vllm-cpu 0.8.5.post2__cp310-cp310-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of vllm-cpu might be problematic. Click here for more details.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +170 -0
- vllm/_custom_ops.py +1536 -0
- vllm/_ipex_ops.py +241 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +105 -0
- vllm/adapter_commons/request.py +25 -0
- vllm/adapter_commons/utils.py +92 -0
- vllm/adapter_commons/worker_manager.py +38 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +38 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +31 -0
- vllm/assets/video.py +103 -0
- vllm/attention/__init__.py +19 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +306 -0
- vllm/attention/backends/blocksparse_attn.py +457 -0
- vllm/attention/backends/cpu_mla.py +303 -0
- vllm/attention/backends/flash_attn.py +999 -0
- vllm/attention/backends/flashinfer.py +1092 -0
- vllm/attention/backends/flashmla.py +242 -0
- vllm/attention/backends/hpu_attn.py +301 -0
- vllm/attention/backends/ipex_attn.py +396 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1444 -0
- vllm/attention/backends/pallas.py +346 -0
- vllm/attention/backends/placeholder_attn.py +399 -0
- vllm/attention/backends/rocm_aiter_mla.py +412 -0
- vllm/attention/backends/rocm_flash_attn.py +969 -0
- vllm/attention/backends/torch_sdpa.py +691 -0
- vllm/attention/backends/triton_mla.py +113 -0
- vllm/attention/backends/utils.py +609 -0
- vllm/attention/backends/xformers.py +798 -0
- vllm/attention/layer.py +443 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +432 -0
- vllm/attention/ops/blocksparse_attention/interface.py +238 -0
- vllm/attention/ops/blocksparse_attention/utils.py +244 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +366 -0
- vllm/attention/ops/flashmla.py +115 -0
- vllm/attention/ops/hpu_paged_attn.py +105 -0
- vllm/attention/ops/ipex_attn.py +193 -0
- vllm/attention/ops/merge_attn_states.py +42 -0
- vllm/attention/ops/nki_flash_attn.py +905 -0
- vllm/attention/ops/paged_attn.py +255 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +42 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +101 -0
- vllm/attention/ops/triton_decode_attention.py +675 -0
- vllm/attention/ops/triton_flash_attention.py +1375 -0
- vllm/attention/ops/triton_merge_attn_states.py +96 -0
- vllm/attention/selector.py +186 -0
- vllm/attention/utils/fa_utils.py +54 -0
- vllm/beam_search.py +82 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +831 -0
- vllm/benchmarks/endpoint_request_func.py +160 -0
- vllm/benchmarks/latency.py +181 -0
- vllm/benchmarks/serve.py +925 -0
- vllm/benchmarks/throughput.py +608 -0
- vllm/benchmarks/utils.py +69 -0
- vllm/collect_env.py +795 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/backends.py +715 -0
- vllm/compilation/compiler_interface.py +437 -0
- vllm/compilation/counter.py +33 -0
- vllm/compilation/decorators.py +249 -0
- vllm/compilation/fix_functionalization.py +182 -0
- vllm/compilation/fusion.py +617 -0
- vllm/compilation/fx_utils.py +60 -0
- vllm/compilation/inductor_pass.py +114 -0
- vllm/compilation/monitor.py +38 -0
- vllm/compilation/multi_output_match.py +108 -0
- vllm/compilation/noop_elimination.py +135 -0
- vllm/compilation/pass_manager.py +74 -0
- vllm/compilation/sequence_parallelism.py +266 -0
- vllm/compilation/torch25_custom_graph_pass.py +41 -0
- vllm/compilation/vllm_inductor_pass.py +68 -0
- vllm/compilation/wrapper.py +129 -0
- vllm/config.py +4179 -0
- vllm/connections.py +170 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +398 -0
- vllm/core/block/common.py +370 -0
- vllm/core/block/cpu_gpu_block_allocator.py +440 -0
- vllm/core/block/interfaces.py +318 -0
- vllm/core/block/naive_block.py +465 -0
- vllm/core/block/prefix_caching_block.py +1134 -0
- vllm/core/block/utils.py +27 -0
- vllm/core/block_manager.py +520 -0
- vllm/core/evictor.py +156 -0
- vllm/core/interfaces.py +134 -0
- vllm/core/placeholder_block_space_manager.py +99 -0
- vllm/core/scheduler.py +2060 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +280 -0
- vllm/distributed/__init__.py +5 -0
- vllm/distributed/communication_op.py +40 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/base_device_communicator.py +151 -0
- vllm/distributed/device_communicators/cpu_communicator.py +139 -0
- vllm/distributed/device_communicators/cuda_communicator.py +131 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +179 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +301 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +257 -0
- vllm/distributed/device_communicators/hpu_communicator.py +45 -0
- vllm/distributed/device_communicators/neuron_communicator.py +19 -0
- vllm/distributed/device_communicators/pynccl.py +217 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +340 -0
- vllm/distributed/device_communicators/shm_broadcast.py +557 -0
- vllm/distributed/device_communicators/tpu_communicator.py +93 -0
- vllm/distributed/device_communicators/xpu_communicator.py +54 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +11 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +127 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +107 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +98 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +328 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +90 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +8 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +209 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +131 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +383 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +76 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +174 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +160 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +236 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +279 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +70 -0
- vllm/distributed/parallel_state.py +1209 -0
- vllm/distributed/utils.py +366 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1724 -0
- vllm/engine/async_llm_engine.py +1261 -0
- vllm/engine/async_timeout.py +191 -0
- vllm/engine/llm_engine.py +2150 -0
- vllm/engine/metrics.py +717 -0
- vllm/engine/metrics_types.py +96 -0
- vllm/engine/multiprocessing/__init__.py +183 -0
- vllm/engine/multiprocessing/client.py +745 -0
- vllm/engine/multiprocessing/engine.py +450 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +74 -0
- vllm/engine/output_processor/multi_step.py +210 -0
- vllm/engine/output_processor/single_step.py +136 -0
- vllm/engine/output_processor/stop_checker.py +130 -0
- vllm/engine/output_processor/util.py +27 -0
- vllm/engine/protocol.py +302 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +177 -0
- vllm/entrypoints/chat_utils.py +1259 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +38 -0
- vllm/entrypoints/cli/benchmark/latency.py +29 -0
- vllm/entrypoints/cli/benchmark/main.py +53 -0
- vllm/entrypoints/cli/benchmark/serve.py +29 -0
- vllm/entrypoints/cli/benchmark/throughput.py +29 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +59 -0
- vllm/entrypoints/cli/openai.py +175 -0
- vllm/entrypoints/cli/serve.py +59 -0
- vllm/entrypoints/cli/types.py +24 -0
- vllm/entrypoints/launcher.py +146 -0
- vllm/entrypoints/llm.py +1450 -0
- vllm/entrypoints/logger.py +44 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1130 -0
- vllm/entrypoints/openai/cli_args.py +296 -0
- vllm/entrypoints/openai/logits_processors.py +89 -0
- vllm/entrypoints/openai/protocol.py +1806 -0
- vllm/entrypoints/openai/run_batch.py +439 -0
- vllm/entrypoints/openai/serving_chat.py +1210 -0
- vllm/entrypoints/openai/serving_completion.py +557 -0
- vllm/entrypoints/openai/serving_embedding.py +245 -0
- vllm/entrypoints/openai/serving_engine.py +569 -0
- vllm/entrypoints/openai/serving_models.py +314 -0
- vllm/entrypoints/openai/serving_pooling.py +237 -0
- vllm/entrypoints/openai/serving_score.py +439 -0
- vllm/entrypoints/openai/serving_tokenization.py +147 -0
- vllm/entrypoints/openai/serving_transcription.py +421 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +19 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +163 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +254 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +232 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +211 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +303 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +262 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +342 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +110 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +292 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +123 -0
- vllm/entrypoints/score_utils.py +49 -0
- vllm/entrypoints/ssl.py +74 -0
- vllm/entrypoints/utils.py +136 -0
- vllm/env_override.py +34 -0
- vllm/envs.py +800 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +400 -0
- vllm/executor/mp_distributed_executor.py +243 -0
- vllm/executor/msgspec_utils.py +29 -0
- vllm/executor/multiproc_worker_utils.py +312 -0
- vllm/executor/ray_distributed_executor.py +700 -0
- vllm/executor/ray_utils.py +400 -0
- vllm/executor/uniproc_executor.py +141 -0
- vllm/forward_context.py +159 -0
- vllm/inputs/__init__.py +37 -0
- vllm/inputs/data.py +248 -0
- vllm/inputs/parse.py +121 -0
- vllm/inputs/preprocess.py +745 -0
- vllm/inputs/registry.py +212 -0
- vllm/jsontree.py +79 -0
- vllm/logger.py +210 -0
- vllm/logging_utils/__init__.py +7 -0
- vllm/logging_utils/formatter.py +17 -0
- vllm/logits_process.py +121 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +335 -0
- vllm/lora/layers.py +1263 -0
- vllm/lora/lora.py +198 -0
- vllm/lora/models.py +802 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +15 -0
- vllm/lora/ops/torch_ops/lora_ops.py +115 -0
- vllm/lora/ops/triton_ops/__init__.py +11 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand.py +293 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +147 -0
- vllm/lora/ops/triton_ops/lora_shrink.py +247 -0
- vllm/lora/ops/triton_ops/utils.py +121 -0
- vllm/lora/peft_helper.py +115 -0
- vllm/lora/punica_wrapper/__init__.py +9 -0
- vllm/lora/punica_wrapper/punica_base.py +483 -0
- vllm/lora/punica_wrapper/punica_cpu.py +348 -0
- vllm/lora/punica_wrapper/punica_gpu.py +289 -0
- vllm/lora/punica_wrapper/punica_hpu.py +144 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/utils.py +161 -0
- vllm/lora/request.py +97 -0
- vllm/lora/resolver.py +83 -0
- vllm/lora/utils.py +237 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +15 -0
- vllm/model_executor/custom_op.py +153 -0
- vllm/model_executor/guided_decoding/__init__.py +180 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +85 -0
- vllm/model_executor/guided_decoding/guided_fields.py +42 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +66 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +154 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +271 -0
- vllm/model_executor/guided_decoding/reasoner/__init__.py +35 -0
- vllm/model_executor/guided_decoding/utils.py +241 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +425 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +368 -0
- vllm/model_executor/layers/fused_moe/__init__.py +51 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +180 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +294 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +374 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1539 -0
- vllm/model_executor/layers/fused_moe/layer.py +949 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +64 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +59 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +416 -0
- vllm/model_executor/layers/fused_moe/utils.py +48 -0
- vllm/model_executor/layers/layernorm.py +277 -0
- vllm/model_executor/layers/lightning_attn.py +651 -0
- vllm/model_executor/layers/linear.py +1518 -0
- vllm/model_executor/layers/logits_processor.py +196 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +109 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +244 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +538 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +104 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +415 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +261 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +588 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +750 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +231 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +205 -0
- vllm/model_executor/layers/pooler.py +336 -0
- vllm/model_executor/layers/quantization/__init__.py +153 -0
- vllm/model_executor/layers/quantization/aqlm.py +374 -0
- vllm/model_executor/layers/quantization/awq.py +184 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +518 -0
- vllm/model_executor/layers/quantization/awq_triton.py +319 -0
- vllm/model_executor/layers/quantization/base_config.py +145 -0
- vllm/model_executor/layers/quantization/bitblas.py +459 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +624 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1100 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +20 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +357 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +54 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +159 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +119 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +149 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +110 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +205 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +213 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +193 -0
- vllm/model_executor/layers/quantization/experts_int8.py +194 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +168 -0
- vllm/model_executor/layers/quantization/fp8.py +832 -0
- vllm/model_executor/layers/quantization/gguf.py +408 -0
- vllm/model_executor/layers/quantization/gptq.py +276 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +438 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +643 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +295 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +328 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +89 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +82 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +299 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +142 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +132 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +66 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +86 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +119 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +136 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +40 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
- vllm/model_executor/layers/quantization/kv_cache.py +137 -0
- vllm/model_executor/layers/quantization/marlin.py +259 -0
- vllm/model_executor/layers/quantization/modelopt.py +410 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +447 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +67 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +125 -0
- vllm/model_executor/layers/quantization/qqq.py +273 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +385 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +236 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +7 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +54 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +142 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +121 -0
- vllm/model_executor/layers/quantization/quark/utils.py +102 -0
- vllm/model_executor/layers/quantization/schema.py +85 -0
- vllm/model_executor/layers/quantization/torchao.py +127 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +119 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +5 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +198 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +523 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +94 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +459 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +39 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +32 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +413 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +110 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +164 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +127 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +571 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +404 -0
- vllm/model_executor/layers/rejection_sampler.py +400 -0
- vllm/model_executor/layers/resampler.py +269 -0
- vllm/model_executor/layers/rotary_embedding.py +1598 -0
- vllm/model_executor/layers/sampler.py +1221 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +258 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +172 -0
- vllm/model_executor/layers/utils.py +99 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +485 -0
- vllm/model_executor/model_loader/__init__.py +20 -0
- vllm/model_executor/model_loader/loader.py +1542 -0
- vllm/model_executor/model_loader/neuron.py +243 -0
- vllm/model_executor/model_loader/tensorizer.py +468 -0
- vllm/model_executor/model_loader/utils.py +171 -0
- vllm/model_executor/model_loader/weight_utils.py +749 -0
- vllm/model_executor/models/__init__.py +27 -0
- vllm/model_executor/models/adapters.py +247 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +656 -0
- vllm/model_executor/models/aya_vision.py +461 -0
- vllm/model_executor/models/baichuan.py +469 -0
- vllm/model_executor/models/bamba.py +542 -0
- vllm/model_executor/models/bart.py +936 -0
- vllm/model_executor/models/bert.py +725 -0
- vllm/model_executor/models/blip.py +337 -0
- vllm/model_executor/models/blip2.py +717 -0
- vllm/model_executor/models/bloom.py +358 -0
- vllm/model_executor/models/chameleon.py +1135 -0
- vllm/model_executor/models/chatglm.py +476 -0
- vllm/model_executor/models/clip.py +410 -0
- vllm/model_executor/models/commandr.py +466 -0
- vllm/model_executor/models/constant_size_cache.py +136 -0
- vllm/model_executor/models/dbrx.py +469 -0
- vllm/model_executor/models/deepseek.py +484 -0
- vllm/model_executor/models/deepseek_mtp.py +266 -0
- vllm/model_executor/models/deepseek_v2.py +830 -0
- vllm/model_executor/models/deepseek_vl2.py +647 -0
- vllm/model_executor/models/eagle.py +247 -0
- vllm/model_executor/models/exaone.py +548 -0
- vllm/model_executor/models/fairseq2_llama.py +153 -0
- vllm/model_executor/models/falcon.py +508 -0
- vllm/model_executor/models/florence2.py +1102 -0
- vllm/model_executor/models/fuyu.py +388 -0
- vllm/model_executor/models/gemma.py +423 -0
- vllm/model_executor/models/gemma2.py +423 -0
- vllm/model_executor/models/gemma3.py +531 -0
- vllm/model_executor/models/gemma3_mm.py +716 -0
- vllm/model_executor/models/glm.py +22 -0
- vllm/model_executor/models/glm4.py +303 -0
- vllm/model_executor/models/glm4v.py +647 -0
- vllm/model_executor/models/gpt2.py +313 -0
- vllm/model_executor/models/gpt_bigcode.py +336 -0
- vllm/model_executor/models/gpt_j.py +337 -0
- vllm/model_executor/models/gpt_neox.py +330 -0
- vllm/model_executor/models/granite.py +494 -0
- vllm/model_executor/models/granite_speech.py +777 -0
- vllm/model_executor/models/granitemoe.py +435 -0
- vllm/model_executor/models/granitemoeshared.py +339 -0
- vllm/model_executor/models/gritlm.py +245 -0
- vllm/model_executor/models/grok1.py +560 -0
- vllm/model_executor/models/h2ovl.py +542 -0
- vllm/model_executor/models/idefics2_vision_model.py +387 -0
- vllm/model_executor/models/idefics3.py +767 -0
- vllm/model_executor/models/interfaces.py +569 -0
- vllm/model_executor/models/interfaces_base.py +163 -0
- vllm/model_executor/models/intern_vit.py +476 -0
- vllm/model_executor/models/internlm2.py +453 -0
- vllm/model_executor/models/internlm2_ve.py +146 -0
