py +183 -0
- vllm/engine/multiprocessing/client.py +745 -0
- vllm/engine/multiprocessing/engine.py +450 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +74 -0
- vllm/engine/output_processor/multi_step.py +210 -0
- vllm/engine/output_processor/single_step.py +136 -0
- vllm/engine/output_processor/stop_checker.py +130 -0
- vllm/engine/output_processor/util.py +27 -0
- vllm/engine/protocol.py +302 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +177 -0
- vllm/entrypoints/chat_utils.py +1259 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +38 -0
- vllm/entrypoints/cli/benchmark/latency.py +29 -0
- vllm/entrypoints/cli/benchmark/main.py +53 -0
- vllm/entrypoints/cli/benchmark/serve.py +29 -0
- vllm/entrypoints/cli/benchmark/throughput.py +29 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +59 -0
- vllm/entrypoints/cli/openai.py +175 -0
- vllm/entrypoints/cli/serve.py +59 -0
- vllm/entrypoints/cli/types.py +24 -0
- vllm/entrypoints/launcher.py +146 -0
- vllm/entrypoints/llm.py +1450 -0
- vllm/entrypoints/logger.py +44 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1130 -0
- vllm/entrypoints/openai/cli_args.py +296 -0
- vllm/entrypoints/openai/logits_processors.py +89 -0
- vllm/entrypoints/openai/protocol.py +1806 -0
- vllm/entrypoints/openai/run_batch.py +439 -0
- vllm/entrypoints/openai/serving_chat.py +1210 -0
- vllm/entrypoints/openai/serving_completion.py +557 -0
- vllm/entrypoints/openai/serving_embedding.py +245 -0
- vllm/entrypoints/openai/serving_engine.py +569 -0
- vllm/entrypoints/openai/serving_models.py +314 -0
- vllm/entrypoints/openai/serving_pooling.py +237 -0
- vllm/entrypoints/openai/serving_score.py +439 -0
- vllm/entrypoints/openai/serving_tokenization.py +147 -0
- vllm/entrypoints/openai/serving_transcription.py +421 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
- vllm/entrypoints/score_utils.py +49 -0
- vllm/entrypoints/ssl.py +74 -0
- vllm/entrypoints/utils.py +136 -0
- vllm/env_override.py +34 -0
- vllm/envs.py +800 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +400 -0
- vllm/executor/mp_distributed_executor.py +243 -0
- vllm/executor/msgspec_utils.py +29 -0
- vllm/executor/multiproc_worker_utils.py +312 -0
- vllm/executor/ray_distributed_executor.py +700 -0
- vllm/executor/ray_utils.py +400 -0
- vllm/executor/uniproc_executor.py +141 -0
- vllm/forward_context.py +159 -0
- vllm/inputs/__init__.py +37 -0
- vllm/inputs/data.py +248 -0
- vllm/inputs/parse.py +121 -0
- vllm/inputs/preprocess.py +745 -0
- vllm/inputs/registry.py +212 -0
- vllm/jsontree.py +79 -0
- vllm/logger.py +210 -0
- vllm/logging_utils/__init__.py +7 -0
- vllm/logging_utils/formatter.py +17 -0
- vllm/logits_process.py +121 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +335 -0
- vllm/lora/layers.py +1263 -0
- vllm/lora/lora.py +198 -0
- vllm/lora/models.py +802 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +15 -0
- vllm/lora/ops/torch_ops/lora_ops.py +115 -0
- vllm/lora/ops/triton_ops/__init__.py +11 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand.py +293 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
- vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
- vllm/lora/ops/triton_ops/utils.py +121 -0
- vllm/lora/peft_helper.py +115 -0
- vllm/lora/punica_wrapper/__init__.py +9 -0
- vllm/lora/punica_wrapper/punica_base.py +483 -0
- vllm/lora/punica_wrapper/punica_cpu.py +348 -0
- vllm/lora/punica_wrapper/punica_gpu.py +289 -0
- vllm/lora/punica_wrapper/punica_hpu.py +144 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/utils.py +161 -0
- vllm/lora/request.py +97 -0
- vllm/lora/resolver.py +83 -0
- vllm/lora/utils.py +237 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +15 -0
- vllm/model_executor/custom_op.py +153 -0
- vllm/model_executor/guided_decoding/__init__.py +180 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
- vllm/model_executor/guided_decoding/guided_fields.py +42 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
- vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
- vllm/model_executor/guided_decoding/utils.py +241 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +368 -0
- vllm/model_executor/layers/fused_moe/__init__.py +51 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
- vllm/model_executor/layers/fused_moe/layer.py +949 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
- vllm/model_executor/layers/fused_moe/utils.py +48 -0
- vllm/model_executor/layers/layernorm.py +277 -0
- vllm/model_executor/layers/lightning_attn.py +651 -0
- vllm/model_executor/layers/linear.py +1518 -0
- vllm/model_executor/layers/logits_processor.py +196 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
- vllm/model_executor/layers/pooler.py +336 -0
- vllm/model_executor/layers/quantization/__init__.py +153 -0
- vllm/model_executor/layers/quantization/aqlm.py +374 -0
- vllm/model_executor/layers/quantization/awq.py +184 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
- vllm/model_executor/layers/quantization/awq_triton.py +319 -0
- vllm/model_executor/layers/quantization/base_config.py +145 -0
- vllm/model_executor/layers/quantization/bitblas.py +459 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
- vllm/model_executor/layers/quantization/experts_int8.py +194 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
- vllm/model_executor/layers/quantization/fp8.py +832 -0
- vllm/model_executor/layers/quantization/gguf.py +408 -0
- vllm/model_executor/layers/quantization/gptq.py +276 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
- vllm/model_executor/layers/quantization/kv_cache.py +137 -0
- vllm/model_executor/layers/quantization/marlin.py +259 -0
- vllm/model_executor/layers/quantization/modelopt.py +410 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
- vllm/model_executor/layers/quantization/qqq.py +273 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +385 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
- vllm/model_executor/layers/quantization/quark/utils.py +102 -0
- vllm/model_executor/layers/quantization/schema.py +85 -0
- vllm/model_executor/layers/quantization/torchao.py +127 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
