vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1197) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +53 -0
  3. vllm/_custom_ops.py +1828 -0
  4. vllm/_ipex_ops.py +244 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +115 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +308 -0
  20. vllm/attention/backends/blocksparse_attn.py +461 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
  23. vllm/attention/backends/flash_attn.py +1003 -0
  24. vllm/attention/backends/flashinfer.py +1104 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +313 -0
  27. vllm/attention/backends/ipex_attn.py +398 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1385 -0
  30. vllm/attention/backends/pallas.py +351 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +975 -0
  34. vllm/attention/backends/torch_sdpa.py +703 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +802 -0
  38. vllm/attention/layer.py +468 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +906 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/prefix_prefill.py +902 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  54. vllm/attention/ops/triton_decode_attention.py +674 -0
  55. vllm/attention/ops/triton_flash_attention.py +979 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  57. vllm/attention/ops/triton_unified_attention.py +334 -0
  58. vllm/attention/selector.py +187 -0
  59. vllm/attention/utils/fa_utils.py +55 -0
  60. vllm/beam_search.py +87 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +1185 -0
  63. vllm/benchmarks/endpoint_request_func.py +381 -0
  64. vllm/benchmarks/latency.py +168 -0
  65. vllm/benchmarks/serve.py +1135 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +70 -0
  68. vllm/collect_env.py +820 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +89 -0
  71. vllm/compilation/backends.py +563 -0
  72. vllm/compilation/base_piecewise_backend.py +72 -0
  73. vllm/compilation/collective_fusion.py +127 -0
  74. vllm/compilation/compiler_interface.py +544 -0
  75. vllm/compilation/counter.py +38 -0
  76. vllm/compilation/cuda_piecewise_backend.py +214 -0
  77. vllm/compilation/decorators.py +250 -0
  78. vllm/compilation/fix_functionalization.py +191 -0
  79. vllm/compilation/fusion.py +618 -0
  80. vllm/compilation/fx_utils.py +62 -0
  81. vllm/compilation/inductor_pass.py +115 -0
  82. vllm/compilation/monitor.py +39 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +137 -0
  85. vllm/compilation/pass_manager.py +78 -0
  86. vllm/compilation/sequence_parallelism.py +268 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +67 -0
  89. vllm/compilation/wrapper.py +135 -0
  90. vllm/config.py +4746 -0
  91. vllm/connections.py +174 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +399 -0
  95. vllm/core/block/common.py +371 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  97. vllm/core/block/interfaces.py +319 -0
  98. vllm/core/block/naive_block.py +466 -0
  99. vllm/core/block/prefix_caching_block.py +1135 -0
  100. vllm/core/block/utils.py +28 -0
  101. vllm/core/block_manager.py +521 -0
  102. vllm/core/evictor.py +157 -0
  103. vllm/core/interfaces.py +135 -0
  104. vllm/core/placeholder_block_space_manager.py +100 -0
  105. vllm/core/scheduler.py +2093 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +281 -0
  108. vllm/distributed/__init__.py +6 -0
  109. vllm/distributed/communication_op.py +41 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +264 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +176 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  120. vllm/distributed/device_communicators/pynccl.py +218 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  125. vllm/distributed/kv_events.py +356 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +12 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  152. vllm/distributed/parallel_state.py +1296 -0
  153. vllm/distributed/tpu_distributed_utils.py +177 -0
  154. vllm/distributed/utils.py +536 -0
  155. vllm/engine/__init__.py +0 -0
  156. vllm/engine/arg_utils.py +1708 -0
  157. vllm/engine/async_llm_engine.py +1200 -0
  158. vllm/engine/async_timeout.py +173 -0
  159. vllm/engine/llm_engine.py +2097 -0
  160. vllm/engine/metrics.py +629 -0
  161. vllm/engine/metrics_types.py +94 -0
  162. vllm/engine/multiprocessing/__init__.py +148 -0
  163. vllm/engine/multiprocessing/client.py +681 -0
  164. vllm/engine/multiprocessing/engine.py +460 -0
  165. vllm/engine/output_processor/__init__.py +0 -0
  166. vllm/engine/output_processor/interfaces.py +75 -0
  167. vllm/engine/output_processor/multi_step.py +216 -0
  168. vllm/engine/output_processor/single_step.py +145 -0
  169. vllm/engine/output_processor/stop_checker.py +131 -0
  170. vllm/engine/output_processor/util.py +28 -0
  171. vllm/engine/protocol.py +317 -0
  172. vllm/entrypoints/__init__.py +0 -0
  173. vllm/entrypoints/api_server.py +178 -0
  174. vllm/entrypoints/chat_utils.py +1299 -0
  175. vllm/entrypoints/cli/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  177. vllm/entrypoints/cli/benchmark/base.py +39 -0
  178. vllm/entrypoints/cli/benchmark/latency.py +30 -0
  179. vllm/entrypoints/cli/benchmark/main.py +54 -0
  180. vllm/entrypoints/cli/benchmark/serve.py +30 -0
  181. vllm/entrypoints/cli/benchmark/throughput.py +30 -0
  182. vllm/entrypoints/cli/collect_env.py +35 -0
  183. vllm/entrypoints/cli/main.py +65 -0
  184. vllm/entrypoints/cli/openai.py +205 -0
  185. vllm/entrypoints/cli/run_batch.py +62 -0
  186. vllm/entrypoints/cli/serve.py +328 -0
  187. vllm/entrypoints/cli/types.py +25 -0
  188. vllm/entrypoints/launcher.py +147 -0
  189. vllm/entrypoints/llm.py +1544 -0
  190. vllm/entrypoints/logger.py +50 -0
  191. vllm/entrypoints/openai/__init__.py +0 -0
  192. vllm/entrypoints/openai/api_server.py +1387 -0
  193. vllm/entrypoints/openai/cli_args.py +315 -0
  194. vllm/entrypoints/openai/logits_processors.py +90 -0
  195. vllm/entrypoints/openai/protocol.py +1913 -0
  196. vllm/entrypoints/openai/run_batch.py +463 -0
  197. vllm/entrypoints/openai/serving_chat.py +1221 -0
  198. vllm/entrypoints/openai/serving_classification.py +160 -0
  199. vllm/entrypoints/openai/serving_completion.py +592 -0
  200. vllm/entrypoints/openai/serving_embedding.py +201 -0
  201. vllm/entrypoints/openai/serving_engine.py +986 -0
  202. vllm/entrypoints/openai/serving_models.py +315 -0
  203. vllm/entrypoints/openai/serving_pooling.py +232 -0
  204. vllm/entrypoints/openai/serving_score.py +433 -0
  205. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  206. vllm/entrypoints/openai/serving_transcription.py +424 -0
  207. vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
  208. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  209. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  210. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  211. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  212. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  213. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  214. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  215. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  216. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  217. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  218. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  219. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  220. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  221. vllm/entrypoints/score_utils.py +50 -0
  222. vllm/entrypoints/ssl.py +75 -0
  223. vllm/entrypoints/utils.py +233 -0
  224. vllm/env_override.py +41 -0
  225. vllm/envs.py +944 -0
  226. vllm/executor/__init__.py +0 -0
  227. vllm/executor/executor_base.py +401 -0
  228. vllm/executor/mp_distributed_executor.py +244 -0
  229. vllm/executor/msgspec_utils.py +30 -0
  230. vllm/executor/multiproc_worker_utils.py +313 -0
  231. vllm/executor/ray_distributed_executor.py +701 -0
  232. vllm/executor/ray_utils.py +399 -0
  233. vllm/executor/uniproc_executor.py +139 -0
  234. vllm/forward_context.py +179 -0
  235. vllm/inputs/__init__.py +41 -0
  236. vllm/inputs/data.py +331 -0
  237. vllm/inputs/parse.py +151 -0
  238. vllm/inputs/preprocess.py +909 -0
  239. vllm/inputs/registry.py +237 -0
  240. vllm/jsontree.py +80 -0
  241. vllm/logger.py +212 -0
  242. vllm/logging_utils/__init__.py +8 -0
  243. vllm/logging_utils/dump_input.py +85 -0
  244. vllm/logging_utils/formatter.py +18 -0
  245. vllm/logits_process.py +119 -0
  246. vllm/lora/__init__.py +0 -0
  247. vllm/lora/fully_sharded_layers.py +355 -0
  248. vllm/lora/layers.py +1285 -0
  249. vllm/lora/lora.py +199 -0
  250. vllm/lora/models.py +818 -0
  251. vllm/lora/ops/__init__.py +0 -0
  252. vllm/lora/ops/torch_ops/__init__.py +16 -0
  253. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  254. vllm/lora/ops/triton_ops/__init__.py +12 -0
  255. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  256. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  257. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  258. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  259. vllm/lora/ops/triton_ops/utils.py +120 -0
  260. vllm/lora/ops/xla_ops/__init__.py +7 -0
  261. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  262. vllm/lora/peft_helper.py +136 -0
  263. vllm/lora/punica_wrapper/__init__.py +10 -0
  264. vllm/lora/punica_wrapper/punica_base.py +485 -0
  265. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  266. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  267. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  268. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  269. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  270. vllm/lora/punica_wrapper/utils.py +164 -0
  271. vllm/lora/request.py +99 -0
  272. vllm/lora/resolver.py +85 -0
  273. vllm/lora/utils.py +240 -0
  274. vllm/lora/worker_manager.py +259 -0
  275. vllm/model_executor/__init__.py +16 -0
  276. vllm/model_executor/custom_op.py +152 -0
  277. vllm/model_executor/guided_decoding/__init__.py +181 -0
  278. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  279. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  280. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  281. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  282. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  283. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  284. vllm/model_executor/guided_decoding/utils.py +242 -0
  285. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  286. vllm/model_executor/layers/__init__.py +0 -0
  287. vllm/model_executor/layers/activation.py +369 -0
  288. vllm/model_executor/layers/fused_moe/__init__.py +54 -0
  289. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
  290. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  455. vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
  456. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
  457. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
  458. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
  459. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
  460. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
  461. vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
  462. vllm/model_executor/layers/fused_moe/layer.py +1535 -0
  463. vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
  464. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  465. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  466. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  467. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  468. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
  469. vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
  470. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
  471. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
  472. vllm/model_executor/layers/fused_moe/utils.py +98 -0
  473. vllm/model_executor/layers/layernorm.py +288 -0
  474. vllm/model_executor/layers/lightning_attn.py +652 -0
  475. vllm/model_executor/layers/linear.py +1524 -0
  476. vllm/model_executor/layers/logits_processor.py +197 -0
  477. vllm/model_executor/layers/mamba/__init__.py +0 -0
  478. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  479. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  480. vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
  481. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  482. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  483. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  484. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  485. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  486. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  487. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  488. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  489. vllm/model_executor/layers/pooler.py +350 -0
  490. vllm/model_executor/layers/quantization/__init__.py +157 -0
  491. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  492. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  493. vllm/model_executor/layers/quantization/awq.py +194 -0
  494. vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
  495. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  496. vllm/model_executor/layers/quantization/base_config.py +151 -0
  497. vllm/model_executor/layers/quantization/bitblas.py +461 -0
  498. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  505. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  506. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
  507. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
