vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1197) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +53 -0
  3. vllm/_custom_ops.py +1828 -0
  4. vllm/_ipex_ops.py +244 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +115 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +308 -0
  20. vllm/attention/backends/blocksparse_attn.py +461 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
  23. vllm/attention/backends/flash_attn.py +1003 -0
  24. vllm/attention/backends/flashinfer.py +1104 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +313 -0
  27. vllm/attention/backends/ipex_attn.py +398 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1385 -0
  30. vllm/attention/backends/pallas.py +351 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +975 -0
  34. vllm/attention/backends/torch_sdpa.py +703 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +802 -0
  38. vllm/attention/layer.py +468 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +906 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/prefix_prefill.py +902 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  54. vllm/attention/ops/triton_decode_attention.py +674 -0
  55. vllm/attention/ops/triton_flash_attention.py +979 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  57. vllm/attention/ops/triton_unified_attention.py +334 -0
  58. vllm/attention/selector.py +187 -0
  59. vllm/attention/utils/fa_utils.py +55 -0
  60. vllm/beam_search.py +87 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +1185 -0
  63. vllm/benchmarks/endpoint_request_func.py +381 -0
  64. vllm/benchmarks/latency.py +168 -0
  65. vllm/benchmarks/serve.py +1135 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +70 -0
  68. vllm/collect_env.py +820 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +89 -0
  71. vllm/compilation/backends.py +563 -0
  72. vllm/compilation/base_piecewise_backend.py +72 -0
  73. vllm/compilation/collective_fusion.py +127 -0
  74. vllm/compilation/compiler_interface.py +544 -0
  75. vllm/compilation/counter.py +38 -0
  76. vllm/compilation/cuda_piecewise_backend.py +214 -0
  77. vllm/compilation/decorators.py +250 -0
  78. vllm/compilation/fix_functionalization.py +191 -0
  79. vllm/compilation/fusion.py +618 -0
  80. vllm/compilation/fx_utils.py +62 -0
  81. vllm/compilation/inductor_pass.py +115 -0
  82. vllm/compilation/monitor.py +39 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +137 -0
  85. vllm/compilation/pass_manager.py +78 -0
  86. vllm/compilation/sequence_parallelism.py +268 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +67 -0
  89. vllm/compilation/wrapper.py +135 -0
  90. vllm/config.py +4746 -0
  91. vllm/connections.py +174 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +399 -0
  95. vllm/core/block/common.py +371 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  97. vllm/core/block/interfaces.py +319 -0
  98. vllm/core/block/naive_block.py +466 -0
  99. vllm/core/block/prefix_caching_block.py +1135 -0
  100. vllm/core/block/utils.py +28 -0
  101. vllm/core/block_manager.py +521 -0
  102. vllm/core/evictor.py +157 -0
  103. vllm/core/interfaces.py +135 -0
  104. vllm/core/placeholder_block_space_manager.py +100 -0
  105. vllm/core/scheduler.py +2093 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +281 -0
  108. vllm/distributed/__init__.py +6 -0
  109. vllm/distributed/communication_op.py +41 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +264 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +176 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  120. vllm/distributed/device_communicators/pynccl.py +218 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  125. vllm/distributed/kv_events.py +356 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +12 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  152. vllm/distributed/parallel_state.py +1296 -0
  153. vllm/distributed/tpu_distributed_utils.py +177 -0
  154. vllm/distributed/utils.py +536 -0
  155. vllm/engine/__init__.py +0 -0
  156. vllm/engine/arg_utils.py +1708 -0
  157. vllm/engine/async_llm_engine.py +1200 -0
  158. vllm/engine/async_timeout.py +173 -0
  159. vllm/engine/llm_engine.py +2097 -0
  160. vllm/engine/metrics.py +629 -0
  161. vllm/engine/metrics_types.py +94 -0
  162. vllm/engine/multiprocessing/__init__.py +148 -0
  163. vllm/engine/multiprocessing/client.py +681 -0
  164. vllm/engine/multiprocessing/engine.py +460 -0
  165. vllm/engine/output_processor/__init__.py +0 -0
  166. vllm/engine/output_processor/interfaces.py +75 -0
  167. vllm/engine/output_processor/multi_step.py +216 -0
  168. vllm/engine/output_processor/single_step.py +145 -0
  169. vllm/engine/output_processor/stop_checker.py +131 -0
  170. vllm/engine/output_processor/util.py +28 -0
  171. vllm/engine/protocol.py +317 -0
  172. vllm/entrypoints/__init__.py +0 -0
  173. vllm/entrypoints/api_server.py +178 -0
  174. vllm/entrypoints/chat_utils.py +1299 -0
  175. vllm/entrypoints/cli/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  177. vllm/entrypoints/cli/benchmark/base.py +39 -0
  178. vllm/entrypoints/cli/benchmark/latency.py +30 -0
  179. vllm/entrypoints/cli/benchmark/main.py +54 -0
  180. vllm/entrypoints/cli/benchmark/serve.py +30 -0
  181. vllm/entrypoints/cli/benchmark/throughput.py +30 -0
  182. vllm/entrypoints/cli/collect_env.py +35 -0
  183. vllm/entrypoints/cli/main.py +65 -0
  184. vllm/entrypoints/cli/openai.py +205 -0
  185. vllm/entrypoints/cli/run_batch.py +62 -0
  186. vllm/entrypoints/cli/serve.py +328 -0
  187. vllm/entrypoints/cli/types.py +25 -0
  188. vllm/entrypoints/launcher.py +147 -0
  189. vllm/entrypoints/llm.py +1544 -0
  190. vllm/entrypoints/logger.py +50 -0
  191. vllm/entrypoints/openai/__init__.py +0 -0
  192. vllm/entrypoints/openai/api_server.py +1387 -0
  193. vllm/entrypoints/openai/cli_args.py +315 -0
  194. vllm/entrypoints/openai/logits_processors.py +90 -0
  195. vllm/entrypoints/openai/protocol.py +1913 -0
  196. vllm/entrypoints/openai/run_batch.py +463 -0
  197. vllm/entrypoints/openai/serving_chat.py +1221 -0
  198. vllm/entrypoints/openai/serving_classification.py +160 -0
  199. vllm/entrypoints/openai/serving_completion.py +592 -0
  200. vllm/entrypoints/openai/serving_embedding.py +201 -0
  201. vllm/entrypoints/openai/serving_engine.py +986 -0
  202. vllm/entrypoints/openai/serving_models.py +315 -0
  203. vllm/entrypoints/openai/serving_pooling.py +232 -0
  204. vllm/entrypoints/openai/serving_score.py +433 -0
  205. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  206. vllm/entrypoints/openai/serving_transcription.py +424 -0
  207. vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
  208. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  209. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  210. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  211. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  212. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  213. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  214. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  215. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  216. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  217. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  218. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  219. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  220. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  221. vllm/entrypoints/score_utils.py +50 -0
  222. vllm/entrypoints/ssl.py +75 -0
  223. vllm/entrypoints/utils.py +233 -0
  224. vllm/env_override.py +41 -0
  225. vllm/envs.py +944 -0
  226. vllm/executor/__init__.py +0 -0
  227. vllm/executor/executor_base.py +401 -0
  228. vllm/executor/mp_distributed_executor.py +244 -0
  229. vllm/executor/msgspec_utils.py +30 -0
  230. vllm/executor/multiproc_worker_utils.py +313 -0
  231. vllm/executor/ray_distributed_executor.py +701 -0
  232. vllm/executor/ray_utils.py +399 -0
  233. vllm/executor/uniproc_executor.py +139 -0
  234. vllm/forward_context.py +179 -0
  235. vllm/inputs/__init__.py +41 -0
  236. vllm/inputs/data.py +331 -0
  237. vllm/inputs/parse.py +151 -0
  238. vllm/inputs/preprocess.py +909 -0
  239. vllm/inputs/registry.py +237 -0
  240. vllm/jsontree.py +80 -0
  241. vllm/logger.py +212 -0
  242. vllm/logging_utils/__init__.py +8 -0
  243. vllm/logging_utils/dump_input.py +85 -0
  244. vllm/logging_utils/formatter.py +18 -0
  245. vllm/logits_process.py +119 -0
  246. vllm/lora/__init__.py +0 -0
  247. vllm/lora/fully_sharded_layers.py +355 -0
  248. vllm/lora/layers.py +1285 -0
  249. vllm/lora/lora.py +199 -0
  250. vllm/lora/models.py +818 -0
  251. vllm/lora/ops/__init__.py +0 -0
  252. vllm/lora/ops/torch_ops/__init__.py +16 -0
  253. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  254. vllm/lora/ops/triton_ops/__init__.py +12 -0
  255. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  256. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  257. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  258. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  259. vllm/lora/ops/triton_ops/utils.py +120 -0
  260. vllm/lora/ops/xla_ops/__init__.py +7 -0
  261. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  262. vllm/lora/peft_helper.py +136 -0
  263. vllm/lora/punica_wrapper/__init__.py +10 -0
  264. vllm/lora/punica_wrapper/punica_base.py +485 -0
  265. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  266. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  267. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  268. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  269. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  270. vllm/lora/punica_wrapper/utils.py +164 -0
  271. vllm/lora/request.py +99 -0
  272. vllm/lora/resolver.py +85 -0
  273. vllm/lora/utils.py +240 -0
  274. vllm/lora/worker_manager.py +259 -0
  275. vllm/model_executor/__init__.py +16 -0
  276. vllm/model_executor/custom_op.py +152 -0
  277. vllm/model_executor/guided_decoding/__init__.py +181 -0
  278. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  279. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  280. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  281. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  282. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  283. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  284. vllm/model_executor/guided_decoding/utils.py +242 -0
  285. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  286. vllm/model_executor/layers/__init__.py +0 -0
  287. vllm/model_executor/layers/activation.py +369 -0