- vllm/model_executor/layers/rejection_sampler.py +400 -0
- vllm/model_executor/layers/resampler.py +269 -0
- vllm/model_executor/layers/rotary_embedding.py +1598 -0
- vllm/model_executor/layers/sampler.py +1221 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
- vllm/model_executor/layers/utils.py +99 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
- vllm/model_executor/model_loader/__init__.py +20 -0
- vllm/model_executor/model_loader/loader.py +1542 -0
- vllm/model_executor/model_loader/neuron.py +243 -0
- vllm/model_executor/model_loader/tensorizer.py +468 -0
- vllm/model_executor/model_loader/utils.py +171 -0
- vllm/model_executor/model_loader/weight_utils.py +749 -0
- vllm/model_executor/models/__init__.py +27 -0
- vllm/model_executor/models/adapters.py +247 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +656 -0
- vllm/model_executor/models/aya_vision.py +461 -0
- vllm/model_executor/models/baichuan.py +469 -0
- vllm/model_executor/models/bamba.py +542 -0
- vllm/model_executor/models/bart.py +936 -0
- vllm/model_executor/models/bert.py +725 -0
- vllm/model_executor/models/blip.py +337 -0
- vllm/model_executor/models/blip2.py +717 -0
- vllm/model_executor/models/bloom.py +358 -0
- vllm/model_executor/models/chameleon.py +1135 -0
- vllm/model_executor/models/chatglm.py +476 -0
- vllm/model_executor/models/clip.py +410 -0
- vllm/model_executor/models/commandr.py +466 -0
- vllm/model_executor/models/constant_size_cache.py +136 -0
- vllm/model_executor/models/dbrx.py +469 -0
- vllm/model_executor/models/deepseek.py +484 -0
- vllm/model_executor/models/deepseek_mtp.py +266 -0
- vllm/model_executor/models/deepseek_v2.py +830 -0
- vllm/model_executor/models/deepseek_vl2.py +647 -0
- vllm/model_executor/models/eagle.py +247 -0
- vllm/model_executor/models/exaone.py +548 -0
- vllm/model_executor/models/fairseq2_llama.py +153 -0
- vllm/model_executor/models/falcon.py +508 -0
- vllm/model_executor/models/florence2.py +1102 -0
- vllm/model_executor/models/fuyu.py +388 -0
- vllm/model_executor/models/gemma.py +423 -0
- vllm/model_executor/models/gemma2.py +423 -0
- vllm/model_executor/models/gemma3.py +531 -0
- vllm/model_executor/models/gemma3_mm.py +716 -0
- vllm/model_executor/models/glm.py +22 -0
- vllm/model_executor/models/glm4.py +303 -0
- vllm/model_executor/models/glm4v.py +647 -0
- vllm/model_executor/models/gpt2.py +313 -0
- vllm/model_executor/models/gpt_bigcode.py +336 -0
- vllm/model_executor/models/gpt_j.py +337 -0
- vllm/model_executor/models/gpt_neox.py +330 -0
- vllm/model_executor/models/granite.py +494 -0
- vllm/model_executor/models/granite_speech.py +777 -0
- vllm/model_executor/models/granitemoe.py +435 -0
- vllm/model_executor/models/granitemoeshared.py +339 -0
- vllm/model_executor/models/gritlm.py +245 -0
- vllm/model_executor/models/grok1.py +560 -0
- vllm/model_executor/models/h2ovl.py +542 -0
- vllm/model_executor/models/idefics2_vision_model.py +387 -0
- vllm/model_executor/models/idefics3.py +767 -0
- vllm/model_executor/models/interfaces.py +569 -0
- vllm/model_executor/models/interfaces_base.py +163 -0
- vllm/model_executor/models/intern_vit.py +476 -0
- vllm/model_executor/models/internlm2.py +453 -0
- vllm/model_executor/models/internlm2_ve.py +146 -0
- vllm/model_executor/models/internvl.py +945 -0
- vllm/model_executor/models/jais.py +371 -0
- vllm/model_executor/models/jamba.py +590 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +619 -0
- vllm/model_executor/models/llama4.py +530 -0
- vllm/model_executor/models/llama_eagle.py +152 -0
- vllm/model_executor/models/llama_eagle3.py +232 -0
- vllm/model_executor/models/llava.py +869 -0
- vllm/model_executor/models/llava_next.py +582 -0
- vllm/model_executor/models/llava_next_video.py +470 -0
- vllm/model_executor/models/llava_onevision.py +954 -0
- vllm/model_executor/models/mamba.py +271 -0
- vllm/model_executor/models/mamba2.py +302 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +210 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +229 -0
- vllm/model_executor/models/minicpmo.py +725 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +35 -0
- vllm/model_executor/models/minimax_text_01.py +1261 -0
- vllm/model_executor/models/mistral3.py +598 -0
- vllm/model_executor/models/mixtral.py +485 -0
- vllm/model_executor/models/mixtral_quant.py +447 -0
- vllm/model_executor/models/mllama.py +1623 -0
- vllm/model_executor/models/mllama4.py +838 -0
- vllm/model_executor/models/mlp_speculator.py +205 -0
- vllm/model_executor/models/modernbert.py +325 -0
- vllm/model_executor/models/module_mapping.py +71 -0
- vllm/model_executor/models/molmo.py +1567 -0
- vllm/model_executor/models/moonvit.py +628 -0
- vllm/model_executor/models/mpt.py +329 -0
- vllm/model_executor/models/nemotron.py +506 -0
- vllm/model_executor/models/nemotron_nas.py +446 -0
- vllm/model_executor/models/nvlm_d.py +212 -0
- vllm/model_executor/models/olmo.py +390 -0
- vllm/model_executor/models/olmo2.py +412 -0
- vllm/model_executor/models/olmoe.py +449 -0
- vllm/model_executor/models/opt.py +410 -0
- vllm/model_executor/models/orion.py +356 -0
- vllm/model_executor/models/paligemma.py +397 -0
- vllm/model_executor/models/persimmon.py +342 -0
- vllm/model_executor/models/phi.py +354 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3_small.py +463 -0
- vllm/model_executor/models/phi3v.py +722 -0
- vllm/model_executor/models/phi4mm.py +1263 -0
- vllm/model_executor/models/phi4mm_audio.py +1232 -0
- vllm/model_executor/models/phi4mm_utils.py +1883 -0
- vllm/model_executor/models/phimoe.py +666 -0
- vllm/model_executor/models/pixtral.py +1281 -0
- vllm/model_executor/models/plamo2.py +736 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
- vllm/model_executor/models/qwen.py +360 -0
- vllm/model_executor/models/qwen2.py +552 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
- vllm/model_executor/models/qwen2_5_vl.py +1136 -0
- vllm/model_executor/models/qwen2_audio.py +402 -0
- vllm/model_executor/models/qwen2_moe.py +531 -0
- vllm/model_executor/models/qwen2_rm.py +130 -0
- vllm/model_executor/models/qwen2_vl.py +1409 -0
- vllm/model_executor/models/qwen3.py +319 -0