  508. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  509. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  510. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  511. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  512. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  513. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  514. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  515. vllm/model_executor/layers/quantization/experts_int8.py +196 -0
  516. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  517. vllm/model_executor/layers/quantization/fp8.py +906 -0
  518. vllm/model_executor/layers/quantization/gguf.py +565 -0
  519. vllm/model_executor/layers/quantization/gptq.py +278 -0
  520. vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
  521. vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
  522. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  523. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  524. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  525. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  526. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  527. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  528. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  529. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  530. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  531. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
  532. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  533. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  534. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  535. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  536. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  537. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  538. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  539. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  540. vllm/model_executor/layers/quantization/marlin.py +261 -0
  541. vllm/model_executor/layers/quantization/modelopt.py +737 -0
  542. vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
  543. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  544. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  545. vllm/model_executor/layers/quantization/qqq.py +275 -0
  546. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  547. vllm/model_executor/layers/quantization/quark/quark.py +441 -0
  548. vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
  549. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  550. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  551. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  552. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
  553. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  554. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  555. vllm/model_executor/layers/quantization/schema.py +86 -0
  556. vllm/model_executor/layers/quantization/torchao.py +161 -0
  557. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  558. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  559. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  560. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
  764. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  765. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  766. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  767. vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
  768. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  769. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  770. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  771. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  772. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  773. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  774. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  775. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
  776. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  777. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  778. vllm/model_executor/layers/rejection_sampler.py +406 -0
  779. vllm/model_executor/layers/resampler.py +270 -0
  780. vllm/model_executor/layers/rotary_embedding.py +1862 -0
  781. vllm/model_executor/layers/sampler.py +1204 -0
  782. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  783. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  784. vllm/model_executor/layers/utils.py +95 -0
  785. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  786. vllm/model_executor/model_loader/__init__.py +76 -0
  787. vllm/model_executor/model_loader/base_loader.py +43 -0
  788. vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
  789. vllm/model_executor/model_loader/default_loader.py +282 -0
  790. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  791. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  792. vllm/model_executor/model_loader/neuron.py +476 -0
  793. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  794. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  795. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  796. vllm/model_executor/model_loader/tensorizer.py +600 -0
  797. vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
  798. vllm/model_executor/model_loader/tpu.py +112 -0
  799. vllm/model_executor/model_loader/utils.py +302 -0
  800. vllm/model_executor/model_loader/weight_utils.py +782 -0
  801. vllm/model_executor/models/__init__.py +28 -0
  802. vllm/model_executor/models/adapters.py +248 -0
  803. vllm/model_executor/models/aimv2.py +246 -0
  804. vllm/model_executor/models/arctic.py +559 -0
  805. vllm/model_executor/models/aria.py +657 -0
  806. vllm/model_executor/models/aya_vision.py +466 -0
  807. vllm/model_executor/models/baichuan.py +474 -0
  808. vllm/model_executor/models/bamba.py +543 -0
  809. vllm/model_executor/models/bart.py +938 -0
  810. vllm/model_executor/models/bert.py +523 -0
  811. vllm/model_executor/models/bert_with_rope.py +769 -0
  812. vllm/model_executor/models/blip.py +339 -0
  813. vllm/model_executor/models/blip2.py +718 -0
  814. vllm/model_executor/models/bloom.py +373 -0
  815. vllm/model_executor/models/chameleon.py +1136 -0
  816. vllm/model_executor/models/chatglm.py +478 -0
  817. vllm/model_executor/models/clip.py +407 -0
  818. vllm/model_executor/models/commandr.py +472 -0
  819. vllm/model_executor/models/constant_size_cache.py +137 -0
  820. vllm/model_executor/models/dbrx.py +472 -0
  821. vllm/model_executor/models/deepseek.py +486 -0
  822. vllm/model_executor/models/deepseek_mtp.py +269 -0
  823. vllm/model_executor/models/deepseek_v2.py +843 -0
  824. vllm/model_executor/models/deepseek_vl2.py +648 -0
  825. vllm/model_executor/models/eagle.py +260 -0
  826. vllm/model_executor/models/exaone.py +551 -0
  827. vllm/model_executor/models/fairseq2_llama.py +154 -0
  828. vllm/model_executor/models/falcon.py +510 -0
  829. vllm/model_executor/models/falcon_h1.py +685 -0
  830. vllm/model_executor/models/florence2.py +1103 -0
  831. vllm/model_executor/models/fuyu.py +389 -0
  832. vllm/model_executor/models/gemma.py +425 -0
  833. vllm/model_executor/models/gemma2.py +425 -0
  834. vllm/model_executor/models/gemma3.py +533 -0
  835. vllm/model_executor/models/gemma3_mm.py +709 -0
  836. vllm/model_executor/models/glm.py +23 -0
  837. vllm/model_executor/models/glm4.py +305 -0
  838. vllm/model_executor/models/glm4v.py +648 -0
  839. vllm/model_executor/models/gpt2.py +328 -0
  840. vllm/model_executor/models/gpt_bigcode.py +335 -0
  841. vllm/model_executor/models/gpt_j.py +339 -0
  842. vllm/model_executor/models/gpt_neox.py +332 -0
  843. vllm/model_executor/models/granite.py +493 -0
  844. vllm/model_executor/models/granite_speech.py +779 -0
  845. vllm/model_executor/models/granitemoe.py +437 -0
  846. vllm/model_executor/models/granitemoehybrid.py +586 -0
  847. vllm/model_executor/models/granitemoeshared.py +341 -0
  848. vllm/model_executor/models/gritlm.py +224 -0
  849. vllm/model_executor/models/grok1.py +546 -0
  850. vllm/model_executor/models/h2ovl.py +546 -0
  851. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  852. vllm/model_executor/models/idefics3.py +776 -0
  853. vllm/model_executor/models/interfaces.py +572 -0
  854. vllm/model_executor/models/interfaces_base.py +164 -0
  855. vllm/model_executor/models/intern_vit.py +480 -0
  856. vllm/model_executor/models/internlm2.py +455 -0
  857. vllm/model_executor/models/internlm2_ve.py +147 -0
  858. vllm/model_executor/models/internvl.py +1418 -0
  859. vllm/model_executor/models/jais.py +373 -0
  860. vllm/model_executor/models/jamba.py +592 -0
  861. vllm/model_executor/models/kimi_vl.py +577 -0
  862. vllm/model_executor/models/llama.py +644 -0
  863. vllm/model_executor/models/llama4.py +532 -0
  864. vllm/model_executor/models/llama_eagle.py +165 -0
  865. vllm/model_executor/models/llama_eagle3.py +263 -0
  866. vllm/model_executor/models/llava.py +866 -0
  867. vllm/model_executor/models/llava_next.py +586 -0
  868. vllm/model_executor/models/llava_next_video.py +471 -0
  869. vllm/model_executor/models/llava_onevision.py +956 -0
  870. vllm/model_executor/models/mamba.py +273 -0
  871. vllm/model_executor/models/mamba2.py +308 -0
  872. vllm/model_executor/models/mamba_cache.py +76 -0
  873. vllm/model_executor/models/medusa.py +219 -0
  874. vllm/model_executor/models/mimo.py +192 -0
  875. vllm/model_executor/models/mimo_mtp.py +285 -0
  876. vllm/model_executor/models/minicpm.py +592 -0
  877. vllm/model_executor/models/minicpm3.py +230 -0
  878. vllm/model_executor/models/minicpm_eagle.py +391 -0
  879. vllm/model_executor/models/minicpmo.py +759 -0
  880. vllm/model_executor/models/minicpmv.py +1287 -0
  881. vllm/model_executor/models/minimax_cache.py +36 -0
  882. vllm/model_executor/models/minimax_text_01.py +1301 -0
  883. vllm/model_executor/models/minimax_vl_01.py +364 -0
  884. vllm/model_executor/models/mistral3.py +604 -0
  885. vllm/model_executor/models/mixtral.py +488 -0
  886. vllm/model_executor/models/mixtral_quant.py +453 -0
  887. vllm/model_executor/models/mllama.py +1624 -0
  888. vllm/model_executor/models/mllama4.py +938 -0
  889. vllm/model_executor/models/mlp_speculator.py +206 -0
  890. vllm/model_executor/models/modernbert.py +331 -0
  891. vllm/model_executor/models/module_mapping.py +72 -0
  892. vllm/model_executor/models/molmo.py +1568 -0
  893. vllm/model_executor/models/moonvit.py +630 -0
  894. vllm/model_executor/models/mpt.py +331 -0
  895. vllm/model_executor/models/nemotron.py +508 -0
  896. vllm/model_executor/models/nemotron_h.py +573 -0
  897. vllm/model_executor/models/nemotron_nas.py +484 -0
  898. vllm/model_executor/models/nvlm_d.py +216 -0
  899. vllm/model_executor/models/olmo.py +389 -0
  900. vllm/model_executor/models/olmo2.py +414 -0
  901. vllm/model_executor/models/olmoe.py +468 -0
  902. vllm/model_executor/models/opt.py +412 -0
  903. vllm/model_executor/models/orion.py +349 -0
  904. vllm/model_executor/models/ovis.py +567 -0
  905. vllm/model_executor/models/paligemma.py +398 -0
  906. vllm/model_executor/models/persimmon.py +344 -0
  907. vllm/model_executor/models/phi.py +356 -0
  908. vllm/model_executor/models/phi3.py +19 -0
  909. vllm/model_executor/models/phi3_small.py +465 -0
  910. vllm/model_executor/models/phi3v.py +723 -0
  911. vllm/model_executor/models/phi4mm.py +1246 -0
  912. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  913. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  914. vllm/model_executor/models/phimoe.py +665 -0
  915. vllm/model_executor/models/pixtral.py +1316 -0
  916. vllm/model_executor/models/plamo2.py +738 -0
  917. vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
  918. vllm/model_executor/models/qwen.py +362 -0
  919. vllm/model_executor/models/qwen2.py +497 -0
  920. vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
  921. vllm/model_executor/models/qwen2_5_vl.py +1166 -0
  922. vllm/model_executor/models/qwen2_audio.py +410 -0
  923. vllm/model_executor/models/qwen2_moe.py +540 -0
  924. vllm/model_executor/models/qwen2_rm.py +132 -0
  925. vllm/model_executor/models/qwen2_vl.py +1405 -0
  926. vllm/model_executor/models/qwen3.py +321 -0
  927. vllm/model_executor/models/qwen3_moe.py +535 -0
  928. vllm/model_executor/models/qwen_vl.py +785 -0
  929. vllm/model_executor/models/registry.py +622 -0
  930. vllm/model_executor/models/roberta.py +276 -0
  931. vllm/model_executor/models/siglip.py +524 -0
  932. vllm/model_executor/models/skyworkr1v.py +951 -0
  933. vllm/model_executor/models/smolvlm.py +52 -0
  934. vllm/model_executor/models/solar.py +506 -0
  935. vllm/model_executor/models/stablelm.py +343 -0
  936. vllm/model_executor/models/starcoder2.py +356 -0
  937. vllm/model_executor/models/tarsier.py +643 -0
  938. vllm/model_executor/models/telechat2.py +140 -0
  939. vllm/model_executor/models/teleflm.py +79 -0
  940. vllm/model_executor/models/transformers.py +508 -0
  941. vllm/model_executor/models/ultravox.py +656 -0
  942. vllm/model_executor/models/utils.py +731 -0
  943. vllm/model_executor/models/vision.py +147 -0
  944. vllm/model_executor/models/whisper.py +747 -0
  945. vllm/model_executor/models/zamba2.py +1009 -0
  946. vllm/model_executor/parameter.py +459 -0
  947. vllm/model_executor/pooling_metadata.py +72 -0
  948. vllm/model_executor/sampling_metadata.py +597 -0
  949. vllm/model_executor/utils.py +77 -0
  950. vllm/multimodal/__init__.py +33 -0
  951. vllm/multimodal/audio.py +106 -0
  952. vllm/multimodal/base.py +219 -0
  953. vllm/multimodal/hasher.py +118 -0
  954. vllm/multimodal/image.py +97 -0
  955. vllm/multimodal/inputs.py +876 -0
  956. vllm/multimodal/parse.py +461 -0
  957. vllm/multimodal/processing.py +1895 -0
  958. vllm/multimodal/profiling.py +258 -0
  959. vllm/multimodal/registry.py +331 -0
  960. vllm/multimodal/utils.py +436 -0
  961. vllm/multimodal/video.py +198 -0
  962. vllm/outputs.py +512 -0