  288. vllm/model_executor/layers/fused_moe/__init__.py +54 -0
  289. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
  290. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  455. vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
  456. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
  457. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
  458. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
  459. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
  460. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
  461. vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
  462. vllm/model_executor/layers/fused_moe/layer.py +1535 -0
  463. vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
  464. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  465. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  466. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  467. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  468. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
  469. vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
  470. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
  471. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
  472. vllm/model_executor/layers/fused_moe/utils.py +98 -0
  473. vllm/model_executor/layers/layernorm.py +288 -0
  474. vllm/model_executor/layers/lightning_attn.py +652 -0
  475. vllm/model_executor/layers/linear.py +1524 -0
  476. vllm/model_executor/layers/logits_processor.py +197 -0
  477. vllm/model_executor/layers/mamba/__init__.py +0 -0
  478. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  479. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  480. vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
  481. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  482. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  483. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  484. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  485. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  486. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  487. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  488. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  489. vllm/model_executor/layers/pooler.py +350 -0
  490. vllm/model_executor/layers/quantization/__init__.py +157 -0
  491. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  492. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  493. vllm/model_executor/layers/quantization/awq.py +194 -0
  494. vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
  495. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  496. vllm/model_executor/layers/quantization/base_config.py +151 -0
  497. vllm/model_executor/layers/quantization/bitblas.py +461 -0
  498. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  505. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  506. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
  507. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
  508. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  509. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  510. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  511. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  512. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  513. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  514. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  515. vllm/model_executor/layers/quantization/experts_int8.py +196 -0
  516. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  517. vllm/model_executor/layers/quantization/fp8.py +906 -0
  518. vllm/model_executor/layers/quantization/gguf.py +565 -0
  519. vllm/model_executor/layers/quantization/gptq.py +278 -0
  520. vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
  521. vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
  522. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  523. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  524. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  525. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  526. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  527. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  528. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  529. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  530. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  531. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
  532. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  533. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  534. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  535. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  536. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  537. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  538. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  539. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  540. vllm/model_executor/layers/quantization/marlin.py +261 -0
  541. vllm/model_executor/layers/quantization/modelopt.py +737 -0
  542. vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
  543. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  544. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  545. vllm/model_executor/layers/quantization/qqq.py +275 -0
  546. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  547. vllm/model_executor/layers/quantization/quark/quark.py +441 -0
  548. vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
  549. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  550. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  551. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  552. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
  553. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  554. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  555. vllm/model_executor/layers/quantization/schema.py +86 -0
  556. vllm/model_executor/layers/quantization/torchao.py +161 -0
  557. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  558. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  559. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  560. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
  764. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  765. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  766. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  767. vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
  768. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  769. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  770. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  771. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  772. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  773. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  774. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  775. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
  776. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  777. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  778. vllm/model_executor/layers/rejection_sampler.py +406 -0
  779. vllm/model_executor/layers/resampler.py +270 -0
  780. vllm/model_executor/layers/rotary_embedding.py +1862 -0
  781. vllm/model_executor/layers/sampler.py +1204 -0
  782. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  783. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  784. vllm/model_executor/layers/utils.py +95 -0
  785. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  786. vllm/model_executor/model_loader/__init__.py +76 -0
  787. vllm/model_executor/model_loader/base_loader.py +43 -0
  788. vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
  789. vllm/model_executor/model_loader/default_loader.py +282 -0
  790. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  791. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  792. vllm/model_executor/model_loader/neuron.py +476 -0
  793. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  794. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  795. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  796. vllm/model_executor/model_loader/tensorizer.py +600 -0
  797. vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
  798. vllm/model_executor/model_loader/tpu.py +112 -0
  799. vllm/model_executor/model_loader/utils.py +302 -0
  800. vllm/model_executor/model_loader/weight_utils.py +782 -0
  801. vllm/model_executor/models/__init__.py +28 -0
  802. vllm/model_executor/models/adapters.py +248 -0
  803. vllm/model_executor/models/aimv2.py +246 -0
  804. vllm/model_executor/models/arctic.py +559 -0
  805. vllm/model_executor/models/aria.py +657 -0
  806. vllm/model_executor/models/aya_vision.py +466 -0
  807. vllm/model_executor/models/baichuan.py +474 -0
  808. vllm/model_executor/models/bamba.py +543 -0
  809. vllm/model_executor/models/bart.py +938 -0
  810. vllm/model_executor/models/bert.py +523 -0
  811. vllm/model_executor/models/bert_with_rope.py +769 -0
  812. vllm/model_executor/models/blip.py +339 -0
  813. vllm/model_executor/models/blip2.py +718 -0
  814. vllm/model_executor/models/bloom.py +373 -0
  815. vllm/model_executor/models/chameleon.py +1136 -0
  816. vllm/model_executor/models/chatglm.py +478 -0
  817. vllm/model_executor/models/clip.py +407 -0
  818. vllm/model_executor/models/commandr.py +472 -0
  819. vllm/model_executor/models/constant_size_cache.py +137 -0
  820. vllm/model_executor/models/dbrx.py +472 -0
  821. vllm/model_executor/models/deepseek.py +486 -0
  822. vllm/model_executor/models/deepseek_mtp.py +269 -0
  823. vllm/model_executor/models/deepseek_v2.py +843 -0
  824. vllm/model_executor/models/deepseek_vl2.py +648 -0
  825. vllm/model_executor/models/eagle.py +260 -0
  826. vllm/model_executor/models/exaone.py +551 -0
  827. vllm/model_executor/models/fairseq2_llama.py +154 -0
  828. vllm/model_executor/models/falcon.py +510 -0
  829. vllm/model_executor/models/falcon_h1.py +685 -0
  830. vllm/model_executor/models/florence2.py +1103 -0
  831. vllm/model_executor/models/fuyu.py +389 -0
  832. vllm/model_executor/models/gemma.py +425 -0
  833. vllm/model_executor/models/gemma2.py +425 -0
  834. vllm/model_executor/models/gemma3.py +533 -0
  835. vllm/model_executor/models/gemma3_mm.py +709 -0
  836. vllm/model_executor/models/glm.py +23 -0
  837. vllm/model_executor/models/glm4.py +305 -0
  838. vllm/model_executor/models/glm4v.py +648 -0
  839. vllm/model_executor/models/gpt2.py +328 -0
  840. vllm/model_executor/models/gpt_bigcode.py +335 -0
  841. vllm/model_executor/models/gpt_j.py +339 -0
  842. vllm/model_executor/models/gpt_neox.py +332 -0