- vllm/model_executor/models/qwen3_moe.py +528 -0
- vllm/model_executor/models/qwen_vl.py +784 -0
- vllm/model_executor/models/registry.py +611 -0
- vllm/model_executor/models/roberta.py +332 -0
- vllm/model_executor/models/siglip.py +522 -0
- vllm/model_executor/models/skyworkr1v.py +949 -0
- vllm/model_executor/models/smolvlm.py +51 -0
- vllm/model_executor/models/solar.py +504 -0
- vllm/model_executor/models/stablelm.py +349 -0
- vllm/model_executor/models/starcoder2.py +355 -0
- vllm/model_executor/models/telechat2.py +139 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/transformers.py +442 -0
- vllm/model_executor/models/ultravox.py +655 -0
- vllm/model_executor/models/utils.py +714 -0
- vllm/model_executor/models/vision.py +149 -0
- vllm/model_executor/models/whisper.py +746 -0
- vllm/model_executor/models/zamba2.py +1008 -0
- vllm/model_executor/parameter.py +458 -0
- vllm/model_executor/pooling_metadata.py +71 -0
- vllm/model_executor/sampling_metadata.py +596 -0
- vllm/model_executor/utils.py +53 -0
- vllm/multimodal/__init__.py +31 -0
- vllm/multimodal/audio.py +105 -0
- vllm/multimodal/base.py +218 -0
- vllm/multimodal/hasher.py +103 -0
- vllm/multimodal/image.py +77 -0
- vllm/multimodal/inputs.py +843 -0
- vllm/multimodal/parse.py +454 -0
- vllm/multimodal/processing.py +1760 -0
- vllm/multimodal/profiling.py +274 -0
- vllm/multimodal/registry.py +321 -0
- vllm/multimodal/utils.py +386 -0
- vllm/multimodal/video.py +166 -0
- vllm/outputs.py +521 -0
- vllm/platforms/__init__.py +286 -0
- vllm/platforms/cpu.py +182 -0
- vllm/platforms/cuda.py +463 -0
- vllm/platforms/hpu.py +94 -0
- vllm/platforms/interface.py +427 -0
- vllm/platforms/neuron.py +69 -0
- vllm/platforms/rocm.py +346 -0
- vllm/platforms/tpu.py +174 -0
- vllm/platforms/xpu.py +142 -0
- vllm/plugins/__init__.py +82 -0
- vllm/pooling_params.py +53 -0
- vllm/profiler/__init__.py +7 -0
- vllm/profiler/layerwise_profile.py +374 -0
- vllm/profiler/utils.py +147 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +82 -0
- vllm/prompt_adapter/models.py +357 -0
- vllm/prompt_adapter/request.py +36 -0
- vllm/prompt_adapter/utils.py +97 -0
- vllm/prompt_adapter/worker_manager.py +178 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +12 -0
- vllm/reasoning/abs_reasoning_parsers.py +189 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
- vllm/reasoning/granite_reasoning_parser.py +362 -0
- vllm/sampling_params.py +598 -0
- vllm/scalar_type.py +335 -0
- vllm/scripts.py +14 -0
- vllm/sequence.py +1486 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +505 -0
- vllm/spec_decode/draft_model_runner.py +335 -0
- vllm/spec_decode/interfaces.py +98 -0
- vllm/spec_decode/medusa_worker.py +137 -0
- vllm/spec_decode/metrics.py +212 -0
- vllm/spec_decode/mlp_speculator_worker.py +93 -0
- vllm/spec_decode/mqa_scorer.py +159 -0
- vllm/spec_decode/multi_step_worker.py +416 -0
- vllm/spec_decode/ngram_worker.py +195 -0
- vllm/spec_decode/proposer_worker_base.py +58 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
- vllm/spec_decode/spec_decode_worker.py +1324 -0
- vllm/spec_decode/target_model_runner.py +44 -0
- vllm/spec_decode/top1_proposer.py +274 -0
- vllm/spec_decode/util.py +276 -0
- vllm/test_utils.py +129 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6139 -0
- vllm/tracing.py +130 -0
- vllm/transformers_utils/__init__.py +19 -0
- vllm/transformers_utils/config.py +813 -0
- vllm/transformers_utils/configs/__init__.py +52 -0
- vllm/transformers_utils/configs/arctic.py +206 -0
- vllm/transformers_utils/configs/chatglm.py +71 -0
- vllm/transformers_utils/configs/cohere2.py +194 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +65 -0
- vllm/transformers_utils/configs/exaone.py +191 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/h2ovl.py +15 -0
- vllm/transformers_utils/configs/internvl.py +53 -0
- vllm/transformers_utils/configs/jais.py +237 -0
- vllm/transformers_utils/configs/kimi_vl.py +36 -0
- vllm/transformers_utils/configs/medusa.py +62 -0
- vllm/transformers_utils/configs/mllama.py +30 -0
- vllm/transformers_utils/configs/mlp_speculator.py +67 -0
- vllm/transformers_utils/configs/moonvit.py +32 -0
- vllm/transformers_utils/configs/mpt.py +179 -0
- vllm/transformers_utils/configs/nemotron.py +204 -0
- vllm/transformers_utils/configs/nvlm_d.py +14 -0
- vllm/transformers_utils/configs/skyworkr1v.py +53 -0
- vllm/transformers_utils/configs/solar.py +246 -0
- vllm/transformers_utils/configs/telechat2.py +63 -0
- vllm/transformers_utils/configs/ultravox.py +107 -0
- vllm/transformers_utils/detokenizer.py +167 -0
- vllm/transformers_utils/detokenizer_utils.py +188 -0
- vllm/transformers_utils/processor.py +210 -0
- vllm/transformers_utils/processors/__init__.py +6 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/s3_utils.py +161 -0
- vllm/transformers_utils/tokenizer.py +291 -0
- vllm/transformers_utils/tokenizer_base.py +146 -0
- vllm/transformers_utils/tokenizer_group.py +110 -0
- vllm/transformers_utils/tokenizers/__init__.py +9 -0
- vllm/transformers_utils/tokenizers/mistral.py +483 -0
- vllm/transformers_utils/utils.py +98 -0
- vllm/triton_utils/__init__.py +5 -0
- vllm/triton_utils/importing.py +53 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +255 -0
- vllm/utils.py +2692 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/flash_attn.py +783 -0
- vllm/v1/attention/backends/flashinfer.py +638 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +974 -0
- vllm/v1/attention/backends/mla/flashmla.py +149 -0
- vllm/v1/attention/backends/mla/triton_mla.py +118 -0
- vllm/v1/attention/backends/pallas.py +221 -0
- vllm/v1/attention/backends/triton_attn.py +198 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +281 -0
- vllm/v1/core/encoder_cache_manager.py +149 -0
- vllm/v1/core/kv_cache_manager.py +385 -0
- vllm/v1/core/kv_cache_utils.py +744 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +134 -0
- vllm/v1/core/sched/output.py +126 -0
- vllm/v1/core/sched/scheduler.py +838 -0
- vllm/v1/core/sched/utils.py +22 -0
- vllm/v1/core/specialized_manager.py +161 -0
- vllm/v1/engine/__init__.py +166 -0
- vllm/v1/engine/async_llm.py +532 -0