  963. vllm/platforms/__init__.py +291 -0
  964. vllm/platforms/cpu.py +266 -0
  965. vllm/platforms/cuda.py +526 -0
  966. vllm/platforms/hpu.py +106 -0
  967. vllm/platforms/interface.py +538 -0
  968. vllm/platforms/neuron.py +150 -0
  969. vllm/platforms/rocm.py +435 -0
  970. vllm/platforms/tpu.py +216 -0
  971. vllm/platforms/xpu.py +156 -0
  972. vllm/plugins/__init__.py +94 -0
  973. vllm/plugins/lora_resolvers/README.md +15 -0
  974. vllm/plugins/lora_resolvers/__init__.py +0 -0
  975. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  976. vllm/pooling_params.py +54 -0
  977. vllm/profiler/__init__.py +0 -0
  978. vllm/profiler/layerwise_profile.py +375 -0
  979. vllm/profiler/utils.py +148 -0
  980. vllm/prompt_adapter/__init__.py +0 -0
  981. vllm/prompt_adapter/layers.py +83 -0
  982. vllm/prompt_adapter/models.py +358 -0
  983. vllm/prompt_adapter/request.py +37 -0
  984. vllm/prompt_adapter/utils.py +98 -0
  985. vllm/prompt_adapter/worker_manager.py +179 -0
  986. vllm/py.typed +2 -0
  987. vllm/reasoning/__init__.py +15 -0
  988. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  989. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  990. vllm/reasoning/granite_reasoning_parser.py +363 -0
  991. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  992. vllm/sampling_params.py +602 -0
  993. vllm/scalar_type.py +347 -0
  994. vllm/scripts.py +15 -0
  995. vllm/sequence.py +1568 -0
  996. vllm/spec_decode/__init__.py +0 -0
  997. vllm/spec_decode/batch_expansion.py +506 -0
  998. vllm/spec_decode/draft_model_runner.py +349 -0
  999. vllm/spec_decode/interfaces.py +99 -0
  1000. vllm/spec_decode/medusa_worker.py +138 -0
  1001. vllm/spec_decode/metrics.py +213 -0
  1002. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1003. vllm/spec_decode/mqa_scorer.py +160 -0
  1004. vllm/spec_decode/multi_step_worker.py +423 -0
  1005. vllm/spec_decode/ngram_worker.py +196 -0
  1006. vllm/spec_decode/proposer_worker_base.py +59 -0
  1007. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1008. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1009. vllm/spec_decode/target_model_runner.py +45 -0
  1010. vllm/spec_decode/top1_proposer.py +275 -0
  1011. vllm/spec_decode/util.py +277 -0
  1012. vllm/test_utils.py +130 -0
  1013. vllm/third_party/__init__.py +0 -0
  1014. vllm/third_party/pynvml.py +6140 -0
  1015. vllm/tracing.py +131 -0
  1016. vllm/transformers_utils/__init__.py +24 -0
  1017. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1018. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1019. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1020. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1021. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1022. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1023. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1024. vllm/transformers_utils/config.py +887 -0
  1025. vllm/transformers_utils/configs/__init__.py +61 -0
  1026. vllm/transformers_utils/configs/arctic.py +207 -0
  1027. vllm/transformers_utils/configs/chatglm.py +72 -0
  1028. vllm/transformers_utils/configs/cohere2.py +195 -0
  1029. vllm/transformers_utils/configs/dbrx.py +280 -0
  1030. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1031. vllm/transformers_utils/configs/eagle.py +85 -0
  1032. vllm/transformers_utils/configs/exaone.py +190 -0
  1033. vllm/transformers_utils/configs/falcon.py +90 -0
  1034. vllm/transformers_utils/configs/h2ovl.py +16 -0
  1035. vllm/transformers_utils/configs/internvl.py +54 -0
  1036. vllm/transformers_utils/configs/jais.py +238 -0
  1037. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1038. vllm/transformers_utils/configs/medusa.py +63 -0
  1039. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1040. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1041. vllm/transformers_utils/configs/mllama.py +31 -0
  1042. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1043. vllm/transformers_utils/configs/moonvit.py +33 -0
  1044. vllm/transformers_utils/configs/mpt.py +180 -0
  1045. vllm/transformers_utils/configs/nemotron.py +205 -0
  1046. vllm/transformers_utils/configs/nemotron_h.py +258 -0
  1047. vllm/transformers_utils/configs/nvlm_d.py +15 -0
  1048. vllm/transformers_utils/configs/ovis.py +184 -0
  1049. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1050. vllm/transformers_utils/configs/solar.py +247 -0
  1051. vllm/transformers_utils/configs/telechat2.py +64 -0
  1052. vllm/transformers_utils/configs/ultravox.py +108 -0
  1053. vllm/transformers_utils/detokenizer.py +168 -0
  1054. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1055. vllm/transformers_utils/processor.py +221 -0
  1056. vllm/transformers_utils/processors/__init__.py +8 -0
  1057. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1058. vllm/transformers_utils/processors/ovis.py +420 -0
  1059. vllm/transformers_utils/s3_utils.py +162 -0
  1060. vllm/transformers_utils/tokenizer.py +302 -0
  1061. vllm/transformers_utils/tokenizer_base.py +149 -0
  1062. vllm/transformers_utils/tokenizer_group.py +120 -0
  1063. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1064. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1065. vllm/transformers_utils/utils.py +99 -0
  1066. vllm/triton_utils/__init__.py +14 -0
  1067. vllm/triton_utils/importing.py +50 -0
  1068. vllm/usage/__init__.py +0 -0
  1069. vllm/usage/usage_lib.py +256 -0
  1070. vllm/utils.py +2910 -0
  1071. vllm/v1/__init__.py +0 -0
  1072. vllm/v1/attention/__init__.py +0 -0
  1073. vllm/v1/attention/backends/__init__.py +0 -0
  1074. vllm/v1/attention/backends/cpu_attn.py +163 -0
  1075. vllm/v1/attention/backends/flash_attn.py +869 -0
  1076. vllm/v1/attention/backends/flashinfer.py +651 -0
  1077. vllm/v1/attention/backends/flex_attention.py +477 -0
  1078. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1079. vllm/v1/attention/backends/mla/common.py +931 -0
  1080. vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
  1081. vllm/v1/attention/backends/mla/flashmla.py +152 -0
  1082. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
  1083. vllm/v1/attention/backends/mla/triton_mla.py +120 -0
  1084. vllm/v1/attention/backends/pallas.py +240 -0
  1085. vllm/v1/attention/backends/triton_attn.py +285 -0
  1086. vllm/v1/attention/backends/utils.py +52 -0
  1087. vllm/v1/core/__init__.py +0 -0
  1088. vllm/v1/core/block_pool.py +349 -0
  1089. vllm/v1/core/encoder_cache_manager.py +150 -0
  1090. vllm/v1/core/kv_cache_coordinator.py +363 -0
  1091. vllm/v1/core/kv_cache_manager.py +392 -0
  1092. vllm/v1/core/kv_cache_utils.py +996 -0
  1093. vllm/v1/core/sched/__init__.py +0 -0
  1094. vllm/v1/core/sched/interface.py +150 -0
  1095. vllm/v1/core/sched/output.py +154 -0
  1096. vllm/v1/core/sched/scheduler.py +1044 -0
  1097. vllm/v1/core/sched/utils.py +23 -0
  1098. vllm/v1/core/single_type_kv_cache_manager.py +403 -0
  1099. vllm/v1/engine/__init__.py +173 -0
  1100. vllm/v1/engine/async_llm.py +558 -0
  1101. vllm/v1/engine/coordinator.py +253 -0
  1102. vllm/v1/engine/core.py +961 -0
  1103. vllm/v1/engine/core_client.py +1129 -0
  1104. vllm/v1/engine/detokenizer.py +261 -0
  1105. vllm/v1/engine/exceptions.py +17 -0
  1106. vllm/v1/engine/llm_engine.py +317 -0
  1107. vllm/v1/engine/logprobs.py +199 -0
  1108. vllm/v1/engine/mm_input_cache.py +91 -0
  1109. vllm/v1/engine/output_processor.py +428 -0
  1110. vllm/v1/engine/parallel_sampling.py +133 -0
  1111. vllm/v1/engine/processor.py +407 -0
  1112. vllm/v1/executor/__init__.py +0 -0
  1113. vllm/v1/executor/abstract.py +113 -0
  1114. vllm/v1/executor/multiproc_executor.py +537 -0
  1115. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1116. vllm/v1/kv_cache_interface.py +194 -0
  1117. vllm/v1/metrics/__init__.py +0 -0
  1118. vllm/v1/metrics/loggers.py +523 -0
  1119. vllm/v1/metrics/prometheus.py +82 -0
  1120. vllm/v1/metrics/ray_wrappers.py +131 -0
  1121. vllm/v1/metrics/reader.py +246 -0
  1122. vllm/v1/metrics/stats.py +239 -0
  1123. vllm/v1/outputs.py +116 -0
  1124. vllm/v1/request.py +193 -0
  1125. vllm/v1/sample/__init__.py +0 -0
  1126. vllm/v1/sample/metadata.py +44 -0
  1127. vllm/v1/sample/ops/__init__.py +0 -0
  1128. vllm/v1/sample/ops/bad_words.py +39 -0
  1129. vllm/v1/sample/ops/penalties.py +59 -0
  1130. vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
  1131. vllm/v1/sample/rejection_sampler.py +631 -0
  1132. vllm/v1/sample/sampler.py +286 -0
  1133. vllm/v1/sample/tpu/__init__.py +0 -0
  1134. vllm/v1/sample/tpu/metadata.py +124 -0
  1135. vllm/v1/sample/tpu/sampler.py +145 -0
  1136. vllm/v1/serial_utils.py +315 -0
  1137. vllm/v1/spec_decode/__init__.py +0 -0
  1138. vllm/v1/spec_decode/eagle.py +432 -0
  1139. vllm/v1/spec_decode/medusa.py +62 -0
  1140. vllm/v1/spec_decode/metadata.py +62 -0
  1141. vllm/v1/spec_decode/metrics.py +178 -0
  1142. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1143. vllm/v1/spec_decode/utils.py +46 -0
  1144. vllm/v1/structured_output/__init__.py +222 -0
  1145. vllm/v1/structured_output/backend_guidance.py +245 -0
  1146. vllm/v1/structured_output/backend_types.py +134 -0
  1147. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1148. vllm/v1/structured_output/request.py +86 -0
  1149. vllm/v1/structured_output/utils.py +175 -0
  1150. vllm/v1/utils.py +743 -0
  1151. vllm/v1/worker/__init__.py +0 -0
  1152. vllm/v1/worker/block_table.py +142 -0
  1153. vllm/v1/worker/cpu_model_runner.py +86 -0
  1154. vllm/v1/worker/cpu_worker.py +152 -0
  1155. vllm/v1/worker/gpu_input_batch.py +681 -0
  1156. vllm/v1/worker/gpu_model_runner.py +2320 -0
  1157. vllm/v1/worker/gpu_worker.py +393 -0
  1158. vllm/v1/worker/lora_model_runner_mixin.py +173 -0
  1159. vllm/v1/worker/tpu_model_runner.py +1673 -0
  1160. vllm/v1/worker/tpu_worker.py +299 -0
  1161. vllm/v1/worker/utils.py +111 -0
  1162. vllm/v1/worker/worker_base.py +65 -0
  1163. vllm/version.py +41 -0
  1164. vllm/vllm_flash_attn/.gitkeep +0 -0
  1165. vllm/worker/__init__.py +0 -0
  1166. vllm/worker/cache_engine.py +145 -0
  1167. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1168. vllm/worker/cpu_model_runner.py +671 -0
  1169. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1170. vllm/worker/cpu_worker.py +450 -0
  1171. vllm/worker/enc_dec_model_runner.py +555 -0
  1172. vllm/worker/hpu_model_runner.py +2320 -0
  1173. vllm/worker/hpu_worker.py +484 -0
  1174. vllm/worker/model_runner.py +2178 -0
  1175. vllm/worker/model_runner_base.py +282 -0
  1176. vllm/worker/multi_step_hpu_worker.py +123 -0
  1177. vllm/worker/multi_step_model_runner.py +911 -0
  1178. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1179. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1180. vllm/worker/multi_step_tpu_worker.py +108 -0
  1181. vllm/worker/multi_step_worker.py +197 -0
  1182. vllm/worker/neuron_model_runner.py +460 -0
  1183. vllm/worker/neuron_worker.py +193 -0
  1184. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1185. vllm/worker/pooling_model_runner.py +211 -0
  1186. vllm/worker/tpu_model_runner.py +909 -0
  1187. vllm/worker/tpu_worker.py +337 -0
  1188. vllm/worker/utils.py +53 -0
  1189. vllm/worker/worker.py +577 -0
  1190. vllm/worker/worker_base.py +646 -0
  1191. vllm/worker/xpu_model_runner.py +606 -0
  1192. vllm/worker/xpu_worker.py +186 -0
  1193. vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
  1194. vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
  1195. vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
  1196. vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
  1197. vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1498 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ """Attention layer with Dual chunk flash attention and sparse attention.
4
+ """
5
+ import math
6
+ from dataclasses import dataclass
7
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type
8
+
9
+ import torch
10
+ import torch.distributed
11
+ import torch.nn.functional as F
12
+
13
+ from vllm import _custom_ops as ops
14
+ from vllm.attention.backends.abstract import AttentionLayer, AttentionType
15
+ from vllm.attention.backends.flash_attn import (FlashAttentionBackend,
16
+ FlashAttentionImpl,
17
+ FlashAttentionMetadata,
18
+ FlashAttentionMetadataBuilder)
19
+ from vllm.distributed.parallel_state import get_tensor_model_parallel_rank
20
+ from vllm.logger import init_logger
21
+ from vllm.utils import async_tensor_h2d
22
+ from vllm.vllm_flash_attn import (flash_attn_varlen_func,
23
+ flash_attn_with_kvcache, sparse_attn_func)
24
+
25
+ if TYPE_CHECKING:
26
+ from vllm.worker.model_runner import ModelInputForGPUBuilder
27
+
28
+ logger = init_logger(__name__)
29
+
30
+
31
+ class DualChunkFlashAttentionBackend(FlashAttentionBackend):
32
+
33
+ accept_output_buffer: bool = False
34
+
35
+ @staticmethod
36
+ def get_name() -> str:
37
+ return "DUAL_CHUNK_FLASH_ATTN"
38
+
39
+ @staticmethod
40
+ def get_impl_cls() -> Type["DualChunkFlashAttentionImpl"]:
41
+ return DualChunkFlashAttentionImpl
42
+
43
+ @staticmethod
44
+ def get_metadata_cls() -> Type["DualChunkFlashAttentionMetadata"]:
45
+ return DualChunkFlashAttentionMetadata
46
+
47
+ @staticmethod
48
+ def get_builder_cls() -> Type["DualChunkFlashAttentionMetadataBuilder"]:
49
+ return DualChunkFlashAttentionMetadataBuilder
50
+
51
+
52
+ @dataclass
53
+ class DualChunkFlashAttentionMetadata(FlashAttentionMetadata):
54
+ # Block size of the paged kv cache.
55
+ block_size: int = 16
56
+
57
+ # Original max position embeddings.
58
+ original_max_position_embeddings: int = 0
59
+
60
+ # Chunk size
61
+ chunk_size: int = 8192
62
+
63
+ # Local size
64
+ local_size: int = 1024
65
+
66
+ # (batch_size,). The orig sequence length per sequence.
67
+ orig_seq_lens: Optional[List[int]] = None
68
+
69
+ # orig_seq_lens stored as a tensor.