- vllm/model_executor/models/internvl.py +945 -0
- vllm/model_executor/models/jais.py +371 -0
- vllm/model_executor/models/jamba.py +590 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +619 -0
- vllm/model_executor/models/llama4.py +530 -0
- vllm/model_executor/models/llama_eagle.py +152 -0
- vllm/model_executor/models/llama_eagle3.py +232 -0
- vllm/model_executor/models/llava.py +869 -0
- vllm/model_executor/models/llava_next.py +582 -0
- vllm/model_executor/models/llava_next_video.py +470 -0
- vllm/model_executor/models/llava_onevision.py +954 -0
- vllm/model_executor/models/mamba.py +271 -0
- vllm/model_executor/models/mamba2.py +302 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +210 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +229 -0
- vllm/model_executor/models/minicpmo.py +725 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +35 -0
- vllm/model_executor/models/minimax_text_01.py +1261 -0
- vllm/model_executor/models/mistral3.py +598 -0
- vllm/model_executor/models/mixtral.py +485 -0
- vllm/model_executor/models/mixtral_quant.py +447 -0
- vllm/model_executor/models/mllama.py +1623 -0
- vllm/model_executor/models/mllama4.py +838 -0
- vllm/model_executor/models/mlp_speculator.py +205 -0
- vllm/model_executor/models/modernbert.py +325 -0
- vllm/model_executor/models/module_mapping.py +71 -0
- vllm/model_executor/models/molmo.py +1567 -0
- vllm/model_executor/models/moonvit.py +628 -0
- vllm/model_executor/models/mpt.py +329 -0
- vllm/model_executor/models/nemotron.py +506 -0
- vllm/model_executor/models/nemotron_nas.py +446 -0
- vllm/model_executor/models/nvlm_d.py +212 -0
- vllm/model_executor/models/olmo.py +390 -0
- vllm/model_executor/models/olmo2.py +412 -0
- vllm/model_executor/models/olmoe.py +449 -0
- vllm/model_executor/models/opt.py +410 -0
- vllm/model_executor/models/orion.py +356 -0
- vllm/model_executor/models/paligemma.py +397 -0
- vllm/model_executor/models/persimmon.py +342 -0
- vllm/model_executor/models/phi.py +354 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3_small.py +463 -0
- vllm/model_executor/models/phi3v.py +722 -0
- vllm/model_executor/models/phi4mm.py +1263 -0
- vllm/model_executor/models/phi4mm_audio.py +1232 -0
- vllm/model_executor/models/phi4mm_utils.py +1883 -0
- vllm/model_executor/models/phimoe.py +666 -0
- vllm/model_executor/models/pixtral.py +1281 -0
- vllm/model_executor/models/plamo2.py +736 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +231 -0
- vllm/model_executor/models/qwen.py +360 -0
- vllm/model_executor/models/qwen2.py +552 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +901 -0
- vllm/model_executor/models/qwen2_5_vl.py +1136 -0
- vllm/model_executor/models/qwen2_audio.py +402 -0
- vllm/model_executor/models/qwen2_moe.py +531 -0
- vllm/model_executor/models/qwen2_rm.py +130 -0
- vllm/model_executor/models/qwen2_vl.py +1409 -0
- vllm/model_executor/models/qwen3.py +319 -0
- vllm/model_executor/models/qwen3_moe.py +528 -0
- vllm/model_executor/models/qwen_vl.py +784 -0
- vllm/model_executor/models/registry.py +611 -0
- vllm/model_executor/models/roberta.py +332 -0
- vllm/model_executor/models/siglip.py +522 -0
- vllm/model_executor/models/skyworkr1v.py +949 -0
- vllm/model_executor/models/smolvlm.py +51 -0
- vllm/model_executor/models/solar.py +504 -0
- vllm/model_executor/models/stablelm.py +349 -0
- vllm/model_executor/models/starcoder2.py +355 -0
- vllm/model_executor/models/telechat2.py +139 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/transformers.py +442 -0
- vllm/model_executor/models/ultravox.py +655 -0
- vllm/model_executor/models/utils.py +714 -0
- vllm/model_executor/models/vision.py +149 -0
- vllm/model_executor/models/whisper.py +746 -0
- vllm/model_executor/models/zamba2.py +1008 -0
- vllm/model_executor/parameter.py +458 -0
- vllm/model_executor/pooling_metadata.py +71 -0
- vllm/model_executor/sampling_metadata.py +596 -0
- vllm/model_executor/utils.py +53 -0
- vllm/multimodal/__init__.py +31 -0
- vllm/multimodal/audio.py +105 -0
- vllm/multimodal/base.py +218 -0
- vllm/multimodal/hasher.py +103 -0
- vllm/multimodal/image.py +77 -0
- vllm/multimodal/inputs.py +843 -0
- vllm/multimodal/parse.py +454 -0
- vllm/multimodal/processing.py +1760 -0
- vllm/multimodal/profiling.py +274 -0
- vllm/multimodal/registry.py +321 -0
- vllm/multimodal/utils.py +386 -0
- vllm/multimodal/video.py +166 -0
- vllm/outputs.py +521 -0
- vllm/platforms/__init__.py +286 -0
- vllm/platforms/cpu.py +182 -0
- vllm/platforms/cuda.py +463 -0
- vllm/platforms/hpu.py +94 -0
- vllm/platforms/interface.py +427 -0
- vllm/platforms/neuron.py +69 -0
- vllm/platforms/rocm.py +346 -0
- vllm/platforms/tpu.py +174 -0
- vllm/platforms/xpu.py +142 -0
- vllm/plugins/__init__.py +82 -0
- vllm/pooling_params.py +53 -0
- vllm/profiler/__init__.py +7 -0
- vllm/profiler/layerwise_profile.py +374 -0
- vllm/profiler/utils.py +147 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +82 -0
- vllm/prompt_adapter/models.py +357 -0
- vllm/prompt_adapter/request.py +36 -0
- vllm/prompt_adapter/utils.py +97 -0
- vllm/prompt_adapter/worker_manager.py +178 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +12 -0
- vllm/reasoning/abs_reasoning_parsers.py +189 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +172 -0
- vllm/reasoning/granite_reasoning_parser.py +362 -0
- vllm/sampling_params.py +598 -0
- vllm/scalar_type.py +335 -0
- vllm/scripts.py +14 -0
- vllm/sequence.py +1486 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +505 -0
- vllm/spec_decode/draft_model_runner.py +335 -0
- vllm/spec_decode/interfaces.py +98 -0
- vllm/spec_decode/medusa_worker.py +137 -0
- vllm/spec_decode/metrics.py +212 -0
- vllm/spec_decode/mlp_speculator_worker.py +93 -0
- vllm/spec_decode/mqa_scorer.py +159 -0
- vllm/spec_decode/multi_step_worker.py +416 -0
- vllm/spec_decode/ngram_worker.py +195 -0
- vllm/spec_decode/proposer_worker_base.py +58 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +194 -0
- vllm/spec_decode/spec_decode_worker.py +1324 -0
- vllm/spec_decode/target_model_runner.py +44 -0
- vllm/spec_decode/top1_proposer.py +274 -0
- vllm/spec_decode/util.py +276 -0
- vllm/test_utils.py +129 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6139 -0
- vllm/tracing.py +130 -0
- vllm/transformers_utils/__init__.py +19 -0
- vllm/transformers_utils/config.py +813 -0
- vllm/transformers_utils/configs/__init__.py +52 -0
- vllm/transformers_utils/configs/arctic.py +206 -0
- vllm/transformers_utils/configs/chatglm.py +71 -0
- vllm/transformers_utils/configs/cohere2.py +194 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +65 -0
- vllm/transformers_utils/configs/exaone.py +191 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/h2ovl.py +15 -0
- vllm/transformers_utils/configs/internvl.py +53 -0
- vllm/transformers_utils/configs/jais.py +237 -0
- vllm/transformers_utils/configs/kimi_vl.py +36 -0
- vllm/transformers_utils/configs/medusa.py +62 -0
- vllm/transformers_utils/configs/mllama.py +30 -0
- vllm/transformers_utils/configs/mlp_speculator.py +67 -0
- vllm/transformers_utils/configs/moonvit.py +32 -0
- vllm/transformers_utils/configs/mpt.py +179 -0
- vllm/transformers_utils/configs/nemotron.py +204 -0
- vllm/transformers_utils/configs/nvlm_d.py +14 -0
- vllm/transformers_utils/configs/skyworkr1v.py +53 -0
- vllm/transformers_utils/configs/solar.py +246 -0
- vllm/transformers_utils/configs/telechat2.py +63 -0
- vllm/transformers_utils/configs/ultravox.py +107 -0
- vllm/transformers_utils/detokenizer.py +167 -0
- vllm/transformers_utils/detokenizer_utils.py +188 -0
- vllm/transformers_utils/processor.py +210 -0
- vllm/transformers_utils/processors/__init__.py +6 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/s3_utils.py +161 -0
- vllm/transformers_utils/tokenizer.py +291 -0
- vllm/transformers_utils/tokenizer_base.py +146 -0
- vllm/transformers_utils/tokenizer_group.py +110 -0
- vllm/transformers_utils/tokenizers/__init__.py +9 -0
- vllm/transformers_utils/tokenizers/mistral.py +483 -0
- vllm/transformers_utils/utils.py +98 -0
- vllm/triton_utils/__init__.py +5 -0
- vllm/triton_utils/importing.py +53 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +255 -0
- vllm/utils.py +2692 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/flash_attn.py +783 -0
- vllm/v1/attention/backends/flashinfer.py +638 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +974 -0
- vllm/v1/attention/backends/mla/flashmla.py +149 -0
- vllm/v1/attention/backends/mla/triton_mla.py +118 -0
- vllm/v1/attention/backends/pallas.py +221 -0
- vllm/v1/attention/backends/triton_attn.py +198 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +281 -0
- vllm/v1/core/encoder_cache_manager.py +149 -0
- vllm/v1/core/kv_cache_manager.py +385 -0
- vllm/v1/core/kv_cache_utils.py +744 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +134 -0
- vllm/v1/core/sched/output.py +126 -0
- vllm/v1/core/sched/scheduler.py +838 -0
- vllm/v1/core/sched/utils.py +22 -0
- vllm/v1/core/specialized_manager.py +161 -0
- vllm/v1/engine/__init__.py +166 -0
- vllm/v1/engine/async_llm.py +532 -0
- vllm/v1/engine/core.py +701 -0
- vllm/v1/engine/core_client.py +942 -0
- vllm/v1/engine/detokenizer.py +260 -0
- vllm/v1/engine/exceptions.py +16 -0
- vllm/v1/engine/llm_engine.py +285 -0
- vllm/v1/engine/logprobs.py +198 -0
- vllm/v1/engine/mm_input_cache.py +82 -0
- vllm/v1/engine/output_processor.py +420 -0
- vllm/v1/engine/parallel_sampling.py +132 -0
- vllm/v1/engine/processor.py +387 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +112 -0
- vllm/v1/executor/multiproc_executor.py +480 -0
- vllm/v1/executor/ray_distributed_executor.py +61 -0
- vllm/v1/kv_cache_interface.py +166 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +498 -0
- vllm/v1/metrics/stats.py +238 -0
- vllm/v1/outputs.py +111 -0
- vllm/v1/request.py +178 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +38 -0
- vllm/v1/sample/ops/penalties.py +58 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +315 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +270 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +118 -0
- vllm/v1/sample/tpu/sampler.py +154 -0
- vllm/v1/serial_utils.py +274 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +318 -0
- vllm/v1/spec_decode/metadata.py +61 -0
- vllm/v1/spec_decode/metrics.py +164 -0
- vllm/v1/spec_decode/ngram_proposer.py +131 -0
- vllm/v1/spec_decode/utils.py +18 -0
- vllm/v1/stats/__init__.py +0 -0
- vllm/v1/stats/common.py +453 -0
- vllm/v1/structured_output/__init__.py +113 -0
- vllm/v1/structured_output/backend_guidance.py +215 -0
- vllm/v1/structured_output/backend_types.py +96 -0
- vllm/v1/structured_output/backend_xgrammar.py +299 -0
- vllm/v1/structured_output/request.py +84 -0
- vllm/v1/structured_output/utils.py +174 -0
- vllm/v1/utils.py +249 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +87 -0
- vllm/v1/worker/gpu_input_batch.py +677 -0
- vllm/v1/worker/gpu_model_runner.py +1776 -0
- vllm/v1/worker/gpu_worker.py +349 -0
- vllm/v1/worker/lora_model_runner_mixin.py +145 -0
- vllm/v1/worker/tpu_model_runner.py +1419 -0
- vllm/v1/worker/tpu_worker.py +260 -0
- vllm/v1/worker/utils.py +74 -0
- vllm/v1/worker/worker_base.py +64 -0
- vllm/version.py +40 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +144 -0
- vllm/worker/cpu_enc_dec_model_runner.py +323 -0
- vllm/worker/cpu_model_runner.py +668 -0
- vllm/worker/cpu_pooling_model_runner.py +122 -0
- vllm/worker/cpu_worker.py +400 -0
- vllm/worker/enc_dec_model_runner.py +542 -0
- vllm/worker/hpu_model_runner.py +2221 -0
- vllm/worker/hpu_worker.py +483 -0
- vllm/worker/model_runner.py +2056 -0
- vllm/worker/model_runner_base.py +281 -0
- vllm/worker/multi_step_hpu_worker.py +122 -0
- vllm/worker/multi_step_model_runner.py +908 -0
- vllm/worker/multi_step_tpu_worker.py +107 -0
- vllm/worker/multi_step_worker.py +196 -0
- vllm/worker/neuron_model_runner.py +336 -0
- vllm/worker/neuron_worker.py +138 -0
- vllm/worker/pooling_model_runner.py +200 -0
- vllm/worker/tpu_model_runner.py +908 -0
- vllm/worker/tpu_worker.py +332 -0
- vllm/worker/utils.py +52 -0
- vllm/worker/worker.py +570 -0
- vllm/worker/worker_base.py +644 -0
- vllm/worker/xpu_model_runner.py +603 -0
- vllm/worker/xpu_worker.py +185 -0
- vllm_cpu-0.8.5.post2.dist-info/METADATA +309 -0
- vllm_cpu-0.8.5.post2.dist-info/RECORD +1103 -0
- vllm_cpu-0.8.5.post2.dist-info/WHEEL +5 -0
- vllm_cpu-0.8.5.post2.dist-info/entry_points.txt +2 -0
- vllm_cpu-0.8.5.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,2150 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
|
|
3
|
+
import copy
|
|
4
|
+
import time
|
|
5
|
+
from collections import Counter as collectionsCounter
|
|
6
|
+
from collections import deque
|
|
7
|
+
from contextlib import contextmanager
|
|
8
|
+
from dataclasses import dataclass
|
|
9
|
+
from functools import partial
|
|
10
|
+
from typing import (TYPE_CHECKING, Any, Callable, ClassVar, Deque, Dict,
|
|
11
|
+
Iterable, List, Literal, Mapping, NamedTuple, Optional)
|
|
12
|
+
from typing import Sequence as GenericSequence
|
|
13
|
+
from typing import Set, Type, Union, cast, overload
|
|
14
|
+
|
|
15
|
+
import torch
|
|
16
|
+
from typing_extensions import TypeVar, deprecated
|
|
17
|
+
|
|
18
|
+
import vllm.envs as envs
|
|
19
|
+
from vllm.config import (DecodingConfig, LoRAConfig, ModelConfig,
|
|
20
|
+
ObservabilityConfig, ParallelConfig, SchedulerConfig,
|
|
21
|
+
VllmConfig)
|
|
22
|
+
from vllm.core.scheduler import ScheduledSequenceGroup, SchedulerOutputs
|
|
23
|
+
from vllm.engine.arg_utils import EngineArgs
|
|
24
|
+
from vllm.engine.metrics_types import StatLoggerBase, Stats
|
|
25
|
+
from vllm.engine.output_processor.interfaces import (
|
|
26
|
+
SequenceGroupOutputProcessor)
|
|
27
|
+
from vllm.engine.output_processor.stop_checker import StopChecker
|
|
28
|
+
from vllm.engine.output_processor.util import create_output_by_sequence_group
|
|
29
|
+
from vllm.entrypoints.openai.logits_processors import (
|
|
30
|
+
get_logits_processors as get_openai_logits_processors)
|
|
31
|
+
from vllm.executor.executor_base import ExecutorBase
|
|
32
|
+
from vllm.inputs import ProcessorInputs, PromptType, SingletonInputs
|
|
33
|
+
from vllm.inputs.parse import is_token_prompt, split_enc_dec_inputs
|
|
34
|
+
from vllm.inputs.preprocess import InputPreprocessor
|
|
35
|
+
from vllm.logger import init_logger
|
|
36
|
+
from vllm.logits_process import get_bad_words_logits_processors
|
|
37
|
+
from vllm.lora.request import LoRARequest
|
|
38
|
+
from vllm.model_executor.guided_decoding import (
|
|
39
|
+
get_local_guided_decoding_logits_processor)
|
|
40
|
+
from vllm.model_executor.layers.sampler import SamplerOutput
|
|
41
|
+
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalRegistry
|
|
42
|
+
from vllm.multimodal.processing import EncDecMultiModalProcessor
|
|
43
|
+
from vllm.outputs import (PoolingRequestOutput, RequestOutput,
|
|
44
|
+
RequestOutputFactory)
|
|
45
|
+
from vllm.pooling_params import PoolingParams
|
|
46
|
+
from vllm.prompt_adapter.request import PromptAdapterRequest
|
|
47
|
+
from vllm.sampling_params import RequestOutputKind, SamplingParams
|
|
48
|
+
from vllm.sequence import (ExecuteModelRequest, ParallelSampleSequenceGroup,
|
|
49
|
+
PoolingSequenceGroupOutput, Sequence, SequenceGroup,
|
|
50
|
+
SequenceGroupBase, SequenceGroupMetadata,
|
|
51
|
+
SequenceGroupOutput, SequenceStatus)
|
|
52
|
+
from vllm.tracing import (SpanAttributes, SpanKind, extract_trace_context,
|
|
53
|
+
init_tracer)
|
|
54
|
+
from vllm.transformers_utils.detokenizer import Detokenizer
|
|
55
|
+
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
|
56
|
+
from vllm.transformers_utils.tokenizer_group import (
|
|
57
|
+
TokenizerGroup, init_tokenizer_from_configs)
|
|
58
|
+
from vllm.usage.usage_lib import (UsageContext, is_usage_stats_enabled,
|
|
59
|
+
usage_message)
|
|
60
|
+
from vllm.utils import (Counter, Device, deprecate_kwargs,
|
|
61
|
+
resolve_obj_by_qualname, weak_bind)
|
|
62
|
+
from vllm.version import __version__ as VLLM_VERSION
|
|
63
|
+
from vllm.worker.model_runner_base import InputProcessingError
|
|
64
|
+
|
|
65
|
+
logger = init_logger(__name__)
|
|
66
|
+
_LOCAL_LOGGING_INTERVAL_SEC = 5
|
|
67
|
+
|
|
68
|
+
_O = TypeVar("_O", RequestOutput, PoolingRequestOutput)
|
|
69
|
+
_R = TypeVar("_R", default=Any)
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
@dataclass
|
|
73
|
+
class SchedulerOutputState:
|
|
74
|
+
"""Caches the scheduler outputs for a virtual engine. Used for Multi-Step"""
|
|
75
|
+
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]] = None
|
|
76
|
+
scheduler_outputs: Optional[SchedulerOutputs] = None
|
|
77
|
+
allow_async_output_proc: bool = False
|
|
78
|
+
last_output: Optional[SamplerOutput] = None
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
class OutputData(NamedTuple):
|
|
82
|
+
outputs: List[SamplerOutput]
|
|
83
|
+
seq_group_metadata_list: List[SequenceGroupMetadata]
|
|
84
|
+
scheduler_outputs: SchedulerOutputs
|
|
85
|
+
is_async: bool
|
|
86
|
+
is_last_step: bool
|
|
87
|
+
# Indicates if this output is from the first step of the
|
|
88
|
+
# multi-step. When multi-step is disabled, this is always
|
|
89
|
+
# set to True.
|
|
90
|
+
# is_first_step_output is invalid when `outputs` has
|
|
91
|
+
# outputs from multiple steps.
|
|
92
|
+
is_first_step_output: Optional[bool]
|
|
93
|
+
skip: List[int]
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
class SchedulerContext:
|
|
97
|
+
|
|
98
|
+
def __init__(self, multi_step_stream_outputs: bool = False):
|
|
99
|
+
self.output_queue: Deque[OutputData] = deque()
|
|
100
|
+
self.request_outputs: List[Union[RequestOutput,
|
|
101
|
+
PoolingRequestOutput]] = []
|
|
102
|
+
self.seq_group_metadata_list: Optional[
|
|
103
|
+
List[SequenceGroupMetadata]] = None
|
|
104
|
+
self.scheduler_outputs: Optional[SchedulerOutputs] = None
|
|
105
|
+
|
|
106
|
+
self.multi_step_stream_outputs: bool = multi_step_stream_outputs
|
|
107
|
+
|
|
108
|
+
def append_output(self, outputs: List[SamplerOutput],
|
|
109
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
110
|
+
scheduler_outputs: SchedulerOutputs, is_async: bool,
|
|
111
|
+
is_last_step: bool,
|
|
112
|
+
is_first_step_output: Optional[bool]):
|
|
113
|
+
self.output_queue.append(
|
|
114
|
+
OutputData(outputs=outputs,
|
|
115
|
+
seq_group_metadata_list=seq_group_metadata_list,
|
|
116
|
+
scheduler_outputs=scheduler_outputs,
|
|
117
|
+
is_async=is_async,
|
|
118
|
+
is_last_step=is_last_step,
|
|
119
|
+
is_first_step_output=is_first_step_output,
|
|
120
|
+
skip=[]))
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
class LLMEngine:
|
|
124
|
+
"""An LLM engine that receives requests and generates texts.
|
|
125
|
+
|
|
126
|
+
This is the main class for the vLLM engine. It receives requests
|
|
127
|
+
from clients and generates texts from the LLM. It includes a tokenizer, a
|
|
128
|
+
language model (possibly distributed across multiple GPUs), and GPU memory
|
|
129
|
+
space allocated for intermediate states (aka KV cache). This class utilizes
|
|
130
|
+
iteration-level scheduling and efficient memory management to maximize the
|
|
131
|
+
serving throughput.
|
|
132
|
+
|
|
133
|
+
The :class:`~vllm.LLM` class wraps this class for offline batched inference
|
|
134
|
+
and the :class:`AsyncLLMEngine` class wraps this class for online serving.
|
|
135
|
+
|
|
136
|
+
The config arguments are derived from :class:`~vllm.EngineArgs`. (See
|
|
137
|
+
:ref:`engine-args`)
|
|
138
|
+
|
|
139
|
+
Args:
|
|
140
|
+
model_config: The configuration related to the LLM model.
|
|
141
|
+
cache_config: The configuration related to the KV cache memory
|
|
142
|
+
management.
|
|
143
|
+
parallel_config: The configuration related to distributed execution.
|
|
144
|
+
scheduler_config: The configuration related to the request scheduler.
|
|
145
|
+
device_config: The configuration related to the device.