  843. vllm/model_executor/models/granite.py +493 -0
  844. vllm/model_executor/models/granite_speech.py +779 -0
  845. vllm/model_executor/models/granitemoe.py +437 -0
  846. vllm/model_executor/models/granitemoehybrid.py +586 -0
  847. vllm/model_executor/models/granitemoeshared.py +341 -0
  848. vllm/model_executor/models/gritlm.py +224 -0
  849. vllm/model_executor/models/grok1.py +546 -0
  850. vllm/model_executor/models/h2ovl.py +546 -0
  851. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  852. vllm/model_executor/models/idefics3.py +776 -0
  853. vllm/model_executor/models/interfaces.py +572 -0
  854. vllm/model_executor/models/interfaces_base.py +164 -0
  855. vllm/model_executor/models/intern_vit.py +480 -0
  856. vllm/model_executor/models/internlm2.py +455 -0
  857. vllm/model_executor/models/internlm2_ve.py +147 -0
  858. vllm/model_executor/models/internvl.py +1418 -0
  859. vllm/model_executor/models/jais.py +373 -0
  860. vllm/model_executor/models/jamba.py +592 -0
  861. vllm/model_executor/models/kimi_vl.py +577 -0
  862. vllm/model_executor/models/llama.py +644 -0
  863. vllm/model_executor/models/llama4.py +532 -0
  864. vllm/model_executor/models/llama_eagle.py +165 -0
  865. vllm/model_executor/models/llama_eagle3.py +263 -0
  866. vllm/model_executor/models/llava.py +866 -0
  867. vllm/model_executor/models/llava_next.py +586 -0
  868. vllm/model_executor/models/llava_next_video.py +471 -0
  869. vllm/model_executor/models/llava_onevision.py +956 -0
  870. vllm/model_executor/models/mamba.py +273 -0
  871. vllm/model_executor/models/mamba2.py +308 -0
  872. vllm/model_executor/models/mamba_cache.py +76 -0
  873. vllm/model_executor/models/medusa.py +219 -0
  874. vllm/model_executor/models/mimo.py +192 -0
  875. vllm/model_executor/models/mimo_mtp.py +285 -0
  876. vllm/model_executor/models/minicpm.py +592 -0
  877. vllm/model_executor/models/minicpm3.py +230 -0
  878. vllm/model_executor/models/minicpm_eagle.py +391 -0
  879. vllm/model_executor/models/minicpmo.py +759 -0
  880. vllm/model_executor/models/minicpmv.py +1287 -0
  881. vllm/model_executor/models/minimax_cache.py +36 -0
  882. vllm/model_executor/models/minimax_text_01.py +1301 -0
  883. vllm/model_executor/models/minimax_vl_01.py +364 -0
  884. vllm/model_executor/models/mistral3.py +604 -0
  885. vllm/model_executor/models/mixtral.py +488 -0
  886. vllm/model_executor/models/mixtral_quant.py +453 -0
  887. vllm/model_executor/models/mllama.py +1624 -0
  888. vllm/model_executor/models/mllama4.py +938 -0
  889. vllm/model_executor/models/mlp_speculator.py +206 -0
  890. vllm/model_executor/models/modernbert.py +331 -0
  891. vllm/model_executor/models/module_mapping.py +72 -0
  892. vllm/model_executor/models/molmo.py +1568 -0
  893. vllm/model_executor/models/moonvit.py +630 -0
  894. vllm/model_executor/models/mpt.py +331 -0
  895. vllm/model_executor/models/nemotron.py +508 -0
  896. vllm/model_executor/models/nemotron_h.py +573 -0
  897. vllm/model_executor/models/nemotron_nas.py +484 -0
  898. vllm/model_executor/models/nvlm_d.py +216 -0
  899. vllm/model_executor/models/olmo.py +389 -0
  900. vllm/model_executor/models/olmo2.py +414 -0
  901. vllm/model_executor/models/olmoe.py +468 -0
  902. vllm/model_executor/models/opt.py +412 -0
  903. vllm/model_executor/models/orion.py +349 -0
  904. vllm/model_executor/models/ovis.py +567 -0
  905. vllm/model_executor/models/paligemma.py +398 -0
  906. vllm/model_executor/models/persimmon.py +344 -0
  907. vllm/model_executor/models/phi.py +356 -0
  908. vllm/model_executor/models/phi3.py +19 -0
  909. vllm/model_executor/models/phi3_small.py +465 -0
  910. vllm/model_executor/models/phi3v.py +723 -0
  911. vllm/model_executor/models/phi4mm.py +1246 -0
  912. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  913. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  914. vllm/model_executor/models/phimoe.py +665 -0
  915. vllm/model_executor/models/pixtral.py +1316 -0
  916. vllm/model_executor/models/plamo2.py +738 -0
  917. vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
  918. vllm/model_executor/models/qwen.py +362 -0
  919. vllm/model_executor/models/qwen2.py +497 -0
  920. vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
  921. vllm/model_executor/models/qwen2_5_vl.py +1166 -0
  922. vllm/model_executor/models/qwen2_audio.py +410 -0
  923. vllm/model_executor/models/qwen2_moe.py +540 -0
  924. vllm/model_executor/models/qwen2_rm.py +132 -0
  925. vllm/model_executor/models/qwen2_vl.py +1405 -0
  926. vllm/model_executor/models/qwen3.py +321 -0
  927. vllm/model_executor/models/qwen3_moe.py +535 -0
  928. vllm/model_executor/models/qwen_vl.py +785 -0
  929. vllm/model_executor/models/registry.py +622 -0
  930. vllm/model_executor/models/roberta.py +276 -0
  931. vllm/model_executor/models/siglip.py +524 -0
  932. vllm/model_executor/models/skyworkr1v.py +951 -0
  933. vllm/model_executor/models/smolvlm.py +52 -0
  934. vllm/model_executor/models/solar.py +506 -0
  935. vllm/model_executor/models/stablelm.py +343 -0
  936. vllm/model_executor/models/starcoder2.py +356 -0
  937. vllm/model_executor/models/tarsier.py +643 -0
  938. vllm/model_executor/models/telechat2.py +140 -0
  939. vllm/model_executor/models/teleflm.py +79 -0
  940. vllm/model_executor/models/transformers.py +508 -0
  941. vllm/model_executor/models/ultravox.py +656 -0
  942. vllm/model_executor/models/utils.py +731 -0
  943. vllm/model_executor/models/vision.py +147 -0
  944. vllm/model_executor/models/whisper.py +747 -0
  945. vllm/model_executor/models/zamba2.py +1009 -0
  946. vllm/model_executor/parameter.py +459 -0
  947. vllm/model_executor/pooling_metadata.py +72 -0
  948. vllm/model_executor/sampling_metadata.py +597 -0
  949. vllm/model_executor/utils.py +77 -0
  950. vllm/multimodal/__init__.py +33 -0
  951. vllm/multimodal/audio.py +106 -0
  952. vllm/multimodal/base.py +219 -0
  953. vllm/multimodal/hasher.py +118 -0
  954. vllm/multimodal/image.py +97 -0
  955. vllm/multimodal/inputs.py +876 -0
  956. vllm/multimodal/parse.py +461 -0
  957. vllm/multimodal/processing.py +1895 -0
  958. vllm/multimodal/profiling.py +258 -0
  959. vllm/multimodal/registry.py +331 -0
  960. vllm/multimodal/utils.py +436 -0
  961. vllm/multimodal/video.py +198 -0
  962. vllm/outputs.py +512 -0
  963. vllm/platforms/__init__.py +291 -0
  964. vllm/platforms/cpu.py +266 -0
  965. vllm/platforms/cuda.py +526 -0
  966. vllm/platforms/hpu.py +106 -0
  967. vllm/platforms/interface.py +538 -0
  968. vllm/platforms/neuron.py +150 -0
  969. vllm/platforms/rocm.py +435 -0
  970. vllm/platforms/tpu.py +216 -0
  971. vllm/platforms/xpu.py +156 -0
  972. vllm/plugins/__init__.py +94 -0
  973. vllm/plugins/lora_resolvers/README.md +15 -0
  974. vllm/plugins/lora_resolvers/__init__.py +0 -0
  975. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  976. vllm/pooling_params.py +54 -0
  977. vllm/profiler/__init__.py +0 -0
  978. vllm/profiler/layerwise_profile.py +375 -0
  979. vllm/profiler/utils.py +148 -0
  980. vllm/prompt_adapter/__init__.py +0 -0
  981. vllm/prompt_adapter/layers.py +83 -0
  982. vllm/prompt_adapter/models.py +358 -0
  983. vllm/prompt_adapter/request.py +37 -0
  984. vllm/prompt_adapter/utils.py +98 -0
  985. vllm/prompt_adapter/worker_manager.py +179 -0
  986. vllm/py.typed +2 -0
  987. vllm/reasoning/__init__.py +15 -0
  988. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  989. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  990. vllm/reasoning/granite_reasoning_parser.py +363 -0
  991. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  992. vllm/sampling_params.py +602 -0
  993. vllm/scalar_type.py +347 -0
  994. vllm/scripts.py +15 -0
  995. vllm/sequence.py +1568 -0
  996. vllm/spec_decode/__init__.py +0 -0
  997. vllm/spec_decode/batch_expansion.py +506 -0
  998. vllm/spec_decode/draft_model_runner.py +349 -0
  999. vllm/spec_decode/interfaces.py +99 -0
  1000. vllm/spec_decode/medusa_worker.py +138 -0
  1001. vllm/spec_decode/metrics.py +213 -0
  1002. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1003. vllm/spec_decode/mqa_scorer.py +160 -0
  1004. vllm/spec_decode/multi_step_worker.py +423 -0
  1005. vllm/spec_decode/ngram_worker.py +196 -0
  1006. vllm/spec_decode/proposer_worker_base.py +59 -0
  1007. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1008. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1009. vllm/spec_decode/target_model_runner.py +45 -0
  1010. vllm/spec_decode/top1_proposer.py +275 -0
  1011. vllm/spec_decode/util.py +277 -0
  1012. vllm/test_utils.py +130 -0
  1013. vllm/third_party/__init__.py +0 -0
  1014. vllm/third_party/pynvml.py +6140 -0
  1015. vllm/tracing.py +131 -0
  1016. vllm/transformers_utils/__init__.py +24 -0
  1017. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1018. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1019. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1020. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1021. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1022. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1023. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1024. vllm/transformers_utils/config.py +887 -0
  1025. vllm/transformers_utils/configs/__init__.py +61 -0
  1026. vllm/transformers_utils/configs/arctic.py +207 -0
  1027. vllm/transformers_utils/configs/chatglm.py +72 -0
  1028. vllm/transformers_utils/configs/cohere2.py +195 -0
  1029. vllm/transformers_utils/configs/dbrx.py +280 -0
  1030. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1031. vllm/transformers_utils/configs/eagle.py +85 -0
  1032. vllm/transformers_utils/configs/exaone.py +190 -0
  1033. vllm/transformers_utils/configs/falcon.py +90 -0
  1034. vllm/transformers_utils/configs/h2ovl.py +16 -0
  1035. vllm/transformers_utils/configs/internvl.py +54 -0
  1036. vllm/transformers_utils/configs/jais.py +238 -0
  1037. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1038. vllm/transformers_utils/configs/medusa.py +63 -0
  1039. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1040. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1041. vllm/transformers_utils/configs/mllama.py +31 -0
  1042. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1043. vllm/transformers_utils/configs/moonvit.py +33 -0
  1044. vllm/transformers_utils/configs/mpt.py +180 -0
  1045. vllm/transformers_utils/configs/nemotron.py +205 -0
  1046. vllm/transformers_utils/configs/nemotron_h.py +258 -0
  1047. vllm/transformers_utils/configs/nvlm_d.py +15 -0
  1048. vllm/transformers_utils/configs/ovis.py +184 -0