70
+ orig_seq_lens_tensor: Optional[torch.Tensor] = None
71
+
72
+ # Length scaling factor
73
+ scaling_factor: Optional[torch.Tensor] = None
74
+
75
+ # (batch_size,). Sequence lengths for intra attention.
76
+ seq_lens_intra: Optional[torch.Tensor] = None
77
+
78
+ # Max sequence length for intra attention.
79
+ max_seq_len_intra: Optional[int] = None
80
+
81
+ # (batch_size, num_blocks). Block table for intra attention.
82
+ block_tables_intra: Optional[torch.Tensor] = None
83
+
84
+ # (batch_size,). Sequence lengths for succ attention.
85
+ seq_lens_succ: Optional[torch.Tensor] = None
86
+
87
+ # Max sequence length for succ attention.
88
+ max_seq_len_succ: Optional[int] = None
89
+
90
+ # (batch_size, num_blocks). Block table for succ attention.
91
+ block_tables_succ: Optional[torch.Tensor] = None
92
+
93
+ # (batch_size,). Sequence lengths for inter attention.
94
+ seq_lens_inter: Optional[torch.Tensor] = None
95
+
96
+ # Max sequence length for inter attention.
97
+ max_seq_len_inter: Optional[int] = None
98
+
99
+ _cached_prefill_metadata: Optional[
100
+ "DualChunkFlashAttentionMetadata"] = None
101
+ _cached_decode_metadata: Optional["DualChunkFlashAttentionMetadata"] = None
102
+
103
+ @property
104
+ def prefill_metadata(self) -> Optional["DualChunkFlashAttentionMetadata"]:
105
+ if self.num_prefills == 0:
106
+ return None
107
+
108
+ if self._cached_prefill_metadata is not None:
109
+ return self._cached_prefill_metadata
110
+
111
+ prefill_metadata = super().prefill_metadata
112
+ if prefill_metadata is None:
113
+ return None
114
+
115
+ prefill_metadata = DualChunkFlashAttentionMetadata(
116
+ **prefill_metadata.asdict_zerocopy())
117
+
118
+ prefill_metadata.orig_seq_lens = (
119
+ None if self.orig_seq_lens is None else
120
+ self.orig_seq_lens[:self.num_prefills])
121
+ prefill_metadata.orig_seq_lens_tensor = (
122
+ None if self.orig_seq_lens_tensor is None else
123
+ self.orig_seq_lens_tensor[:self.num_prefills])
124
+
125
+ if self.original_max_position_embeddings > 0:
126
+ assert prefill_metadata.orig_seq_lens_tensor is not None
127
+ prefill_metadata.scaling_factor = (
128
+ 0.1 * torch.log(prefill_metadata.orig_seq_lens_tensor /
129
+ self.original_max_position_embeddings) +
130
+ 1.0).clip(min=1)
131
+
132
+ self._cached_prefill_metadata = prefill_metadata
133
+ return prefill_metadata
134
+
135
+ @property
136
+ def decode_metadata(self) -> Optional["DualChunkFlashAttentionMetadata"]:
137
+ if self.num_decode_tokens == 0:
138
+ return None
139
+
140
+ if self._cached_decode_metadata is not None:
141
+ return self._cached_decode_metadata
142
+
143
+ decode_metadata = super().decode_metadata
144
+ if decode_metadata is None:
145
+ return None
146
+
147
+ decode_metadata = DualChunkFlashAttentionMetadata(
148
+ **decode_metadata.asdict_zerocopy())
149
+
150
+ decode_metadata.orig_seq_lens_tensor = (
151
+ None if self.orig_seq_lens_tensor is None else
152
+ self.orig_seq_lens_tensor[self.num_prefills:])
153
+
154
+ assert decode_metadata.orig_seq_lens_tensor is not None
155
+ assert decode_metadata.block_tables is not None
156
+
157
+ cache_seq_lens = decode_metadata.orig_seq_lens_tensor
158
+ chunk_len = self.chunk_size - self.local_size
159
+ chunk_num_curr = (cache_seq_lens - 1) // chunk_len
160
+ batch_size = decode_metadata.num_decode_tokens
161
+
162
+ if self.original_max_position_embeddings > 0:
163
+ decode_metadata.scaling_factor = (0.1 * torch.log(
164
+ cache_seq_lens / self.original_max_position_embeddings) +
165
+ 1.0).clip(min=1)
166
+
167
+ seq_lens_intra = cache_seq_lens - chunk_num_curr * chunk_len
168
+ max_seq_len_intra = seq_lens_intra.max().item()
169
+ decode_metadata.seq_lens_intra = seq_lens_intra
170
+ decode_metadata.max_seq_len_intra = max_seq_len_intra
171
+
172
+ block_tables_intra = torch.zeros(
173
+ batch_size,
174
+ (max_seq_len_intra - 1) // self.block_size + 1,
175
+ dtype=decode_metadata.block_tables.dtype,
176
+ device=decode_metadata.block_tables.device,
177
+ )
178
+ for i in range(batch_size):
179
+ st = chunk_num_curr[i] * chunk_len // self.block_size
180
+ ed = min(
181
+ st + (max_seq_len_intra - 1) // self.block_size + 1,
182
+ (cache_seq_lens[i] - 1) // self.block_size + 1,
183
+ )
184
+ block_tables_intra[i, :ed -
185
+ st] = decode_metadata.block_tables[i, st:ed]
186
+ decode_metadata.block_tables_intra = block_tables_intra
187
+
188
+ seq_lens_succ = (chunk_num_curr -
189
+ (chunk_num_curr - 1).clip(min=0)) * chunk_len
190
+ max_seq_len_succ = seq_lens_succ.max().item()
191
+ decode_metadata.seq_lens_succ = seq_lens_succ
192
+ decode_metadata.max_seq_len_succ = max_seq_len_succ
193
+ if max_seq_len_succ:
194
+ block_tables_succ = torch.zeros(
195
+ batch_size,
196
+ (max_seq_len_succ - 1) // self.block_size + 1,
197
+ dtype=decode_metadata.block_tables.dtype,
198
+ device=decode_metadata.block_tables.device,
199
+ )
200
+ for i in range(batch_size):
201
+ start = ((chunk_num_curr[i] - 1).clip(min=0) * chunk_len //
202
+ self.block_size)
203
+ end = min(
204
+ start + (max_seq_len_succ - 1) // self.block_size + 1,
205
+ (cache_seq_lens[i] - 1) // self.block_size + 1,
206
+ )
207
+ block_tables_succ[
208
+ i, :end - start] = decode_metadata.block_tables[i,
209
+ start:end]
210
+ decode_metadata.block_tables_succ = block_tables_succ
211
+
212
+ seq_lens_inter = (chunk_num_curr - 1).clip(min=0) * chunk_len
213
+ max_seq_len_inter = seq_lens_inter.max().item()
214
+ decode_metadata.seq_lens_inter = seq_lens_inter
215
+ decode_metadata.max_seq_len_inter = max_seq_len_inter
216
+
217
+ self._cached_decode_metadata = decode_metadata
218
+ return decode_metadata
219
+
220
+
221
+ class DualChunkFlashAttentionMetadataBuilder(FlashAttentionMetadataBuilder):
222
+
223
+ def prepare(self):
224
+ super().prepare()
225
+ self.orig_seq_lens: List[int] = []
226
+
227
+ def _add_seq_group(
228
+ self, inter_data: "ModelInputForGPUBuilder.InterDataForSeqGroup",
229
+ chunked_prefill_enabled: bool, prefix_cache_hit: bool):
230
+ super()._add_seq_group(inter_data, chunked_prefill_enabled,
231
+ prefix_cache_hit)
232
+ for prompt_len, seq_len in zip(inter_data.prompt_lens,
233
+ inter_data.seq_lens):
234
+ self.orig_seq_lens.append(max(prompt_len, seq_len))
235
+
236
+ def build(self, seq_lens: List[int], query_lens: List[int],
237
+ cuda_graph_pad_size: int, batch_size: int):
238
+ attn_metadata = super().build(seq_lens, query_lens,
239
+ cuda_graph_pad_size, batch_size)
240
+ attn_metadata = DualChunkFlashAttentionMetadata(
241
+ **attn_metadata.asdict_zerocopy())
242
+
243
+ device = self.runner.device
244
+ attn_metadata.orig_seq_lens = self.orig_seq_lens
245
+ attn_metadata.orig_seq_lens_tensor = async_tensor_h2d(
246
+ self.orig_seq_lens, torch.int, device, self.runner.pin_memory)
247
+
248
+ attn_metadata.block_size = self.runner.block_size
249
+ dual_chunk_attn_config = getattr(self.runner.model_config.hf_config,
250
+ "dual_chunk_attention_config", {})
251
+ attn_metadata.original_max_position_embeddings = \
252
+ dual_chunk_attn_config.get("original_max_position_embeddings", 0)
253
+ attn_metadata.chunk_size = dual_chunk_attn_config.get(
254
+ "chunk_size", 8192)
255
+ attn_metadata.local_size = dual_chunk_attn_config.get(
256
+ "local_size", 1024)
257
+
258
+ return attn_metadata
259
+
260
+
261
+ class DualChunkFlashAttentionImpl(FlashAttentionImpl):
262
+ """
263
+ If the input tensors contain prompt tokens, the layout is as follows:
264
+ |<--------------- num_prefill_tokens ----------------->|
265
+ |<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
266
+ Otherwise, the layout is as follows:
267
+ |<----------------- num_decode_tokens ------------------>|
268
+ |<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
269
+ Generation tokens can contain padding when cuda-graph is used.
270
+ Currently, prompt tokens don't contain any padding.
271
+ The prompts might have different lengths, while the generation tokens
272
+ always have length 1.
273
+ If chunked prefill is enabled, prefill tokens and decode tokens can be
274
+ batched together in a flattened 1D query.
275
+ |<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
276
+ |<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
277
+ Currently, cuda graph is disabled for chunked prefill, meaning there's no
278
+ padding between prefill and decode tokens.
279
+ """
280
+
281
+ def __init__(
282
+ self,
283
+ num_heads: int,
284
+ head_size: int,
285
+ scale: float,
286
+ num_kv_heads: int,
287
+ alibi_slopes: Optional[List[float]],
288
+ sliding_window: Optional[int],
289
+ kv_cache_dtype: str,
290
+ blocksparse_params: Optional[Dict[str, Any]] = None,
291
+ logits_soft_cap: Optional[float] = None,
292
+ attn_type: str = AttentionType.DECODER,
293
+ kv_sharing_target_layer_name: Optional[str] = None,
294
+ layer_idx: int = -1,
295
+ dual_chunk_attention_config: Optional[Dict[str, Any]] = None,
296
+ ) -> None:
297
+ if kv_sharing_target_layer_name is not None:
298
+ raise NotImplementedError("KV sharing is not supported in V0.")
299
+ self.num_heads = num_heads
300
+ self.head_size = head_size
301
+ self.scale = float(scale)
302
+ self.num_kv_heads = num_kv_heads
303
+ if alibi_slopes is not None:
304
+ alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
305
+ self.alibi_slopes = alibi_slopes
306
+ self.sliding_window = ((sliding_window, sliding_window)
307
+ if sliding_window is not None else (-1, -1))
308
+ self.kv_cache_dtype = kv_cache_dtype
309
+
310
+ assert self.num_heads % self.num_kv_heads == 0
311
+ self.num_queries_per_kv = self.num_heads // self.num_kv_heads
312
+ if sliding_window is not None:
313
+ # NOTE(woosuk): flash-attn's sliding window does not work with
314
+ # paged KV cache.
315
+ raise ValueError(
316
+ "Sliding window is not supported in FlashAttention.")
317
+
318
+ support_head_sizes = (
319
+ DualChunkFlashAttentionBackend.get_supported_head_sizes())
320
+
321
+ if head_size not in support_head_sizes:
322
+ raise ValueError(
323
+ f"Head size {head_size} is not supported by FlashAttention. "
324
+ f"Supported head sizes are: {support_head_sizes}.")
325
+
326
+ assert dual_chunk_attention_config is not None
327
+ self.chunk_size = dual_chunk_attention_config.get("chunk_size", 8192)
328
+ self.local_size = dual_chunk_attention_config.get("local_size", 1024)
329
+ self.original_max_position_embeddings = dual_chunk_attention_config.get(
330
+ "original_max_position_embeddings", 0)
331
+ self.sparse_attention_config = dual_chunk_attention_config.get(
332
+ "sparse_attention_config", None)
333
+ if not self.sparse_attention_config:
334
+ logger.warning_once("Sparse attention will not be enabled as "
335
+ "sparse attention config is not provided.")