|
|
146
|
+
lora_config (Optional): The configuration related to serving multi-LoRA.
|
|
147
|
+
speculative_config (Optional): The configuration related to speculative
|
|
148
|
+
decoding.
|
|
149
|
+
executor_class: The model executor class for managing distributed
|
|
150
|
+
execution.
|
|
151
|
+
prompt_adapter_config (Optional): The configuration related to serving
|
|
152
|
+
prompt adapters.
|
|
153
|
+
log_stats: Whether to log statistics.
|
|
154
|
+
usage_context: Specified entry point, used for usage info collection.
|
|
155
|
+
"""
|
|
156
|
+
|
|
157
|
+
DO_VALIDATE_OUTPUT: ClassVar[bool] = False
|
|
158
|
+
"""A flag to toggle whether to validate the type of request output."""
|
|
159
|
+
|
|
160
|
+
@classmethod
|
|
161
|
+
@contextmanager
|
|
162
|
+
def enable_output_validation(cls):
|
|
163
|
+
cls.DO_VALIDATE_OUTPUT = True
|
|
164
|
+
|
|
165
|
+
yield
|
|
166
|
+
|
|
167
|
+
cls.DO_VALIDATE_OUTPUT = False
|
|
168
|
+
|
|
169
|
+
@classmethod
|
|
170
|
+
def validate_output(
|
|
171
|
+
cls,
|
|
172
|
+
output: object,
|
|
173
|
+
output_type: Type[_O],
|
|
174
|
+
) -> _O:
|
|
175
|
+
do_validate = cls.DO_VALIDATE_OUTPUT
|
|
176
|
+
|
|
177
|
+
if ((TYPE_CHECKING or do_validate)
|
|
178
|
+
and not isinstance(output, output_type)):
|
|
179
|
+
raise TypeError(f"Expected output of type {output_type}, "
|
|
180
|
+
f"but found type {type(output)}")
|
|
181
|
+
|
|
182
|
+
return cast(_O, output)
|
|
183
|
+
|
|
184
|
+
@classmethod
|
|
185
|
+
def validate_outputs(
|
|
186
|
+
cls,
|
|
187
|
+
outputs: GenericSequence[object],
|
|
188
|
+
output_type: Type[_O],
|
|
189
|
+
) -> List[_O]:
|
|
190
|
+
do_validate = cls.DO_VALIDATE_OUTPUT
|
|
191
|
+
|
|
192
|
+
outputs_: List[_O]
|
|
193
|
+
if TYPE_CHECKING or do_validate:
|
|
194
|
+
outputs_ = []
|
|
195
|
+
for output in outputs:
|
|
196
|
+
if not isinstance(output, output_type):
|
|
197
|
+
raise TypeError(f"Expected output of type {output_type}, "
|
|
198
|
+
f"but found type {type(output)}")
|
|
199
|
+
|
|
200
|
+
outputs_.append(output)
|
|
201
|
+
else:
|
|
202
|
+
outputs_ = outputs
|
|
203
|
+
|
|
204
|
+
return outputs_
|
|
205
|
+
|
|
206
|
+
tokenizer: Optional[TokenizerGroup]
|
|
207
|
+
|
|
208
|
+
def __init__(
|
|
209
|
+
self,
|
|
210
|
+
vllm_config: VllmConfig,
|
|
211
|
+
executor_class: Type[ExecutorBase],
|
|
212
|
+
log_stats: bool,
|
|
213
|
+
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
|
|
214
|
+
stat_loggers: Optional[Dict[str, StatLoggerBase]] = None,
|
|
215
|
+
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
|
|
216
|
+
use_cached_outputs: bool = False,
|
|
217
|
+
) -> None:
|
|
218
|
+
if envs.VLLM_USE_V1:
|
|
219
|
+
raise ValueError(
|
|
220
|
+
"Using V0 LLMEngine, but envs.VLLM_USE_V1=True. "
|
|
221
|
+
"This should not happen. As a workaround, try using "
|
|
222
|
+
"LLMEngine.from_vllm_config(...) or explicitly set "
|
|
223
|
+
"VLLM_USE_V1=0 or 1 and report this issue on Github.")
|
|
224
|
+
|
|
225
|
+
self.vllm_config = vllm_config
|
|
226
|
+
self.model_config = vllm_config.model_config
|
|
227
|
+
self.cache_config = vllm_config.cache_config
|
|
228
|
+
self.lora_config = vllm_config.lora_config
|
|
229
|
+
self.parallel_config = vllm_config.parallel_config
|
|
230
|
+
self.scheduler_config = vllm_config.scheduler_config
|
|
231
|
+
self.device_config = vllm_config.device_config
|
|
232
|
+
self.speculative_config = vllm_config.speculative_config # noqa
|
|
233
|
+
self.load_config = vllm_config.load_config
|
|
234
|
+
self.decoding_config = vllm_config.decoding_config or DecodingConfig( # noqa
|
|
235
|
+
)
|
|
236
|
+
self.prompt_adapter_config = vllm_config.prompt_adapter_config # noqa
|
|
237
|
+
self.observability_config = vllm_config.observability_config or ObservabilityConfig( # noqa
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
logger.info(
|
|
241
|
+
"Initializing a V0 LLM engine (v%s) with config: %s, "
|
|
242
|
+
"use_cached_outputs=%s, ",
|
|
243
|
+
VLLM_VERSION,
|
|
244
|
+
vllm_config,
|
|
245
|
+
use_cached_outputs,
|
|
246
|
+
)
|
|
247
|
+
|
|
248
|
+
self.log_stats = log_stats
|
|
249
|
+
self.use_cached_outputs = use_cached_outputs
|
|
250
|
+
|
|
251
|
+
if not self.model_config.skip_tokenizer_init:
|
|
252
|
+
self.tokenizer = self._init_tokenizer()
|
|
253
|
+
self.detokenizer = Detokenizer(self.tokenizer)
|
|
254
|
+
tokenizer_group = self.get_tokenizer_group()
|
|
255
|
+
else:
|
|
256
|
+
self.tokenizer = None
|
|
257
|
+
self.detokenizer = None
|
|
258
|
+
tokenizer_group = None
|
|
259
|
+
|
|
260
|
+
# Ensure that the function doesn't contain a reference to self,
|
|
261
|
+
# to avoid engine GC issues
|
|
262
|
+
def get_tokenizer_for_seq(sequence: Sequence) -> AnyTokenizer:
|
|
263
|
+
assert tokenizer_group, ("tokenizer_group cannot be None, "
|
|
264
|
+
"make sure skip_tokenizer_init is False")
|
|
265
|
+
return tokenizer_group.get_lora_tokenizer(sequence.lora_request)
|
|
266
|
+
|
|
267
|
+
self.seq_counter = Counter()
|
|
268
|
+
self.generation_config_fields = (
|
|
269
|
+
self.model_config.try_get_generation_config())
|
|
270
|
+
|
|
271
|
+
self.input_preprocessor = InputPreprocessor(self.model_config,
|
|
272
|
+
self.tokenizer,
|
|
273
|
+
mm_registry)
|
|
274
|
+
|
|
275
|
+
self.model_executor = executor_class(vllm_config=vllm_config)
|
|
276
|
+
|
|
277
|
+
if self.model_config.runner_type != "pooling":
|
|
278
|
+
self._initialize_kv_caches()
|
|
279
|
+
|
|
280
|
+
# If usage stat is enabled, collect relevant info.
|
|
281
|
+
if is_usage_stats_enabled():
|
|
282
|
+
from vllm.model_executor.model_loader import (
|
|
283
|
+
get_architecture_class_name)
|
|
284
|
+
usage_message.report_usage(
|
|
285
|
+
get_architecture_class_name(self.model_config),
|
|
286
|
+
usage_context,
|
|
287
|
+
extra_kvs={
|
|
288
|
+
# Common configuration
|
|
289
|
+
"dtype":
|
|
290
|
+
str(self.model_config.dtype),
|
|
291
|
+
"tensor_parallel_size":
|
|
292
|
+
self.parallel_config.tensor_parallel_size,
|
|
293
|
+
"block_size":
|
|
294
|
+
self.cache_config.block_size,
|
|
295
|
+
"gpu_memory_utilization":
|
|
296
|
+
self.cache_config.gpu_memory_utilization,
|
|
297
|
+
|
|
298
|
+
# Quantization
|
|
299
|
+
"quantization":
|
|
300
|
+
self.model_config.quantization,
|
|
301
|
+
"kv_cache_dtype":
|
|
302
|
+
str(self.cache_config.cache_dtype),
|
|
303
|
+
|
|
304
|
+
# Feature flags
|
|
305
|
+
"enable_lora":
|
|
306
|
+
bool(self.lora_config),
|
|
307
|
+
"enable_prompt_adapter":
|
|
308
|
+
bool(self.prompt_adapter_config),
|
|
309
|
+
"enable_prefix_caching":
|
|
310
|
+
self.cache_config.enable_prefix_caching,
|
|
311
|
+
"enforce_eager":
|
|
312
|
+
self.model_config.enforce_eager,
|
|
313
|
+
"disable_custom_all_reduce":
|
|
314
|
+
self.parallel_config.disable_custom_all_reduce,
|
|
315
|
+
})
|
|
316
|
+
|
|
317
|
+
self.cached_scheduler_outputs = [
|
|
318
|
+
SchedulerOutputState()
|
|
319
|
+
for _ in range(self.parallel_config.pipeline_parallel_size)
|
|
320
|
+
]
|
|
321
|
+
|
|
322
|
+
self.scheduler_contexts = [
|
|
323
|
+
SchedulerContext(multi_step_stream_outputs=self.scheduler_config.
|
|
324
|
+
multi_step_stream_outputs)
|
|
325
|
+
for _ in range(self.parallel_config.pipeline_parallel_size)
|
|
326
|
+
]
|
|
327
|
+
|
|
328
|
+
if self.model_config.use_async_output_proc:
|
|
329
|
+
process_model_outputs = weak_bind(self._process_model_outputs)
|
|
330
|
+
|
|
331
|
+
self.async_callbacks = [
|
|
332
|
+
partial(process_model_outputs,
|
|
333
|
+
ctx=self.scheduler_contexts[v_id])
|
|
334
|
+
for v_id in range(self.parallel_config.pipeline_parallel_size)
|
|
335
|
+
]
|
|
336
|
+
else:
|
|
337
|
+
self.async_callbacks = []
|
|
338
|
+
|
|
339
|
+
# Currently used by AsyncLLMEngine to ensure quick append
|
|
340
|
+
# of request outputs to asyncio queues
|
|
341
|
+
self.process_request_outputs_callback: Optional[Callable] = None
|
|
342
|
+
|
|
343
|
+
# Create the scheduler.
|
|
344
|
+
# NOTE: the cache_config here have been updated with the numbers of
|
|
345
|
+
# GPU and CPU blocks, which are profiled in the distributed executor.
|
|
346
|
+
if isinstance(self.vllm_config.scheduler_config.scheduler_cls, str):
|
|
347
|
+
Scheduler = resolve_obj_by_qualname(
|
|
348
|
+
self.vllm_config.scheduler_config.scheduler_cls)
|
|
349
|
+
else:
|
|
350
|
+
Scheduler = self.vllm_config.scheduler_config.scheduler_cls
|
|
351
|
+
self.scheduler = [
|
|
352
|
+
Scheduler(
|
|
353
|
+
self.scheduler_config, self.cache_config, self.lora_config,
|
|
354
|
+
self.parallel_config.pipeline_parallel_size,
|
|
355
|
+
self.async_callbacks[v_id]
|
|
356
|
+
if self.model_config.use_async_output_proc else None)
|
|
357
|
+
for v_id in range(self.parallel_config.pipeline_parallel_size)
|
|
358
|
+
]
|
|
359
|
+
|
|
360
|
+
# Metric Logging.
|
|
361
|
+
if self.log_stats:
|
|
362
|
+
if stat_loggers is not None:
|
|
363
|
+
self.stat_loggers = stat_loggers
|
|
364
|
+
else:
|
|
365
|
+
# Lazy import for prometheus multiprocessing.
|
|
366
|
+
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable
|
|
367
|
+
# before prometheus_client is imported.
|
|
368
|
+
# See https://prometheus.github.io/client_python/multiprocess/
|
|
369
|
+
from vllm.engine.metrics import (LoggingStatLogger,
|
|
370
|
+
PrometheusStatLogger)
|
|
371
|
+
|
|
372
|
+
self.stat_loggers = {
|
|
373
|
+
"logging":
|
|
374
|
+
LoggingStatLogger(
|
|
375
|
+
local_interval=_LOCAL_LOGGING_INTERVAL_SEC,
|
|
376
|
+
vllm_config=vllm_config),
|
|
377
|
+
"prometheus":
|
|
378
|
+
PrometheusStatLogger(
|
|
379
|
+
local_interval=_LOCAL_LOGGING_INTERVAL_SEC,
|
|
380
|
+
labels=dict(
|
|
381
|
+
model_name=self.model_config.served_model_name),
|
|
382
|
+
vllm_config=vllm_config),
|
|
383
|
+
}
|
|
384
|
+
self.stat_loggers["prometheus"].info("cache_config",
|
|
385
|
+
self.cache_config)
|
|
386
|
+
|
|
387
|
+
self.tracer = None
|
|
388
|
+
if self.observability_config.otlp_traces_endpoint:
|
|
389
|
+
self.tracer = init_tracer(
|
|
390
|
+
"vllm.llm_engine",
|
|
391
|
+
self.observability_config.otlp_traces_endpoint)
|
|
392
|
+
|
|
393
|
+
# Create sequence output processor, e.g. for beam search or
|
|
394
|
+
# speculative decoding.
|
|
395
|
+
self.output_processor = (
|
|
396
|
+
SequenceGroupOutputProcessor.create_output_processor(
|
|
397
|
+
self.scheduler_config,
|
|
398
|
+
self.detokenizer,
|
|
399
|
+
self.scheduler,
|
|
400
|
+
self.seq_counter,
|
|
401
|
+
get_tokenizer_for_seq,
|
|
402
|
+
stop_checker=StopChecker(
|
|
403
|
+
self.scheduler_config.max_model_len,
|
|
404
|
+
get_tokenizer_for_seq,
|
|
405
|
+
),
|
|
406
|
+
))
|
|
407
|
+
|
|
408
|
+
self.seq_id_to_seq_group: Dict[str, SequenceGroupBase] = {}
|
|
409
|
+
|
|
410
|
+
# Flag to set when an input fails to process and the engine should run
|
|
411
|
+
# the next step without re-scheduling.
|
|
412
|
+
self._skip_scheduling_next_step = False
|
|
413
|
+
|
|
414
|
+
def _initialize_kv_caches(self) -> None:
|
|
415
|
+
"""Initialize the KV cache in the worker(s).
|
|
416
|
+
|
|
417
|
+
The workers will determine the number of blocks in both the GPU cache
|
|
418
|
+
and the swap CPU cache.
|
|
419
|
+
"""
|
|
420
|
+
start = time.time()
|
|
421
|
+
num_gpu_blocks, num_cpu_blocks = (
|
|
422
|
+
self.model_executor.determine_num_available_blocks())
|
|
423
|
+
|
|
424
|
+
if self.cache_config.num_gpu_blocks_override is not None:
|
|
425
|
+
num_gpu_blocks_override = self.cache_config.num_gpu_blocks_override
|
|
426
|
+
logger.info(
|
|
427
|
+
"Overriding num_gpu_blocks=%d with "
|
|
428
|
+
"num_gpu_blocks_override=%d", num_gpu_blocks,
|
|
429
|
+
num_gpu_blocks_override)
|
|
430
|
+
num_gpu_blocks = num_gpu_blocks_override
|
|
431
|
+
|
|
432
|
+
self.cache_config.num_gpu_blocks = num_gpu_blocks
|
|
433
|
+
self.cache_config.num_cpu_blocks = num_cpu_blocks
|
|
434
|
+
|
|
435
|
+
self.model_executor.initialize_cache(num_gpu_blocks, num_cpu_blocks)
|
|
436
|
+
elapsed = time.time() - start
|
|
437
|
+
logger.info(("init engine (profile, create kv cache, "
|
|
438
|
+
"warmup model) took %.2f seconds"), elapsed)
|
|
439
|
+
|
|
440
|
+
@classmethod
|
|
441
|
+
def _get_executor_cls(cls,
|
|
442
|
+
engine_config: VllmConfig) -> Type[ExecutorBase]:
|
|
443
|
+
# distributed_executor_backend must be set in VllmConfig.__post_init__
|
|
444
|
+
distributed_executor_backend = (
|
|
445
|
+
engine_config.parallel_config.distributed_executor_backend)
|
|
446
|
+
# Initialize the cluster and specify the executor class.
|
|
447
|
+
if isinstance(distributed_executor_backend, type):
|
|
448
|
+
if not issubclass(distributed_executor_backend, ExecutorBase):
|
|
449
|
+
raise TypeError(
|
|
450
|
+
"distributed_executor_backend must be a subclass of "
|
|
451
|
+
f"ExecutorBase. Got {distributed_executor_backend}.")
|
|
452
|
+
executor_class = distributed_executor_backend
|
|
453
|
+
elif distributed_executor_backend == "ray":
|
|
454
|
+
from vllm.executor.ray_distributed_executor import (
|
|
455
|
+
RayDistributedExecutor)
|
|
456
|
+
executor_class = RayDistributedExecutor
|
|
457
|
+
elif distributed_executor_backend == "mp":
|
|
458
|
+
from vllm.executor.mp_distributed_executor import (
|
|
459
|
+
MultiprocessingDistributedExecutor)
|
|
460
|
+
assert not envs.VLLM_USE_RAY_SPMD_WORKER, (
|
|
461
|
+
"multiprocessing distributed executor backend does not "
|
|
462
|
+
"support VLLM_USE_RAY_SPMD_WORKER=1")
|
|
463
|
+
executor_class = MultiprocessingDistributedExecutor
|
|
464
|
+
elif distributed_executor_backend == "uni":
|
|
465
|
+
# JAX-style, single-process, multi-device executor.
|
|
466
|
+
from vllm.executor.uniproc_executor import UniProcExecutor
|
|
467
|
+
executor_class = UniProcExecutor
|
|
468
|
+
elif distributed_executor_backend == "external_launcher":
|
|
469
|
+
# executor with external launcher
|
|
470
|
+
from vllm.executor.uniproc_executor import ( # noqa
|
|
471
|
+
ExecutorWithExternalLauncher)
|
|
472
|
+
executor_class = ExecutorWithExternalLauncher
|
|
473
|
+
else:
|
|
474
|
+
raise ValueError("unrecognized distributed_executor_backend: "
|
|
475
|
+
f"{distributed_executor_backend}")
|
|
476
|
+
return executor_class
|
|
477
|
+
|
|
478
|
+
@classmethod
|
|
479
|
+
def from_vllm_config(
|
|
480
|
+
cls,
|
|
481
|
+
vllm_config: VllmConfig,
|
|
482
|
+
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
|
|
483
|
+
stat_loggers: Optional[Dict[str, StatLoggerBase]] = None,
|
|
484
|
+
disable_log_stats: bool = False,
|
|
485
|
+
) -> "LLMEngine":
|
|
486
|
+
return cls(
|
|
487
|
+
vllm_config=vllm_config,
|
|
488
|
+
executor_class=cls._get_executor_cls(vllm_config),
|
|
489
|
+
log_stats=(not disable_log_stats),
|
|
490
|
+
usage_context=usage_context,
|
|
491
|
+
stat_loggers=stat_loggers,
|
|
492
|
+
)
|
|
493
|
+
|
|
494
|
+
@classmethod
|
|
495
|
+
def from_engine_args(
|
|
496
|
+
cls,
|
|
497
|
+
engine_args: EngineArgs,
|
|
498
|
+
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
|
|
499
|
+
stat_loggers: Optional[Dict[str, StatLoggerBase]] = None,
|
|
500
|
+
) -> "LLMEngine":
|
|
501
|
+
"""Creates an LLM engine from the engine arguments."""