- vllm/v1/engine/core.py +701 -0
- vllm/v1/engine/core_client.py +942 -0
- vllm/v1/engine/detokenizer.py +260 -0
- vllm/v1/engine/exceptions.py +16 -0
- vllm/v1/engine/llm_engine.py +285 -0
- vllm/v1/engine/logprobs.py +198 -0
- vllm/v1/engine/mm_input_cache.py +82 -0
- vllm/v1/engine/output_processor.py +420 -0
- vllm/v1/engine/parallel_sampling.py +132 -0
- vllm/v1/engine/processor.py +387 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +112 -0
- vllm/v1/executor/multiproc_executor.py +480 -0
- vllm/v1/executor/ray_distributed_executor.py +61 -0
- vllm/v1/kv_cache_interface.py +166 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +498 -0
- vllm/v1/metrics/stats.py +238 -0
- vllm/v1/outputs.py +111 -0
- vllm/v1/request.py +178 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +38 -0
- vllm/v1/sample/ops/penalties.py +58 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +270 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +118 -0
- vllm/v1/sample/tpu/sampler.py +154 -0
- vllm/v1/serial_utils.py +274 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +318 -0
- vllm/v1/spec_decode/metadata.py +61 -0
- vllm/v1/spec_decode/metrics.py +164 -0
- vllm/v1/spec_decode/ngram_proposer.py +131 -0
- vllm/v1/spec_decode/utils.py +18 -0
- vllm/v1/stats/__init__.py +0 -0
- vllm/v1/stats/common.py +453 -0
- vllm/v1/structured_output/__init__.py +113 -0
- vllm/v1/structured_output/backend_guidance.py +215 -0
- vllm/v1/structured_output/backend_types.py +96 -0
- vllm/v1/structured_output/backend_xgrammar.py +299 -0
- vllm/v1/structured_output/request.py +84 -0
- vllm/v1/structured_output/utils.py +174 -0
- vllm/v1/utils.py +249 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +87 -0
- vllm/v1/worker/gpu_input_batch.py +677 -0
- vllm/v1/worker/gpu_model_runner.py +1776 -0
- vllm/v1/worker/gpu_worker.py +349 -0
- vllm/v1/worker/lora_model_runner_mixin.py +145 -0
- vllm/v1/worker/tpu_model_runner.py +1419 -0
- vllm/v1/worker/tpu_worker.py +260 -0
- vllm/v1/worker/utils.py +74 -0
- vllm/v1/worker/worker_base.py +64 -0
- vllm/version.py +40 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +144 -0
- vllm/worker/cpu_enc_dec_model_runner.py +323 -0
- vllm/worker/cpu_model_runner.py +668 -0
- vllm/worker/cpu_pooling_model_runner.py +122 -0
- vllm/worker/cpu_worker.py +400 -0
- vllm/worker/enc_dec_model_runner.py +542 -0
- vllm/worker/hpu_model_runner.py +2221 -0
- vllm/worker/hpu_worker.py +483 -0
- vllm/worker/model_runner.py +2056 -0
- vllm/worker/model_runner_base.py +281 -0
- vllm/worker/multi_step_hpu_worker.py +122 -0
- vllm/worker/multi_step_model_runner.py +908 -0
- vllm/worker/multi_step_tpu_worker.py +107 -0
- vllm/worker/multi_step_worker.py +196 -0
- vllm/worker/neuron_model_runner.py +336 -0
- vllm/worker/neuron_worker.py +138 -0
- vllm/worker/pooling_model_runner.py +200 -0
- vllm/worker/tpu_model_runner.py +908 -0
- vllm/worker/tpu_worker.py +332 -0
- vllm/worker/utils.py +52 -0
- vllm/worker/worker.py +570 -0
- vllm/worker/worker_base.py +644 -0
- vllm/worker/xpu_model_runner.py +603 -0
- vllm/worker/xpu_worker.py +185 -0
- vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
- vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
- vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
- vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
- vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,196 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
"""A layer that compute logits from hidden_stats."""
|
|
3
|
+
import inspect
|
|
4
|
+
from concurrent.futures import ThreadPoolExecutor
|
|
5
|
+
from typing import Optional
|
|
6
|
+
|
|
7
|
+
import torch
|
|
8
|
+
import torch.nn as nn
|
|
9
|
+
|
|
10
|
+
import vllm.envs as envs
|
|
11
|
+
from vllm.distributed import (tensor_model_parallel_all_gather,
|
|
12
|
+
tensor_model_parallel_gather)
|
|
13
|
+
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
14
|
+
VocabParallelEmbedding)
|
|
15
|
+
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
16
|
+
from vllm.platforms import current_platform
|
|
17
|
+
|
|
18
|
+
_logits_processor_threadpool: Optional[ThreadPoolExecutor] = None
|
|
19
|
+
if envs.VLLM_LOGITS_PROCESSOR_THREADS is not None:
|
|
20
|
+
_logits_processor_threadpool = ThreadPoolExecutor(
|
|
21
|
+
envs.VLLM_LOGITS_PROCESSOR_THREADS)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class LogitsProcessor(nn.Module):
|
|
25
|
+
"""Process logits and apply logits processors from sampling metadata.
|
|
26
|
+
|
|
27
|
+
This layer does the following:
|
|
28
|
+
1. Gather logits from model hidden_states.
|
|
29
|
+
2. Scale logits if needed.
|
|
30
|
+
3. Apply logits processors (if any).
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
def __init__(self,
|
|
34
|
+
vocab_size: int,
|
|
35
|
+
org_vocab_size: Optional[int] = None,
|
|
36
|
+
scale: float = 1.0,
|
|
37
|
+
logits_as_input: bool = False,
|
|
38
|
+
soft_cap: Optional[float] = None) -> None:
|
|
39
|
+
"""
|
|
40
|
+
Args:
|
|
41
|
+
scale: A scaling factor to apply to the logits.
|
|
42
|
+
"""
|
|
43
|
+
super().__init__()
|
|
44
|
+
self.scale = scale
|
|
45
|
+
self.vocab_size = vocab_size
|
|
46
|
+
# Whether the input is logits (default is hidden states).
|
|
47
|
+
self.logits_as_input = logits_as_input
|
|
48
|
+
# original vocabulary size (without LoRA).
|
|
49
|
+
self.org_vocab_size = org_vocab_size or vocab_size
|
|
50
|
+
# Soft cap the logits. Used in Gemma 2.
|
|
51
|
+
self.soft_cap = soft_cap
|
|
52
|
+
# Whether to use gather or all-gather to gather the logits.
|
|
53
|
+
self.use_all_gather = current_platform.use_all_gather()
|
|
54
|
+
|
|
55
|
+
def forward(
|
|
56
|
+
self,
|
|
57
|
+
lm_head: VocabParallelEmbedding,
|
|
58
|
+
hidden_states: torch.Tensor,
|
|
59
|
+
sampling_metadata: Optional[SamplingMetadata] = None,
|
|
60
|
+
embedding_bias: Optional[torch.Tensor] = None,
|
|
61
|
+
) -> Optional[torch.Tensor]:
|
|
62
|
+
if self.logits_as_input:
|
|
63
|
+
logits = hidden_states
|
|
64
|
+
else:
|
|
65
|
+
if sampling_metadata is not None:
|
|
66
|
+
hidden_states = _prune_hidden_states(hidden_states,
|
|
67
|
+
sampling_metadata)