336
+ self.sparse_attention_enabled = dual_chunk_attention_config.get(
337
+ "sparse_attention_enabled", self.sparse_attention_config
338
+ is not None)
339
+ self.sparse_attention_threshold = dual_chunk_attention_config.get(
340
+ "sparse_attention_threshold", 32768)
341
+ self.sparse_attention_last_q = dual_chunk_attention_config.get(
342
+ "sparse_attention_last_q", 64)
343
+ self.layer_idx = layer_idx
344
+ self.dual_chunk_attention_config = dual_chunk_attention_config
345
+
346
+ if self.sparse_attention_config:
347
+ self.sparse_attention_config = {
348
+ int(i): j
349
+ for i, j in self.sparse_attention_config[
350
+ self.layer_idx].items()
351
+ }
352
+ start_head = self.num_heads * get_tensor_model_parallel_rank()
353
+ end_head = start_head + self.num_heads
354
+ self.sparse_attention_config = [
355
+ self.sparse_attention_config[i]
356
+ for i in range(start_head, end_head)
357
+ ]
358
+
359
+ if self.sparse_attention_enabled:
360
+ self.arange = torch.arange(self.sparse_attention_last_q,
361
+ device="cuda")
362
+ self.last_q_mask = (self.arange[None, None, :, None]
363
+ >= self.arange[None, None, None, :])
364
+
365
+ def forward( # type: ignore
366
+ self,
367
+ layer: AttentionLayer,
368
+ query: torch.Tensor,
369
+ key: torch.Tensor,
370
+ value: torch.Tensor,
371
+ kv_cache: torch.Tensor,
372
+ attn_metadata: DualChunkFlashAttentionMetadata,
373
+ ) -> torch.Tensor:
374
+ """Forward pass with DualChunkFlashAttention.
375
+ Args:
376
+ query: shape = [num_tokens, num_heads * head_size]
377
+ query_succ: shape = [num_tokens, num_heads * head_size]
378
+ query_inter: shape = [num_tokens, num_heads * head_size]
379
+ key: shape = [num_tokens, num_kv_heads * head_size]
380
+ value: shape = [num_tokens, num_kv_heads * head_size]
381
+ kv_cache = [2, num_blocks, block_size, num_kv_heads * head_size]
382
+ attn_metadata: Metadata for attention.
383
+ Returns:
384
+ shape = [num_tokens, num_heads * head_size]
385
+ """
386
+ (
387
+ query,
388
+ query_succ,
389
+ query_inter,
390
+ query_succ_critical,
391
+ query_inter_critical,
392
+ ) = torch.split(query, query.shape[-1] // 5, dim=-1)
393
+
394
+ assert (
395
+ query_succ is not None and query_inter is not None
396
+ ), "query_succ and query_inter are required in Dual Chunk Attention."
397
+
398
+ num_tokens, hidden_size = query.shape
399
+
400
+ # Reshape the query, key, and value tensors.
401
+ query = query.view(-1, self.num_heads, self.head_size)
402
+ query_succ = query_succ.view(-1, self.num_heads, self.head_size)
403
+ query_inter = query_inter.view(-1, self.num_heads, self.head_size)
404
+ query_succ_critical = query_succ_critical.view(-1, self.num_heads,
405
+ self.head_size)
406
+ query_inter_critical = query_inter_critical.view(
407
+ -1, self.num_heads, self.head_size)
408
+ key = key.view(-1, self.num_kv_heads, self.head_size)
409
+ value = value.view(-1, self.num_kv_heads, self.head_size)
410
+
411
+ if self.original_max_position_embeddings > 0:
412
+ if prefill_meta := attn_metadata.prefill_metadata:
413
+ assert prefill_meta.scaling_factor is not None
414
+ assert prefill_meta.query_start_loc is not None
415
+ assert prefill_meta.orig_seq_lens is not None
416
+ current_start = 0
417
+ query_start_loc_cpu = prefill_meta.query_start_loc.cpu()
418
+ for i in range(len(prefill_meta.orig_seq_lens)):
419
+ current_end = (current_start +
420
+ (query_start_loc_cpu[i + 1] -
421
+ query_start_loc_cpu[i]).item())
422
+ key[current_start:current_end].mul_(
423
+ prefill_meta.scaling_factor[i])
424
+ current_start = current_end
425
+ assert current_end <= attn_metadata.num_prefill_tokens
426
+ if decode_meta := attn_metadata.decode_metadata:
427
+ assert decode_meta.scaling_factor is not None
428
+ scaling_factor = decode_meta.scaling_factor
429
+ key[attn_metadata.num_prefill_tokens:].mul_(
430
+ scaling_factor.unsqueeze(-1).unsqueeze(-1))
431
+
432
+ if kv_cache is not None and kv_cache.numel() > 0:
433
+ key_cache = kv_cache[0]
434
+ value_cache = kv_cache[1]
435
+
436
+ # Reshape the input keys and values and store them in the cache.
437
+ # If kv_cache is not provided, the new key and value tensors are
438
+ # not cached. This happens during the initial memory profiling run.
439
+ ops.reshape_and_cache_flash(
440
+ key,
441
+ value,
442
+ key_cache,
443
+ value_cache,
444
+ attn_metadata.slot_mapping.flatten(),
445
+ self.kv_cache_dtype,
446
+ layer._k_scale,
447
+ layer._v_scale,
448
+ )
449
+
450
+ num_prefill_tokens = attn_metadata.num_prefill_tokens
451
+ num_decode_tokens = attn_metadata.num_decode_tokens
452
+ assert key.shape[0] == num_prefill_tokens + num_decode_tokens
453
+ assert value.shape[0] == num_prefill_tokens + num_decode_tokens
454
+ output = torch.empty_like(query)
455
+
456
+ # Query for decode. KV is not needed because it is already cached.
457
+ decode_query = query[num_prefill_tokens:]
458
+ decode_query_succ = query_succ[num_prefill_tokens:]
459
+ decode_query_inter = query_inter[num_prefill_tokens:]
460
+
461
+ # QKV for prefill.
462
+ query = query[:num_prefill_tokens]
463
+ query_succ = query_succ[:num_prefill_tokens]
464
+ query_inter = query_inter[:num_prefill_tokens]
465
+ query_succ_critical = query_succ_critical[:num_prefill_tokens]
466
+ query_inter_critical = query_inter_critical[:num_prefill_tokens]
467
+ key = key[:num_prefill_tokens]
468
+ value = value[:num_prefill_tokens]
469
+ assert query.shape[0] == num_prefill_tokens
470
+ assert decode_query.shape[0] == num_decode_tokens
471
+
472
+ if prefill_meta := attn_metadata.prefill_metadata:
473
+ # Prompt run.
474
+ if (kv_cache is None or prefill_meta.block_tables is None
475
+ or prefill_meta.block_tables.numel() == 0):
476
+ # normal attention, called during the profiling run.
477
+ out = flash_attn_varlen_func(
478
+ q=query,
479
+ k=key,
480
+ v=value,
481
+ cu_seqlens_q=prefill_meta.seq_start_loc,
482
+ cu_seqlens_k=prefill_meta.seq_start_loc,
483
+ max_seqlen_q=prefill_meta.max_prefill_seq_len,
484
+ max_seqlen_k=prefill_meta.max_prefill_seq_len,
485
+ softmax_scale=self.scale,
486
+ causal=True,
487
+ window_size=self.sliding_window,
488
+ alibi_slopes=self.alibi_slopes,
489
+ )
490
+ assert output[:num_prefill_tokens].shape == out.shape
491
+ output[:num_prefill_tokens] = out
492
+ else:
493
+ # prefix-enabled attention
494
+ assert prefill_meta.seq_lens is not None
495
+ assert prefill_meta.orig_seq_lens is not None
496
+ output[:num_prefill_tokens] = (
497
+ self._dual_chunk_flash_attn_prefill(
498
+ q=query,
499
+ q_succ=query_succ,
500
+ q_inter=query_inter,
501
+ q_succ_critical=query_succ_critical,
502
+ q_inter_critical=query_inter_critical,
503
+ k=key_cache,
504
+ v=value_cache,
505
+ cu_seqlens_q=prefill_meta.query_start_loc,
506
+ cu_seqlens_k=prefill_meta.seq_start_loc,
507
+ orig_seq_lens=prefill_meta.orig_seq_lens,
508
+ scaling_factor=prefill_meta.scaling_factor,
509
+ softmax_scale=self.scale,
510
+ causal=True,
511
+ window_size=(-1, -1),
512
+ alibi_slopes=self.alibi_slopes,
513
+ block_table=prefill_meta.block_tables,
514
+ chunk_size=self.chunk_size,
515
+ local_size=self.local_size,
516
+ ))
517
+
518
+ if decode_meta := attn_metadata.decode_metadata:
519
+ # Decoding run.
520
+ output[num_prefill_tokens:] = (
521
+ self._dual_chunk_flash_attn_decoding(
522
+ decode_query.unsqueeze(1),
523
+ decode_query_succ.unsqueeze(1),
524
+ decode_query_inter.unsqueeze(1),
525
+ key_cache,
526
+ value_cache,
527
+ block_table=decode_meta.block_tables,
528
+ cache_seqlens=decode_meta.seq_lens_tensor,
529
+ softmax_scale=self.scale,
530
+ causal=True,
531
+ alibi_slopes=self.alibi_slopes,
532
+ chunk_size=self.chunk_size,
533
+ local_size=self.local_size,
534
+ original_max_position_embeddings=self.
535
+ original_max_position_embeddings,
536
+ decode_meta=decode_meta,
537
+ ).squeeze(1))
538
+ # Reshape the output tensor.
539
+ return output.view(num_tokens, hidden_size)
540
+
541
+ def _dual_chunk_flash_attn_prefill(
542
+ self,
543
+ q,
544
+ q_succ,
545
+ q_inter,
546
+ q_succ_critical,
547
+ q_inter_critical,
548
+ k,
549
+ v,
550
+ cu_seqlens_q,
551
+ cu_seqlens_k,
552
+ orig_seq_lens: List[int],
553
+ scaling_factor: torch.Tensor,
554
+ softmax_scale: float,
555
+ causal: Optional[bool] = True,
556
+ window_size: Tuple[int, int] = (-1, -1),
557
+ alibi_slopes: Optional[torch.Tensor] = None,
558
+ block_table: Optional[torch.Tensor] = None,
559
+ chunk_size: int = 8192,
560
+ local_size: int = 1024,
561
+ ):
562
+ if alibi_slopes is not None:
563
+ raise ValueError(
564
+ "Dual Chunk Attention does not support alibi_slopes")
565
+ if not causal:
566
+ raise ValueError(
567
+ "Dual Chunk Attention does not support causal=False")
568
+ if window_size != (-1, -1):
569
+ raise ValueError(
570
+ "Dual Chunk Attention does not support window_size")
571
+
572
+ cu_seqlens_q_cpu = cu_seqlens_q.cpu().tolist()
573
+ cu_seqlens_k_cpu = cu_seqlens_k.cpu().tolist()
574
+ all_outputs = []
575
+
576
+ for i in range(0, len(cu_seqlens_q_cpu) - 1):
577
+ qs = cu_seqlens_q_cpu[i]
578
+ qe = cu_seqlens_q_cpu[i:i + 2][-1]
579
+ ks = cu_seqlens_k_cpu[i]
580
+ ke = cu_seqlens_k_cpu[i:i + 2][-1]
581
+
582
+ current_q = q[qs:qe]
583
+ current_q_succ = q_succ[qs:qe]
584
+ current_q_inter = q_inter[qs:qe]
585
+ current_q_succ_critical = q_succ_critical[qs:qe]
586
+ current_q_inter_critical = q_inter_critical[qs:qe]
587
+
588
+ if block_table is None:
589
+ current_k = k[ks:ke]
590
+ current_v = v[ks:ke]
591
+ current_block_table = None
592
+ current_orig_seq_len = orig_seq_lens[i]
593
+ else:
594
+ current_block_table = block_table[i]
595
+ current_orig_seq_len = orig_seq_lens[i]
596
+ current_k = k
597
+ current_v = v
598
+ sparse_attn_enabled = (self.sparse_attention_enabled
599
+ and current_orig_seq_len
600
+ > self.sparse_attention_threshold)
601
+
602
+ if current_q.shape[0] == 0:
603
+ continue
604
+
605
+ if current_k.shape[0] == 0:
606
+ all_outputs.append(
607
+ torch.zeros(
608
+ (current_q.shape[0], current_q.shape[1], v.shape[2]),
609
+ device=q.device,
610
+ dtype=q.dtype,
611
+ ))
612
+ continue
613
+
614
+ current_output = torch.empty_like(current_q)
615
+ group_size = int(current_q.size(-2) / current_k.size(-2))
616
+
617
+ if sparse_attn_enabled:
618
+ num_device_q_heads = current_q.size(-2)
619
+ heads_vertical_size = torch.empty(size=(num_device_q_heads, ),
620
+ dtype=torch.int32)
621
+ heads_slash_size = torch.empty(size=(num_device_q_heads, ),
622
+ dtype=torch.int32)
623
+ for head_id in range(current_q.size(-2)):
624
+ (
625
+ ty,
626
+ vertical_size,
627
+ slash_size,
628
+ _,
629
+ ) = self.sparse_attention_config[head_id]
630
+ assert ty == "vertical_and_slash", "only support slash mode"
631
+
632
+ if vertical_size == 30:
633
+ vertical_size += 100
634
+ heads_vertical_size[head_id] = vertical_size
635
+ heads_slash_size[head_id] = slash_size
636
+
637
+ current_output = self._dual_chunk_flash_attn_prefill_func(
638
+ current_q, # allheads
639
+ current_q_succ,
640
+ current_q_inter,
641
+ current_q_succ_critical,
642
+ current_q_inter_critical,
643
+ current_k,
644
+ current_v,
645
+ current_block_table,
646
+ softmax_scale,
647
+ chunk_size,
648
+ local_size,
649
+ scaling_factor[i].item(),
650
+ ke - ks,
651
+ sparse_attn_enabled=sparse_attn_enabled,
652
+ heads_vertical_size=heads_vertical_size,
653
+ heads_slash_size=heads_slash_size,
654
+ group_size=group_size)
655
+ else:
656
+ for head_id in range(current_q.size(-2)):
657
+ # (seq_len, num_heads, head_size)
658
+ current_q_head = current_q[:, head_id, :].unsqueeze(1)
659
+ current_q_succ_head = \
660
+ current_q_succ[:, head_id, :].unsqueeze(1)
661
+ current_q_inter_head = \
662
+ current_q_inter[:, head_id, :].unsqueeze(1)
663
+ current_q_succ_head_critical = \
664
+ current_q_succ_critical[:, head_id, :].unsqueeze(1)
665
+ current_q_inter_head_critical = \
666
+ current_q_inter_critical[:, head_id, :].unsqueeze(1)
667
+ if block_table is not None:
668
+ current_k_head = current_k[..., head_id //
669
+ group_size, :].unsqueeze(2)
670
+ current_v_head = current_v[..., head_id //
671
+ group_size, :].unsqueeze(2)
672
+
673
+ else:
674
+ current_k_head = current_k[:, head_id, :].unsqueeze(1)
675
+ current_v_head = current_v[:, head_id, :].unsqueeze(1)
676
+
677
+ current_out = self._dual_chunk_flash_attn_prefill_func(
678
+ current_q_head,
679
+ current_q_succ_head,
680
+ current_q_inter_head,
681
+ current_q_succ_head_critical,
682
+ current_q_inter_head_critical,
683
+ current_k_head,
684
+ current_v_head,
685
+ current_block_table,
686
+ softmax_scale,
687
+ chunk_size,
688
+ local_size,
689
+ scaling_factor[i].item(),
690
+ ke - ks,
691
+ sparse_attn_enabled=sparse_attn_enabled,
692
+ )
693
+ current_output[:, head_id:head_id + 1, :] = current_out
694
+ all_outputs.append(current_output)
695
+ return torch.cat(all_outputs, dim=0)
696
+
697
+ def _dual_chunk_flash_attn_prefill_func(
698
+ self,
699
+ q,
700
+ q_succ,
701
+ q_inter,
702
+ q_succ_critical,
703
+ q_inter_critical,
704
+ k,
705
+ v,
706
+ block_table,
707
+ softmax_scale: float,
708
+ chunk_size: int,
709
+ local_size: int,
710
+ scaling_factor: float,
711
+ k_length: int,
712
+ sparse_attn_enabled: Optional[bool] = True,
713
+ heads_vertical_size=None,
714
+ heads_slash_size=None,
715
+ group_size=None,
716
+ ):
717
+ flash_results = []
718
+ chunk_len = chunk_size - local_size
719
+
720
+ if block_table is not None:
721
+ block_size = v.shape[1]
722
+ if chunk_len % block_size != 0:
723
+ raise ValueError("chunk_len must be divisible by block_size.")