|
|
502
|
+
# Create the engine configs.
|
|
503
|
+
vllm_config = engine_args.create_engine_config(usage_context)
|
|
504
|
+
|
|
505
|
+
engine_cls = cls
|
|
506
|
+
if envs.VLLM_USE_V1:
|
|
507
|
+
from vllm.v1.engine.llm_engine import LLMEngine as V1LLMEngine
|
|
508
|
+
engine_cls = V1LLMEngine
|
|
509
|
+
|
|
510
|
+
return engine_cls.from_vllm_config(
|
|
511
|
+
vllm_config=vllm_config,
|
|
512
|
+
usage_context=usage_context,
|
|
513
|
+
stat_loggers=stat_loggers,
|
|
514
|
+
disable_log_stats=engine_args.disable_log_stats,
|
|
515
|
+
)
|
|
516
|
+
|
|
517
|
+
def __reduce__(self):
|
|
518
|
+
# This is to ensure that the LLMEngine is not referenced in
|
|
519
|
+
# the closure used to initialize Ray worker actors
|
|
520
|
+
raise RuntimeError("LLMEngine should not be pickled!")
|
|
521
|
+
|
|
522
|
+
def __del__(self):
|
|
523
|
+
# Shutdown model executor when engine is garbage collected
|
|
524
|
+
# Use getattr since __init__ can fail before the field is set
|
|
525
|
+
if model_executor := getattr(self, "model_executor", None):
|
|
526
|
+
model_executor.shutdown()
|
|
527
|
+
|
|
528
|
+
def get_tokenizer_group(self) -> TokenizerGroup:
|
|
529
|
+
if self.tokenizer is None:
|
|
530
|
+
raise ValueError("Unable to get tokenizer because "
|
|
531
|
+
"skip_tokenizer_init is True")
|
|
532
|
+
|
|
533
|
+
return self.tokenizer
|
|
534
|
+
|
|
535
|
+
def get_tokenizer(
|
|
536
|
+
self,
|
|
537
|
+
lora_request: Optional[LoRARequest] = None,
|
|
538
|
+
) -> AnyTokenizer:
|
|
539
|
+
return self.get_tokenizer_group().get_lora_tokenizer(lora_request)
|
|
540
|
+
|
|
541
|
+
def _init_tokenizer(self) -> TokenizerGroup:
|
|
542
|
+
return init_tokenizer_from_configs(
|
|
543
|
+
model_config=self.model_config,
|
|
544
|
+
scheduler_config=self.scheduler_config,
|
|
545
|
+
lora_config=self.lora_config)
|
|
546
|
+
|
|
547
|
+
def _verify_args(self) -> None:
|
|
548
|
+
self.model_config.verify_with_parallel_config(self.parallel_config)
|
|
549
|
+
self.cache_config.verify_with_parallel_config(self.parallel_config)
|
|
550
|
+
if self.lora_config:
|
|
551
|
+
self.lora_config.verify_with_model_config(self.model_config)
|
|
552
|
+
self.lora_config.verify_with_scheduler_config(
|
|
553
|
+
self.scheduler_config)
|
|
554
|
+
if self.prompt_adapter_config:
|
|
555
|
+
self.prompt_adapter_config.verify_with_model_config(
|
|
556
|
+
self.model_config)
|
|
557
|
+
|
|
558
|
+
def _add_processed_request(
|
|
559
|
+
self,
|
|
560
|
+
request_id: str,
|
|
561
|
+
processed_inputs: ProcessorInputs,
|
|
562
|
+
params: Union[SamplingParams, PoolingParams],
|
|
563
|
+
arrival_time: float,
|
|
564
|
+
lora_request: Optional[LoRARequest],
|
|
565
|
+
prompt_adapter_request: Optional[PromptAdapterRequest],
|
|
566
|
+
trace_headers: Optional[Mapping[str, str]] = None,
|
|
567
|
+
priority: int = 0,
|
|
568
|
+
) -> Optional[SequenceGroup]:
|
|
569
|
+
"""Add a processed request to the engine's request pool.
|
|
570
|
+
return the created sequence group.
|
|
571
|
+
"""
|
|
572
|
+
if isinstance(params, SamplingParams) and params.n > 1:
|
|
573
|
+
ParallelSampleSequenceGroup.add_request(
|
|
574
|
+
request_id,
|
|
575
|
+
self,
|
|
576
|
+
params,
|
|
577
|
+
processed_inputs=processed_inputs,
|
|
578
|
+
arrival_time=arrival_time,
|
|
579
|
+
lora_request=lora_request,
|
|
580
|
+
trace_headers=trace_headers,
|
|
581
|
+
prompt_adapter_request=prompt_adapter_request,
|
|
582
|
+
priority=priority,
|
|
583
|
+
)
|
|
584
|
+
return None
|
|
585
|
+
|
|
586
|
+
self._validate_model_inputs(processed_inputs, lora_request)
|
|
587
|
+
# Create the sequences.
|
|
588
|
+
block_size = self.cache_config.block_size
|
|
589
|
+
seq_id = next(self.seq_counter)
|
|
590
|
+
eos_token_id = self.input_preprocessor.get_eos_token_id(lora_request)
|
|
591
|
+
|
|
592
|
+
encoder_inputs, decoder_inputs = split_enc_dec_inputs(processed_inputs)
|
|
593
|
+
|
|
594
|
+
seq = Sequence(seq_id, decoder_inputs, block_size, eos_token_id,
|
|
595
|
+
lora_request, prompt_adapter_request)
|
|
596
|
+
|
|
597
|
+
encoder_seq = (None if encoder_inputs is None else Sequence(
|
|
598
|
+
seq_id, encoder_inputs, block_size, eos_token_id, lora_request,
|
|
599
|
+
prompt_adapter_request))
|
|
600
|
+
|
|
601
|
+
# Create a SequenceGroup based on SamplingParams or PoolingParams
|
|
602
|
+
if isinstance(params, SamplingParams):
|
|
603
|
+
seq_group = self._create_sequence_group_with_sampling(
|
|
604
|
+
request_id,
|
|
605
|
+
seq,
|
|
606
|
+
params,
|
|
607
|
+
arrival_time=arrival_time,
|
|
608
|
+
lora_request=lora_request,
|
|
609
|
+
trace_headers=trace_headers,
|
|
610
|
+
prompt_adapter_request=prompt_adapter_request,
|
|
611
|
+
encoder_seq=encoder_seq,
|
|
612
|
+
priority=priority)
|
|
613
|
+
elif isinstance(params, PoolingParams):
|
|
614
|
+
seq_group = self._create_sequence_group_with_pooling(
|
|
615
|
+
request_id,
|
|
616
|
+
seq,
|
|
617
|
+
params,
|
|
618
|
+
arrival_time=arrival_time,
|
|
619
|
+
lora_request=lora_request,
|
|
620
|
+
prompt_adapter_request=prompt_adapter_request,
|
|
621
|
+
encoder_seq=encoder_seq,
|
|
622
|
+
priority=priority)
|
|
623
|
+
else:
|
|
624
|
+
raise ValueError(
|
|
625
|
+
"Either SamplingParams or PoolingParams must be provided.")
|
|
626
|
+
|
|
627
|
+
# Add the sequence group to the scheduler with least unfinished seqs.
|
|
628
|
+
costs = [
|
|
629
|
+
scheduler.get_num_unfinished_seq_groups()
|
|
630
|
+
for scheduler in self.scheduler
|
|
631
|
+
]
|
|
632
|
+
min_cost_scheduler = self.scheduler[costs.index(min(costs))]
|
|
633
|
+
min_cost_scheduler.add_seq_group(seq_group)
|
|
634
|
+
|
|
635
|
+
return seq_group
|
|
636
|
+
|
|
637
|
+
def stop_remote_worker_execution_loop(self) -> None:
|
|
638
|
+
self.model_executor.stop_remote_worker_execution_loop()
|
|
639
|
+
|
|
640
|
+
@overload
|
|
641
|
+
def add_request(
|
|
642
|
+
self,
|
|
643
|
+
request_id: str,
|
|
644
|
+
prompt: PromptType,
|
|
645
|
+
params: Union[SamplingParams, PoolingParams],
|
|
646
|
+
arrival_time: Optional[float] = None,
|
|
647
|
+
lora_request: Optional[LoRARequest] = None,
|
|
648
|
+
trace_headers: Optional[Mapping[str, str]] = None,
|
|
649
|
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
|
650
|
+
priority: int = 0,
|
|
651
|
+
) -> None:
|
|
652
|
+
...
|
|
653
|
+
|
|
654
|
+
@overload
|
|
655
|
+
@deprecated("'inputs' will be renamed to 'prompt")
|
|
656
|
+
def add_request(
|
|
657
|
+
self,
|
|
658
|
+
request_id: str,
|
|
659
|
+
*,
|
|
660
|
+
inputs: PromptType,
|
|
661
|
+
params: Union[SamplingParams, PoolingParams],
|
|
662
|
+
arrival_time: Optional[float] = None,
|
|
663
|
+
lora_request: Optional[LoRARequest] = None,
|
|
664
|
+
trace_headers: Optional[Mapping[str, str]] = None,
|
|
665
|
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
|
666
|
+
priority: int = 0,
|
|
667
|
+
) -> None:
|
|
668
|
+
...
|
|
669
|
+
|
|
670
|
+
@deprecate_kwargs(
|
|
671
|
+
"inputs",
|
|
672
|
+
additional_message="Please use the 'prompt' parameter instead.",
|
|
673
|
+
)
|
|
674
|
+
def add_request(
|
|
675
|
+
self,
|
|
676
|
+
request_id: str,
|
|
677
|
+
prompt: Optional[PromptType] = None,
|
|
678
|
+
params: Optional[Union[SamplingParams, PoolingParams]] = None,
|
|
679
|
+
arrival_time: Optional[float] = None,
|
|
680
|
+
lora_request: Optional[LoRARequest] = None,
|
|
681
|
+
trace_headers: Optional[Mapping[str, str]] = None,
|
|
682
|
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
|
683
|
+
priority: int = 0,
|
|
684
|
+
*,
|
|
685
|
+
inputs: Optional[PromptType] = None, # DEPRECATED
|
|
686
|
+
) -> None:
|
|
687
|
+
"""Add a request to the engine's request pool.
|
|
688
|
+
|
|
689
|
+
The request is added to the request pool and will be processed by the
|
|
690
|
+
scheduler as `engine.step()` is called. The exact scheduling policy is
|
|
691
|
+
determined by the scheduler.
|
|
692
|
+
|
|
693
|
+
Args:
|
|
694
|
+
request_id: The unique ID of the request.
|
|
695
|
+
prompt: The prompt to the LLM. See :class:`~vllm.inputs.PromptType`
|
|
696
|
+
for more details about the format of each input.
|
|
697
|
+
params: Parameters for sampling or pooling.
|
|
698
|
+
:class:`~vllm.SamplingParams` for text generation.
|
|
699
|
+
:class:`~vllm.PoolingParams` for pooling.
|
|
700
|
+
arrival_time: The arrival time of the request. If None, we use
|
|
701
|
+
the current monotonic time.
|
|
702
|
+
lora_request: The LoRA request to add.
|
|
703
|
+
trace_headers: OpenTelemetry trace headers.
|
|
704
|
+
prompt_adapter_request: The prompt adapter request to add.
|
|
705
|
+
priority: The priority of the request.
|
|
706
|
+
Only applicable with priority scheduling.
|
|
707
|
+
|
|
708
|
+
Details:
|
|
709
|
+
- Set arrival_time to the current time if it is None.
|
|
710
|
+
- Set prompt_token_ids to the encoded prompt if it is None.
|
|
711
|
+
- Create `n` number of :class:`~vllm.Sequence` objects.
|
|
712
|
+
- Create a :class:`~vllm.SequenceGroup` object
|
|
713
|
+
from the list of :class:`~vllm.Sequence`.
|
|
714
|
+
- Add the :class:`~vllm.SequenceGroup` object to the scheduler.
|
|
715
|
+
|
|
716
|
+
Example:
|
|
717
|
+
>>> # initialize engine
|
|
718
|
+
>>> engine = LLMEngine.from_engine_args(engine_args)
|
|
719
|
+
>>> # set request arguments
|
|
720
|
+
>>> example_prompt = "Who is the president of the United States?"
|
|
721
|
+
>>> sampling_params = SamplingParams(temperature=0.0)
|
|
722
|
+
>>> request_id = 0
|
|
723
|
+
>>>
|
|
724
|
+
>>> # add the request to the engine
|
|
725
|
+
>>> engine.add_request(
|
|
726
|
+
>>> str(request_id),
|
|
727
|
+
>>> example_prompt,
|
|
728
|
+
>>> SamplingParams(temperature=0.0))
|
|
729
|
+
>>> # continue the request processing
|
|
730
|
+
>>> ...
|
|
731
|
+
"""
|
|
732
|
+
if inputs is not None:
|
|
733
|
+
prompt = inputs
|
|
734
|
+
assert prompt is not None and params is not None
|
|
735
|
+
|
|
736
|
+
if lora_request is not None and not self.lora_config:
|
|
737
|
+
raise ValueError(f"Got lora_request {lora_request} but LoRA is "
|
|
738
|
+
"not enabled!")
|
|
739
|
+
|
|
740
|
+
if priority != 0 and not self.scheduler_config.policy == "priority":
|
|
741
|
+
raise ValueError(f"Got priority {priority} but "
|
|
742
|
+
"Priority scheduling is not enabled.")
|
|
743
|
+
|
|
744
|
+
if isinstance(params, SamplingParams) \
|
|
745
|
+
and (params.guided_decoding or params.logits_processors) \
|
|
746
|
+
and self.scheduler_config.num_scheduler_steps > 1:
|
|
747
|
+
raise ValueError(
|
|
748
|
+
"Guided decoding and logits processors are not supported "
|
|
749
|
+
"in multi-step decoding")
|
|
750
|
+
|
|
751
|
+
if arrival_time is None:
|
|
752
|
+
arrival_time = time.time()
|
|
753
|
+
|
|
754
|
+
if self.tokenizer is not None:
|
|
755
|
+
self._validate_token_prompt(
|
|
756
|
+
prompt,
|
|
757
|
+
tokenizer=self.get_tokenizer(lora_request=lora_request))
|
|
758
|
+
|
|
759
|
+
processed_inputs = self.input_preprocessor.preprocess(
|
|
760
|
+
prompt,
|
|
761
|
+
lora_request=lora_request,
|
|
762
|
+
prompt_adapter_request=prompt_adapter_request,
|
|
763
|
+
)
|
|
764
|
+
|
|
765
|
+
self._add_processed_request(
|
|
766
|
+
request_id=request_id,
|
|
767
|
+
processed_inputs=processed_inputs,
|
|
768
|
+
params=params,
|
|
769
|
+
arrival_time=arrival_time,
|
|
770
|
+
lora_request=lora_request,
|
|
771
|
+
prompt_adapter_request=prompt_adapter_request,
|
|
772
|
+
trace_headers=trace_headers,
|
|
773
|
+
priority=priority,
|
|
774
|
+
)
|
|
775
|
+
|
|
776
|
+
def _validate_token_prompt(self, prompt: PromptType,
|
|
777
|
+
tokenizer: AnyTokenizer):
|
|
778
|
+
# Guard against out-of-vocab tokens.
|
|
779
|
+
# For some tokenizers, tokenizer.decode will happily return empty text
|
|
780
|
+
# for token ids that are out of vocab, and we don't detect token ids
|
|
781
|
+
# that are greater than the max token id before running the model.
|
|
782
|
+
# However, these token ids will later crash a cuda kernel at runtime
|
|
783
|
+
# with an index out of bounds error. This will crash the entire engine.
|
|
784
|
+
# This needs to happen before multimodal input pre-processing, which
|
|
785
|
+
# may add dummy <image> tokens that aren't part of the tokenizer's
|
|
786
|
+
# vocabulary.
|
|
787
|
+
if is_token_prompt(prompt):
|
|
788
|
+
prompt_ids = prompt["prompt_token_ids"]
|
|
789
|
+
if len(prompt_ids) == 0:
|
|
790
|
+
# Empty prompt check is handled later
|
|
791
|
+
return
|
|
792
|
+
max_input_id = max(prompt_ids)
|
|
793
|
+
if max_input_id > tokenizer.max_token_id:
|
|
794
|
+
raise ValueError(
|
|
795
|
+
"Token id {} is out of vocabulary".format(max_input_id))
|
|
796
|
+
|
|
797
|
+
def _create_sequence_group_with_sampling(
|
|
798
|
+
self,
|
|
799
|
+
request_id: str,
|
|
800
|
+
seq: Sequence,
|
|
801
|
+
sampling_params: SamplingParams,
|
|
802
|
+
arrival_time: float,
|
|
803
|
+
lora_request: Optional[LoRARequest],
|
|
804
|
+
trace_headers: Optional[Mapping[str, str]] = None,
|
|
805
|
+
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
|
806
|
+
encoder_seq: Optional[Sequence] = None,
|
|
807
|
+
priority: int = 0,
|
|
808
|
+
) -> SequenceGroup:
|
|
809
|
+
"""Creates a SequenceGroup with SamplingParams."""
|
|
810
|
+
max_logprobs = self.get_model_config().max_logprobs
|
|
811
|
+
if (sampling_params.logprobs
|
|
812
|
+
and sampling_params.logprobs > max_logprobs) or (
|
|
813
|
+
sampling_params.prompt_logprobs
|
|
814
|
+
and sampling_params.prompt_logprobs > max_logprobs):
|
|
815
|
+
raise ValueError(f"Cannot request more than "
|
|
816
|
+
f"{max_logprobs} logprobs.")
|
|
817
|
+
|
|
818
|
+
sampling_params = self._build_logits_processors(
|
|
819
|
+
sampling_params, lora_request)
|
|
820
|
+
|
|
821
|
+
# Defensive copy of SamplingParams, which are used by the sampler,
|
|
822
|
+
# this doesn't deep-copy LogitsProcessor objects
|
|
823
|
+
sampling_params = sampling_params.clone()
|
|
824
|
+
|
|
825
|
+
sampling_params.update_from_generation_config(
|
|
826
|
+
self.generation_config_fields, seq.eos_token_id)
|
|
827
|
+
|
|
828
|
+
# Create the sequence group.
|
|
829
|
+
draft_size = 1
|
|
830
|
+
if self.vllm_config.speculative_config is not None:
|
|
831
|
+
draft_size = \
|
|
832
|
+
self.vllm_config.speculative_config.num_speculative_tokens + 1
|
|
833
|
+
seq_group = SequenceGroup(
|
|
834
|
+
request_id=request_id,
|
|
835
|
+
seqs=[seq],
|
|
836
|
+
arrival_time=arrival_time,
|
|
837
|
+
sampling_params=sampling_params,
|
|
838
|
+
lora_request=lora_request,
|
|
839
|
+
trace_headers=trace_headers,
|
|
840
|
+
prompt_adapter_request=prompt_adapter_request,
|
|
841
|
+
encoder_seq=encoder_seq,
|
|
842
|
+
priority=priority,
|
|
843
|
+
draft_size=draft_size)
|
|
844
|
+
|
|
845
|
+
return seq_group
|
|
846
|
+
|
|
847
|
+
def _create_sequence_group_with_pooling(
|
|
848
|
+
self,
|
|
849
|
+
request_id: str,
|
|
850
|
+
seq: Sequence,
|
|
851
|
+
pooling_params: PoolingParams,
|
|
852
|
+
arrival_time: float,
|
|
853
|
+
lora_request: Optional[LoRARequest],
|
|
854
|
+
prompt_adapter_request: Optional[PromptAdapterRequest],
|
|
855
|
+
encoder_seq: Optional[Sequence] = None,
|
|
856
|
+
priority: int = 0,
|
|
857
|
+
) -> SequenceGroup:
|
|
858
|
+
"""Creates a SequenceGroup with PoolingParams."""