  1049. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1050. vllm/transformers_utils/configs/solar.py +247 -0
  1051. vllm/transformers_utils/configs/telechat2.py +64 -0
  1052. vllm/transformers_utils/configs/ultravox.py +108 -0
  1053. vllm/transformers_utils/detokenizer.py +168 -0
  1054. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1055. vllm/transformers_utils/processor.py +221 -0
  1056. vllm/transformers_utils/processors/__init__.py +8 -0
  1057. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1058. vllm/transformers_utils/processors/ovis.py +420 -0
  1059. vllm/transformers_utils/s3_utils.py +162 -0
  1060. vllm/transformers_utils/tokenizer.py +302 -0
  1061. vllm/transformers_utils/tokenizer_base.py +149 -0
  1062. vllm/transformers_utils/tokenizer_group.py +120 -0
  1063. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1064. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1065. vllm/transformers_utils/utils.py +99 -0
  1066. vllm/triton_utils/__init__.py +14 -0
  1067. vllm/triton_utils/importing.py +50 -0
  1068. vllm/usage/__init__.py +0 -0
  1069. vllm/usage/usage_lib.py +256 -0
  1070. vllm/utils.py +2910 -0
  1071. vllm/v1/__init__.py +0 -0
  1072. vllm/v1/attention/__init__.py +0 -0
  1073. vllm/v1/attention/backends/__init__.py +0 -0
  1074. vllm/v1/attention/backends/cpu_attn.py +163 -0
  1075. vllm/v1/attention/backends/flash_attn.py +869 -0
  1076. vllm/v1/attention/backends/flashinfer.py +651 -0
  1077. vllm/v1/attention/backends/flex_attention.py +477 -0
  1078. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1079. vllm/v1/attention/backends/mla/common.py +931 -0
  1080. vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
  1081. vllm/v1/attention/backends/mla/flashmla.py +152 -0
  1082. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
  1083. vllm/v1/attention/backends/mla/triton_mla.py +120 -0
  1084. vllm/v1/attention/backends/pallas.py +240 -0
  1085. vllm/v1/attention/backends/triton_attn.py +285 -0
  1086. vllm/v1/attention/backends/utils.py +52 -0
  1087. vllm/v1/core/__init__.py +0 -0
  1088. vllm/v1/core/block_pool.py +349 -0
  1089. vllm/v1/core/encoder_cache_manager.py +150 -0
  1090. vllm/v1/core/kv_cache_coordinator.py +363 -0
  1091. vllm/v1/core/kv_cache_manager.py +392 -0
  1092. vllm/v1/core/kv_cache_utils.py +996 -0
  1093. vllm/v1/core/sched/__init__.py +0 -0
  1094. vllm/v1/core/sched/interface.py +150 -0
  1095. vllm/v1/core/sched/output.py +154 -0
  1096. vllm/v1/core/sched/scheduler.py +1044 -0
  1097. vllm/v1/core/sched/utils.py +23 -0
  1098. vllm/v1/core/single_type_kv_cache_manager.py +403 -0
  1099. vllm/v1/engine/__init__.py +173 -0
  1100. vllm/v1/engine/async_llm.py +558 -0
  1101. vllm/v1/engine/coordinator.py +253 -0
  1102. vllm/v1/engine/core.py +961 -0
  1103. vllm/v1/engine/core_client.py +1129 -0
  1104. vllm/v1/engine/detokenizer.py +261 -0
  1105. vllm/v1/engine/exceptions.py +17 -0
  1106. vllm/v1/engine/llm_engine.py +317 -0
  1107. vllm/v1/engine/logprobs.py +199 -0
  1108. vllm/v1/engine/mm_input_cache.py +91 -0
  1109. vllm/v1/engine/output_processor.py +428 -0
  1110. vllm/v1/engine/parallel_sampling.py +133 -0
  1111. vllm/v1/engine/processor.py +407 -0
  1112. vllm/v1/executor/__init__.py +0 -0
  1113. vllm/v1/executor/abstract.py +113 -0
  1114. vllm/v1/executor/multiproc_executor.py +537 -0
  1115. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1116. vllm/v1/kv_cache_interface.py +194 -0
  1117. vllm/v1/metrics/__init__.py +0 -0
  1118. vllm/v1/metrics/loggers.py +523 -0
  1119. vllm/v1/metrics/prometheus.py +82 -0
  1120. vllm/v1/metrics/ray_wrappers.py +131 -0
  1121. vllm/v1/metrics/reader.py +246 -0
  1122. vllm/v1/metrics/stats.py +239 -0
  1123. vllm/v1/outputs.py +116 -0
  1124. vllm/v1/request.py +193 -0
  1125. vllm/v1/sample/__init__.py +0 -0
  1126. vllm/v1/sample/metadata.py +44 -0
  1127. vllm/v1/sample/ops/__init__.py +0 -0
  1128. vllm/v1/sample/ops/bad_words.py +39 -0
  1129. vllm/v1/sample/ops/penalties.py +59 -0
  1130. vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
  1131. vllm/v1/sample/rejection_sampler.py +631 -0
  1132. vllm/v1/sample/sampler.py +286 -0
  1133. vllm/v1/sample/tpu/__init__.py +0 -0
  1134. vllm/v1/sample/tpu/metadata.py +124 -0
  1135. vllm/v1/sample/tpu/sampler.py +145 -0
  1136. vllm/v1/serial_utils.py +315 -0
  1137. vllm/v1/spec_decode/__init__.py +0 -0
  1138. vllm/v1/spec_decode/eagle.py +432 -0
  1139. vllm/v1/spec_decode/medusa.py +62 -0
  1140. vllm/v1/spec_decode/metadata.py +62 -0
  1141. vllm/v1/spec_decode/metrics.py +178 -0
  1142. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1143. vllm/v1/spec_decode/utils.py +46 -0
  1144. vllm/v1/structured_output/__init__.py +222 -0
  1145. vllm/v1/structured_output/backend_guidance.py +245 -0
  1146. vllm/v1/structured_output/backend_types.py +134 -0
  1147. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1148. vllm/v1/structured_output/request.py +86 -0
  1149. vllm/v1/structured_output/utils.py +175 -0
  1150. vllm/v1/utils.py +743 -0
  1151. vllm/v1/worker/__init__.py +0 -0
  1152. vllm/v1/worker/block_table.py +142 -0
  1153. vllm/v1/worker/cpu_model_runner.py +86 -0
  1154. vllm/v1/worker/cpu_worker.py +152 -0
  1155. vllm/v1/worker/gpu_input_batch.py +681 -0
  1156. vllm/v1/worker/gpu_model_runner.py +2320 -0
  1157. vllm/v1/worker/gpu_worker.py +393 -0
  1158. vllm/v1/worker/lora_model_runner_mixin.py +173 -0
  1159. vllm/v1/worker/tpu_model_runner.py +1673 -0
  1160. vllm/v1/worker/tpu_worker.py +299 -0
  1161. vllm/v1/worker/utils.py +111 -0
  1162. vllm/v1/worker/worker_base.py +65 -0
  1163. vllm/version.py +41 -0
  1164. vllm/vllm_flash_attn/.gitkeep +0 -0
  1165. vllm/worker/__init__.py +0 -0
  1166. vllm/worker/cache_engine.py +145 -0
  1167. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1168. vllm/worker/cpu_model_runner.py +671 -0
  1169. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1170. vllm/worker/cpu_worker.py +450 -0
  1171. vllm/worker/enc_dec_model_runner.py +555 -0
  1172. vllm/worker/hpu_model_runner.py +2320 -0
  1173. vllm/worker/hpu_worker.py +484 -0
  1174. vllm/worker/model_runner.py +2178 -0
  1175. vllm/worker/model_runner_base.py +282 -0
  1176. vllm/worker/multi_step_hpu_worker.py +123 -0
  1177. vllm/worker/multi_step_model_runner.py +911 -0
  1178. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1179. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1180. vllm/worker/multi_step_tpu_worker.py +108 -0
  1181. vllm/worker/multi_step_worker.py +197 -0
  1182. vllm/worker/neuron_model_runner.py +460 -0
  1183. vllm/worker/neuron_worker.py +193 -0
  1184. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1185. vllm/worker/pooling_model_runner.py +211 -0
  1186. vllm/worker/tpu_model_runner.py +909 -0
  1187. vllm/worker/tpu_worker.py +337 -0
  1188. vllm/worker/utils.py +53 -0
  1189. vllm/worker/worker.py +577 -0
  1190. vllm/worker/worker_base.py +646 -0
  1191. vllm/worker/xpu_model_runner.py +606 -0
  1192. vllm/worker/xpu_worker.py +186 -0
  1193. vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
  1194. vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
  1195. vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
  1196. vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
  1197. vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
vllm/_custom_ops.py ADDED
@@ -0,0 +1,1828 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import contextlib
5
+ import importlib
6
+ from typing import TYPE_CHECKING, Optional, Union
7
+
8
+ import torch
9
+ import torch.library
10
+
11
+ import vllm.envs as envs
12
+ from vllm.logger import init_logger
13
+ from vllm.platforms import current_platform
14
+ from vllm.scalar_type import ScalarType
15
+
16
+ logger = init_logger(__name__)
17
+
18
+ if not current_platform.is_tpu() and not current_platform.is_hpu():
19
+ try:
20
+ import vllm._C
21
+ except ImportError as e:
22
+ logger.warning("Failed to import from vllm._C with %r", e)
23
+
24
+ supports_moe_ops = False
25
+ with contextlib.suppress(ImportError):
26
+ import vllm._moe_C # noqa: F401
27
+ supports_moe_ops = True
28
+
29
+ if TYPE_CHECKING:
30
+
31
+ def register_fake(fn):
32
+ return lambda name: fn
33
+ else:
34
+ try:
35
+ from torch.library import register_fake
36
+ except ImportError:
37
+ from torch.library import impl_abstract as register_fake
38
+
39
+
40
+ # page attention ops
41
+ def paged_attention_v1(
42
+ out: torch.Tensor,
43
+ query: torch.Tensor,
44
+ key_cache: torch.Tensor,
45
+ value_cache: torch.Tensor,
46
+ num_kv_heads: int,
47
+ scale: float,
48
+ block_tables: torch.Tensor,
49
+ seq_lens: torch.Tensor,
50
+ block_size: int,
51
+ max_seq_len: int,
52
+ alibi_slopes: Optional[torch.Tensor],
53
+ kv_cache_dtype: str,
54
+ k_scale: torch.Tensor,
55
+ v_scale: torch.Tensor,
56
+ tp_rank: int = 0,
57
+ blocksparse_local_blocks: int = 0,
58
+ blocksparse_vert_stride: int = 0,
59
+ blocksparse_block_size: int = 64,
60
+ blocksparse_head_sliding_step: int = 0,
61
+ ) -> None:
62
+ torch.ops._C.paged_attention_v1(
63
+ out, query, key_cache, value_cache, num_kv_heads, scale, block_tables,
64
+ seq_lens, block_size, max_seq_len, alibi_slopes, kv_cache_dtype,
65
+ k_scale, v_scale, tp_rank, blocksparse_local_blocks,
66
+ blocksparse_vert_stride, blocksparse_block_size,
67
+ blocksparse_head_sliding_step)
68
+
69
+
70
+ def paged_attention_v2(
71
+ out: torch.Tensor,
72
+ exp_sum: torch.Tensor,
73
+ max_logits: torch.Tensor,
74
+ tmp_out: torch.Tensor,
75
+ query: torch.Tensor,
76
+ key_cache: torch.Tensor,
77
+ value_cache: torch.Tensor,
78
+ num_kv_heads: int,
79
+ scale: float,
80
+ block_tables: torch.Tensor,
81
+ seq_lens: torch.Tensor,
82
+ block_size: int,
83
+ max_seq_len: int,
84
+ alibi_slopes: Optional[torch.Tensor],
85
+ kv_cache_dtype: str,
86
+ k_scale: torch.Tensor,
87
+ v_scale: torch.Tensor,
88
+ tp_rank: int = 0,
89
+ blocksparse_local_blocks: int = 0,
90
+ blocksparse_vert_stride: int = 0,
91
+ blocksparse_block_size: int = 64,
92
+ blocksparse_head_sliding_step: int = 0,
93
+ ) -> None:
94
+ torch.ops._C.paged_attention_v2(
95
+ out, exp_sum, max_logits, tmp_out, query, key_cache, value_cache,
96
+ num_kv_heads, scale, block_tables, seq_lens, block_size, max_seq_len,
97
+ alibi_slopes, kv_cache_dtype, k_scale, v_scale, tp_rank,
98
+ blocksparse_local_blocks, blocksparse_vert_stride,
99
+ blocksparse_block_size, blocksparse_head_sliding_step)
100
+
101
+
102
+ def paged_attention_rocm(
103
+ out: torch.Tensor,
104
+ exp_sum: torch.Tensor,
105
+ max_logits: torch.Tensor,
106
+ tmp_out: torch.Tensor,
107