724
+ else:
725
+ block_size = 1
726
+
727
+ if self.original_max_position_embeddings > 0:
728
+ softmax_scale = softmax_scale * scaling_factor
729
+
730
+ begin = k_length - q.shape[0]
731
+ while begin < k_length:
732
+ flash_per_chunk = []
733
+
734
+ prev_chunk_end_pos = (begin // chunk_len) * chunk_len
735
+ next_chunk_end_pos = prev_chunk_end_pos + chunk_len
736
+ end = min(next_chunk_end_pos, k_length)
737
+ qbegin = begin - (k_length - q.shape[0])
738
+ qend = end - (k_length - q.shape[0])
739
+
740
+ qk_chunks = []
741
+ q_states_intra = q[qbegin:qend]
742
+ # choose critical token
743
+ if block_table is not None:
744
+ block_tables_intra = _get_block(block_table, block_size,
745
+ prev_chunk_end_pos, end)
746
+ k_states_intra = k[block_tables_intra].view(
747
+ -1, *k.shape[-2:])[:(end - prev_chunk_end_pos)]
748
+ v_states_intra = v[block_tables_intra].view(
749
+ -1, *v.shape[-2:])[:(end - prev_chunk_end_pos)]
750
+ else:
751
+ block_tables_intra = None
752
+ k_states_intra = k[prev_chunk_end_pos:end]
753
+ v_states_intra = v[prev_chunk_end_pos:end]
754
+
755
+ if sparse_attn_enabled:
756
+ last_q_size = min(qend - qbegin, self.sparse_attention_last_q)
757
+ _, num_device_k_heads, head_dim = k_states_intra.shape
758
+ k_states_intra = (k_states_intra.unsqueeze(2).repeat(
759
+ 1, 1, group_size,
760
+ 1).reshape(-1, num_device_k_heads * group_size, head_dim))
761
+ v_states_intra = (v_states_intra.unsqueeze(2).repeat(
762
+ 1, 1, group_size,
763
+ 1).reshape(-1, num_device_k_heads * group_size, head_dim))
764
+ qk_chunks.append(
765
+ (q_states_intra.transpose(0, 1)[:, -last_q_size:] *
766
+ softmax_scale) @ k_states_intra.permute(1, 2, 0))
767
+
768
+ if prev_chunk_end_pos - chunk_len >= 0:
769
+ q_states_succ = q_succ[qbegin:qend]
770
+ q_states_succ_critical = q_succ_critical[qbegin:qend]
771
+ if block_table is not None:
772
+ block_tables_succ = _get_block(
773
+ block_table, block_size,
774
+ prev_chunk_end_pos - chunk_len, prev_chunk_end_pos)
775
+ k_states_succ = k[block_tables_succ].view(
776
+ -1, *k.shape[-2:])[:chunk_len]
777
+ v_states_succ = v[block_tables_succ].view(
778
+ -1, *v.shape[-2:])[:chunk_len]
779
+ else:
780
+ k_states_succ = k[prev_chunk_end_pos -
781
+ chunk_len:prev_chunk_end_pos]
782
+ v_states_succ = v[prev_chunk_end_pos -
783
+ chunk_len:prev_chunk_end_pos]
784
+
785
+ if sparse_attn_enabled:
786
+ k_states_succ = (k_states_succ.unsqueeze(2).repeat(
787
+ 1, 1, group_size,
788
+ 1).reshape(-1, num_device_k_heads * group_size,
789
+ head_dim))
790
+ v_states_succ = (v_states_succ.unsqueeze(2).repeat(
791
+ 1, 1, group_size,
792
+ 1).reshape(-1, num_device_k_heads * group_size,
793
+ head_dim))
794
+ qk_chunks.append((q_states_succ_critical.transpose(
795
+ 0, 1)[:, -last_q_size:] * softmax_scale)
796
+ @ k_states_succ.permute(1, 2, 0))
797
+
798
+ if prev_chunk_end_pos - chunk_len * 2 >= 0:
799
+ q_states_inter = q_inter[qbegin:qend]
800
+ q_states_inter_critical = q_inter_critical[qbegin:qend]
801
+ if block_table is not None:
802
+ block_tables_inter = _get_block(
803
+ block_table, block_size, 0,
804
+ prev_chunk_end_pos - chunk_len)
805
+ k_states_inter = k[block_tables_inter].view(
806
+ -1, *k.shape[-2:])[:(prev_chunk_end_pos - chunk_len)]
807
+ v_states_inter = v[block_tables_inter].view(
808
+ -1, *v.shape[-2:])[:(prev_chunk_end_pos - chunk_len)]
809
+ else:
810
+ k_states_inter = k[:prev_chunk_end_pos - chunk_len]
811
+ v_states_inter = v[:prev_chunk_end_pos - chunk_len]
812
+
813
+ if sparse_attn_enabled:
814
+ k_states_inter = (k_states_inter.unsqueeze(2).repeat(
815
+ 1, 1, group_size,
816
+ 1).reshape(-1, num_device_k_heads * group_size,
817
+ head_dim))
818
+ v_states_inter = (v_states_inter.unsqueeze(2).repeat(
819
+ 1, 1, group_size,
820
+ 1).reshape(-1, num_device_k_heads * group_size,
821
+ head_dim))
822
+ qk_chunks.append((q_states_inter_critical.transpose(
823
+ 0, 1)[:, -last_q_size:] * softmax_scale)
824
+ @ k_states_inter.permute(1, 2, 0))
825
+
826
+ if sparse_attn_enabled:
827
+ reversed_qk = qk_chunks[::-1]
828
+ qk = torch.cat(reversed_qk, dim=-1)
829
+
830
+ qk[:, :, -last_q_size:] = torch.where(
831
+ self.last_q_mask[..., -last_q_size:,
832
+ -last_q_size:].to(qk.device),
833
+ qk[:, :, -last_q_size:], -torch.inf)
834
+ qk = F.softmax(qk, dim=-1, dtype=torch.float32)
835
+
836
+ vertical = qk.sum(-2, keepdim=True)
837
+ vertical[..., :30] = torch.inf
838
+
839
+ # Avoid sorting by using the min/max ints to fill the indexer
840
+ # buffers.