|
|
859
|
+
# Defensive copy of PoolingParams, which are used by the pooler
|
|
860
|
+
pooling_params = pooling_params.clone()
|
|
861
|
+
# Create the sequence group.
|
|
862
|
+
seq_group = SequenceGroup(
|
|
863
|
+
request_id=request_id,
|
|
864
|
+
seqs=[seq],
|
|
865
|
+
arrival_time=arrival_time,
|
|
866
|
+
lora_request=lora_request,
|
|
867
|
+
pooling_params=pooling_params,
|
|
868
|
+
prompt_adapter_request=prompt_adapter_request,
|
|
869
|
+
encoder_seq=encoder_seq,
|
|
870
|
+
priority=priority)
|
|
871
|
+
return seq_group
|
|
872
|
+
|
|
873
|
+
def abort_request(self, request_id: Union[str, Iterable[str]]) -> None:
|
|
874
|
+
"""Aborts a request(s) with the given ID.
|
|
875
|
+
|
|
876
|
+
Args:
|
|
877
|
+
request_id: The ID(s) of the request to abort.
|
|
878
|
+
|
|
879
|
+
Details:
|
|
880
|
+
- Refer to the
|
|
881
|
+
:meth:`~vllm.core.scheduler.Scheduler.abort_seq_group`
|
|
882
|
+
from class :class:`~vllm.core.scheduler.Scheduler`.
|
|
883
|
+
|
|
884
|
+
Example:
|
|
885
|
+
>>> # initialize engine and add a request with request_id
|
|
886
|
+
>>> request_id = str(0)
|
|
887
|
+
>>> # abort the request
|
|
888
|
+
>>> engine.abort_request(request_id)
|
|
889
|
+
"""
|
|
890
|
+
for scheduler in self.scheduler:
|
|
891
|
+
scheduler.abort_seq_group(
|
|
892
|
+
request_id, seq_id_to_seq_group=self.seq_id_to_seq_group)
|
|
893
|
+
|
|
894
|
+
def get_vllm_config(self) -> VllmConfig:
|
|
895
|
+
"""Gets the vllm configuration."""
|
|
896
|
+
return self.vllm_config
|
|
897
|
+
|
|
898
|
+
def get_model_config(self) -> ModelConfig:
|
|
899
|
+
"""Gets the model configuration."""
|
|
900
|
+
return self.model_config
|
|
901
|
+
|
|
902
|
+
def get_parallel_config(self) -> ParallelConfig:
|
|
903
|
+
"""Gets the parallel configuration."""
|
|
904
|
+
return self.parallel_config
|
|
905
|
+
|
|
906
|
+
def get_decoding_config(self) -> DecodingConfig:
|
|
907
|
+
"""Gets the decoding configuration."""
|
|
908
|
+
return self.decoding_config
|
|
909
|
+
|
|
910
|
+
def get_scheduler_config(self) -> SchedulerConfig:
|
|
911
|
+
"""Gets the scheduler configuration."""
|
|
912
|
+
return self.scheduler_config
|
|
913
|
+
|
|
914
|
+
def get_lora_config(self) -> LoRAConfig:
|
|
915
|
+
"""Gets the LoRA configuration."""
|
|
916
|
+
return self.lora_config
|
|
917
|
+
|
|
918
|
+
def get_num_unfinished_requests(self) -> int:
|
|
919
|
+
"""Gets the number of unfinished requests."""
|
|
920
|
+
return sum(scheduler.get_num_unfinished_seq_groups()
|
|
921
|
+
for scheduler in self.scheduler)
|
|
922
|
+
|
|
923
|
+
def has_unfinished_requests(self) -> bool:
|
|
924
|
+
"""Returns True if there are unfinished requests."""
|
|
925
|
+
return any(scheduler.has_unfinished_seqs()
|
|
926
|
+
for scheduler in self.scheduler)
|
|
927
|
+
|
|
928
|
+
def has_unfinished_requests_for_virtual_engine(
|
|
929
|
+
self, virtual_engine: int) -> bool:
|
|
930
|
+
"""
|
|
931
|
+
Returns True if there are unfinished requests for the virtual engine.
|
|
932
|
+
"""
|
|
933
|
+
return self.scheduler[virtual_engine].has_unfinished_seqs()
|
|
934
|
+
|
|
935
|
+
def reset_prefix_cache(self, device: Optional[Device] = None) -> bool:
|
|
936
|
+
"""Reset prefix cache for all devices."""
|
|
937
|
+
|
|
938
|
+
success = True
|
|
939
|
+
for scheduler in self.scheduler:
|
|
940
|
+
success = success and scheduler.reset_prefix_cache(device)
|
|
941
|
+
return success
|
|
942
|
+
|
|
943
|
+
@staticmethod
|
|
944
|
+
def _process_sequence_group_outputs(
|
|
945
|
+
seq_group: SequenceGroup,
|
|
946
|
+
outputs: List[PoolingSequenceGroupOutput],
|
|
947
|
+
) -> None:
|
|
948
|
+
seq_group.pooled_data = outputs[0].data
|
|
949
|
+
|
|
950
|
+
for seq in seq_group.get_seqs():
|
|
951
|
+
seq.status = SequenceStatus.FINISHED_STOPPED
|
|
952
|
+
|
|
953
|
+
return
|
|
954
|
+
|
|
955
|
+
def _update_num_computed_tokens_for_multi_step_prefill(
|
|
956
|
+
self, seq_group: SequenceGroup,
|
|
957
|
+
seq_group_meta: SequenceGroupMetadata,
|
|
958
|
+
is_first_step_output: Optional[bool]):
|
|
959
|
+
"""
|
|
960
|
+
This function updates num_computed_tokens for prompt sequences
|
|
961
|
+
when Multi-Step is enabled.
|
|
962
|
+
|
|
963
|
+
seq_group: SequenceGroup to update the num_computed_tokens for.
|
|
964
|
+
seq_group_meta: Metadata of the given SequenceGroup.
|
|
965
|
+
is_first_step_output: Optional[bool] -
|
|
966
|
+
When available, is_first_step_output indicates if the appended
|
|
967
|
+
output token is the output of the first-step in multi-step.
|
|
968
|
+
A value of None indicates that outputs from all steps in
|
|
969
|
+
in multi-step are submitted in a single burst.
|
|
970
|
+
"""
|
|
971
|
+
|
|
972
|
+
assert self.scheduler_config.is_multi_step
|
|
973
|
+
|
|
974
|
+
if not seq_group_meta.is_prompt:
|
|
975
|
+
# num_computed_token updates for multi-step decodes happen after
|
|
976
|
+
# the tokens are appended to the sequence.
|
|
977
|
+
return
|
|
978
|
+
|
|
979
|
+
do_update: bool = False
|
|
980
|
+
if self.scheduler_config.chunked_prefill_enabled:
|
|
981
|
+
# In multi-step + chunked-prefill case, the prompt sequences
|
|
982
|
+
# that are scheduled are fully processed in the first step.
|
|
983
|
+
do_update = is_first_step_output is None or is_first_step_output
|
|
984
|
+
else:
|
|
985
|
+
# Normal multi-step decoding case. In this case prompt-sequences
|
|
986
|
+
# are actually single-stepped. Always update in this case.
|
|
987
|
+
assert seq_group.state.num_steps == 1
|
|
988
|
+
do_update = True
|
|
989
|
+
|
|
990
|
+
if do_update:
|
|
991
|
+
seq_group.update_num_computed_tokens(
|
|
992
|
+
seq_group_meta.token_chunk_size)
|
|
993
|
+
|
|
994
|
+
def _process_model_outputs(self,
|
|
995
|
+
ctx: SchedulerContext,
|
|
996
|
+
request_id: Optional[str] = None) -> None:
|
|
997
|
+
"""Apply the model output to the sequences in the scheduled seq groups
|
|
998
|
+
and return responses.
|
|
999
|
+
|
|
1000
|
+
ctx: The virtual engine context to work on
|
|
1001
|
+
request_id: If provided, then only this request is going to be processed
|
|
1002
|
+
"""
|
|
1003
|
+
|
|
1004
|
+
now = time.time()
|
|
1005
|
+
|
|
1006
|
+
if len(ctx.output_queue) == 0:
|
|
1007
|
+
return None
|
|
1008
|
+
|
|
1009
|
+
# Get pending async postprocessor
|
|
1010
|
+
if request_id:
|
|
1011
|
+
# When we process only one request, no pop is required
|
|
1012
|
+
# (since later we will process all of the rest)
|
|
1013
|
+
(outputs, seq_group_metadata_list, scheduler_outputs, is_async,
|
|
1014
|
+
is_last_step, is_first_step_output, skip) = ctx.output_queue[0]
|
|
1015
|
+
else:
|
|
1016
|
+
(outputs, seq_group_metadata_list, scheduler_outputs, is_async,
|
|
1017
|
+
is_last_step, is_first_step_output,
|
|
1018
|
+
skip) = ctx.output_queue.popleft()
|
|
1019
|
+
|
|
1020
|
+
# Sanity check
|
|
1021
|
+
assert len(seq_group_metadata_list) == len(
|
|
1022
|
+
scheduler_outputs.scheduled_seq_groups)
|
|
1023
|
+
|
|
1024
|
+
has_multiple_outputs: bool = len(outputs) > 1
|
|
1025
|
+
outputs_by_sequence_group: List[List[SequenceGroupOutput]]
|
|
1026
|
+
if has_multiple_outputs:
|
|
1027
|
+
assert self.scheduler_config.is_multi_step or \
|
|
1028
|
+
self.speculative_config
|
|
1029
|
+
# Organize outputs by [step][sequence group] instead of
|
|
1030
|
+
# [sequence group][step].
|
|
1031
|
+
if self.scheduler_config.is_multi_step:
|
|
1032
|
+
outputs_by_sequence_group = create_output_by_sequence_group(
|
|
1033
|
+
outputs, len(seq_group_metadata_list))
|
|
1034
|
+
elif self.speculative_config:
|
|
1035
|
+
# Decodes are multi-steps while prefills are not, outputting at
|
|
1036
|
+
# most 1 token. Separate them so that we can trigger chunk
|
|
1037
|
+
# processing without having to pad or copy over prompts K times
|
|
1038
|
+
# to match decodes structure (costly with prompt_logprobs).
|
|
1039
|
+
num_prefills = sum(sg.is_prompt
|
|
1040
|
+
for sg in seq_group_metadata_list)
|
|
1041
|
+
prefills, decodes = outputs[:num_prefills], outputs[
|
|
1042
|
+
num_prefills:]
|
|
1043
|
+
outputs_by_sequence_group = create_output_by_sequence_group(
|
|
1044
|
+
decodes,
|
|
1045
|
+
num_seq_groups=len(seq_group_metadata_list) - num_prefills)
|
|
1046
|
+
outputs_by_sequence_group = [p.outputs for p in prefills
|
|
1047
|
+
] + outputs_by_sequence_group
|
|
1048
|
+
# We have outputs for multiple steps submitted in a single burst,
|
|
1049
|
+
# so invalidate is_first_step_output.
|
|
1050
|
+
is_first_step_output = None
|
|
1051
|
+
else:
|
|
1052
|
+
outputs_by_sequence_group = outputs
|
|
1053
|
+
|
|
1054
|
+
# Determine the requests we need to operate on
|
|
1055
|
+
if request_id:
|
|
1056
|
+
indices = []
|
|
1057
|
+
for i, seq_group_meta in enumerate(seq_group_metadata_list):
|
|
1058
|
+
if seq_group_meta.request_id == request_id:
|
|
1059
|
+
assert i not in skip # Cannot be called twice
|
|
1060
|
+
indices.append(i)
|
|
1061
|
+
break
|
|
1062
|
+
|
|
1063
|
+
# If the request_id was not found, then it means that
|
|
1064
|
+
# this is a new request that has no pending async
|
|
1065
|
+
# postprocessor
|
|
1066
|
+
if not indices:
|
|
1067
|
+
return
|
|
1068
|
+
else:
|
|
1069
|
+
indices = range(len(seq_group_metadata_list)) # type: ignore
|
|
1070
|
+
|
|
1071
|
+
finished_before: List[int] = []
|
|
1072
|
+
finished_now: List[int] = []
|
|
1073
|
+
for i in indices:
|
|
1074
|
+
if i in skip:
|
|
1075
|
+
continue
|
|
1076
|
+
|
|
1077
|
+
seq_group_meta = seq_group_metadata_list[i]
|
|
1078
|
+
scheduled_seq_group = scheduler_outputs.scheduled_seq_groups[i]
|
|
1079
|
+
|
|
1080
|
+
seq_group: SequenceGroup = scheduled_seq_group.seq_group
|
|
1081
|
+
|
|
1082
|
+
if seq_group.is_finished():
|
|
1083
|
+
finished_before.append(i)
|
|
1084
|
+
continue
|
|
1085
|
+
|
|
1086
|
+
output: List[SequenceGroupOutput]
|
|
1087
|
+
if has_multiple_outputs:
|
|
1088
|
+
output = outputs_by_sequence_group[i]
|
|
1089
|
+
else:
|
|
1090
|
+
output = [outputs_by_sequence_group[0][i]]
|
|
1091
|
+
|
|
1092
|
+
if not is_async:
|
|
1093
|
+
if self.scheduler_config.is_multi_step:
|
|
1094
|
+
# Updates happen only if the sequence is prefill
|
|
1095
|
+
self._update_num_computed_tokens_for_multi_step_prefill(
|
|
1096
|
+
seq_group, seq_group_meta, is_first_step_output)
|
|
1097
|
+
else:
|
|
1098
|
+
seq_group.update_num_computed_tokens(
|
|
1099
|
+
seq_group_meta.token_chunk_size or 0)
|
|
1100
|
+
|
|
1101
|
+
if outputs:
|
|
1102
|
+
for o in outputs:
|
|
1103
|
+
if (isinstance(o, SamplerOutput)
|
|
1104
|
+
and seq_group.metrics is not None):
|
|
1105
|
+
if seq_group.metrics.model_forward_time is not None:
|
|
1106
|
+
seq_group.metrics.model_forward_time += (
|
|
1107
|
+
o.model_forward_time or 0)
|
|
1108
|
+
else:
|
|
1109
|
+
seq_group.metrics.model_forward_time = (
|
|
1110
|
+
o.model_forward_time)
|
|
1111
|
+
if seq_group.metrics.model_execute_time is not None:
|
|
1112
|
+
seq_group.metrics.model_execute_time += (
|
|
1113
|
+
o.model_execute_time or 0)
|
|
1114
|
+
else:
|
|
1115
|
+
seq_group.metrics.model_execute_time = (
|
|
1116
|
+
o.model_execute_time)
|
|
1117
|
+
|
|
1118
|
+
if self.model_config.runner_type == "pooling":
|
|
1119
|
+
self._process_sequence_group_outputs(seq_group, output)
|
|
1120
|
+
else:
|
|
1121
|
+
self.output_processor.process_prompt_logprob(seq_group, output)
|
|
1122
|
+
if seq_group_meta.do_sample:
|
|
1123
|
+
self.output_processor.process_outputs(
|
|
1124
|
+
seq_group, output, is_async)
|
|
1125
|
+
|
|
1126
|
+
if seq_group.is_finished():
|
|
1127
|
+
finished_now.append(i)
|
|
1128
|
+
|
|
1129
|
+
# Generate outputs for the requests that finished this iteration
|
|
1130
|
+
for i in finished_now:
|
|
1131
|
+
scheduled_seq_group = scheduler_outputs.scheduled_seq_groups[i]
|
|
1132
|
+
|
|
1133
|
+
seq_group = scheduled_seq_group.seq_group
|
|
1134
|
+
seq_group.maybe_set_first_token_time(now)
|
|
1135
|
+
if not seq_group.is_prefill():
|
|
1136
|
+
seq_group.set_last_token_time(now)
|
|
1137
|
+
request_output = RequestOutputFactory.create(
|
|
1138
|
+
seq_group,
|
|
1139
|
+
self.seq_id_to_seq_group,
|
|
1140
|
+
use_cache=self.use_cached_outputs)
|
|
1141
|
+
if request_output:
|
|
1142
|
+
ctx.request_outputs.append(request_output)
|
|
1143
|
+
|
|
1144
|
+
# When we process a single request, we skip it for the next time,
|
|
1145
|
+
# and invoke the request output callback (if there was final output)
|
|
1146
|
+
if request_id:
|
|
1147
|
+
assert len(indices) == 1
|
|
1148
|
+
skip.append(indices[0])
|
|
1149
|
+
|
|
1150
|
+
if (finished_now
|
|
1151
|
+
and self.process_request_outputs_callback is not None):
|
|
1152
|
+
self.process_request_outputs_callback(ctx.request_outputs)
|
|
1153
|
+
ctx.request_outputs.clear()
|
|
1154
|
+
return
|
|
1155
|
+
|
|
1156
|
+
# Free currently finished requests
|
|
1157
|
+
if finished_now:
|
|
1158
|
+
for scheduler in self.scheduler:
|
|
1159
|
+
scheduler.free_finished_seq_groups()
|
|
1160
|
+
|
|
1161
|
+
# For multi-step without streaming, don't create outputs each iteration
|
|
1162
|
+
if not is_last_step and not ctx.multi_step_stream_outputs:
|
|
1163
|
+
# Immediately process request outputs here (if callback is given)
|
|
1164
|
+
if (finished_now
|
|
1165
|
+
and self.process_request_outputs_callback is not None):
|
|
1166
|
+
self.process_request_outputs_callback(ctx.request_outputs)
|
|
1167
|
+
ctx.request_outputs.clear()
|
|
1168
|
+
return
|
|
1169
|
+
|
|
1170
|
+
# Create the outputs
|
|
1171
|
+
for i in indices:
|
|
1172
|
+
if i in skip or i in finished_before or i in finished_now:
|
|
1173
|
+
continue # Avoids double processing
|
|
1174
|
+
|
|
1175
|
+
scheduled_seq_group = scheduler_outputs.scheduled_seq_groups[i]
|
|
1176
|
+
|
|
1177
|
+
seq_group = scheduled_seq_group.seq_group
|
|
1178
|
+
seq_group.maybe_set_first_token_time(now)
|
|
1179
|
+
if not seq_group.is_prefill():
|
|
1180
|
+
seq_group.set_last_token_time(now)
|
|
1181
|
+
request_output = RequestOutputFactory.create(
|
|
1182
|
+
seq_group,
|
|
1183
|
+
self.seq_id_to_seq_group,
|
|
1184
|
+
use_cache=self.use_cached_outputs)
|
|
1185
|
+
if request_output:
|
|
1186
|
+
ctx.request_outputs.append(request_output)
|
|
1187
|
+
|
|
1188
|
+
# For multi-step with streaming, create outputs each iteration
|
|
1189
|
+
if not is_last_step and ctx.multi_step_stream_outputs:
|
|
1190
|
+
# Immediately process request outputs here (if callback is given)
|
|
1191
|
+
if self.process_request_outputs_callback is not None:
|
|
1192
|
+
self.process_request_outputs_callback(ctx.request_outputs)
|
|
1193
|
+
ctx.request_outputs.clear()
|
|
1194
|
+
return
|
|
1195
|
+
|
|
1196
|
+
for seq_group in scheduler_outputs.ignored_seq_groups:
|
|
1197
|
+
params = seq_group.sampling_params
|
|
1198
|
+
if params is not None and params.output_kind == (
|
|
1199
|
+
RequestOutputKind.DELTA) and not seq_group.is_finished():
|
|
1200
|
+
continue
|
|
1201
|
+
|
|
1202
|
+
request_output = RequestOutputFactory.create(
|
|
1203
|
+
seq_group,
|
|
1204
|
+
self.seq_id_to_seq_group,
|
|
1205
|
+
use_cache=self.use_cached_outputs,
|
|
1206
|
+
)
|
|
1207
|
+
if request_output:
|
|
1208
|
+
ctx.request_outputs.append(request_output)
|
|
1209
|
+
|
|
1210
|
+
# Immediately process request outputs here (if callback is given)
|
|
1211
|
+
if (ctx.request_outputs
|
|
1212
|
+
and self.process_request_outputs_callback is not None):
|
|
1213
|
+
self.process_request_outputs_callback(ctx.request_outputs)
|
|
1214
|
+
ctx.request_outputs.clear()
|
|
1215
|
+
|
|
1216
|
+
# For async case, we need to record the stats here.
|
|
1217
|
+
# For non-async case, the stats are done in the
|
|
1218
|
+
# LLMEngine/AsyncLLMEngine directly
|
|
1219
|
+
if is_async:
|
|
1220
|
+
# Log stats.
|
|
1221
|
+
self.do_log_stats(scheduler_outputs, outputs, finished_before,
|
|
1222
|
+
skip)
|
|
1223
|
+
|
|
1224
|
+
# Tracing
|
|
1225
|
+
self.do_tracing(scheduler_outputs, finished_before)
|
|
1226
|
+
|
|
1227
|
+
return None
|
|
1228
|
+
|
|
1229
|
+
def _advance_to_next_step(
|
|
1230
|
+
self, output: SamplerOutput,
|
|
1231
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
1232
|
+
scheduled_seq_groups: List[ScheduledSequenceGroup]) -> None:
|
|
1233
|
+
"""Given model output from a single run, append the tokens to the
|
|
1234
|
+
sequences. This is normally done inside output processor, but it is
|
|
1235
|
+
required if the worker is to perform async forward pass to next step.