+ query: torch.Tensor,
108
+ key_cache: torch.Tensor,
109
+ value_cache: torch.Tensor,
110
+ num_kv_heads: int,
111
+ scale: float,
112
+ block_tables: torch.Tensor,
113
+ seq_lens: torch.Tensor,
114
+ query_start_loc: Optional[torch.Tensor],
115
+ block_size: int,
116
+ max_seq_len: int,
117
+ alibi_slopes: Optional[torch.Tensor],
118
+ kv_cache_dtype: str,
119
+ k_scale: torch.Tensor,
120
+ v_scale: torch.Tensor,
121
+ fp8_out_scale: Optional[torch.Tensor] = None,
122
+ ) -> None:
123
+ torch.ops._rocm_C.paged_attention(out, exp_sum, max_logits, tmp_out, query,
124
+ key_cache, value_cache, num_kv_heads,
125
+ scale, block_tables, seq_lens,
126
+ query_start_loc, block_size, max_seq_len,
127
+ alibi_slopes, kv_cache_dtype, k_scale,
128
+ v_scale, fp8_out_scale)
129
+
130
+
131
+ def mla_decode_kvcache_cpu(
132
+ out: torch.Tensor,
133
+ query: torch.Tensor,
134
+ kv_cache: torch.Tensor,
135
+ scale: float,
136
+ block_tables: torch.Tensor,
137
+ seq_lens: torch.Tensor,
138
+ ) -> None:
139
+ torch.ops._C_cpu.mla_decode_kvcache(out, query, kv_cache, scale,
140
+ block_tables, seq_lens)
141
+
142
+
143
+ # merge attn states ops
144
+ def merge_attn_states(output: torch.Tensor,
145
+ prefix_output: torch.Tensor,
146
+ prefix_lse: torch.Tensor,
147
+ suffix_output: torch.Tensor,
148
+ suffix_lse: torch.Tensor,
149
+ output_lse: Optional[torch.Tensor] = None) -> None:
150
+ torch.ops._C.merge_attn_states(output, output_lse, prefix_output,
151
+ prefix_lse, suffix_output, suffix_lse)
152
+
153
+
154
+ def convert_vertical_slash_indexes(
155
+ q_seqlens: torch.Tensor, # [BATCH, ]
156
+ kv_seqlens: torch.Tensor, # [BATCH, ]
157
+ vertical_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
158
+ slash_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
159
+ context_size: int,
160
+ block_size_M: int,
161
+ block_size_N: int,
162
+ causal: bool = True,
163
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
164
+ batch_size = slash_indexes.size(0)
165
+ num_heads = slash_indexes.size(1)
166
+ nnz_slash = slash_indexes.size(2)
167
+ nnz_vertical = vertical_indexes.size(2)
168
+ num_rows = (context_size + block_size_M - 1) // block_size_M
169
+
170
+ block_count = torch.zeros(batch_size,
171
+ num_heads,
172
+ num_rows,
173
+ dtype=q_seqlens.dtype,
174
+ device=q_seqlens.device)
175
+ block_offset = torch.zeros(batch_size,
176
+ num_heads,
177
+ num_rows,
178
+ nnz_slash,
179
+ dtype=q_seqlens.dtype,
180
+ device=q_seqlens.device)
181
+ column_count = torch.zeros(batch_size,
182
+ num_heads,
183
+ num_rows,
184
+ dtype=q_seqlens.dtype,
185
+ device=q_seqlens.device)
186
+ column_index = torch.zeros(batch_size,
187
+ num_heads,
188
+ num_rows,
189
+ nnz_vertical,
190
+ dtype=q_seqlens.dtype,
191
+ device=q_seqlens.device)
192
+
193
+ torch.ops._C.convert_vertical_slash_indexes(
194
+ block_count, block_offset, column_count, column_index, q_seqlens,
195
+ kv_seqlens, vertical_indexes, slash_indexes, context_size,
196
+ block_size_M, block_size_N, causal)
197
+ return block_count, block_offset, column_count, column_index
198
+
199
+
200
+ def convert_vertical_slash_indexes_mergehead(
201
+ q_seqlens: torch.Tensor, # [BATCH, ]
202
+ kv_seqlens: torch.Tensor, # [BATCH, ]
203
+ vertical_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
204
+ slash_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
205
+ # [N_HEADS] : different head use different number of indices
206
+ vertical_indices_count: torch.Tensor,
207
+ slash_indices_count: torch.Tensor,
208
+ context_size: int,
209
+ block_size_M: int,
210
+ block_size_N: int,
211
+ causal: bool = True,
212
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
213
+ batch_size = slash_indexes.size(0)
214
+ num_heads = slash_indexes.size(1)
215
+ nnz_slash = slash_indexes.size(2)
216
+ nnz_vertical = vertical_indexes.size(2)
217
+ num_rows = (context_size + block_size_M - 1) // block_size_M
218
+
219
+ block_count = torch.empty(batch_size,
220
+ num_heads,
221
+ num_rows,
222
+ dtype=q_seqlens.dtype,
223
+ device=q_seqlens.device)
224
+ block_offset = torch.empty(batch_size,
225
+ num_heads,
226
+ num_rows,
227
+ nnz_slash,
228
+ dtype=q_seqlens.dtype,
229
+ device=q_seqlens.device)
230
+ column_count = torch.empty(batch_size,
231
+ num_heads,
232
+ num_rows,
233
+ dtype=q_seqlens.dtype,
234
+ device=q_seqlens.device)
235
+ column_index = torch.empty(batch_size,
236
+ num_heads,
237
+ num_rows,
238
+ nnz_vertical,
239
+ dtype=q_seqlens.dtype,
240
+ device=q_seqlens.device)
241
+
242
+ torch.ops._C.convert_vertical_slash_indexes_mergehead(
243
+ block_count, block_offset, column_count, column_index, q_seqlens,
244
+ kv_seqlens, vertical_indexes, slash_indexes, vertical_indices_count,
245
+ slash_indices_count, context_size, block_size_M, block_size_N, causal)
246
+ return block_count, block_offset, column_count, column_index
247
+
248
+
249
+ # pos encoding ops
250
+ def rotary_embedding(
251
+ positions: torch.Tensor,
252
+ query: torch.Tensor,
253
+ key: Optional[torch.Tensor],
254
+ head_size: int,
255
+ cos_sin_cache: torch.Tensor,
256
+ is_neox: bool,
257
+ ) -> None:
258
+ torch.ops._C.rotary_embedding(positions, query, key, head_size,
259
+ cos_sin_cache, is_neox)
260
+
261
+
262
+ def batched_rotary_embedding(positions: torch.Tensor, query: torch.Tensor,
263
+ key: Optional[torch.Tensor], head_size: int,
264
+ cos_sin_cache: torch.Tensor, is_neox: bool,
265
+ rot_dim: int,
266
+ cos_sin_cache_offsets: torch.Tensor) -> None:
267
+ torch.ops._C.batched_rotary_embedding(positions, query, key, head_size,
268
+ cos_sin_cache, is_neox, rot_dim,
269
+ cos_sin_cache_offsets)
270
+
271
+
272
+ # layer norm ops
273
+ def rms_norm(out: torch.Tensor, input: torch.Tensor, weight: torch.Tensor,
274
+ epsilon: float) -> None:
275
+ # TODO: Remove this contiguous call when the kernel is updated to support non-contiguous input
276
+ input_contiguous = input.contiguous()
277
+ torch.ops._C.rms_norm(out, input_contiguous, weight, epsilon)
278
+
279
+
280
+ def fused_add_rms_norm(input: torch.Tensor, residual: torch.Tensor,
281
+ weight: torch.Tensor, epsilon: float) -> None:
282
+ torch.ops._C.fused_add_rms_norm(input, residual, weight, epsilon)
283
+
284
+
285
+ def apply_repetition_penalties_torch(
286
+ logits: torch.Tensor, prompt_mask: torch.Tensor,
287
+ output_mask: torch.Tensor, repetition_penalties: torch.Tensor) -> None:
288
+ repetition_penalties = repetition_penalties.unsqueeze(dim=1).repeat(
289
+ 1, logits.size(1))
290
+ # If token appears in prompt or output, apply, otherwise use 1.0 for no-op.
291
+ penalties = torch.where(prompt_mask | output_mask, repetition_penalties,
292
+ 1.0)
293
+ # If logits are positive, divide by penalty, otherwise multiply by penalty.
294
+ scaling = torch.where(logits > 0, 1.0 / penalties, penalties)
295
+ logits *= scaling
296
+
297
+
298
+ def apply_repetition_penalties_cuda(
299
+ logits: torch.Tensor, prompt_mask: torch.Tensor,
300
+ output_mask: torch.Tensor, repetition_penalties: torch.Tensor) -> None:
301
+ torch.ops._C.apply_repetition_penalties_(logits, prompt_mask, output_mask,
302
+ repetition_penalties)
303
+
304
+
305
+ def apply_repetition_penalties(logits: torch.Tensor, prompt_mask: torch.Tensor,
306
+ output_mask: torch.Tensor,
307
+ repetition_penalties: torch.Tensor) -> None:
308
+ """Apply repetition penalties to logits in-place.
309
+
310
+ Args:
311
+ logits: The logits tensor of shape [num_seqs, vocab_size].
312
+ prompt_mask: A boolean tensor indicating which tokens appear in the prompt.
313
+ output_mask: A boolean tensor indicating which tokens appear in the output.
314
+ repetition_penalties: The repetition penalties of shape (num_seqs, ).
315
+ """
316
+ if current_platform.is_cuda() and logits.is_contiguous():
317
+ apply_repetition_penalties_cuda(logits, prompt_mask, output_mask,
318
+ repetition_penalties)
319
+ else:
320
+ apply_repetition_penalties_torch(logits, prompt_mask, output_mask,
321
+ repetition_penalties)
322
+
323
+
324
+ def advance_step_flashattn(num_seqs: int, num_queries: int, block_size: int,
325
+ input_tokens: torch.Tensor,
326
+ sampled_token_ids: torch.Tensor,
327
+ input_positions: torch.Tensor,
328
+ seq_lens: torch.Tensor, slot_mapping: torch.Tensor,
329
+ block_tables: torch.Tensor) -> None:
330
+ """Advance a step on GPU for existing inputs for a multi-step runner"""
331
+ return torch.ops._C.advance_step_flashattn(num_seqs, num_queries,
332
+ block_size, input_tokens,
333
+ sampled_token_ids,
334
+ input_positions, seq_lens,
335
+ slot_mapping, block_tables)
336
+
337
+
338
+ def advance_step_flashinfer(num_seqs: int, num_queries: int, block_size: int,
339
+ input_tokens: torch.Tensor,
340
+ sampled_token_ids: torch.Tensor,
341
+ input_positions: torch.Tensor,
342
+ seq_lens: torch.Tensor, slot_mapping: torch.Tensor,
343
+ block_tables: torch.Tensor,
344
+ paged_kv_indices: torch.Tensor,
345
+ paged_kv_indptr: torch.Tensor,
346
+ paged_kv_last_page_len: torch.Tensor,
347
+ block_table_bound: torch.Tensor) -> None:
348
+
349
+ return torch.ops._C.advance_step_flashinfer(
350
+ num_seqs, num_queries, block_size, input_tokens, sampled_token_ids,
351
+ input_positions, seq_lens, slot_mapping, block_tables,
352
+ paged_kv_indices, paged_kv_indptr, paged_kv_last_page_len,
353
+ block_table_bound)
354
+
355
+
356
+ # fused quant layer norm ops
357
+ def rms_norm_dynamic_per_token_quant(
358
+ input: torch.Tensor,
359
+ weight: torch.Tensor,
360
+ epsilon: float,
361
+ quant_dtype: torch.dtype,
362
+ scale_ub: Optional[torch.Tensor] = None,
363
+ residual: Optional[torch.Tensor] = None
364
+ ) -> tuple[torch.Tensor, torch.Tensor]:
365
+ output = torch.empty_like(input, dtype=quant_dtype)
366
+ scales = torch.empty((input.numel() // input.shape[-1], 1),
367
+ device=input.device,
368
+ dtype=torch.float32)
369
+
370
+ torch.ops._C.rms_norm_dynamic_per_token_quant(output, input, weight,
371
+ scales, epsilon, scale_ub,
372
+ residual)
373
+ return output, scales
374
+
375
+
376
+ # quantization ops
377
+ # awq
378
+ def awq_dequantize(qweight: torch.Tensor, scales: torch.Tensor,
379
+ zeros: torch.Tensor, split_k_iters: int, thx: int,
380
+ thy: int) -> torch.Tensor:
381
+ if envs.VLLM_USE_TRITON_AWQ:
382
+ from vllm.model_executor.layers.quantization.awq_triton import (
383
+ awq_dequantize_triton)
384
+ return awq_dequantize_triton(qweight, scales, zeros)
385
+ return torch.ops._C.awq_dequantize(qweight, scales, zeros, split_k_iters,
386
+ thx, thy)
387
+
388
+
389
+ def awq_gemm(input: torch.Tensor, qweight: torch.Tensor, qzeros: torch.Tensor,
390
+ scales: torch.Tensor, split_k_iters: int) -> torch.Tensor:
391
+ if envs.VLLM_USE_TRITON_AWQ:
392
+ from vllm.model_executor.layers.quantization.awq_triton import (
393
+ awq_gemm_triton)
394
+ return awq_gemm_triton(input, qweight, qzeros, scales, split_k_iters)
395
+ return torch.ops._C.awq_gemm(input, qweight, qzeros, scales, split_k_iters)
396
+
397
+
398
+ # gptq
399
+ def gptq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
400
+ b_gptq_qzeros: torch.Tensor, b_gptq_scales: torch.Tensor,
401
+ b_g_idx: torch.Tensor, use_exllama: bool,
402
+ bit: int) -> torch.Tensor:
403
+ return torch.ops._C.gptq_gemm(a, b_q_weight, b_gptq_qzeros, b_gptq_scales,
404
+ b_g_idx, use_exllama, bit)
405
+
406
+
407
+ if hasattr(torch.ops._C, "gptq_gemm"):
408
+
409
+ @register_fake("_C::gptq_gemm")
410
+ def _gptq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
411
+ b_gptq_qzeros: torch.Tensor,
412
+ b_gptq_scales: torch.Tensor, b_g_idx: torch.Tensor,
413
+ use_exllama: bool, bit: int) -> torch.Tensor:
414
+ return torch.empty((a.size(0), b_q_weight.size(1)),
415
+ dtype=a.dtype,
416
+ device=a.device)
417
+
418
+
419
+ def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor,
420
+ bit: int) -> None:
421
+ torch.ops._C.gptq_shuffle(q_weight, q_perm, bit)
422
+
423
+
424
+ # marlin
425
+ def marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
426
+ b_scales: torch.Tensor, workspace: torch.Tensor, size_m: int,
427
+ size_n: int, size_k: int) -> torch.Tensor:
428
+ return torch.ops._C.marlin_gemm(a, b_q_weight, b_scales, workspace, size_m,
429
+ size_n, size_k)
430
+
431
+
432
+ # marlin_24
433
+ def gptq_marlin_24_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
434
+ b_meta: torch.Tensor, b_scales: torch.Tensor,
435
+ workspace: torch.Tensor, b_q_type: ScalarType,
436
+ size_m: int, size_n: int, size_k: int) -> torch.Tensor:
437
+ return torch.ops._C.gptq_marlin_24_gemm(a, b_q_weight, b_meta, b_scales,
438
+ workspace, b_q_type.id, size_m,
439
+ size_n, size_k)
440
+
441
+
442
+ if hasattr(torch.ops._C, "gptq_marlin_24_gemm"):
443
+
444
+ @register_fake("_C::gptq_marlin_24_gemm")
445
+ def _gptq_marlin_24_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
446
+ b_meta: torch.Tensor, b_scales: torch.Tensor,
447
+ workspace: torch.Tensor,
448
+ b_q_type: ScalarType, size_m: torch.SymInt,
449
+ size_n: torch.SymInt,
450
+ size_k: torch.SymInt) -> torch.Tensor:
451
+ return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
452
+
453
+ @register_fake("_C::gptq_marlin_gemm")
454
+ def _gptq_marlin_gemm_fake(a: torch.Tensor,
455
+ c: Optional[torch.Tensor],
456
+ b_q_weight: torch.Tensor,
457
+ b_scales: torch.Tensor,
458
+ global_scale: Optional[torch.Tensor],
459
+ b_zeros: Optional[torch.Tensor],
460
+ g_idx: Optional[torch.Tensor],
461
+ perm: Optional[torch.Tensor],
462
+ workspace: torch.Tensor,
463
+ b_q_type_id: int,
464
+ size_m: torch.SymInt,
465
+ size_n: torch.SymInt,
466
+ size_k: torch.SymInt,
467
+ is_k_full: bool = True,
468
+ use_atomic_add: bool = False,
469
+ use_fp32_reduce: bool = False,
470
+ is_zp_float: bool = False) -> torch.Tensor:
471
+ return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
472
+
473
+ @register_fake("_C::marlin_qqq_gemm")
474
+ def _marlin_qqq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
475
+ s_tok: torch.Tensor, s_ch: torch.Tensor,
476
+ s_group: torch.Tensor, workspace: torch.Tensor,
477
+ size_m: torch.SymInt, size_n: torch.SymInt,
478
+ size_k: torch.SymInt) -> torch.Tensor:
479
+ return torch.empty((size_m, size_n),
480
+ dtype=torch.float16,
481
+ device=a.device)
482
+
483
+ @register_fake("_C::marlin_gemm")
484
+ def _marlin_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
485
+ b_scales: torch.Tensor, workspace: torch.Tensor,
486
+ size_m: torch.SymInt, size_n: torch.SymInt,
487
+ size_k: torch.SymInt) -> torch.Tensor:
488
+ return torch.empty((size_m, size_n),
489
+ dtype=torch.float16,
490
+ device=a.device)
491
+
492
+ @register_fake("_C::awq_dequantize")
493
+ def _awq_dequantize_fake(qweight: torch.Tensor, scales: torch.Tensor,
494
+ zeros: torch.Tensor, split_k_iters: torch.SymInt,
495
+ thx: int, thy: int) -> torch.Tensor:
496
+ in_c = qweight.size(0)
497
+ qout_c = qweight.size(1)
498
+ out_c = qout_c * 8
499
+ return torch.empty((in_c, out_c),
500
+ dtype=scales.dtype,
501
+ device=scales.device)
502
+
503
+ @register_fake("_C::awq_gemm")
504
+ def _awq_gemm_fake(input: torch.Tensor, qweight: torch.Tensor,
505
+ qzeros: torch.Tensor, scales: torch.Tensor,
506
+ split_k_iters: torch.SymInt) -> torch.Tensor:
507
+ num_in_feats = input.size(0)
508
+ return torch.empty((split_k_iters, num_in_feats, qweight.size(1) * 8),
509
+ dtype=input.dtype,
510
+ device=input.device).sum(0)
511
+
512
+ @register_fake("_C::aqlm_gemm")
513
+ def _aqlm_gemm_fake(input: torch.Tensor, codes: torch.Tensor,
514
+ codebooks: torch.Tensor, scales: torch.Tensor,
515
+ codebook_partition_sizes: list[int],
516
+ bias: Optional[torch.Tensor]) -> torch.Tensor:
517
+ out_features = codes.size(0) * codebooks.size(2)
518
+ flat_input = input.reshape((-1, input.size(-1)))
519
+ flat_output = torch.empty((flat_input.size(0), out_features),
520
+ dtype=input.dtype,
521
+ device=input.device)
522
+
523
+ output_sizes = list(input.shape)
524
+ output_sizes.pop()
525
+ output_sizes.append(-1)
526
+ return flat_output.reshape(tuple(output_sizes))
527
+
528
+ @register_fake("_C::aqlm_dequant")
529
+ def _aqlm_dequant_fake(
530
+ codes: torch.Tensor, codebooks: torch.Tensor,
531
+ codebook_partition_sizes: list[int]) -> torch.Tensor:
532
+ in_features = codes.size(1) * 8
533
+ out_features = codes.size(0)
534
+ return torch.empty((out_features, in_features),
535
+ dtype=codebooks.dtype,
536
+ device=codebooks.device)
537
+
538
+ @register_fake("_C::machete_mm")
539
+ def machete_mm_fake(
540
+ a: torch.Tensor,
541
+ # b_q Should be the tensor returned by machete_prepack_B
542
+ b_q: torch.Tensor,
543
+ b_type: ScalarType,
544
+ out_type: Optional[torch.dtype] = None,
545
+ b_group_scales: Optional[torch.Tensor] = None,
546
+ b_group_zeros: Optional[torch.Tensor] = None,
547
+ b_group_size: Optional[int] = None,
548
+ b_channel_scales: Optional[torch.Tensor] = None,
549
+ a_token_scales: Optional[torch.Tensor] = None,
550
+ schedule: Optional[str] = None,
551
+ ) -> torch.Tensor:
552
+ m = a.size(0)
553
+ n = b_q.size(1)
554
+ return torch.empty((m, n), device=a.device, dtype=a.dtype)
555
+
556
+ @register_fake("_C::machete_prepack_B")
557
+ def machete_prepack_B_fake(
558
+ b_q_weight: torch.Tensor, a_type: torch.dtype, b_type: ScalarType,
559
+ group_scales_type: Optional[torch.dtype]) -> torch.Tensor:
560
+ return torch.empty_like(b_q_weight,
561
+ memory_format=torch.contiguous_format)
562
+
563
+
564
+ if hasattr(torch.ops._C, "allspark_w8a16_gemm"):
565
+
566
+ @register_fake("_C::allspark_w8a16_gemm")
567
+ def _allspark_w8a16_gemm_fake(a: torch.Tensor, b_qweight: torch.Tensor,
568
+ b_scales: torch.Tensor,
569
+ b_qzeros: Optional[torch.Tensor],
570
+ n: torch.SymInt, group_size: torch.SymInt,
571
+ sm_count: torch.SymInt,
572
+ sm_version: torch.SymInt,
573
+ CUBLAS_M_THRESHOLD: torch.SymInt,
574
+ has_zp: bool,
575
+ n32k16_reorder: bool) -> torch.Tensor:
576
+ m = a.size(0)
577
+ return torch.empty((m, n), device=a.device, dtype=a.dtype)
578
+
579
+
580
+ if hasattr(torch.ops._C, "ggml_dequantize"):
581
+
582
+ @register_fake("_C::ggml_dequantize")
583
+ def _ggml_dequantize_fake(
584
+ W: torch.Tensor,
585
+ quant_type: int,
586
+ m: torch.SymInt,
587
+ n: torch.SymInt,
588
+ dtype: Optional[torch.dtype] = None) -> torch.Tensor:
589
+ return torch.empty((m, n), dtype=torch.float16, device=W.device)
590
+
591
+ @register_fake("_C::ggml_mul_mat_vec_a8")
592
+ def _ggml_mul_mat_vec_a8_fake(
593
+ W: torch.Tensor,
594
+ X: torch.Tensor,
595
+ quant_type: int,
596
+ row: torch.SymInt,
597
+ ) -> torch.Tensor:
598
+ return torch.empty((1, row), dtype=X.dtype, device=W.device)
599
+
600
+ @register_fake("_C::ggml_mul_mat_a8")
601
+ def _ggml_mul_mat_a8_fake(
602
+ W: torch.Tensor,
603
+ X: torch.Tensor,
604
+ quant_type: int,
605
+ row: torch.SymInt,
606
+ ) -> torch.Tensor:
607
+ batch = X.size(0)
608
+ return torch.empty((batch, row), dtype=X.dtype, device=W.device)
609
+
610
+ @register_fake("_C::ggml_moe_a8")
611
+ def _ggml_moe_a8_fake(
612
+ X: torch.Tensor,
613
+ W: torch.Tensor,
614
+ sorted_token_ids: torch.Tensor,
615
+ expert_ids: torch.Tensor,
616
+ num_tokens_post_padded: torch.Tensor,
617
+ quant_type: int,
618
+ row: torch.SymInt,
619
+ top_k: torch.SymInt,
620
+ tokens: torch.SymInt,
621
+ ) -> torch.Tensor:
622
+ tokens = X.size(0)
623
+ return torch.empty((tokens * top_k, row),
624
+ dtype=torch.float16,
625
+ device=W.device)
626
+
627
+
628
+ if hasattr(torch.ops._C, "ggml_moe_a8_vec"):
629
+
630
+ @register_fake("_C::ggml_moe_a8_vec")
631
+ def _ggml_moe_a8_vec_fake(
632
+ X: torch.Tensor,
633
+ W: torch.Tensor,
634
+ topk_ids: torch.Tensor,
635
+ top_k: int,
636
+ quant_type: int,
637
+ row: torch.SymInt,
638
+ tokens: torch.SymInt,
639
+ ) -> torch.Tensor:
640
+ tokens = X.size(0)
641
+ return torch.empty((tokens * top_k, row),
642
+ dtype=X.dtype,
643
+ device=W.device)
644
+
645
+
646
+ # cutlass
647
+ def cutlass_scaled_mm_supports_fp4(cuda_device_capability: int) -> bool:
648
+ return torch.ops._C.cutlass_scaled_mm_supports_fp4(cuda_device_capability)
649
+
650
+
651
+ def cutlass_scaled_fp4_mm(a: torch.Tensor, b: torch.Tensor,
652
+ block_scale_a: torch.Tensor,
653
+ block_scale_b: torch.Tensor, alpha: torch.Tensor,
654
+ out_dtype: torch.dtype) -> torch.Tensor:
655
+ assert a.ndim == 2 and b.ndim == 2
656
+ m, n = a.shape[0], b.shape[0]
657
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
658
+ torch.ops._C.cutlass_scaled_fp4_mm(out, a, b, block_scale_a, block_scale_b,
659
+ alpha)
660
+ return out
661
+
662
+
663
+ def cutlass_scaled_mm_supports_fp8(cuda_device_capability: int) -> bool:
664
+ return torch.ops._C.cutlass_scaled_mm_supports_fp8(cuda_device_capability)
665
+
666
+
667
+ def cutlass_scaled_mm_supports_block_fp8(cuda_device_capability: int) -> bool:
668
+ return torch.ops._C.cutlass_scaled_mm_supports_block_fp8(
669
+ cuda_device_capability)
670
+
671
+
672
+ def cutlass_scaled_mm(a: torch.Tensor,
673
+ b: torch.Tensor,
674
+ scale_a: torch.Tensor,
675
+ scale_b: torch.Tensor,
676
+ out_dtype: torch.dtype,
677
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
678
+ """
679
+ `cutlass_scaled_mm` implements a fused version of
680
+ `output = torch.mm((scale_a * a), (scale_b * b)).to(out_dtype)`
681
+ where scale_a * a and scale_b * b are implemented using numpy-style
682
+ broadcasting.