841
+ int32_max = torch.iinfo(torch.int32).max
842
+ int32_min = torch.iinfo(torch.int32).min
843
+ n_heads = qk.size()[0]
844
+ max_slash_topk = torch.max(heads_slash_size).item()
845
+ max_vertical_topk = torch.max(heads_vertical_size).item()
846
+ # store each head's slash topk, vertical topk
847
+ vertical = vertical.reshape((n_heads, -1))
848
+ # prevent out of range when prompt size < max_vertical_topk
849
+ max_vertical_topk = min(vertical.shape[-1], max_vertical_topk)
850
+ vertical_topk_buffer = torch.topk(vertical, max_vertical_topk,
851
+ -1).indices
852
+ slash_topk_buffer = torch.empty(size=(n_heads, max_slash_topk),
853
+ dtype=torch.int64,
854
+ device=qk.device)
855
+ for head_i in range(n_heads):
856
+ # (nqheads=1, lastq, k_len)
857
+ head_score = qk[head_i:head_i + 1, :, :]
858
+ slash_scores = _sum_all_diagonal_matrix(head_score)
859
+ if head_score.size(1) != 1:
860
+ # drop right up corner
861
+ slash_scores = slash_scores[..., :-last_q_size + 1]
862
+ slash_scores[..., -100:] = torch.inf
863
+
864
+ head_slash_size = heads_slash_size[head_i]
865
+ head_slash_size = min(head_slash_size, vertical.size(-1))
866
+ slash_topk = torch.topk(slash_scores, head_slash_size,
867
+ -1).indices
868
+ #(nheads, max_topk)
869
+ slash_topk_buffer[head_i, :head_slash_size] = slash_topk
870
+
871
+ # reset heads topk
872
+ heads_slash_size[head_i] = head_slash_size
873
+ heads_vertical_size[head_i] = min(
874
+ heads_vertical_size[head_i], max_vertical_topk)
875
+
876
+ # store
877
+ vertical_buffer = torch.full((n_heads, max_vertical_topk),
878
+ int32_max,
879
+ dtype=torch.int64,
880
+ device=q.device)
881
+ slash_buffer = torch.full((n_heads, max_slash_topk),
882
+ int32_min,
883
+ dtype=torch.int64,
884
+ device=q.device)
885
+ succ_vertical_buffer = torch.full((n_heads, max_vertical_topk),
886
+ int32_max,
887
+ dtype=torch.int64,
888
+ device=q.device)
889
+ succ_slash_buffer = torch.full((n_heads, max_slash_topk),
890
+ int32_min,
891
+ dtype=torch.int64,
892
+ device=q.device)
893
+ inter_vertical_buffer = torch.full(
894
+ (n_heads, max_vertical_topk),
895
+ int32_max,
896
+ dtype=torch.int64,
897
+ device=q.device)
898
+ inter_slash_buffer = torch.full((n_heads, max_slash_topk),
899
+ int32_min,
900
+ dtype=torch.int64,
901
+ device=q.device)
902
+
903
+ vertical_size_buffer = torch.empty(size=(n_heads, ),
904
+ dtype=torch.int32,
905
+ device=q.device)
906
+ slash_sizes_buffer = torch.empty(size=(n_heads, ),
907
+ dtype=torch.int32,
908
+ device=q.device)
909
+ succ_vertical_size_buffer = torch.empty(size=(n_heads, ),
910
+ dtype=torch.int32,
911
+ device=q.device)
912
+ succ_slash_sizes_buffer = torch.empty(size=(n_heads, ),
913
+ dtype=torch.int32,
914
+ device=q.device)
915
+ inter_vertical_size_buffer = torch.empty(size=(n_heads, ),
916
+ dtype=torch.int32,
917
+ device=q.device)
918
+ inter_slash_sizes_buffer = torch.empty(size=(n_heads, ),
919
+ dtype=torch.int32,
920
+ device=q.device)
921
+
922
+ for head_i in range(n_heads):
923
+ vertical_topk = vertical_topk_buffer[
924
+ head_i, :heads_vertical_size[head_i]]
925
+ # intra
926
+ intra_vertical_indices = vertical_topk[
927
+ vertical_topk >=
928
+ prev_chunk_end_pos] - prev_chunk_end_pos
929
+ if intra_vertical_indices.nelement() == 0:
930
+ intra_vertical_indices = torch.cat([
931
+ intra_vertical_indices,
932
+ torch.arange(0,
933
+ k_states_intra.size(0),
934
+ max(1,
935
+ k_states_intra.size(0) / 5),
936
+ dtype=torch.int32,
937
+ device=intra_vertical_indices.device)
938
+ ])
939
+ slash_topk = slash_topk_buffer[
940
+ head_i, :heads_slash_size[head_i]]
941
+ intra_slash_indices = (
942
+ (qk.size(-1) - 1) -
943
+ slash_topk[slash_topk >= prev_chunk_end_pos])
944
+ # fill buffer
945
+ v_count = intra_vertical_indices.nelement()
946
+ s_count = intra_slash_indices.nelement()
947
+ vertical_size_buffer[head_i] = v_count
948
+ slash_sizes_buffer[head_i] = s_count
949
+ vertical_buffer[head_i, :v_count].copy_(
950
+ intra_vertical_indices)
951
+ slash_buffer[head_i, :s_count].copy_(intra_slash_indices)
952
+ # succ
953
+ if prev_chunk_end_pos - chunk_len >= 0:
954
+ succ_vertical_indices = vertical_topk[
955
+ (vertical_topk < prev_chunk_end_pos)
956
+ & (vertical_topk >= prev_chunk_end_pos -
957
+ chunk_len)] - (prev_chunk_end_pos - chunk_len)
958
+ # TODO: support no vertical
959
+ if succ_vertical_indices.nelement() == 0:
960
+ succ_vertical_indices = torch.cat([
961
+ succ_vertical_indices,
962
+ torch.arange(
963
+ 0,
964
+ k_states_succ.size(0),
965
+ max(1,
966
+ k_states_succ.size(0) / 5),
967
+ dtype=torch.int32,
968
+ device=intra_vertical_indices.device)
969
+ ])
970
+ succ_slash_indices = (
971
+ (prev_chunk_end_pos + (qend - qbegin) - 1) -
972
+ slash_topk[((slash_topk >=
973
+ (prev_chunk_end_pos - chunk_len)) &
974
+ (slash_topk < (prev_chunk_end_pos +
975
+ (qend - qbegin))))])
976
+ if succ_slash_indices.nelement() == 0:
977
+ succ_slash_indices = torch.cat([
978
+ succ_slash_indices,
979
+ torch.arange(
980
+ 0,
981
+ k_states_succ.size(0),
982
+ max(1,
983
+ k_states_succ.size(0) / 5),
984
+ dtype=torch.int32,
985
+ device=intra_vertical_indices.device)
986
+ ])
987
+ # fill buffer
988
+ v_count = succ_vertical_indices.nelement()
989
+ s_count = succ_slash_indices.nelement()
990
+ succ_vertical_size_buffer[head_i] = v_count
991
+ succ_slash_sizes_buffer[head_i] = s_count
992
+ succ_vertical_buffer[head_i, :v_count].copy_(
993
+ succ_vertical_indices)
994
+ succ_slash_buffer[head_i, :s_count].copy_(
995
+ succ_slash_indices)
996
+
997
+ if prev_chunk_end_pos - 2 * chunk_len >= 0:
998
+ inter_vertical_indices = vertical_topk[
999
+ vertical_topk < prev_chunk_end_pos - chunk_len]
1000
+
1001
+ if inter_vertical_indices.nelement() == 0:
1002
+ inter_vertical_indices = torch.cat([
1003
+ inter_vertical_indices,
1004
+ torch.arange(
1005
+ 0,
1006
+ k_states_inter.size(0),
1007
+ max(1,
1008
+ k_states_inter.size(0) / 5),
1009
+ dtype=torch.int32,
1010
+ device=intra_vertical_indices.device)
1011
+ ])
1012
+ inter_slash_indices = (
1013
+ (prev_chunk_end_pos - chunk_len +
1014
+ (qend - qbegin) - 1) -
1015
+ slash_topk[slash_topk < (prev_chunk_end_pos -
1016
+ chunk_len +
1017
+ (qend - qbegin))])
1018
+ if inter_slash_indices.nelement() == 0:
1019
+ inter_slash_indices = torch.cat([
1020
+ inter_slash_indices,
1021
+ torch.arange(
1022
+ 0,
1023
+ k_states_inter.size(0),
1024
+ max(1,
1025
+ k_states_inter.size(0) / 5),
1026
+ dtype=torch.int32,
1027
+ device=intra_vertical_indices.device)
1028
+ ])
1029
+ # fill buffer
1030
+ v_count = inter_vertical_indices.nelement()
1031
+ s_count = inter_slash_indices.nelement()
1032
+ inter_vertical_size_buffer[head_i] = v_count
1033
+ inter_slash_sizes_buffer[head_i] = s_count
1034
+ inter_vertical_buffer[head_i, :v_count].copy_(
1035
+ inter_vertical_indices)
1036
+ inter_slash_buffer[head_i, :s_count].copy_(
1037
+ inter_slash_indices)
1038
+ else:
1039
+ intra_vertical_indices, intra_slash_indices = None, None
1040
+ succ_vertical_indices, succ_slash_indices = None, None
1041
+ inter_vertical_indices, inter_slash_indices = None, None
1042
+
1043
+ if sparse_attn_enabled:
1044
+ flash_result = self._do_flash_attn(
1045
+ q_states_intra,
1046
+ k_states_intra,
1047
+ v_states_intra,
1048
+ softmax_scale=softmax_scale,
1049
+ causal=True,
1050
+ block_table=block_table,
1051
+ stage="intra",
1052
+ vertical_indices=vertical_buffer,
1053
+ slash_indices=slash_buffer,
1054
+ vertical_indices_count=vertical_size_buffer,
1055
+ slash_indices_count=slash_sizes_buffer,
1056
+ mergehead_softmax_scale=softmax_scale,
1057
+ sparse_attn_enabled=sparse_attn_enabled)
1058
+ else:
1059
+ flash_result = self._do_flash_attn(
1060
+ q_states_intra,
1061
+ k_states_intra,
1062
+ v_states_intra,
1063
+ softmax_scale=softmax_scale,
1064
+ causal=True,
1065
+ block_table=block_table,
1066
+ stage="intra",
1067
+ vertical_indices=intra_vertical_indices,
1068
+ slash_indices=intra_slash_indices,
1069
+ sparse_attn_enabled=sparse_attn_enabled)
1070
+ flash_per_chunk.append(flash_result)
1071
+
1072
+ if prev_chunk_end_pos - chunk_len >= 0:
1073
+ if sparse_attn_enabled:
1074
+ flash_result = self._do_flash_attn(
1075
+ q_states_succ,
1076
+ k_states_succ,
1077
+ v_states_succ,
1078
+ softmax_scale=softmax_scale,
1079
+ causal=False,
1080
+ block_table=block_table,
1081
+ stage="succ",
1082
+ vertical_indices=succ_vertical_buffer,
1083
+ slash_indices=succ_slash_buffer,
1084
+ vertical_indices_count=succ_vertical_size_buffer,
1085
+ slash_indices_count=succ_slash_sizes_buffer,
1086
+ mergehead_softmax_scale=softmax_scale,
1087
+ sparse_attn_enabled=sparse_attn_enabled)
1088
+ else:
1089
+ flash_result = self._do_flash_attn(
1090
+ q_states_succ,
1091
+ k_states_succ,
1092
+ v_states_succ,
1093
+ softmax_scale=softmax_scale,
1094
+ causal=False,
1095
+ block_table=block_table,
1096
+ stage="succ",
1097
+ vertical_indices=succ_vertical_indices,
1098
+ slash_indices=succ_slash_indices,
1099
+ sparse_attn_enabled=sparse_attn_enabled)
1100
+ flash_per_chunk.append(flash_result)
1101
+
1102
+ if prev_chunk_end_pos - chunk_len * 2 >= 0:
1103
+ if sparse_attn_enabled:
1104
+ flash_result = self._do_flash_attn(
1105
+ q_states_inter,
1106
+ k_states_inter,
1107
+ v_states_inter,
1108
+ softmax_scale=softmax_scale,
1109
+ causal=False,
1110
+ block_table=block_table,
1111
+ stage="inter",
1112
+ vertical_indices=inter_vertical_buffer,
1113
+ slash_indices=inter_slash_buffer,
1114
+ vertical_indices_count=inter_vertical_size_buffer,
1115
+ slash_indices_count=inter_slash_sizes_buffer,
1116
+ mergehead_softmax_scale=softmax_scale,
1117
+ sparse_attn_enabled=sparse_attn_enabled)
1118
+ else:
1119
+ flash_result = self._do_flash_attn(
1120
+ q_states_inter,
1121
+ k_states_inter,
1122
+ v_states_inter,
1123
+ softmax_scale=softmax_scale,
1124
+ causal=False,
1125
+ block_table=block_table,
1126
+ stage="inter",
1127
+ vertical_indices=inter_vertical_indices,
1128
+ slash_indices=inter_slash_indices,
1129
+ sparse_attn_enabled=sparse_attn_enabled)
1130
+ flash_per_chunk.append(flash_result)
1131
+
1132
+ flash_results.append(flash_per_chunk)
1133
+ begin = end
1134
+
1135
+ attn_output = self._merge_attn_outputs(flash_results)
1136
+ del flash_results
1137
+ return attn_output
1138
+
1139
+ def _do_flash_attn(
1140
+ self,
1141
+ query_states: torch.Tensor,
1142
+ key_states: torch.Tensor,
1143
+ value_states: torch.Tensor,
1144
+ softmax_scale: float,
1145
+ causal: bool = True,
1146
+ block_table: torch.Tensor = None,
1147
+ max_seqlen_k: Optional[int] = None,
1148
+ stage: str = "intra",
1149
+ vertical_indices: Optional[torch.Tensor] = None,
1150
+ slash_indices: Optional[torch.Tensor] = None,
1151
+ vertical_indices_count: Optional[torch.Tensor] = None,
1152
+ slash_indices_count: Optional[torch.Tensor] = None,
1153
+ mergehead_softmax_scale: Optional[float] = None,
1154
+ sparse_attn_enabled: Optional[bool] = False,
1155
+ ):
1156
+ if max_seqlen_k is None:
1157
+ max_seqlen_k = key_states.shape[0]
1158
+
1159
+ q_len = query_states.shape[0]
1160
+ q_heads = query_states.shape[1]
1161
+ h_dim = query_states.shape[-1]
1162
+
1163
+ if sparse_attn_enabled:
1164
+ assert slash_indices is not None
1165
+ if stage == "intra":
1166
+ assert causal