|
|
68
|
+
|
|
69
|
+
# Get the logits for the next tokens.
|
|
70
|
+
logits = self._get_logits(hidden_states, lm_head, embedding_bias)
|
|
71
|
+
if logits is not None:
|
|
72
|
+
if self.soft_cap is not None:
|
|
73
|
+
logits = logits / self.soft_cap
|
|
74
|
+
logits = torch.tanh(logits)
|
|
75
|
+
logits = logits * self.soft_cap
|
|
76
|
+
|
|
77
|
+
if self.scale != 1.0:
|
|
78
|
+
logits *= self.scale
|
|
79
|
+
|
|
80
|
+
# Apply logits processors (if any).
|
|
81
|
+
if sampling_metadata is not None and \
|
|
82
|
+
sampling_metadata.seq_groups is not None:
|
|
83
|
+
logits = _apply_logits_processors(logits, sampling_metadata)
|
|
84
|
+
|
|
85
|
+
return logits
|
|
86
|
+
|
|
87
|
+
def _gather_logits(self, logits: torch.Tensor) -> torch.Tensor:
|
|
88
|
+
"""gather/all-gather the logits tensor across model parallel group."""
|
|
89
|
+
if self.use_all_gather:
|
|
90
|
+
# Gather is not supported for some devices such as TPUs.
|
|
91
|
+
# Use all-gather instead.
|
|
92
|
+
# NOTE(woosuk): Here, the outputs of every device should not be None
|
|
93
|
+
# because XLA requires strict SPMD among all devices. Every device
|
|
94
|
+
# should execute the same operations after gathering the logits.
|
|
95
|
+
logits = tensor_model_parallel_all_gather(logits)
|
|
96
|
+
else:
|
|
97
|
+
# None may be returned for rank > 0
|
|
98
|
+
logits = tensor_model_parallel_gather(logits)
|
|
99
|
+
return logits
|
|
100
|
+
|
|
101
|
+
def _get_logits(
|
|
102
|
+
self,
|
|
103
|
+
hidden_states: torch.Tensor,
|
|
104
|
+
lm_head: VocabParallelEmbedding,
|
|
105
|
+
embedding_bias: Optional[torch.Tensor],
|
|
106
|
+
) -> Optional[torch.Tensor]:
|
|
107
|
+
# Get the logits for the next tokens.
|
|
108
|
+
logits = lm_head.quant_method.apply(lm_head,
|
|
109
|
+
hidden_states,
|
|
110
|
+
bias=embedding_bias)
|
|
111
|
+
|
|
112
|
+
# Gather logits for TP
|
|
113
|
+
logits = self._gather_logits(logits)
|
|
114
|
+
|
|
115
|
+
# Remove paddings in vocab (if any).
|
|
116
|
+
if logits is not None:
|
|
117
|
+
logits = logits[..., :self.org_vocab_size]
|
|
118
|
+
return logits
|
|
119
|
+
|
|
120
|
+
def extra_repr(self) -> str:
|
|
121
|
+
s = f"vocab_size={self.vocab_size}"
|
|
122
|
+
s += f", forg_vocab_size={self.org_vocab_size}"
|
|
123
|
+
s += f", scale={self.scale}, logits_as_input={self.logits_as_input}"
|
|
124
|
+
return s
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
def _prune_hidden_states(
|
|
128
|
+
hidden_states: torch.Tensor,
|
|
129
|
+
sampling_metadata: SamplingMetadata,
|
|
130
|
+
) -> torch.Tensor:
|
|
131
|
+
# NOTE(kzawora): The if guard is needed for Gaudi - in some scenarios
|
|
132
|
+
# (warmup, profile_run) we might not have selected_token_indices,
|
|
133
|
+
# so we skip pruning.
|
|
134
|
+
if sampling_metadata.selected_token_indices is not None:
|
|
135
|
+
return hidden_states.index_select(
|
|
136
|
+
0, sampling_metadata.selected_token_indices)
|
|
137
|
+
else:
|
|
138
|
+
return hidden_states
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
def _apply_logits_processors(
|
|
142
|
+
logits: torch.Tensor,
|
|
143
|
+
sampling_metadata: SamplingMetadata,
|
|
144
|
+
) -> torch.Tensor:
|
|
145
|
+
found_logits_processors = False
|
|
146
|
+
logits_processed = 0
|
|
147
|
+
logits_row_ids_and_logits_row_futures = []
|
|
148
|
+
for seq_group in sampling_metadata.seq_groups:
|
|
149
|
+
seq_ids = seq_group.seq_ids
|
|
150
|
+
sampling_params = seq_group.sampling_params
|
|
151
|
+
logits_processors = sampling_params.logits_processors
|
|
152
|
+
if logits_processors:
|
|
153
|
+
found_logits_processors = True
|
|
154
|
+
|
|
155
|
+
for seq_id, logits_row_idx in zip(seq_ids,
|
|
156
|
+
seq_group.sample_indices):
|
|
157
|
+
logits_row = logits[logits_row_idx]
|
|
158
|
+
past_tokens_ids = seq_group.seq_data[seq_id].output_token_ids
|
|
159
|
+
prompt_tokens_ids = seq_group.seq_data[seq_id].prompt_token_ids
|
|
160
|
+
|
|
161
|
+
if _logits_processor_threadpool is not None:
|
|
162
|
+
logits_row_ids_and_logits_row_futures.append(
|
|
163
|
+
(logits_row_idx,
|
|
164
|
+
_logits_processor_threadpool.submit(
|
|
165
|
+
_apply_logits_processors_single_seq, logits_row,
|
|
166
|
+
logits_processors, past_tokens_ids,
|
|
167
|
+
prompt_tokens_ids)))
|
|
168
|
+
else:
|
|
169
|
+
logits[logits_row_idx] = \
|
|
170
|
+
_apply_logits_processors_single_seq(
|
|
171
|
+
logits_row, logits_processors, past_tokens_ids,
|
|
172
|
+
prompt_tokens_ids)
|
|
173
|
+
|
|
174
|
+
logits_processed += len(seq_group.sample_indices) + len(
|
|
175
|
+
seq_group.prompt_logprob_indices)