683
+
684
+ In order to support blockwise scaling like found in DeepSeek V3 we also
685
+ support extended "group" broadcast rules. We extend the numpy-style
686
+ broadcasting rules with the following rule:
687
+ "if the extent of a dimension in the source shape is between 1 and
688
+ corresponding extent in the target shape we repeat each element along
689
+ that dimension src_shape[dim] // target_shape[dim] times consecutively"
690
+ example if we have:
691
+ a = [[1, 2], and target_shape = (2, 4)
692
+ [3, 4]]
693
+ then we would expand a to:
694
+ a = [[1, 1, 2, 2],
695
+ [3, 3, 4, 4]]
696
+ currently we only support the case:
697
+ scale_a.shape * [1, 128] == a.shape
698
+ scale_b.shape * [128, 128] == b.shape
699
+ """
700
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
701
+ assert bias is None or bias.shape[0] == b.shape[
702
+ 1] and bias.dtype == out_dtype
703
+
704
+ m = a.shape[0]
705
+ n = b.shape[1]
706
+
707
+ cutlass_compatible_b = (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
708
+ if current_platform.is_rocm() or not cutlass_compatible_b:
709
+ triton_scaled_mm_module = importlib.import_module(
710
+ "vllm.model_executor.layers.quantization.compressed_tensors."
711
+ "triton_scaled_mm")
712
+ triton_scaled_mm = triton_scaled_mm_module.triton_scaled_mm
713
+ return triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
714
+
715
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
716
+
717
+ torch.ops._C.cutlass_scaled_mm(out, a, b, scale_a, scale_b, bias)
718
+
719
+ return out
720
+
721
+
722
+ def cutlass_scaled_mm_azp(a: torch.Tensor,
723
+ b: torch.Tensor,
724
+ scale_a: torch.Tensor,
725
+ scale_b: torch.Tensor,
726
+ out_dtype: torch.dtype,
727
+ azp_adj: torch.Tensor,
728
+ azp: Optional[torch.Tensor] = None,
729
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
730
+ """
731
+ :param azp_adj: In the per-tensor case, this should include the azp.
732
+ Always per-channel.
733
+ :param azp: Only set in the per-token case. Per-token if set.
734
+ """
735
+ assert (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
736
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
737
+ assert bias is None or bias.numel(
738
+ ) == b.shape[1] and bias.dtype == out_dtype
739
+ assert azp is None or azp.numel() == a.shape[0]
740
+
741
+ m = a.shape[0]
742
+ n = b.shape[1]
743
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
744
+
745
+ torch.ops._C.cutlass_scaled_mm_azp(out, a, b, scale_a, scale_b, azp_adj,
746
+ azp, bias)
747
+ return out
748
+
749
+
750
+ def cutlass_sparse_scaled_mm_supported(cuda_device_capability: int) -> bool:
751
+ return torch.ops._C.cutlass_sparse_scaled_mm_supported(
752
+ cuda_device_capability)
753
+
754
+
755
+ def cutlass_group_gemm_supported(cuda_device_capability: int) -> bool:
756
+ return torch.ops._C.cutlass_group_gemm_supported(cuda_device_capability)
757
+
758
+ def cutlass_sparse_compress(a: torch.Tensor) \
759
+ -> tuple[torch.Tensor, torch.Tensor]:
760
+ """
761
+ Compresses a sparse matrix for use with Cutlass sparse operations.
762
+
763
+ This function takes a dense tensor and compresses it into two components:
764
+ non-zero elements and metadata. The compressed representation is compatible
765
+ with Cutlass sparse kernels.
766
+
767
+ Args:
768
+ a (torch.Tensor):
769
+ The input tensor to be compressed. Must have one of the following data types:
770
+ - `torch.int8`
771
+ - `torch.float8_e4m3fn`
772
+ - `torch.bfloat16`
773
+ - `torch.float16`
774
+
775
+ Returns:
776
+ tuple[torch.Tensor, torch.Tensor]:
777
+ A tuple containing:
778
+ - `a_nzs` (torch.Tensor): A tensor containing non-zero elements of `a`.
779
+ - `a_meta` (torch.Tensor): A tensor containing metadata for the sparse representation.
780
+
781
+ Raises:
782
+ ValueError: If the compression operation fails.
783
+
784
+ Notes:
785
+ - The `a_meta` tensor has a data type of `torch.uint8`.
786
+ - Each metadata element encodes the sparsity of 4 non-zero elements (i.e., `elemsPerMetaElem = 4`).
787
+ - The shape of `a_nzs` is `(m, k // 2)`, where `m` and `k` are the dimensions of the input tensor.
788
+ - The shape of `a_meta` is `(m, k // 2 // elemsPerMetaElem)`.
789
+ """
790
+ assert (a.dtype in [
791
+ torch.int8, torch.float8_e4m3fn, torch.bfloat16, torch.float16
792
+ ])
793
+ assert (a.is_contiguous())
794
+
795
+ # a_meta.dtype: torch.uint8 so elemsPerMetaElem = 8b / 2b_per_nz = 4
796
+ elemsPerMetaElem = 4
797
+ assert (a.shape[1] % (2 * elemsPerMetaElem) == 0)
798
+
799
+ return torch.ops._C.cutlass_sparse_compress(a)
800
+
801
+
802
+ def cutlass_scaled_sparse_mm(
803
+ a: torch.Tensor,
804
+ bt_nzs: torch.Tensor,
805
+ bt_meta: torch.Tensor,
806
+ scale_a: torch.Tensor,
807
+ scale_b: torch.Tensor,
808
+ out_dtype: torch.dtype,
809
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
810
+ """
811
+ Performs a scaled sparse matrix multiplication using Cutlass.
812
+
813
+ Steps:
814
+ 1. Create a dense matrix `a` of shape (m, k) on the CUDA device:
815
+ `a = torch.randn((m, k), device='cuda')`.
816
+
817
+ 2. Create a dense matrix `b` of shape (k, n) on the CUDA device:
818
+ `b = torch.randn((k, n), device='cuda')`.
819
+
820
+ 3. Prune matrix `b` to 2:4 sparsity along the specified dimension:
821
+ `b = prune_to_2_4(b, dim=0)`.
822
+
823
+ 4. Compress the transposed sparse matrix `b.t()`:
824
+ `bt_nzs, bt_meta = cutlass_sparse_compress(b.t())`.
825
+
826
+ 5. Perform sparse matrix multiplication using the compressed matrix,
827
+ applying scaling factors for `a` and `b`, and the output data type:
828
+ `out = cutlass_scaled_sparse_mm(a, bt_nzs, bt_meta, scale_a, scale_b, out_dtype)`.
829
+
830
+ Returns:
831
+ - The result of the scaled sparse matrix multiplication.
832
+ """
833
+ assert (bt_nzs.shape[0] % 16 == 0 and bt_nzs.shape[1] % 16 == 0)
834
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
835
+ assert bias is None or bias.shape[0] == bt_nzs.shape[0] \
836
+ and bias.dtype == out_dtype
837
+
838
+ m = a.shape[0]
839
+ n = bt_nzs.shape[0]
840
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
841
+
842
+ torch.ops._C.cutlass_scaled_sparse_mm(out, a, bt_nzs, bt_meta, scale_a,
843
+ scale_b, bias)
844
+
845
+ return out
846
+
847
+
848
+ def get_cutlass_moe_mm_data(topk_ids: torch.Tensor,
849
+ expert_offsets: torch.Tensor,
850
+ problem_sizes1: torch.Tensor,
851
+ problem_sizes2: torch.Tensor,
852
+ input_permutation: torch.Tensor,
853
+ output_permutation: torch.Tensor,
854
+ num_experts: int,
855
+ n: int,
856
+ k: int,
857
+ blockscale_offsets: Optional[torch.Tensor] = None):
858
+ """
859
+ Prepare data necessary to perform CUTLASS grouped matrix multiplications
860
+ used in CUTLASS-based fused MoE.
861
+
862
+ The function takes in topk_ids (token-expert mapping) and uses it to
863
+ compute:
864
+ - expert_offsets: Indices that mark at which token index each expert begins
865
+ its computation after the input is sorted with
866
+ input_permutation. The number of tokens computed with
867
+ expert E is expert_offsets[E + 1] - expert_offsets[E]
868
+ - problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
869
+ multiplication in two grouped MMs used in
870
+ the fused MoE operation.
871
+ - input_permutation: Permutation that must be used to shuffle the input
872
+ before executing the MMs.
873
+ - output_permutation: Permutation that must be used to shuffle the output
874
+ after executing the MMs.
875
+ - blockscale_offsets: Optional argument passed for fp4 moe. Indices that
876
+ mark at which block scale index each expert begins
877
+ its computation. The number of block scale rows
878
+ computed with expert E is blockscale_offsets[E + 1] -
879
+ blockscale_offsets[E]
880
+ """
881
+ return torch.ops._C.get_cutlass_moe_mm_data(topk_ids, expert_offsets,
882
+ problem_sizes1, problem_sizes2,
883
+ input_permutation,
884
+ output_permutation,
885
+ num_experts, n, k,
886
+ blockscale_offsets)
887
+
888
+
889
+ def shuffle_rows(input_tensor: torch.Tensor, dst2src_map: torch.Tensor):
890
+ """
891
+ Shuffle and expand the input tensor according to the dst2src_map and store the result in output_tensor.
892
+ This is used in MoE to permute the input tensor before performing grouped matrix multiplications.
893
+ """
894
+ num_tokens_permuted = dst2src_map.shape[0]
895
+ output_tensor = torch.empty((num_tokens_permuted, input_tensor.shape[1]),
896
+ device=input_tensor.device,
897
+ dtype=input_tensor.dtype)
898
+ torch.ops._moe_C.shuffle_rows(input_tensor, dst2src_map, output_tensor)
899
+ return output_tensor
900
+
901
+
902
+ def get_cutlass_pplx_moe_mm_data(expert_offsets: torch.Tensor,
903
+ problem_sizes1: torch.Tensor,
904
+ problem_sizes2: torch.Tensor,
905
+ expert_num_tokens: torch.Tensor,
906
+ num_local_experts: int, padded_m: int, n: int,
907
+ k: int):
908
+ """
909
+ Prepare data necessary to perform CUTLASS grouped matrix multiplications
910
+ used in CUTLASS-based fused MoE.
911
+
912
+ The function takes in expert_num_tokens (token count per expert) and
913
+ non_zero_expert_idxs (consecutive indices of experts with non-zero token
914
+ counts) and uses them to compute:
915
+ - expert_offsets: Indices that mark at which token index each expert begins
916
+ its computation.