1167
+ else:
1168
+ assert not causal
1169
+
1170
+ query_states = query_states.unsqueeze(0).transpose(1, 2)
1171
+ key_states = key_states.unsqueeze(0).transpose(1, 2)
1172
+ value_states = value_states.unsqueeze(0).transpose(1, 2)
1173
+
1174
+ q = query_states
1175
+ k = key_states
1176
+ v = value_states
1177
+
1178
+ if (vertical_indices_count is not None and \
1179
+ slash_indices_count is not None):
1180
+ assert mergehead_softmax_scale is not None
1181
+
1182
+ res, s_lse = _vertical_slash_sparse_attention(
1183
+ q,
1184
+ k,
1185
+ v,
1186
+ vertical_indices,
1187
+ slash_indices,
1188
+ mergehead_softmax_scale,
1189
+ causal=causal,
1190
+ stage=stage,
1191
+ vertical_indices_count=vertical_indices_count,
1192
+ slash_indices_count=slash_indices_count)
1193
+ res = res.view(q_heads, q_len,
1194
+ h_dim).transpose(0, 1) # (qlen,nhead,h_dim)
1195
+ s_lse = s_lse.view(
1196
+ q_heads, q_len,
1197
+ 1).squeeze(-1).unsqueeze(0).float() # (1, nhead,qlen)
1198
+ else:
1199
+ res, s_lse = _vertical_slash_sparse_attention(q,
1200
+ k,
1201
+ v,
1202
+ vertical_indices,
1203
+ slash_indices,
1204
+ softmax_scale,
1205
+ causal=causal,
1206
+ stage=stage)
1207
+ res = res.view(q_len, q_heads, h_dim)
1208
+ s_lse = s_lse.view(q_len, q_heads, 1).transpose(0, 2).float()
1209
+ return res, s_lse
1210
+
1211
+ output, softmax_lse = flash_attn_varlen_func(
1212
+ q=query_states,
1213
+ k=key_states,
1214
+ v=value_states,
1215
+ softmax_scale=softmax_scale,
1216
+ cu_seqlens_q=torch.tensor([0, query_states.shape[0]],
1217
+ dtype=torch.int32,
1218
+ device=query_states.device),
1219
+ max_seqlen_q=query_states.shape[0],
1220
+ cu_seqlens_k=torch.tensor([0, max_seqlen_k],
1221
+ dtype=torch.int32,
1222
+ device=query_states.device),
1223
+ max_seqlen_k=max_seqlen_k,
1224
+ causal=causal,
1225
+ block_table=block_table.unsqueeze(0),
1226
+ return_softmax_lse=True,
1227
+ )
1228
+ softmax_lse = softmax_lse.view(q_len, q_heads, 1).transpose(0,
1229
+ 2).float()
1230
+ return output, softmax_lse
1231
+
1232
+ def _merge_attn_outputs(
1233
+ self,
1234
+ flash_results: List[List[Tuple[torch.Tensor, torch.Tensor]]],
1235
+ return_lse: Optional[bool] = False,
1236
+ ) -> torch.Tensor:
1237
+ attn_outputs_all = []
1238
+ logits_all = []
1239
+
1240
+ for flash_per_chunk in flash_results:
1241
+ if len(flash_per_chunk) == 1:
1242
+ attn_outputs_all.append(flash_per_chunk[0][0])
1243
+ if return_lse:
1244
+ logits_all.append(flash_per_chunk[0][1])
1245
+ continue
1246
+
1247
+ attn_outputs = torch.stack([
1248
+ flash_attn_output[0] for flash_attn_output in flash_per_chunk
1249
+ ])
1250
+ logits = torch.stack([
1251
+ flash_attn_output[1] for flash_attn_output in flash_per_chunk
1252
+ ])
1253
+ logits = logits.to(torch.float32)
1254
+
1255
+ if return_lse:
1256
+ max_val = torch.max(logits, dim=0).values
1257
+ diff = torch.abs(logits[0] - logits[1])
1258
+ log_sum_exp = max_val + torch.log1p(torch.exp(-diff))
1259
+ logits_all.append(log_sum_exp)
1260
+
1261
+ max_logits = torch.max(logits, dim=0).values
1262
+ stable_logits = logits - max_logits.unsqueeze(0)
1263
+ lse_s = torch.exp(stable_logits).detach()
1264
+ lse_sum = torch.sum(lse_s, dim=0)
1265
+ lse_s /= lse_sum
1266
+ attn_outputs *= lse_s.unsqueeze(-1).transpose(2, 3).squeeze(1)
1267
+ attn_outputs_all.append(attn_outputs.sum(dim=0))
1268
+
1269
+ if return_lse:
1270
+ return (torch.cat(attn_outputs_all,
1271
+ dim=0), torch.cat(logits_all, dim=-1))
1272
+ else:
1273
+ return torch.cat(attn_outputs_all, dim=0)
1274
+
1275
+ def _dual_chunk_flash_attn_decoding(
1276
+ self,
1277
+ query: torch.Tensor,
1278
+ query_succ: torch.Tensor,
1279
+ query_inter: torch.Tensor,
1280
+ key_cache: torch.Tensor,
1281
+ value_cache: torch.Tensor,
1282
+ block_table: torch.Tensor,
1283
+ cache_seqlens: torch.Tensor,
1284
+ softmax_scale: float,
1285
+ causal: bool,
1286
+ alibi_slopes: Optional[torch.Tensor],
1287
+ chunk_size: int,
1288
+ local_size: int,
1289
+ original_max_position_embeddings: int,
1290
+ decode_meta: DualChunkFlashAttentionMetadata,
1291
+ ):
1292
+ if not causal:
1293
+ raise ValueError(
1294
+ "Dual Chunk Attention does not support causal=False")
1295
+
1296
+ block_size = value_cache.shape[1]
1297
+ chunk_len = chunk_size - local_size
1298
+ if chunk_len % block_size != 0:
1299
+ raise ValueError("chunk_len must be divisible by block_size.")
1300
+ if original_max_position_embeddings > 0:
1301
+ assert decode_meta.scaling_factor is not None
1302
+ scaling_factor = decode_meta.scaling_factor
1303
+ query = (query * scaling_factor.view(-1, 1, 1, 1)).to(
1304
+ query.dtype
1305
+ ) # possible for numerical issue, need to fused in the kernel
1306
+ query_succ = (query_succ * scaling_factor.view(-1, 1, 1, 1)).to(
1307
+ query.dtype)
1308
+ query_inter = (query_inter * scaling_factor.view(-1, 1, 1, 1)).to(
1309
+ query.dtype)
1310
+ outputs_list = []
1311
+ softmax_lses_list = []
1312
+
1313
+ # intra-attention
1314
+ intra_output, intra_softmax_lse = (
1315
+ self._dual_chunk_flash_attn_decoding_with_exp_sums(
1316
+ query,
1317
+ key_cache,
1318
+ value_cache,
1319
+ decode_meta.block_tables_intra,
1320
+ decode_meta.seq_lens_intra,
1321
+ softmax_scale,
1322
+ alibi_slopes,
1323
+ causal=False,
1324
+ ))
1325
+ outputs_list.append(intra_output)
1326
+ softmax_lses_list.append(intra_softmax_lse)
1327
+
1328
+ # succ-attention
1329
+ if decode_meta.max_seq_len_succ:
1330
+ succ_output, succ_softmax_lse = (
1331
+ self._dual_chunk_flash_attn_decoding_with_exp_sums(
1332
+ query_succ,
1333
+ key_cache,
1334
+ value_cache,
1335
+ decode_meta.block_tables_succ,
1336
+ decode_meta.seq_lens_succ,
1337
+ softmax_scale,
1338
+ alibi_slopes,
1339
+ causal=False,
1340
+ ))
1341
+ outputs_list.append(succ_output)
1342
+ softmax_lses_list.append(succ_softmax_lse)
1343
+
1344
+ # inter-attention
1345
+ if decode_meta.max_seq_len_inter:
1346
+ inter_output, inter_softmax_lse = (
1347
+ self._dual_chunk_flash_attn_decoding_with_exp_sums(
1348
+ query_inter,
1349
+ key_cache,
1350
+ value_cache,
1351
+ block_table[:, :decode_meta.max_seq_len_inter],
1352
+ decode_meta.seq_lens_inter,
1353
+ softmax_scale,
1354
+ alibi_slopes,
1355
+ causal=False,
1356
+ ))
1357
+ outputs_list.append(inter_output)
1358
+ softmax_lses_list.append(inter_softmax_lse)
1359
+ outputs = torch.stack(outputs_list, dim=0)
1360
+ del outputs_list
1361
+ softmax_lses = torch.stack(softmax_lses_list, dim=0).to(torch.float32)
1362
+ del softmax_lses_list
1363
+ max_logits = torch.max(softmax_lses, dim=0).values
1364
+ stable_logits = softmax_lses - max_logits.unsqueeze(0)
1365
+ lse_s = torch.exp(stable_logits).detach()
1366
+ lse_sum = torch.sum(lse_s, dim=0)
1367
+ lse_s /= lse_sum
1368
+ outputs *= lse_s.unsqueeze(-1).transpose(2, 3)
1369
+ return outputs.sum(0)
1370
+
1371
+ def _dual_chunk_flash_attn_decoding_with_exp_sums(
1372
+ self,
1373
+ query: torch.Tensor,
1374
+ key_cache: torch.Tensor,
1375
+ value_cache: torch.Tensor,
1376
+ block_table: torch.Tensor,
1377
+ cache_seqlens: torch.Tensor,
1378
+ softmax_scale: float,
1379
+ alibi_slopes: Optional[torch.Tensor],
1380
+ causal: bool,
1381
+ ):
1382
+ out, softmax_lse = flash_attn_with_kvcache(
1383
+ q=query,
1384
+ k_cache=key_cache,
1385
+ v_cache=value_cache,
1386
+ block_table=block_table,
1387
+ cache_seqlens=cache_seqlens,
1388
+ softmax_scale=softmax_scale,
1389
+ alibi_slopes=alibi_slopes,
1390
+ causal=causal,
1391
+ return_softmax_lse=True,
1392
+ )
1393
+ mask = (cache_seqlens == 0)
1394
+ out[mask] = 0
1395
+ softmax_lse[mask] = -float("inf")
1396
+ return out, softmax_lse
1397
+
1398
+
1399
+ def _vertical_slash_sparse_attention(
1400
+ query: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD]
1401
+ key: torch.Tensor, # [BATCH, N_HEADS, N_KV_CTX, D_HEAD]
1402
+ value: torch.Tensor, # [BATCH, N_HEADS, N_KV_CTX, D_HEAD]
1403
+ v_idx: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
1404
+ s_idx: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
1405
+ softmax_scale: float,
1406
+ causal: bool = True,
1407
+ stage: str = "intra",
1408
+ block_size_M: int = 64,
1409
+ block_size_N: int = 64,
1410
+ vertical_indices_count: torch.Tensor = None, # [N_HEADS,]
1411
+ slash_indices_count: torch.Tensor = None,
1412
+ ):
1413
+ if stage == "intra":
1414
+ assert causal
1415
+ else:
1416
+ assert not causal
1417
+
1418
+ batch_size, num_heads, context_size, head_dim = query.shape
1419
+ _, _, kv_seq_len, _ = key.shape
1420
+
1421
+ if head_dim not in [16, 32, 64, 128, 256, 512]:
1422
+ target_dim = 2**math.ceil(math.log2(head_dim)) - head_dim
1423
+ query = F.pad(query, [0, target_dim, 0, 0, 0, 0, 0, 0])
1424
+ key = F.pad(key, [0, target_dim, 0, 0, 0, 0, 0, 0])
1425
+ value = F.pad(value, [0, target_dim, 0, 0, 0, 0, 0, 0])
1426
+
1427
+ v_idx = v_idx.to(torch.int32).reshape(
1428
+ (batch_size, num_heads, -1)).sort(dim=-1, descending=False)[0]
1429
+ s_idx = s_idx.to(torch.int32).reshape(
1430
+ (batch_size, num_heads, -1)).sort(dim=-1, descending=True)[0]
1431
+ q_seqlens = torch.tensor([context_size],
1432
+ dtype=torch.int32,
1433
+ device=query.device)
1434
+ kv_seqlens = torch.tensor([kv_seq_len],
1435
+ dtype=torch.int32,
1436
+ device=query.device)
1437
+
1438
+ if vertical_indices_count is not None and slash_indices_count is not None:
1439
+ (
1440
+ block_count,
1441
+ block_offset,
1442
+ column_count,
1443
+ column_index,
1444
+ ) = ops.convert_vertical_slash_indexes_mergehead(
1445
+ q_seqlens, kv_seqlens, v_idx, s_idx, vertical_indices_count,
1446
+ slash_indices_count, context_size, block_size_M, block_size_N,
1447
+ causal)
1448
+ else:
1449
+ (
1450
+ block_count,
1451
+ block_offset,
1452
+ column_count,
1453
+ column_index,
1454
+ ) = ops.convert_vertical_slash_indexes(q_seqlens, kv_seqlens, v_idx,
1455
+ s_idx, context_size,
1456
+ block_size_M, block_size_N,
1457
+ causal)
1458
+
1459
+ q = query.transpose(1, 2).contiguous()
1460
+ k = key.transpose(1, 2).contiguous()
1461
+ v = value.transpose(1, 2).contiguous()
1462
+ out, lse = sparse_attn_func(
1463
+ q,
1464
+ k,
1465
+ v,
1466
+ block_count,
1467
+ block_offset,
1468
+ column_count,
1469
+ column_index,
1470
+ causal=causal,
1471
+ softmax_scale=softmax_scale,
1472
+ return_softmax_lse=True,
1473
+ )
1474
+ out = out.transpose(1, 2).contiguous()
1475
+ softmax_lse = lse.reshape(*lse.shape, 1)
1476
+ return (out[..., :context_size, :head_dim],
1477
+ softmax_lse[..., :context_size, :])
1478
+
1479
+
1480
+ def _sum_all_diagonal_matrix(mat: torch.tensor):
1481
+ h, n, m = mat.shape
1482
+ # Zero matrix used for padding
1483
+ zero_mat = torch.zeros((h, n, n), device=mat.device)
1484
+ # pads the matrix on left and right
1485
+ mat_padded = torch.cat((zero_mat, mat, zero_mat), -1)
1486
+ # Change the strides
1487
+ mat_strided = mat_padded.as_strided((1, n, n + m),
1488
+ (n * (2 * n + m), 2 * n + m + 1, 1))
1489
+ # Sums the resulting matrix's columns
1490
+ sum_diags = torch.sum(mat_strided, 1)
1491
+ return sum_diags[:, 1:] # drop left bottom corner
1492
+
1493
+
1494
+ def _get_block(block_table: torch.Tensor, block_size: int, begin: int,
1495
+ end: int):
1496
+ begin_block = begin // block_size
1497
+ end_block = (end - 1) // block_size + 1
1498
+ return block_table[begin_block:end_block]