|
|
1236
|
+
"""
|
|
1237
|
+
for seq_group_metadata, sequence_group_outputs, scheduled_seq_group in \
|
|
1238
|
+
zip(seq_group_metadata_list, output, scheduled_seq_groups):
|
|
1239
|
+
seq_group = scheduled_seq_group.seq_group
|
|
1240
|
+
|
|
1241
|
+
if seq_group.is_finished():
|
|
1242
|
+
continue
|
|
1243
|
+
|
|
1244
|
+
if self.scheduler_config.is_multi_step:
|
|
1245
|
+
# Updates happen only if the sequence is prefill
|
|
1246
|
+
self._update_num_computed_tokens_for_multi_step_prefill(
|
|
1247
|
+
seq_group, seq_group_metadata,
|
|
1248
|
+
seq_group.state.num_steps == 1)
|
|
1249
|
+
else:
|
|
1250
|
+
token_chunk_size = (seq_group_metadata.token_chunk_size
|
|
1251
|
+
if seq_group_metadata.token_chunk_size
|
|
1252
|
+
is not None else 0)
|
|
1253
|
+
seq_group.update_num_computed_tokens(token_chunk_size)
|
|
1254
|
+
|
|
1255
|
+
if seq_group_metadata.do_sample:
|
|
1256
|
+
assert len(sequence_group_outputs.samples) == 1, (
|
|
1257
|
+
"Async output processor expects a single sample"
|
|
1258
|
+
" (i.e sampling_params.n == 1)")
|
|
1259
|
+
sample = sequence_group_outputs.samples[0]
|
|
1260
|
+
|
|
1261
|
+
assert len(seq_group.seqs) == 1
|
|
1262
|
+
seq = seq_group.seqs[0]
|
|
1263
|
+
|
|
1264
|
+
if self.scheduler_config.is_multi_step:
|
|
1265
|
+
is_prefill_append = seq.data.get_num_uncomputed_tokens(
|
|
1266
|
+
) == 0
|
|
1267
|
+
seq.append_token_id(sample.output_token, sample.logprobs)
|
|
1268
|
+
if not is_prefill_append:
|
|
1269
|
+
seq_group.update_num_computed_tokens(1)
|
|
1270
|
+
else:
|
|
1271
|
+
seq.append_token_id(sample.output_token, sample.logprobs)
|
|
1272
|
+
|
|
1273
|
+
def step(self) -> List[Union[RequestOutput, PoolingRequestOutput]]:
|
|
1274
|
+
"""Performs one decoding iteration and returns newly generated results.
|
|
1275
|
+
|
|
1276
|
+
.. figure:: https://i.imgur.com/sv2HssD.png
|
|
1277
|
+
:alt: Overview of the step function
|
|
1278
|
+
:align: center
|
|
1279
|
+
|
|
1280
|
+
Overview of the step function.
|
|
1281
|
+
|
|
1282
|
+
Details:
|
|
1283
|
+
- Step 1: Schedules the sequences to be executed in the next
|
|
1284
|
+
iteration and the token blocks to be swapped in/out/copy.
|
|
1285
|
+
|
|
1286
|
+
- Depending on the scheduling policy,
|
|
1287
|
+
sequences may be `preempted/reordered`.
|
|
1288
|
+
- A Sequence Group (SG) refer to a group of sequences
|
|
1289
|
+
that are generated from the same prompt.
|
|
1290
|
+
|
|
1291
|
+
- Step 2: Calls the distributed executor to execute the model.
|
|
1292
|
+
- Step 3: Processes the model output. This mainly includes:
|
|
1293
|
+
|
|
1294
|
+
- Decodes the relevant outputs.
|
|
1295
|
+
- Updates the scheduled sequence groups with model outputs
|
|
1296
|
+
based on its `sampling parameters` (`use_beam_search` or not).
|
|
1297
|
+
- Frees the finished sequence groups.
|
|
1298
|
+
|
|
1299
|
+
- Finally, it creates and returns the newly generated results.
|
|
1300
|
+
|
|
1301
|
+
Example:
|
|
1302
|
+
>>> # Please see the example/ folder for more detailed examples.
|
|
1303
|
+
>>>
|
|
1304
|
+
>>> # initialize engine and request arguments
|
|
1305
|
+
>>> engine = LLMEngine.from_engine_args(engine_args)
|
|
1306
|
+
>>> example_inputs = [(0, "What is LLM?",
|
|
1307
|
+
>>> SamplingParams(temperature=0.0))]
|
|
1308
|
+
>>>
|
|
1309
|
+
>>> # Start the engine with an event loop
|
|
1310
|
+
>>> while True:
|
|
1311
|
+
>>> if example_inputs:
|
|
1312
|
+
>>> req_id, prompt, sampling_params = example_inputs.pop(0)
|
|
1313
|
+
>>> engine.add_request(str(req_id),prompt,sampling_params)
|
|
1314
|
+
>>>
|
|
1315
|
+
>>> # continue the request processing
|
|
1316
|
+
>>> request_outputs = engine.step()
|
|
1317
|
+
>>> for request_output in request_outputs:
|
|
1318
|
+
>>> if request_output.finished:
|
|
1319
|
+
>>> # return or show the request output
|
|
1320
|
+
>>>
|
|
1321
|
+
>>> if not (engine.has_unfinished_requests() or example_inputs):
|
|
1322
|
+
>>> break
|
|
1323
|
+
"""
|
|
1324
|
+
if self.parallel_config.pipeline_parallel_size > 1:
|
|
1325
|
+
raise NotImplementedError(
|
|
1326
|
+
"Pipeline parallelism is only supported through AsyncLLMEngine "
|
|
1327
|
+
"as performance will be severely degraded otherwise.")
|
|
1328
|
+
|
|
1329
|
+
# For llm_engine, there is no pipeline parallel support, so the engine
|
|
1330
|
+
# used is always 0.
|
|
1331
|
+
virtual_engine = 0
|
|
1332
|
+
|
|
1333
|
+
# These are cached outputs from previous iterations. None if on first
|
|
1334
|
+
# iteration
|
|
1335
|
+
cached_outputs = self.cached_scheduler_outputs[virtual_engine]
|
|
1336
|
+
seq_group_metadata_list = cached_outputs.seq_group_metadata_list
|
|
1337
|
+
scheduler_outputs = cached_outputs.scheduler_outputs
|
|
1338
|
+
allow_async_output_proc = cached_outputs.allow_async_output_proc
|
|
1339
|
+
|
|
1340
|
+
ctx = self.scheduler_contexts[virtual_engine]
|
|
1341
|
+
|
|
1342
|
+
# Clear outputs for each new scheduler iteration
|
|
1343
|
+
ctx.request_outputs.clear()
|
|
1344
|
+
|
|
1345
|
+
# Skip the scheduler if there are any remaining steps in the seq groups.
|
|
1346
|
+
# This ensures that the scheduler is only called again when the current
|
|
1347
|
+
# batch has completed.
|
|
1348
|
+
# The scheduler is also skipped if a single request caused the last
|
|
1349
|
+
# engine step to fail, and the previous schedule needs to be rerun.
|
|
1350
|
+
if not self._has_remaining_steps(
|
|
1351
|
+
seq_group_metadata_list
|
|
1352
|
+
) and not self._skip_scheduling_next_step:
|
|
1353
|
+
# Schedule iteration
|
|
1354
|
+
(seq_group_metadata_list, scheduler_outputs,
|
|
1355
|
+
allow_async_output_proc
|
|
1356
|
+
) = self.scheduler[virtual_engine].schedule()
|
|
1357
|
+
|
|
1358
|
+
ctx.seq_group_metadata_list = seq_group_metadata_list
|
|
1359
|
+
ctx.scheduler_outputs = scheduler_outputs
|
|
1360
|
+
|
|
1361
|
+
finished_requests_ids = self.scheduler[
|
|
1362
|
+
virtual_engine].get_and_reset_finished_requests_ids()
|
|
1363
|
+
# When n>1, elements in self.seq_id_to_seq_group should be deleted
|
|
1364
|
+
# here, otherwise memory leaks.
|
|
1365
|
+
for finished_request_id in finished_requests_ids:
|
|
1366
|
+
if finished_request_id in self.seq_id_to_seq_group:
|
|
1367
|
+
del self.seq_id_to_seq_group[finished_request_id]
|
|
1368
|
+
|
|
1369
|
+
# Maybe switch from async mode to sync mode
|
|
1370
|
+
if not allow_async_output_proc and len(ctx.output_queue) > 0:
|
|
1371
|
+
self._process_model_outputs(ctx=ctx)
|
|
1372
|
+
|
|
1373
|
+
if (self.scheduler_config.is_multi_step
|
|
1374
|
+
and scheduler_outputs.num_lookahead_slots > 0):
|
|
1375
|
+
# cache the scheduler outputs for the next iteration if we have
|
|
1376
|
+
# lookahead slots
|
|
1377
|
+
self._cache_scheduler_outputs_for_multi_step(
|
|
1378
|
+
virtual_engine, seq_group_metadata_list, scheduler_outputs,
|
|
1379
|
+
allow_async_output_proc)
|
|
1380
|
+
else:
|
|
1381
|
+
finished_requests_ids = list()
|
|
1382
|
+
|
|
1383
|
+
assert seq_group_metadata_list is not None
|
|
1384
|
+
assert scheduler_outputs is not None
|
|
1385
|
+
|
|
1386
|
+
if not scheduler_outputs.is_empty():
|
|
1387
|
+
|
|
1388
|
+
# Check if we have a cached last_output from the previous iteration.
|
|
1389
|
+
# For supporting PP this is probably the best way to pass the
|
|
1390
|
+
# sampled_token_ids, as a separate broadcast over all the PP stages
|
|
1391
|
+
# will cause one virtual engine's microbatch to block the pipeline.
|
|
1392
|
+
last_sampled_token_ids = \
|
|
1393
|
+
self._get_last_sampled_token_ids(virtual_engine)
|
|
1394
|
+
|
|
1395
|
+
execute_model_req = ExecuteModelRequest(
|
|
1396
|
+
seq_group_metadata_list=seq_group_metadata_list,
|
|
1397
|
+
blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
|
|
1398
|
+
blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
|
|
1399
|
+
blocks_to_copy=scheduler_outputs.blocks_to_copy,
|
|
1400
|
+
num_lookahead_slots=scheduler_outputs.num_lookahead_slots,
|
|
1401
|
+
running_queue_size=scheduler_outputs.running_queue_size,
|
|
1402
|
+
finished_requests_ids=finished_requests_ids,
|
|
1403
|
+
# We use ExecuteModelRequest to pass the last sampled_token_ids
|
|
1404
|
+
# to each of the non-last PP stages for in-place prepare_input.
|
|
1405
|
+
last_sampled_token_ids=last_sampled_token_ids)
|
|
1406
|
+
|
|
1407
|
+
if allow_async_output_proc:
|
|
1408
|
+
execute_model_req.async_callback = self.async_callbacks[
|
|
1409
|
+
virtual_engine]
|
|
1410
|
+
|
|
1411
|
+
try:
|
|
1412
|
+
outputs = self.model_executor.execute_model(
|
|
1413
|
+
execute_model_req=execute_model_req)
|
|
1414
|
+
self._skip_scheduling_next_step = False
|
|
1415
|
+
except InputProcessingError as e:
|
|
1416
|
+
# The input for this request cannot be processed, so we must
|
|
1417
|
+
# abort it. If there are remaining requests in the batch that
|
|
1418
|
+
# have been scheduled, they will be retried on the next step.
|
|
1419
|
+
invalid_request_id = e.request_id
|
|
1420
|
+
self._abort_and_cache_schedule(
|
|
1421
|
+
request_id=invalid_request_id,
|
|
1422
|
+
virtual_engine=virtual_engine,
|
|
1423
|
+
seq_group_metadata_list=seq_group_metadata_list,
|
|
1424
|
+
scheduler_outputs=scheduler_outputs,
|
|
1425
|
+
allow_async_output_proc=allow_async_output_proc)
|
|
1426
|
+
# Raise so the caller is notified that this request failed
|
|
1427
|
+
raise
|
|
1428
|
+
|
|
1429
|
+
# We need to do this here so that last step's sampled_token_ids can
|
|
1430
|
+
# be passed to the next iteration for PP.
|
|
1431
|
+
if self.scheduler_config.is_multi_step:
|
|
1432
|
+
self._update_cached_scheduler_output(virtual_engine, outputs)
|
|
1433
|
+
else:
|
|
1434
|
+
# Nothing scheduled => If there is pending async postprocessor,
|
|
1435
|
+
# then finish it here.
|
|
1436
|
+
if len(ctx.output_queue) > 0:
|
|
1437
|
+
self._process_model_outputs(ctx=ctx)
|
|
1438
|
+
# No outputs in this case
|
|
1439
|
+
outputs = []
|
|
1440
|
+
|
|
1441
|
+
# Finish the current step for all the sequence groups.
|
|
1442
|
+
if self.scheduler_config.is_multi_step:
|
|
1443
|
+
for seq_group in seq_group_metadata_list:
|
|
1444
|
+
seq_group.finish_step()
|
|
1445
|
+
|
|
1446
|
+
if not self._has_remaining_steps(seq_group_metadata_list):
|
|
1447
|
+
# clear the cache if we have finished all the steps.
|
|
1448
|
+
if self.scheduler_config.is_multi_step:
|
|
1449
|
+
self.cached_scheduler_outputs[0] = SchedulerOutputState()
|
|
1450
|
+
|
|
1451
|
+
# is_first_step_output is True only when the num_steps of all
|
|
1452
|
+
# the sequences are 1. When the num_steps > 1,
|
|
1453
|
+
# multi_step_model_runner does the first-step output append.
|
|
1454
|
+
is_first_step_output: bool = False if not seq_group_metadata_list \
|
|
1455
|
+
else seq_group_metadata_list[0].state.num_steps == 1
|
|
1456
|
+
|
|
1457
|
+
# Add results to the output_queue
|
|
1458
|
+
ctx.append_output(outputs=outputs,
|
|
1459
|
+
seq_group_metadata_list=seq_group_metadata_list,
|
|
1460
|
+
scheduler_outputs=scheduler_outputs,
|
|
1461
|
+
is_async=allow_async_output_proc,
|
|
1462
|
+
is_last_step=True,
|
|
1463
|
+
is_first_step_output=is_first_step_output)
|
|
1464
|
+
|
|
1465
|
+
if outputs and allow_async_output_proc:
|
|
1466
|
+
assert len(outputs) == 1, (
|
|
1467
|
+
"Async postprocessor expects only a single output set")
|
|
1468
|
+
|
|
1469
|
+
self._advance_to_next_step(
|
|
1470
|
+
outputs[0], seq_group_metadata_list,
|
|
1471
|
+
scheduler_outputs.scheduled_seq_groups)
|
|
1472
|
+
|
|
1473
|
+
# Check if need to run the usual non-async path
|
|
1474
|
+
if not allow_async_output_proc:
|
|
1475
|
+
self._process_model_outputs(ctx=ctx)
|
|
1476
|
+
|
|
1477
|
+
# Log stats.
|
|
1478
|
+
self.do_log_stats(scheduler_outputs, outputs)
|
|
1479
|
+
|
|
1480
|
+
# Tracing
|
|
1481
|
+
self.do_tracing(scheduler_outputs)
|
|
1482
|
+
else:
|
|
1483
|
+
# Multi-step case
|
|
1484
|
+
return ctx.request_outputs
|
|
1485
|
+
|
|
1486
|
+
if not self.has_unfinished_requests():
|
|
1487
|
+
# Drain async postprocessor (if exists)
|
|
1488
|
+
if len(ctx.output_queue) > 0:
|
|
1489
|
+
self._process_model_outputs(ctx=ctx)
|
|
1490
|
+
assert len(ctx.output_queue) == 0
|
|
1491
|
+
|
|
1492
|
+
# Stop the execute model loop in parallel workers until there are
|
|
1493
|
+
# more requests to process. This avoids waiting indefinitely in
|
|
1494
|
+
# torch.distributed ops which may otherwise timeout, and unblocks
|
|
1495
|
+
# the RPC thread in the workers so that they can process any other
|
|
1496
|
+
# queued control plane messages, such as add/remove lora adapters.
|
|
1497
|
+
logger.debug("Stopping remote worker execution loop.")
|
|
1498
|
+
self.model_executor.stop_remote_worker_execution_loop()
|
|
1499
|
+
|
|
1500
|
+
return ctx.request_outputs
|
|
1501
|
+
|
|
1502
|
+
def _abort_and_cache_schedule(
|
|
1503
|
+
self, request_id: str, virtual_engine: int,
|
|
1504
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
1505
|
+
scheduler_outputs: SchedulerOutputs,
|
|
1506
|
+
allow_async_output_proc: bool) -> None:
|
|
1507
|
+
"""Aborts a single request, and caches the scheduler outputs minus that
|
|
1508
|
+
request. This allows the next step to continue processing the remaining
|
|
1509
|
+
requests without having to re-run the scheduler."""