|
|
176
|
+
|
|
177
|
+
for logits_row_idx, future in logits_row_ids_and_logits_row_futures:
|
|
178
|
+
logits[logits_row_idx] = future.result()
|
|
179
|
+
|
|
180
|
+
if found_logits_processors:
|
|
181
|
+
# verifies that no rows in logits were missed unexpectedly
|
|
182
|
+
assert logits_processed == logits.shape[0]
|
|
183
|
+
return logits
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
def _apply_logits_processors_single_seq(logits_row, logits_processors,
|
|
187
|
+
past_tokens_ids,
|
|
188
|
+
prompt_tokens_ids) -> torch.Tensor:
|
|
189
|
+
for logits_processor in logits_processors:
|
|
190
|
+
parameters = inspect.signature(logits_processor).parameters
|
|
191
|
+
if len(parameters) == 3:
|
|
192
|
+
logits_row = logits_processor(prompt_tokens_ids, past_tokens_ids,
|
|
193
|
+
logits_row)
|
|
194
|
+
else:
|
|
195
|
+
logits_row = logits_processor(past_tokens_ids, logits_row)
|
|
196
|
+
return logits_row
|
|
File without changes
|
|
@@ -0,0 +1,109 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
import math
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from vllm.attention.backends.abstract import AttentionMetadata
|
|
8
|
+
from vllm.attention.backends.flash_attn import FlashAttentionMetadata
|
|
9
|
+
from vllm.attention.backends.placeholder_attn import (
|
|
10
|
+
PlaceholderAttentionMetadata)
|
|
11
|
+
from vllm.attention.backends.xformers import XFormersMetadata
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
@dataclass
|
|
15
|
+
class Mamba2Metadata:
|
|
16
|
+
has_prefill: bool
|
|
17
|
+
|
|
18
|
+
has_initial_states: torch.Tensor
|
|
19
|
+
prep_initial_states: bool
|
|
20
|
+
|
|
21
|
+
chunk_size: int
|
|
22
|
+
seq_idx: torch.Tensor
|
|
23
|
+
chunk_indices: torch.Tensor
|
|
24
|
+
chunk_offsets: torch.Tensor
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def _seq_idx_to_chunk_indices_offsets(seq_idx, chunk_size: int):
|
|
28
|
+
|
|
29
|
+
# convert seq_idx to chunk indices and offsets
|
|
30
|
+
# - derive the cu_seqlens
|
|
31
|
+
_, cu_seqlens = torch.where(seq_idx.diff())
|
|
32
|
+
cu_seqlens += 1
|
|
33
|
+
|
|
34
|
+
# outputs will have length expansion of chunks that do not divide
|
|
35
|
+
# chunk_size
|
|
36
|
+
N = math.ceil(seq_idx.shape[-1] / chunk_size) + (cu_seqlens % chunk_size
|
|
37
|
+
> 0).sum()
|
|
38
|
+
chunk_indices = torch.arange(N, dtype=torch.int, device=seq_idx.device)
|
|
39
|
+
chunk_offsets = torch.zeros((N, ), dtype=torch.int, device=seq_idx.device)
|
|
40
|
+
|
|
41
|
+
cu_seqlens = cu_seqlens.tolist() + [seq_idx.shape[-1]]
|
|
42
|
+
p = 0 # num of insertions
|
|
43
|
+
for s, e in zip(cu_seqlens[:-1], cu_seqlens[1:]):
|
|
44
|
+
|
|
45
|
+
# if does not divide chunk_size, then there is one chunk insertion
|
|
46
|
+
p += (s % chunk_size > 0)
|
|
47
|
+
|
|
48
|
+
# get the dimensions
|
|
49
|
+
# - the + 1 for _e is to shift the boundary by one chunk
|
|
50
|
+
# - this shifting is not needed if chunk_size divides e
|
|
51
|
+
_s, _e = s // chunk_size + p, e // chunk_size + p + (e % chunk_size
|
|
52
|
+
> 0)
|
|
53
|
+
|
|
54
|
+
# adjust inidces and offsets
|
|
55
|
+
chunk_indices[_s:_e] -= p
|
|
56
|
+
chunk_offsets[_s] = s % chunk_size
|
|
57
|
+
|
|
58
|
+
return chunk_indices, chunk_offsets
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def prepare_mamba2_metadata(
|
|
62
|
+
chunk_size: int,
|
|
63
|
+
input_ids: torch.Tensor,
|
|
64
|
+
attn_metadata: AttentionMetadata,
|
|
65
|
+
) -> Mamba2Metadata:
|
|
66
|
+
|
|
67
|
+
# Need flags to indicate if there are initial states
|
|
68
|
+
# currently we really only support the FlashAttention backend
|
|
69
|
+
has_initial_states = None
|
|
70
|
+
prep_initial_states = False
|
|
71
|
+
if (isinstance(attn_metadata, (FlashAttentionMetadata, XFormersMetadata,
|
|
72
|
+
PlaceholderAttentionMetadata))
|
|
73
|
+
and attn_metadata.context_lens_tensor is not None):
|
|
74
|
+
has_initial_states = attn_metadata.context_lens_tensor > 0
|
|
75
|
+
# precompute flag to avoid device syncs later in mamba2 forwards
|
|
76
|
+
prep_initial_states = torch.any(has_initial_states).item()
|
|
77
|
+
|
|
78
|
+
has_prefill = attn_metadata.num_prefills > 0
|
|
79
|
+
|
|
80
|
+
seq_idx = None
|
|
81
|
+
chunk_indices, chunk_offsets = None, None
|
|
82
|
+
if has_prefill:
|
|
83
|
+
seq_idx = torch.zeros_like(input_ids, dtype=torch.int32)
|
|
84
|
+
for i, (srt, end) in enumerate(
|
|
85
|
+
zip(
|
|
86
|
+
attn_metadata.query_start_loc,
|
|
87
|
+
attn_metadata.query_start_loc[1:],
|
|
88
|
+
)):
|
|
89
|
+
seq_idx[srt:end] = i
|
|
90
|
+
seq_idx.unsqueeze_(0)
|
|
91
|
+
|
|
92
|
+
# compute metadata for chunked prefill.
|
|
93
|
+
# actually this is only needed if there are initial states,
|
|
94
|
+
# but this is determinable only from attention metadata yet
|
|
95
|
+
# unavailable from the top-level model forward. Rather than
|
|
96
|
+
# complicating things to extract said metadata, we simply just
|
|
97
|
+
# compute them once at the top level model forward and reuse
|
|
98
|
+
# them in mamba layers. If not needed, they will be ignored
|
|
99
|
+
# inside mamba kernels.
|
|
100
|
+
chunk_indices, chunk_offsets = _seq_idx_to_chunk_indices_offsets(
|
|
101
|
+
seq_idx, chunk_size)
|
|
102
|
+
|
|
103
|
+
return Mamba2Metadata(has_prefill=has_prefill,
|
|
104
|
+
has_initial_states=has_initial_states,
|
|
105
|
+
prep_initial_states=prep_initial_states,
|
|
106
|
+
chunk_size=chunk_size,
|
|
107
|
+
seq_idx=seq_idx,
|
|
108
|
+
chunk_indices=chunk_indices,
|
|
109
|
+
chunk_offsets=chunk_offsets)
|
|
@@ -0,0 +1,244 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from torch import nn
|
|
5
|
+
from torch.nn.parameter import Parameter
|
|
6
|
+
|
|
7
|
+
from vllm.attention.backends.abstract import AttentionMetadata
|
|
8
|
+
from vllm.distributed.parallel_state import (
|
|
9
|
+
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
|
10
|
+
from vllm.forward_context import get_forward_context
|
|
11
|
+
from vllm.model_executor.custom_op import CustomOp
|
|
12
|
+
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
13
|
+
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
14
|
+
MergedColumnParallelLinear,
|
|
15
|
+
RowParallelLinear)
|
|
16
|
+
from vllm.model_executor.layers.mamba.ops.causal_conv1d import (
|
|
17
|
+
causal_conv1d_fn, causal_conv1d_update)
|
|
18
|
+
from vllm.model_executor.layers.mamba.ops.mamba_ssm import (
|
|
19
|
+
selective_scan_fn, selective_state_update)
|
|
20
|
+
from vllm.model_executor.models.mamba_cache import MambaCacheParams
|
|
21
|
+
from vllm.model_executor.utils import set_weight_attrs
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
# Adapted from transformers.models.mamba.modeling_mamba.MambaMixer
|
|
25
|
+
@CustomOp.register("mamba_mixer")
|
|
26
|
+
class MambaMixer(CustomOp):
|
|
27
|
+
"""
|
|
28
|
+
Compute ∆, A, B, C, and D the state space parameters and compute
|
|
29
|
+
the `contextualized_states`. A, D are input independent
|
|
30
|
+
(see Mamba paper [1] Section 3.5.2 "Interpretation of A"
|
|
31
|
+
for why A isn't selective) ∆, B, C are input-dependent
|
|
32
|
+
(this is a key difference between Mamba and the linear time
|
|
33
|
+
invariant S4, and is why Mamba is called
|
|
34
|
+
**selective** state spaces)
|
|
35
|
+
"""
|
|
36
|
+
|
|
37
|
+
def __init__(self,
|
|
38
|
+
hidden_size: int,
|
|
39
|
+
ssm_state_size: int,
|
|
40
|
+
conv_kernel_size: int,
|
|
41
|
+
intermediate_size: int,
|
|
42
|
+
time_step_rank: int,
|
|
43
|
+
use_conv_bias: bool,
|
|
44
|
+
use_bias: bool,
|
|
45
|
+
use_rms_norm: bool,
|
|
46
|
+
rms_norm_has_weight: bool = True,
|
|
47
|
+
rms_norm_eps: float = 1e-5,
|
|
48
|
+
activation="silu",
|
|
49
|
+
is_lora_enabled: bool = False):
|
|
50
|
+
super().__init__()
|
|
51
|
+
self.time_step_rank = time_step_rank
|
|
52
|
+
self.ssm_state_size = ssm_state_size
|
|
53
|
+
self.use_rms_norm = use_rms_norm
|
|
54
|
+
self.activation = activation
|
|
55
|
+
self.is_lora_enabled = is_lora_enabled
|
|
56
|
+
|
|
57
|
+
self.conv1d = ColumnParallelLinear(
|
|
58
|
+
input_size=conv_kernel_size,
|
|
59
|
+
output_size=intermediate_size,
|
|
60
|
+
bias=use_conv_bias,
|
|
61
|
+
)
|
|
62
|
+
# unsqueeze to fit conv1d weights shape into the linear weights shape.
|
|
63
|
+
# Can't do this in `weight_loader` since it already exists in
|
|
64
|
+
# `ColumnParallelLinear` and `set_weight_attrs`
|
|
65
|
+
# doesn't allow to override it
|
|
66
|
+
self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1)
|
|
67
|
+
|
|
68
|
+
self.in_proj = MergedColumnParallelLinear(hidden_size,
|
|
69
|
+
[intermediate_size] * 2,
|
|
70
|
+
bias=use_bias)
|
|
71
|
+
|
|
72
|
+
# selective projection used to make dt, B and C input dependent
|
|
73
|
+
self.x_proj = RowParallelLinear(
|
|
74
|
+
intermediate_size,
|
|
75
|
+
time_step_rank + ssm_state_size * 2,
|
|
76
|
+
bias=False,
|
|
77
|
+
)
|
|
78
|
+
# time step projection (discretization) -
|
|
79
|
+
# In the forward we need to apply dt_proj without the bias,
|
|
80
|
+
# as the bias is added in the selective scan kernel.
|
|
81
|
+
self.dt_proj = ColumnParallelLinear(time_step_rank,
|
|
82
|
+
intermediate_size,
|
|
83
|
+
bias=True,
|
|
84
|
+
skip_bias_add=True)
|
|
85
|
+
|
|
86
|
+
def weight_loader(param: Parameter, loaded_weight: torch.Tensor):
|
|
87
|
+
tp_rank = get_tensor_model_parallel_rank()
|
|
88
|
+
tp_size = get_tensor_model_parallel_world_size()
|
|
89
|
+
param.data.copy_(
|
|
90
|
+
loaded_weight.data.split(loaded_weight.shape[0] // tp_size,
|
|
91
|
+
dim=0)[tp_rank])
|
|
92
|
+
|
|
93
|
+
def A_weight_loader(param: Parameter, loaded_weight: torch.Tensor):
|
|
94
|
+
weight_loader(param, -torch.exp(loaded_weight.float()))
|
|
95
|
+
|
|
96
|
+
tp_size = get_tensor_model_parallel_world_size()
|
|
97
|
+
self.A = nn.Parameter(
|
|
98
|
+
torch.empty(
|
|
99
|
+
intermediate_size // tp_size,
|
|
100
|
+
ssm_state_size,
|
|
101
|
+
dtype=torch.float32,
|
|
102
|
+
))
|
|
103
|
+
self.D = nn.Parameter(torch.ones(intermediate_size // tp_size))
|
|
104
|
+
|
|
105
|
+
set_weight_attrs(self.D, {"weight_loader": weight_loader})
|
|
106
|
+
set_weight_attrs(self.A, {"weight_loader": A_weight_loader})
|
|
107
|
+
|
|