|
|
1510
|
+
|
|
1511
|
+
# Abort the request and remove its sequence group from the current
|
|
1512
|
+
# schedule
|
|
1513
|
+
self.abort_request(request_id)
|
|
1514
|
+
for i, metadata in enumerate(seq_group_metadata_list):
|
|
1515
|
+
if metadata.request_id == request_id:
|
|
1516
|
+
del seq_group_metadata_list[i]
|
|
1517
|
+
break
|
|
1518
|
+
for i, group in enumerate(scheduler_outputs.scheduled_seq_groups):
|
|
1519
|
+
if group.seq_group.request_id == request_id:
|
|
1520
|
+
del scheduler_outputs.scheduled_seq_groups[i]
|
|
1521
|
+
break
|
|
1522
|
+
|
|
1523
|
+
# If there are still other sequence groups left in the schedule, cache
|
|
1524
|
+
# them and flag the engine to reuse the schedule.
|
|
1525
|
+
if len(seq_group_metadata_list) > 0:
|
|
1526
|
+
self._skip_scheduling_next_step = True
|
|
1527
|
+
# Reuse multi-step caching logic
|
|
1528
|
+
self._cache_scheduler_outputs_for_multi_step(
|
|
1529
|
+
virtual_engine=virtual_engine,
|
|
1530
|
+
scheduler_outputs=scheduler_outputs,
|
|
1531
|
+
seq_group_metadata_list=seq_group_metadata_list,
|
|
1532
|
+
allow_async_output_proc=allow_async_output_proc)
|
|
1533
|
+
|
|
1534
|
+
def _has_remaining_steps(
|
|
1535
|
+
self, seq_group_metadata_list: Optional[List[SequenceGroupMetadata]]
|
|
1536
|
+
) -> bool:
|
|
1537
|
+
if (not self.scheduler_config.is_multi_step
|
|
1538
|
+
or not seq_group_metadata_list):
|
|
1539
|
+
return False
|
|
1540
|
+
|
|
1541
|
+
# TODO(will) this is a sanity check for nowto make sure that all the
|
|
1542
|
+
# seqs are on the same steps. Eventually we will want to do some sort of
|
|
1543
|
+
# dynamic scheduling when doing multi-step decoding.
|
|
1544
|
+
ref_remaining_steps = seq_group_metadata_list[0].state.remaining_steps
|
|
1545
|
+
if any([
|
|
1546
|
+
seq_group.state.remaining_steps != ref_remaining_steps
|
|
1547
|
+
for seq_group in seq_group_metadata_list[1:]
|
|
1548
|
+
]):
|
|
1549
|
+
raise AssertionError("All running sequence groups should "
|
|
1550
|
+
"have the same remaining steps.")
|
|
1551
|
+
|
|
1552
|
+
return ref_remaining_steps > 0
|
|
1553
|
+
|
|
1554
|
+
def _cache_scheduler_outputs_for_multi_step(
|
|
1555
|
+
self, virtual_engine: int,
|
|
1556
|
+
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
|
|
1557
|
+
scheduler_outputs: SchedulerOutputs,
|
|
1558
|
+
allow_async_output_proc: bool) -> None:
|
|
1559
|
+
co = self.cached_scheduler_outputs[virtual_engine]
|
|
1560
|
+
|
|
1561
|
+
co.seq_group_metadata_list = seq_group_metadata_list
|
|
1562
|
+
co.scheduler_outputs = scheduler_outputs
|
|
1563
|
+
co.allow_async_output_proc = allow_async_output_proc
|
|
1564
|
+
co.last_output = None
|
|
1565
|
+
|
|
1566
|
+
def _update_cached_scheduler_output(
|
|
1567
|
+
self, virtual_engine: int,
|
|
1568
|
+
output: List[Optional[SamplerOutput]]) -> None:
|
|
1569
|
+
if (self.parallel_config.pipeline_parallel_size > 1 and len(output) > 0
|
|
1570
|
+
and output[0] is not None):
|
|
1571
|
+
last_output = output[-1]
|
|
1572
|
+
assert last_output is not None
|
|
1573
|
+
assert last_output.sampled_token_ids_cpu is not None
|
|
1574
|
+
assert last_output.sampled_token_ids is None
|
|
1575
|
+
assert last_output.sampled_token_probs is None
|
|
1576
|
+
self.cached_scheduler_outputs[
|
|
1577
|
+
virtual_engine].last_output = last_output
|
|
1578
|
+
|
|
1579
|
+
def _get_last_sampled_token_ids(
|
|
1580
|
+
self, virtual_engine: int) -> Optional[torch.Tensor]:
|
|
1581
|
+
cached_last_output = self.cached_scheduler_outputs[
|
|
1582
|
+
virtual_engine].last_output
|
|
1583
|
+
if (self.scheduler_config.is_multi_step
|
|
1584
|
+
and self.parallel_config.pipeline_parallel_size > 1
|
|
1585
|
+
and cached_last_output is not None
|
|
1586
|
+
and cached_last_output.sampled_token_ids_cpu is not None):
|
|
1587
|
+
return cached_last_output.sampled_token_ids_cpu
|
|
1588
|
+
return None
|
|
1589
|
+
|
|
1590
|
+
def add_logger(self, logger_name: str, logger: StatLoggerBase) -> None:
|
|
1591
|
+
if not self.log_stats:
|
|
1592
|
+
raise RuntimeError(
|
|
1593
|
+
"Stat logging is disabled. Set `disable_log_stats=False` "
|
|
1594
|
+
"argument to enable.")
|
|
1595
|
+
if logger_name in self.stat_loggers:
|
|
1596
|
+
raise KeyError(f"Logger with name {logger_name} already exists.")
|
|
1597
|
+
self.stat_loggers[logger_name] = logger
|
|
1598
|
+
|
|
1599
|
+
def remove_logger(self, logger_name: str) -> None:
|
|
1600
|
+
if not self.log_stats:
|
|
1601
|
+
raise RuntimeError(
|
|
1602
|
+
"Stat logging is disabled. Set `disable_log_stats=False` "
|
|
1603
|
+
"argument to enable.")
|
|
1604
|
+
if logger_name not in self.stat_loggers:
|
|
1605
|
+
raise KeyError(f"Logger with name {logger_name} does not exist.")
|
|
1606
|
+
del self.stat_loggers[logger_name]
|
|
1607
|
+
|
|
1608
|
+
def do_log_stats(self,
|
|
1609
|
+
scheduler_outputs: Optional[SchedulerOutputs] = None,
|
|
1610
|
+
model_output: Optional[List[SamplerOutput]] = None,
|
|
1611
|
+
finished_before: Optional[List[int]] = None,
|
|
1612
|
+
skip: Optional[List[int]] = None) -> None:
|
|
1613
|
+
"""Forced log when no requests active."""
|
|
1614
|
+
if self.log_stats:
|
|
1615
|
+
stats = self._get_stats(scheduler_outputs, model_output,
|
|
1616
|
+
finished_before, skip)
|
|
1617
|
+
for logger in self.stat_loggers.values():
|
|
1618
|
+
logger.log(stats)
|
|
1619
|
+
|
|
1620
|
+
def _get_stats(self,
|
|
1621
|
+
scheduler_outputs: Optional[SchedulerOutputs],
|
|
1622
|
+
model_output: Optional[List[SamplerOutput]] = None,
|
|
1623
|
+
finished_before: Optional[List[int]] = None,
|
|
1624
|
+
skip: Optional[List[int]] = None) -> Stats:
|
|
1625
|
+
"""Get Stats to be Logged to Prometheus.
|
|
1626
|
+
|
|
1627
|
+
Args:
|
|
1628
|
+
scheduler_outputs: Optional, used to populate metrics related to
|
|
1629
|
+
the scheduled batch,
|
|
1630
|
+
model_output: Optional, used to emit speculative decoding metrics
|
|
1631
|
+
which are created by the workers.
|
|
1632
|
+
finished_before: Optional, indices of sequences that were finished
|
|
1633
|
+
before. These sequences will be ignored.
|
|
1634
|
+
skip: Optional, indices of sequences that were preempted. These
|
|
1635
|
+
sequences will be ignored.
|
|
1636
|
+
"""
|
|
1637
|
+
now = time.time()
|
|
1638
|
+
|
|
1639
|
+
# System State
|
|
1640
|
+
# Scheduler State
|
|
1641
|
+
num_running_sys = sum(
|
|
1642
|
+
len(scheduler.running) for scheduler in self.scheduler)
|
|
1643
|
+
num_swapped_sys = sum(
|
|
1644
|
+
len(scheduler.swapped) for scheduler in self.scheduler)
|
|
1645
|
+
num_waiting_sys = sum(
|
|
1646
|
+
len(scheduler.waiting) for scheduler in self.scheduler)
|
|
1647
|
+
|
|
1648
|
+
# KV Cache Usage in %
|
|
1649
|
+
num_total_gpu = self.cache_config.num_gpu_blocks
|
|
1650
|
+
gpu_cache_usage_sys = 0.
|
|
1651
|
+
if num_total_gpu: # Guard against both None and 0
|
|
1652
|
+
num_free_gpu = sum(
|
|
1653
|
+
scheduler.block_manager.get_num_free_gpu_blocks()
|
|
1654
|
+
for scheduler in self.scheduler)
|
|
1655
|
+
gpu_cache_usage_sys = 1.0 - (num_free_gpu / num_total_gpu)
|
|
1656
|
+
|
|
1657
|
+
num_total_cpu = self.cache_config.num_cpu_blocks
|
|
1658
|
+
cpu_cache_usage_sys = 0.
|
|
1659
|
+
if num_total_cpu: # Guard against both None and 0
|
|
1660
|
+
num_free_cpu = sum(
|
|
1661
|
+
scheduler.block_manager.get_num_free_cpu_blocks()
|
|
1662
|
+
for scheduler in self.scheduler)
|
|
1663
|
+
cpu_cache_usage_sys = 1.0 - (num_free_cpu / num_total_cpu)
|
|
1664
|
+
|
|
1665
|
+
# Prefix Cache Hit Rate. Note that we always use
|
|
1666
|
+
# the cache hit rate of the first virtual engine.
|
|
1667
|
+
cpu_prefix_cache_hit_rate = self.scheduler[
|
|
1668
|
+
0].get_prefix_cache_hit_rate(Device.CPU)
|
|
1669
|
+
gpu_prefix_cache_hit_rate = self.scheduler[
|
|
1670
|
+
0].get_prefix_cache_hit_rate(Device.GPU)
|
|
1671
|
+
|
|
1672
|
+
# Iteration stats
|
|
1673
|
+
num_prompt_tokens_iter = 0
|
|
1674
|
+
num_generation_tokens_iter = 0
|
|
1675
|
+
num_tokens_iter = 0
|
|
1676
|
+
time_to_first_tokens_iter: List[float] = []
|
|
1677
|
+
time_per_output_tokens_iter: List[float] = []
|
|
1678
|
+
num_preemption_iter = (0 if scheduler_outputs is None else
|
|
1679
|
+
scheduler_outputs.preempted)
|
|
1680
|
+
|
|
1681
|
+
# Request stats
|
|
1682
|
+
# Latency
|
|
1683
|
+
time_e2e_requests: List[float] = []
|
|
1684
|
+
time_queue_requests: List[float] = []
|
|
1685
|
+
time_inference_requests: List[float] = []
|
|
1686
|
+
time_prefill_requests: List[float] = []
|
|
1687
|
+
time_decode_requests: List[float] = []
|
|
1688
|
+
time_in_queue_requests: List[float] = []
|
|
1689
|
+
model_forward_time_requests: List[float] = []
|
|
1690
|
+
model_execute_time_requests: List[float] = []
|
|
1691
|
+
# Metadata
|
|
1692
|
+
num_prompt_tokens_requests: List[int] = []
|
|
1693
|
+
num_generation_tokens_requests: List[int] = []
|
|
1694
|
+
n_requests: List[int] = []
|
|
1695
|
+
max_num_generation_tokens_requests: List[int] = []
|
|
1696
|
+
max_tokens_requests: List[int] = []
|
|
1697
|
+
finished_reason_requests: List[str] = []
|
|
1698
|
+
|
|
1699
|
+
# LoRA requests
|
|
1700
|
+
running_lora_adapters = dict(
|
|
1701
|
+
collectionsCounter([
|
|
1702
|
+
running_request.lora_request.lora_name
|
|
1703
|
+
for scheduler in self.scheduler
|
|
1704
|
+
for running_request in scheduler.running
|
|
1705
|
+
if running_request.lora_request
|
|
1706
|
+
]))
|
|
1707
|
+
waiting_lora_adapters = dict(
|
|
1708
|
+
collectionsCounter([
|
|
1709
|
+
waiting_request.lora_request.lora_name
|
|
1710
|
+
for scheduler in self.scheduler
|
|
1711
|
+
for waiting_request in scheduler.waiting
|
|
1712
|
+
if waiting_request.lora_request
|
|
1713
|
+
]))
|
|
1714
|
+
max_lora_stat = "0"
|
|
1715
|
+
if self.lora_config:
|
|
1716
|
+
max_lora_stat = str(self.lora_config.max_loras)
|
|
1717
|
+
|
|
1718
|
+
# NOTE: This loop assumes prefill seq_groups are before
|
|
1719
|
+
# decode seq_groups in scheduled_seq_groups.
|
|
1720
|
+
if scheduler_outputs is not None:
|
|
1721
|
+
# For async postprocessor, already finished sequences need to be
|
|
1722
|
+
# not counted (to avoid double counting)
|
|
1723
|
+
actual_num_batched_tokens = scheduler_outputs.num_batched_tokens # type: ignore
|
|
1724
|
+
|
|
1725
|
+
num_generation_tokens_from_prefill_groups = 0
|
|
1726
|
+
# NOTE: if scheduler_outputs.num_prefill_groups > 0 and
|
|
1727
|
+
# the len of scheduler_outputs.scheduled_seq_groups is !=
|
|
1728
|
+
# scheduler_outputs.num_prefill_groups, this means that
|
|
1729
|
+
# chunked prefills have been detected.
|
|
1730
|
+
|
|
1731
|
+
for idx, scheduled_seq_group in enumerate(
|
|
1732
|
+
scheduler_outputs.scheduled_seq_groups):
|
|
1733
|
+
# Skip double logging when using async output proc
|
|
1734
|
+
if finished_before and idx in finished_before:
|
|
1735
|
+
actual_num_batched_tokens -= 1
|
|
1736
|
+
continue
|
|
1737
|
+
|
|
1738
|
+
# Currently, skip == preempted sequences, so we need to skip
|
|
1739
|
+
# their log stats
|
|
1740
|
+
if skip and idx in skip:
|
|
1741
|
+
continue
|
|
1742
|
+
|
|
1743
|
+
group_was_prefill = idx < scheduler_outputs.num_prefill_groups
|
|
1744
|
+
seq_group = scheduled_seq_group.seq_group
|
|
1745
|
+
|
|
1746
|
+
# NOTE: a seq_group that completed all of its prefill tokens
|
|
1747
|
+
# in the last iteration will have seq_group.is_prefill() = False
|
|
1748
|
+
# with group_was_prefill = True
|
|
1749
|
+
if group_was_prefill:
|
|
1750
|
+
# Number of prompt tokens.
|
|
1751
|
+
num_prompt_tokens_iter += (
|
|
1752
|
+
scheduled_seq_group.token_chunk_size)
|
|
1753
|
+
|
|
1754
|
+
# If the seq_group just finished the prefill state
|
|
1755
|
+
# get TTFT.
|
|
1756
|
+
if not seq_group.is_prefill():
|
|
1757
|
+
latency = seq_group.get_last_token_latency()
|
|
1758
|
+
time_to_first_tokens_iter.append(latency)
|
|
1759
|
+
|
|
1760
|
+
# One generation token per finished prefill.
|
|
1761
|
+
num_generation_tokens_from_prefill_groups += (
|
|
1762
|
+
seq_group.num_seqs())
|
|
1763
|
+
else:
|
|
1764
|
+
# TPOTs.
|
|
1765
|
+
latency = seq_group.get_last_token_latency()
|
|
1766
|
+
time_per_output_tokens_iter.append(latency)
|
|
1767
|
+
if seq_group.state.current_step == 0:
|
|
1768
|
+
# For async_output_proc, the do_log_stats()
|
|
1769
|
+
# is called following init_multi_step(), which
|
|
1770
|
+
# sets the current_step to zero.
|
|
1771
|
+
actual_num_batched_tokens +=\
|
|
1772
|
+
seq_group.state.num_steps - 1
|
|
1773
|
+
else:
|
|
1774
|
+
actual_num_batched_tokens +=\
|
|
1775
|
+
seq_group.state.current_step - 1
|
|
1776
|
+
|
|
1777
|
+
# Because of chunked prefill, we can have a single sequence
|
|
1778
|
+
# group that does multiple prompt_runs. To prevent logging
|
|
1779
|
+
# the same metadata more than once per request, we standardize
|
|
1780
|
+
# on logging request level information for finished requests,
|
|
1781
|
+
# which can only happen once.
|
|
1782
|
+
if seq_group.is_finished():
|
|
1783
|
+
# Latency timings
|
|
1784
|
+
time_e2e_requests.append(now -
|
|
1785
|
+
seq_group.metrics.arrival_time)
|
|
1786
|
+
if (seq_group.metrics.first_scheduled_time is not None and
|
|
1787
|
+
seq_group.metrics.first_token_time is not None):
|
|
1788
|
+
time_queue_requests.append(
|
|
1789
|
+
seq_group.metrics.first_scheduled_time -
|
|
1790
|
+
seq_group.metrics.arrival_time)
|
|
1791
|
+
time_prefill_requests.append(
|
|
1792
|
+
seq_group.metrics.first_token_time -
|
|
1793
|
+
seq_group.metrics.first_scheduled_time)
|
|
1794
|
+
time_decode_requests.append(
|
|
1795
|
+
now - seq_group.metrics.first_token_time)
|
|
1796
|
+
time_inference_requests.append(
|
|
1797
|
+
now - seq_group.metrics.first_scheduled_time)
|
|
1798
|
+
if seq_group.metrics.time_in_queue is not None:
|
|
1799
|
+
time_in_queue_requests.append(
|
|
1800
|
+
seq_group.metrics.time_in_queue)
|
|
1801
|
+
if seq_group.metrics.model_forward_time is not None:
|
|
1802
|
+
model_forward_time_requests.append(
|
|
1803
|
+
seq_group.metrics.model_forward_time)
|
|
1804
|
+
if seq_group.metrics.model_execute_time is not None:
|
|
1805
|
+
model_execute_time_requests.append(
|
|
1806
|
+
seq_group.metrics.model_execute_time * 1000)
|
|
1807
|
+
# Metadata
|
|
1808
|
+
num_prompt_tokens_requests.append(
|
|
1809
|
+
len(seq_group.prompt_token_ids))
|
|
1810
|
+
num_generation_tokens_requests.extend([
|
|
1811
|
+
seq.get_output_len()
|
|
1812
|
+
for seq in seq_group.get_finished_seqs()
|
|
1813
|
+
])
|
|
1814
|
+
max_num_generation_tokens_requests.append(
|
|
1815
|
+
max(seq.get_output_len()
|
|
1816
|
+
for seq in seq_group.get_seqs()))
|
|
1817
|
+
if seq_group.sampling_params is not None:
|
|
1818
|
+
n_requests.append(seq_group.sampling_params.n)
|
|
1819
|
+
max_tokens_requests.append(
|
|
1820
|
+
seq_group.sampling_params.max_tokens)
|
|
1821
|
+
finished_reason_requests.extend([
|
|
1822
|
+
SequenceStatus.get_finished_reason(seq.status)
|
|
1823
|
+
for seq in seq_group.get_finished_seqs()
|
|
1824
|
+
])
|
|
1825
|
+
|
|
1826
|
+
# Number of generation tokens.
|
|
1827
|
+
# num_batched_tokens equals the number of prompt_tokens plus the
|
|
1828
|
+
# number of decode_tokens in a single iteration. So,
|
|
1829
|
+
# num_generation_tokens = num_batched_tokens - num_prompt_tokens
|
|
1830
|
+
# + num_generation_tokens_from_prefill_groups (since we generate
|
|
1831
|
+
# one token on prefills on iters where the prefill finishes).
|
|
1832
|
+
num_generation_tokens_iter = (
|
|
1833
|
+
actual_num_batched_tokens - num_prompt_tokens_iter +
|
|
1834
|
+
num_generation_tokens_from_prefill_groups)
|
|
1835
|
+
num_tokens_iter = (num_generation_tokens_iter +
|
|
1836
|
+
num_prompt_tokens_iter)