108
|
+
self.out_proj = RowParallelLinear(
|
|
109
|
+
intermediate_size,
|
|
110
|
+
hidden_size,
|
|
111
|
+
bias=use_bias,
|
|
112
|
+
input_is_parallel=True,
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
self.dt_layernorm = RMSNorm(
|
|
116
|
+
time_step_rank,
|
|
117
|
+
eps=rms_norm_eps,
|
|
118
|
+
has_weight=rms_norm_has_weight,
|
|
119
|
+
) if use_rms_norm else None
|
|
120
|
+
|
|
121
|
+
self.b_layernorm = RMSNorm(
|
|
122
|
+
ssm_state_size,
|
|
123
|
+
eps=rms_norm_eps,
|
|
124
|
+
has_weight=rms_norm_has_weight,
|
|
125
|
+
) if use_rms_norm else None
|
|
126
|
+
|
|
127
|
+
self.c_layernorm = RMSNorm(
|
|
128
|
+
ssm_state_size,
|
|
129
|
+
eps=rms_norm_eps,
|
|
130
|
+
has_weight=rms_norm_has_weight,
|
|
131
|
+
) if use_rms_norm else None
|
|
132
|
+
|
|
133
|
+
def forward_native(self, hidden_states: torch.Tensor,
|
|
134
|
+
conv_state: torch.Tensor, ssm_state: torch.Tensor):
|
|
135
|
+
pass
|
|
136
|
+
|
|
137
|
+
def forward_cuda(self, hidden_states: torch.Tensor,
|
|
138
|
+
mamba_cache_params: MambaCacheParams):
|
|
139
|
+
|
|
140
|
+
attn_metadata: AttentionMetadata = get_forward_context().attn_metadata
|
|
141
|
+
|
|
142
|
+
# 1. Gated MLP's linear projection
|
|
143
|
+
projected_states = self.in_proj(hidden_states)[0].transpose(-2, -1)
|
|
144
|
+
hidden_states, gate = projected_states.chunk(2, dim=-2)
|
|
145
|
+
|
|
146
|
+
# 2. Convolution sequence transformation
|
|
147
|
+
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0),
|
|
148
|
+
self.conv1d.weight.size(2))
|
|
149
|
+
|
|
150
|
+
if attn_metadata.query_start_loc is not None \
|
|
151
|
+
and attn_metadata.context_lens_tensor is not None:
|
|
152
|
+
# |---------- N-1 iteration --------|
|
|
153
|
+
# |---------------- N iteration ---------------------|
|
|
154
|
+
# |- tokenA -|......................|-- newTokens ---|
|
|
155
|
+
# |---------- context_len ----------|
|
|
156
|
+
# |-------------------- seq_len ---------------------|
|
|
157
|
+
# |-- query_len ---|
|
|
158
|
+
hidden_states = causal_conv1d_fn(
|
|
159
|
+
hidden_states,
|
|
160
|
+
conv_weights,
|
|
161
|
+
self.conv1d.bias,
|
|
162
|
+
activation=self.activation,
|
|
163
|
+
conv_states=mamba_cache_params.conv_state,
|
|
164
|
+
has_initial_state=attn_metadata.context_lens_tensor > 0,
|
|
165
|
+
cache_indices=mamba_cache_params.state_indices_tensor,
|
|
166
|
+
query_start_loc=attn_metadata.query_start_loc)
|
|
167
|
+
else:
|
|
168
|
+
hidden_states = causal_conv1d_update(
|
|
169
|
+
hidden_states.transpose(0, 1),
|
|
170
|
+
mamba_cache_params.conv_state,
|
|
171
|
+
conv_weights,
|
|
172
|
+
self.conv1d.bias,
|
|
173
|
+
self.activation,
|
|
174
|
+
conv_state_indices=mamba_cache_params.state_indices_tensor)
|
|
175
|
+
hidden_states = hidden_states.transpose(0, 1)
|
|
176
|
+
|
|
177
|
+
# 3. State Space Model sequence transformation
|
|
178
|
+
# 3.a. input varying initialization of time_step, B and C
|
|
179
|
+
|
|
180
|
+
if self.is_lora_enabled:
|
|
181
|
+
# lora kernel requires contiguous tensor
|
|
182
|
+
ssm_parameters = self.x_proj(
|
|
183
|
+
hidden_states.transpose(-2, -1).contiguous())[0]
|
|
184
|
+
else:
|
|
185
|
+
ssm_parameters = self.x_proj(hidden_states.transpose(-2, -1))[0]
|
|
186
|
+
|
|
187
|
+
time_step, B, C = torch.split(
|
|
188
|
+
ssm_parameters,
|
|
189
|
+
[self.time_step_rank, self.ssm_state_size, self.ssm_state_size],
|
|
190
|
+
dim=-1,
|
|
191
|
+
)
|
|
192
|
+
if self.use_rms_norm:
|
|
193
|
+
assert self.dt_layernorm is not None
|
|
194
|
+
assert self.b_layernorm is not None
|
|
195
|
+
assert self.c_layernorm is not None
|
|
196
|
+
time_step = self.dt_layernorm(time_step.contiguous())
|
|
197
|
+
B = self.b_layernorm(B.contiguous())
|
|
198
|
+
C = self.c_layernorm(C.contiguous())
|
|
199
|
+
|
|
200
|
+
discrete_time_step = self.dt_proj(time_step)[0].transpose(-2, -1)
|
|
201
|
+
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
|
202
|
+
time_proj_bias = (self.dt_proj.bias.float() if hasattr(
|
|
203
|
+
self.dt_proj, "bias") else None)
|
|
204
|
+
|
|
205
|
+
if attn_metadata.query_start_loc is not None \
|
|
206
|
+
and attn_metadata.context_lens_tensor is not None:
|
|
207
|
+
scan_outputs = selective_scan_fn(
|
|
208
|
+
hidden_states,
|
|
209
|
+
mamba_cache_params.ssm_state,
|
|
210
|
+
discrete_time_step,
|
|
211
|
+
self.A,
|
|
212
|
+
B.transpose(-2, -1),
|
|
213
|
+
C.transpose(-2, -1),
|
|
214
|
+
self.D.float(),
|
|
215
|
+
gate,
|
|
216
|
+
time_proj_bias,
|
|
217
|
+
delta_softplus=True,
|
|
218
|
+
cache_indices=mamba_cache_params.state_indices_tensor,
|
|
219
|
+
has_initial_state=attn_metadata.context_lens_tensor > 0,
|
|
220
|
+
query_start_loc=attn_metadata.query_start_loc)
|
|
221
|
+
else:
|
|
222
|
+
scan_outputs = selective_state_update(
|
|
223
|
+
mamba_cache_params.ssm_state,
|
|
224
|
+
hidden_states.transpose(0, 1),
|
|
225
|
+
discrete_time_step.transpose(0, 1),
|
|
226
|
+
self.A,
|
|
227
|
+
B,
|
|
228
|
+
C,
|
|
229
|
+
self.D,
|
|
230
|
+
gate.transpose(0, 1),
|
|
231
|
+
time_proj_bias,
|
|
232
|
+
dt_softplus=True,
|
|
233
|
+
state_batch_indices=mamba_cache_params.state_indices_tensor)
|
|
234
|
+
scan_outputs = scan_outputs.transpose(0, 1)
|
|
235
|
+
|
|
236
|
+
# 4. Final linear projection
|
|
237
|
+
if self.is_lora_enabled:
|
|
238
|
+
# lora kernel requires contiguous tensor
|
|
239
|
+
contextualized_states = self.out_proj(
|
|
240
|
+
scan_outputs.transpose(-2, -1).contiguous())[0]
|
|
241
|
+
else:
|
|
242
|
+
contextualized_states = self.out_proj(
|
|
243
|
+
scan_outputs.transpose(-2, -1))[0]
|
|
244
|
+
return contextualized_states
|