|
|
1837
|
+
# Spec decode, if enabled, emits specialized metrics from the worker in
|
|
1838
|
+
# sampler output.
|
|
1839
|
+
if model_output and isinstance(model_output[0], SamplerOutput) and (
|
|
1840
|
+
model_output[0].spec_decode_worker_metrics is not None):
|
|
1841
|
+
spec_decode_metrics = model_output[0].spec_decode_worker_metrics
|
|
1842
|
+
else:
|
|
1843
|
+
spec_decode_metrics = None
|
|
1844
|
+
|
|
1845
|
+
return Stats(
|
|
1846
|
+
now=now,
|
|
1847
|
+
# System stats
|
|
1848
|
+
# Scheduler State
|
|
1849
|
+
num_running_sys=num_running_sys,
|
|
1850
|
+
num_swapped_sys=num_swapped_sys,
|
|
1851
|
+
num_waiting_sys=num_waiting_sys,
|
|
1852
|
+
# KV Cache Usage in %
|
|
1853
|
+
gpu_cache_usage_sys=gpu_cache_usage_sys,
|
|
1854
|
+
cpu_cache_usage_sys=cpu_cache_usage_sys,
|
|
1855
|
+
# Prefix Cache Hit Rate
|
|
1856
|
+
cpu_prefix_cache_hit_rate=cpu_prefix_cache_hit_rate,
|
|
1857
|
+
gpu_prefix_cache_hit_rate=gpu_prefix_cache_hit_rate,
|
|
1858
|
+
|
|
1859
|
+
# Iteration stats
|
|
1860
|
+
num_prompt_tokens_iter=num_prompt_tokens_iter,
|
|
1861
|
+
num_generation_tokens_iter=num_generation_tokens_iter,
|
|
1862
|
+
num_tokens_iter=num_tokens_iter,
|
|
1863
|
+
time_to_first_tokens_iter=time_to_first_tokens_iter,
|
|
1864
|
+
time_per_output_tokens_iter=time_per_output_tokens_iter,
|
|
1865
|
+
spec_decode_metrics=spec_decode_metrics,
|
|
1866
|
+
num_preemption_iter=num_preemption_iter,
|
|
1867
|
+
|
|
1868
|
+
# Request stats
|
|
1869
|
+
# Latency
|
|
1870
|
+
time_e2e_requests=time_e2e_requests,
|
|
1871
|
+
time_queue_requests=time_queue_requests,
|
|
1872
|
+
time_inference_requests=time_inference_requests,
|
|
1873
|
+
time_prefill_requests=time_prefill_requests,
|
|
1874
|
+
time_decode_requests=time_decode_requests,
|
|
1875
|
+
time_in_queue_requests=time_in_queue_requests,
|
|
1876
|
+
model_forward_time_requests=model_forward_time_requests,
|
|
1877
|
+
model_execute_time_requests=model_execute_time_requests,
|
|
1878
|
+
# Metadata
|
|
1879
|
+
num_prompt_tokens_requests=num_prompt_tokens_requests,
|
|
1880
|
+
num_generation_tokens_requests=num_generation_tokens_requests,
|
|
1881
|
+
max_num_generation_tokens_requests=
|
|
1882
|
+
max_num_generation_tokens_requests,
|
|
1883
|
+
n_requests=n_requests,
|
|
1884
|
+
max_tokens_requests=max_tokens_requests,
|
|
1885
|
+
finished_reason_requests=finished_reason_requests,
|
|
1886
|
+
max_lora=str(max_lora_stat),
|
|
1887
|
+
waiting_lora_adapters=list(waiting_lora_adapters.keys()),
|
|
1888
|
+
running_lora_adapters=list(running_lora_adapters.keys()))
|
|
1889
|
+
|
|
1890
|
+
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
1891
|
+
return self.model_executor.add_lora(lora_request)
|
|
1892
|
+
|
|
1893
|
+
def remove_lora(self, lora_id: int) -> bool:
|
|
1894
|
+
return self.model_executor.remove_lora(lora_id)
|
|
1895
|
+
|
|
1896
|
+
def list_loras(self) -> Set[int]:
|
|
1897
|
+
return self.model_executor.list_loras()
|
|
1898
|
+
|
|
1899
|
+
def pin_lora(self, lora_id: int) -> bool:
|
|
1900
|
+
return self.model_executor.pin_lora(lora_id)
|
|
1901
|
+
|
|
1902
|
+
def add_prompt_adapter(
|
|
1903
|
+
self, prompt_adapter_request: PromptAdapterRequest) -> bool:
|
|
1904
|
+
return self.model_executor.add_prompt_adapter(prompt_adapter_request)
|
|
1905
|
+
|
|
1906
|
+
def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool:
|
|
1907
|
+
return self.model_executor.remove_prompt_adapter(prompt_adapter_id)
|
|
1908
|
+
|
|
1909
|
+
def list_prompt_adapters(self) -> List[int]:
|
|
1910
|
+
return self.model_executor.list_prompt_adapters()
|
|
1911
|
+
|
|
1912
|
+
def start_profile(self) -> None:
|
|
1913
|
+
self.model_executor.start_profile()
|
|
1914
|
+
|
|
1915
|
+
def stop_profile(self) -> None:
|
|
1916
|
+
self.model_executor.stop_profile()
|
|
1917
|
+
|
|
1918
|
+
def sleep(self, level: int = 1) -> None:
|
|
1919
|
+
assert self.vllm_config.model_config.enable_sleep_mode, (
|
|
1920
|
+
"Sleep mode is not enabled in the model config")
|
|
1921
|
+
self.model_executor.sleep(level=level)
|
|
1922
|
+
|
|
1923
|
+
def wake_up(self, tags: Optional[list[str]] = None) -> None:
|
|
1924
|
+
assert self.vllm_config.model_config.enable_sleep_mode, (
|
|
1925
|
+
"Sleep mode is not enabled in the model config")
|
|
1926
|
+
self.model_executor.wake_up(tags)
|
|
1927
|
+
|
|
1928
|
+
def is_sleeping(self) -> bool:
|
|
1929
|
+
return self.model_executor.is_sleeping
|
|
1930
|
+
|
|
1931
|
+
def check_health(self) -> None:
|
|
1932
|
+
self.model_executor.check_health()
|
|
1933
|
+
|
|
1934
|
+
def is_tracing_enabled(self) -> bool:
|
|
1935
|
+
return self.tracer is not None
|
|
1936
|
+
|
|
1937
|
+
def do_tracing(self,
|
|
1938
|
+
scheduler_outputs: SchedulerOutputs,
|
|
1939
|
+
finished_before: Optional[List[int]] = None) -> None:
|
|
1940
|
+
if self.tracer is None:
|
|
1941
|
+
return
|
|
1942
|
+
|
|
1943
|
+
for idx, scheduled_seq_group in enumerate(
|
|
1944
|
+
scheduler_outputs.scheduled_seq_groups):
|
|
1945
|
+
# Skip double tracing when using async output proc
|
|
1946
|
+
if finished_before and idx in finished_before:
|
|
1947
|
+
continue
|
|
1948
|
+
|
|
1949
|
+
seq_group = scheduled_seq_group.seq_group
|
|
1950
|
+
if seq_group.is_finished():
|
|
1951
|
+
self.create_trace_span(seq_group)
|
|
1952
|
+
|
|
1953
|
+
def create_trace_span(self, seq_group: SequenceGroup) -> None:
|
|
1954
|
+
if self.tracer is None or seq_group.sampling_params is None:
|
|
1955
|
+
return
|
|
1956
|
+
arrival_time_nano_seconds = int(seq_group.metrics.arrival_time * 1e9)
|
|
1957
|
+
|
|
1958
|
+
trace_context = extract_trace_context(seq_group.trace_headers)
|
|
1959
|
+
|
|
1960
|
+
with self.tracer.start_as_current_span(
|
|
1961
|
+
"llm_request",
|
|
1962
|
+
kind=SpanKind.SERVER,
|
|
1963
|
+
context=trace_context,
|
|
1964
|
+
start_time=arrival_time_nano_seconds) as seq_span:
|
|
1965
|
+
metrics = seq_group.metrics
|
|
1966
|
+
ttft = metrics.first_token_time - metrics.arrival_time
|
|
1967
|
+
e2e_time = metrics.finished_time - metrics.arrival_time
|
|
1968
|
+
seq_span.set_attribute(SpanAttributes.GEN_AI_RESPONSE_MODEL,
|
|
1969
|
+
self.model_config.model)
|
|
1970
|
+
seq_span.set_attribute(SpanAttributes.GEN_AI_REQUEST_ID,
|
|
1971
|
+
seq_group.request_id)
|
|
1972
|
+
seq_span.set_attribute(SpanAttributes.GEN_AI_REQUEST_TEMPERATURE,
|
|
1973
|
+
seq_group.sampling_params.temperature)
|
|
1974
|
+
seq_span.set_attribute(SpanAttributes.GEN_AI_REQUEST_TOP_P,
|
|
1975
|
+
seq_group.sampling_params.top_p)
|
|
1976
|
+
seq_span.set_attribute(SpanAttributes.GEN_AI_REQUEST_MAX_TOKENS,
|
|
1977
|
+
seq_group.sampling_params.max_tokens)
|
|
1978
|
+
seq_span.set_attribute(SpanAttributes.GEN_AI_REQUEST_N,
|
|
1979
|
+
seq_group.sampling_params.n)
|
|
1980
|
+
seq_span.set_attribute(SpanAttributes.GEN_AI_USAGE_NUM_SEQUENCES,
|
|
1981
|
+
seq_group.num_seqs())
|
|
1982
|
+
seq_span.set_attribute(SpanAttributes.GEN_AI_USAGE_PROMPT_TOKENS,
|
|
1983
|
+
len(seq_group.prompt_token_ids))
|
|
1984
|
+
seq_span.set_attribute(
|
|
1985
|
+
SpanAttributes.GEN_AI_USAGE_COMPLETION_TOKENS,
|
|
1986
|
+
sum([
|
|
1987
|
+
seq.get_output_len()
|
|
1988
|
+
for seq in seq_group.get_finished_seqs()
|
|
1989
|
+
]))
|
|
1990
|
+
seq_span.set_attribute(SpanAttributes.GEN_AI_LATENCY_TIME_IN_QUEUE,
|
|
1991
|
+
metrics.time_in_queue)
|
|
1992
|
+
seq_span.set_attribute(
|
|
1993
|
+
SpanAttributes.GEN_AI_LATENCY_TIME_TO_FIRST_TOKEN, ttft)
|
|
1994
|
+
seq_span.set_attribute(SpanAttributes.GEN_AI_LATENCY_E2E, e2e_time)
|
|
1995
|
+
if metrics.scheduler_time is not None:
|
|
1996
|
+
seq_span.set_attribute(
|
|
1997
|
+
SpanAttributes.GEN_AI_LATENCY_TIME_IN_SCHEDULER,
|
|
1998
|
+
metrics.scheduler_time)
|
|
1999
|
+
if metrics.model_forward_time is not None:
|
|
2000
|
+
seq_span.set_attribute(
|
|
2001
|
+
SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_FORWARD,
|
|
2002
|
+
metrics.model_forward_time / 1000.0)
|
|
2003
|
+
if metrics.model_execute_time is not None:
|
|
2004
|
+
seq_span.set_attribute(
|
|
2005
|
+
SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_EXECUTE,
|
|
2006
|
+
metrics.model_execute_time)
|
|
2007
|
+
|
|
2008
|
+
def _validate_model_inputs(self, inputs: ProcessorInputs,
|
|
2009
|
+
lora_request: Optional[LoRARequest]):
|
|
2010
|
+
encoder_inputs, decoder_inputs = split_enc_dec_inputs(inputs)
|
|
2011
|
+
|
|
2012
|
+
if encoder_inputs is not None:
|
|
2013
|
+
self._validate_model_input(encoder_inputs,
|
|
2014
|
+
lora_request,
|
|
2015
|
+
prompt_type="encoder")
|
|
2016
|
+
|
|
2017
|
+
self._validate_model_input(decoder_inputs,
|
|
2018
|
+
lora_request,
|
|
2019
|
+
prompt_type="decoder")
|
|
2020
|
+
|
|
2021
|
+
def _validate_model_input(
|
|
2022
|
+
self,
|
|
2023
|
+
prompt_inputs: SingletonInputs,
|
|
2024
|
+
lora_request: Optional[LoRARequest],
|
|
2025
|
+
*,
|
|
2026
|
+
prompt_type: Literal["encoder", "decoder"],
|
|
2027
|
+
):
|
|
2028
|
+
model_config = self.model_config
|
|
2029
|
+
tokenizer = (None if self.tokenizer is None else
|
|
2030
|
+
self.tokenizer.get_lora_tokenizer(lora_request))
|
|
2031
|
+
|
|
2032
|
+
prompt_ids = prompt_inputs["prompt_token_ids"]
|
|
2033
|
+
if not prompt_ids:
|
|
2034
|
+
if prompt_type == "encoder" and model_config.is_multimodal_model:
|
|
2035
|
+
pass # Mllama may have empty encoder inputs for text-only data
|
|
2036
|
+
else:
|
|
2037
|
+
raise ValueError(f"The {prompt_type} prompt cannot be empty")
|
|
2038
|
+
|
|
2039
|
+
max_prompt_len = self.model_config.max_model_len
|
|
2040
|
+
if len(prompt_ids) > max_prompt_len:
|
|
2041
|
+
if prompt_type == "encoder" and model_config.is_multimodal_model:
|
|
2042
|
+
mm_registry = self.input_preprocessor.mm_registry
|
|
2043
|
+
mm_processor = mm_registry.create_processor(
|
|
2044
|
+
model_config,
|
|
2045
|
+
tokenizer=tokenizer or object(), # Dummy if no tokenizer
|
|
2046
|
+
)
|
|
2047
|
+
assert isinstance(mm_processor, EncDecMultiModalProcessor)
|
|
2048
|
+
|
|
2049
|
+
if mm_processor.pad_dummy_encoder_prompt:
|
|
2050
|
+
return # Skip encoder length check for Whisper
|
|
2051
|
+
|
|
2052
|
+
if model_config.is_multimodal_model:
|
|
2053
|
+
suggestion = (
|
|
2054
|
+
"Make sure that `max_model_len` is no smaller than the "
|
|
2055
|
+
"number of text tokens plus multimodal tokens. For image "
|
|
2056
|
+
"inputs, the number of image tokens depends on the number "
|
|
2057
|
+
"of images, and possibly their aspect ratios as well.")
|
|
2058
|
+
else:
|
|
2059
|
+
suggestion = (
|
|
2060
|
+
"Make sure that `max_model_len` is no smaller than the "
|
|
2061
|
+
"number of text tokens.")
|
|
2062
|
+
|
|
2063
|
+
raise ValueError(
|
|
2064
|
+
f"The {prompt_type} prompt (length {len(prompt_ids)}) is "
|
|
2065
|
+
f"longer than the maximum model length of {max_prompt_len}. "
|
|
2066
|
+
f"{suggestion}")
|
|
2067
|
+
|
|
2068
|
+
# TODO: Find out how many placeholder tokens are there so we can
|
|
2069
|
+
# check that chunked prefill does not truncate them
|
|
2070
|
+
# max_batch_len = self.scheduler_config.max_num_batched_tokens
|
|
2071
|
+
|
|
2072
|
+
def _build_logits_processors(
|
|
2073
|
+
self, sampling_params: SamplingParams,
|
|
2074
|
+
lora_request: Optional[LoRARequest]) -> SamplingParams:
|
|
2075
|
+
"""Constructs logits processors based on the guided_decoding,
|
|
2076
|
+
logits_bias, and allowed_token_ids fields in sampling_params. Deletes
|
|
2077
|
+
those fields and adds the constructed logits processors to the
|
|
2078
|
+
logits_processors field. Returns the modified sampling params."""
|
|
2079
|
+
|
|
2080
|
+
logits_processors = []
|
|
2081
|
+
|
|
2082
|
+
if sampling_params.guided_decoding is not None:
|
|
2083
|
+
# Defensively copy sampling params since guided decoding logits
|
|
2084
|
+
# processors can have different state for each request
|
|
2085
|
+
sampling_params = copy.copy(sampling_params)
|
|
2086
|
+
guided_decoding = sampling_params.guided_decoding
|
|
2087
|
+
|
|
2088
|
+
logger.debug(
|
|
2089
|
+
"Building guided decoding logits processor in "
|
|
2090
|
+
"LLMEngine. Params: %s", guided_decoding)
|
|
2091
|
+
|
|
2092
|
+
tokenizer = self.get_tokenizer(lora_request=lora_request)
|
|
2093
|
+
guided_decoding.backend = guided_decoding.backend or \
|
|
2094
|
+
self.decoding_config.guided_decoding_backend
|
|
2095
|
+
|
|
2096
|
+
if self.decoding_config.reasoning_backend is not None:
|
|
2097
|
+
logger.debug("Building with reasoning backend %s",
|
|
2098
|
+
self.decoding_config.reasoning_backend)
|
|
2099
|
+
|
|
2100
|
+
processor = get_local_guided_decoding_logits_processor(
|
|
2101
|
+
guided_params=guided_decoding,
|
|
2102
|
+
tokenizer=tokenizer,
|
|
2103
|
+
model_config=self.model_config,
|
|
2104
|
+
reasoning_backend=self.decoding_config.reasoning_backend,
|
|
2105
|
+
)
|
|
2106
|
+
if processor:
|
|
2107
|
+
logits_processors.append(processor)
|
|
2108
|
+
|
|
2109
|
+
# Unset so this doesn't get passed down to the model
|
|
2110
|
+
sampling_params.guided_decoding = None
|
|
2111
|
+
|
|
2112
|
+
if (sampling_params.logit_bias or sampling_params.allowed_token_ids):
|
|
2113
|
+
tokenizer = self.get_tokenizer(lora_request=lora_request)
|
|
2114
|
+
|
|
2115
|
+
processors = get_openai_logits_processors(
|
|
2116
|
+
logit_bias=sampling_params.logit_bias,
|
|
2117
|
+
allowed_token_ids=sampling_params.allowed_token_ids,
|
|
2118
|
+
tokenizer=tokenizer)
|
|
2119
|
+
logits_processors.extend(processors)
|
|
2120
|
+
|
|
2121
|
+
# Unset so these don't get passed down to the model
|
|
2122
|
+
sampling_params.logit_bias = None
|
|
2123
|
+
sampling_params.allowed_token_ids = None
|
|
2124
|
+
|
|
2125
|
+
if len(sampling_params.bad_words) > 0:
|
|
2126
|
+
tokenizer = self.get_tokenizer(lora_request)
|
|
2127
|
+
processors = get_bad_words_logits_processors(
|
|
2128
|
+
bad_words=sampling_params.bad_words, tokenizer=tokenizer)
|
|
2129
|
+
logits_processors.extend(processors)
|
|
2130
|
+
|
|
2131
|
+
if logits_processors:
|
|
2132
|
+
if sampling_params.logits_processors is None:
|
|
2133
|
+
sampling_params.logits_processors = logits_processors
|
|
2134
|
+
else:
|
|
2135
|
+
sampling_params.logits_processors.extend(logits_processors)
|
|
2136
|
+
|
|
2137
|
+
return sampling_params
|
|
2138
|
+
|
|
2139
|
+
def collective_rpc(self,
|
|
2140
|
+
method: Union[str, Callable[..., _R]],
|
|
2141
|
+
timeout: Optional[float] = None,
|
|
2142
|
+
args: tuple = (),
|
|
2143
|
+
kwargs: Optional[dict[str, Any]] = None) -> list[_R]:
|
|
2144
|
+
return self.model_executor.collective_rpc(method, timeout, args,
|
|
2145
|
+
kwargs)
|
|
2146
|
+
|
|
2147
|
+
|
|
2148
|
+
if envs.is_set("VLLM_USE_V1") and envs.VLLM_USE_V1:
|
|
2149
|
+
from vllm.v1.engine.llm_engine import LLMEngine as V1LLMEngine
|
|
2150
|
+
LLMEngine = V1LLMEngine # type: ignore
|