917
+ - problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
918
+ multiplication in two grouped MMs used in
919
+ the fused MoE operation.
920
+ """
921
+ return torch.ops._C.get_cutlass_pplx_moe_mm_data(
922
+ expert_offsets, problem_sizes1, problem_sizes2, expert_num_tokens,
923
+ num_local_experts, padded_m, n, k)
924
+
925
+
926
+ def cutlass_moe_mm(out_tensors: torch.Tensor, a_tensors: torch.Tensor,
927
+ b_tensors: torch.Tensor, a_scales: torch.Tensor,
928
+ b_scales: torch.Tensor, expert_offsets: torch.Tensor,
929
+ problem_sizes: torch.Tensor, a_strides: torch.Tensor,
930
+ b_strides: torch.Tensor, c_strides: torch.Tensor,
931
+ per_act_token: bool, per_out_ch: bool):
932
+ """
933
+ A single grouped matrix multiplication used in CUTLASS-based fused MoE.
934
+ The function executes fp8-quantized OUT = AB matrix multiplication.
935
+
936
+ - expert_offsets: Indices that mark at which token index each expert begins
937
+ its computation. The number of tokens computed with
938
+ expert E is expert_offsets[E + 1] - expert_offsets[E]
939
+ - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
940
+ MMs used in the fused MoE operation.
941
+ - a/b/c_strides: The data strides passed to grouped matrix multiplication.
942
+ """
943
+ return torch.ops._C.cutlass_moe_mm(out_tensors, a_tensors, b_tensors,
944
+ a_scales, b_scales, expert_offsets,
945
+ problem_sizes, a_strides, b_strides,
946
+ c_strides, per_act_token, per_out_ch)
947
+
948
+
949
+ def cutlass_fp4_moe_mm(a_tensors: torch.Tensor, b_tensors: torch.Tensor,
950
+ a_scales: torch.Tensor, b_scales: torch.Tensor,
951
+ alphas: torch.Tensor, problem_sizes: torch.Tensor,
952
+ expert_offsets: torch.Tensor, sf_offsets: torch.Tensor,
953
+ out_dtype: torch.dtype, device: torch.device):
954
+ """
955
+ An FP4 Blockscaled Group Gemm that takes in a_tensors, b_tensors and runs
956
+ the gemms for each combination based on the specified problem sizes.
957
+
958
+ This is used as the MoE gemm during NVFP4 Quantized FusedMoE forward.
959
+ - a/b_tensors: the NVFP4 a_ptrs and b_ptrs tensors which are quantized
960
+ input and expert weights.
961
+ - a_/b_scales: The blockscales in FP8-E4M3 precision
962
+ - expert_offsets/sf_offsets: Indices that mark at which token index
963
+ each expert begins its computation. The number of tokens
964
+ computed with expert E is expert_offsets[E + 1] -
965
+ expert_offsets[E] And the sf_size per expert is
966
+ sf_offset[E+1] - sf_offset[E]
967
+ - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
968
+ MMs used in the fused MoE operation.
969
+ """
970
+ m_topk = a_tensors.shape[0]
971
+ n = b_tensors.shape[1]
972
+ c_shape = (m_topk, n)
973
+ c = torch.empty(c_shape, device=device, dtype=out_dtype)
974
+ torch.ops._C.cutlass_fp4_group_mm(c, a_tensors, b_tensors, a_scales,
975
+ b_scales, alphas, problem_sizes,
976
+ expert_offsets, sf_offsets)
977
+ return c.to(out_dtype)
978
+
979
+
980
+ # aqlm
981
+ def aqlm_gemm(input: torch.Tensor, codes: torch.Tensor,
982
+ codebooks: torch.Tensor, scales: torch.Tensor,
983
+ codebook_partition_sizes: list[int],
984
+ bias: Optional[torch.Tensor]) -> torch.Tensor:
985
+ return torch.ops._C.aqlm_gemm(input, codes, codebooks, scales,
986
+ codebook_partition_sizes, bias)
987
+
988
+
989
+ def aqlm_dequant(codes: torch.Tensor, codebooks: torch.Tensor,
990
+ codebook_partition_sizes: list[int]) -> torch.Tensor:
991
+ return torch.ops._C.aqlm_dequant(codes, codebooks,
992
+ codebook_partition_sizes)
993
+
994
+
995
+ # gptq_marlin
996
+ def gptq_marlin_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
997
+ size_k: int, size_n: int,
998
+ num_bits: int) -> torch.Tensor:
999
+ return torch.ops._C.gptq_marlin_repack(b_q_weight, perm, size_k, size_n,
1000
+ num_bits)
1001
+
1002
+
1003
+ # gptq_marlin
1004
+ def awq_marlin_repack(b_q_weight: torch.Tensor, size_k: int, size_n: int,
1005
+ num_bits: int) -> torch.Tensor:
1006
+ return torch.ops._C.awq_marlin_repack(b_q_weight, size_k, size_n, num_bits)
1007
+
1008
+
1009
+ def gptq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
1010
+ size_k: int, size_n: int,
1011
+ num_bits: int) -> torch.Tensor:
1012
+ num_experts = b_q_weight.shape[0]
1013
+ assert size_k % 16 == 0
1014
+ output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
1015
+ device=b_q_weight.device,
1016
+ dtype=b_q_weight.dtype)
1017
+ for e in range(num_experts):
1018
+ output[e] = torch.ops._C.gptq_marlin_repack(b_q_weight[e], perm[e],
1019
+ size_k, size_n, num_bits)
1020
+ return output
1021
+
1022
+
1023
+ def awq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
1024
+ size_k: int, size_n: int,
1025
+ num_bits: int) -> torch.Tensor:
1026
+ num_experts = b_q_weight.shape[0]
1027
+ assert size_k % 16 == 0
1028
+ output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
1029
+ device=b_q_weight.device,
1030
+ dtype=b_q_weight.dtype)
1031
+ for e in range(num_experts):
1032
+ output[e] = torch.ops._C.awq_marlin_repack(b_q_weight[e], size_k,
1033
+ size_n, num_bits)
1034
+ return output
1035
+
1036
+
1037
+ def gptq_marlin_gemm(a: torch.Tensor,
1038
+ c: Optional[torch.Tensor],
1039
+ b_q_weight: torch.Tensor,
1040
+ b_scales: torch.Tensor,
1041
+ global_scale: Optional[torch.Tensor],
1042
+ b_zeros: Optional[torch.Tensor],
1043
+ g_idx: Optional[torch.Tensor],
1044
+ perm: Optional[torch.Tensor],
1045
+ workspace: torch.Tensor,
1046
+ b_q_type: ScalarType,
1047
+ size_m: int,
1048
+ size_n: int,
1049
+ size_k: int,
1050
+ is_k_full: bool = True,
1051
+ use_atomic_add: bool = False,
1052
+ use_fp32_reduce: bool = False,
1053
+ is_zp_float: bool = False) -> torch.Tensor:
1054
+ return torch.ops._C.gptq_marlin_gemm(a, c, b_q_weight, b_scales,
1055
+ global_scale, b_zeros, g_idx, perm,
1056
+ workspace, b_q_type.id, size_m,
1057
+ size_n, size_k, is_k_full,
1058
+ use_atomic_add, use_fp32_reduce,
1059
+ is_zp_float)
1060
+
1061
+
1062
+ # machete
1063
+ def machete_supported_schedules(
1064
+ a_type: torch.dtype,
1065
+ b_type: ScalarType,
1066
+ group_scales_type: Optional[torch.dtype],
1067
+ group_zeros_type: Optional[torch.dtype] = None,
1068
+ channel_scales_type: Optional[torch.dtype] = None,
1069
+ token_scales_type: Optional[torch.dtype] = None,
1070
+ out_type: Optional[torch.dtype] = None) -> list[str]:
1071
+ return torch.ops._C.machete_supported_schedules(
1072
+ a_type, b_type.id, group_scales_type, group_zeros_type,
1073
+ channel_scales_type, token_scales_type, out_type)
1074
+
1075
+
1076
+ def machete_mm(
1077
+ a: torch.Tensor,
1078
+ # b_q Should be the tensor returned by machete_prepack_B
1079
+ b_q: torch.Tensor,
1080
+ b_type: ScalarType,
1081
+ out_type: Optional[torch.dtype] = None,
1082
+ b_group_scales: Optional[torch.Tensor] = None,
1083
+ b_group_zeros: Optional[torch.Tensor] = None,
1084
+ b_group_size: Optional[int] = None,
1085
+ b_channel_scales: Optional[torch.Tensor] = None,
1086
+ a_token_scales: Optional[torch.Tensor] = None,
1087
+ schedule: Optional[str] = None) -> torch.Tensor:
1088
+ return torch.ops._C.machete_mm(a, b_q, b_type.id, out_type, b_group_scales,
1089
+ b_group_zeros, b_group_size,
1090
+ b_channel_scales, a_token_scales, schedule)
1091
+
1092
+
1093
+ def machete_prepack_B(
1094
+ b_q_weight: torch.Tensor, a_type: torch.dtype, b_type: ScalarType,
1095
+ group_scales_type: Optional[torch.dtype]) -> torch.Tensor:
1096
+ return torch.ops._C.machete_prepack_B(b_q_weight, a_type, b_type.id,
1097
+ group_scales_type)
1098
+
1099
+
1100
+ if hasattr(torch.ops._C, "permute_cols"):
1101
+
1102
+ @register_fake("_C::permute_cols")
1103
+ def _permute_cols_fake(a: torch.Tensor,
1104
+ perm: torch.Tensor) -> torch.Tensor:
1105
+ return torch.empty_like(a)
1106
+
1107
+
1108
+ def permute_cols(a: torch.Tensor, perm: torch.Tensor) -> torch.Tensor:
1109
+ return torch.ops._C.permute_cols(a, perm)
1110
+
1111
+
1112
+ # fp4
1113
+ def scaled_fp4_quant(
1114
+ input: torch.Tensor,
1115
+ input_global_scale: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
1116
+ """
1117
+ Quantize input tensor to FP4 and return quantized tensor and scale.
1118
+
1119
+ This function quantizes the last dimension of the given tensor `input`. For
1120
+ every 16 consecutive elements, a single dynamically computed scaling factor
1121
+ is shared. This scaling factor is quantized using the `input_global_scale`
1122
+ and is stored in a swizzled layout (see
1123
+ https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x).
1124
+
1125
+ Args:
1126
+ input: The input tensor to be quantized to FP4
1127
+ input_global_scale: A scalar scaling factor for the entire tensor.
1128
+
1129
+ Returns:
1130
+ tuple[torch.Tensor, torch.Tensor]: The output tensor in FP4 but every
1131
+ two values are packed into a uint8 and float8_e4m3 scaling factors
1132
+ in the sizzled layout.
1133
+ """
1134
+ assert not current_platform.is_rocm()
1135
+ assert input.ndim >= 1, (
1136
+ f'input.ndim needs to be >= 1, but got {input.ndim}.')
1137
+ other_dims = 1 if input.ndim == 1 else -1
1138
+ input = input.reshape(other_dims, input.shape[-1])
1139
+ m, n = input.shape
1140
+ block_size = 16
1141
+ device = input.device
1142
+
1143
+ assert n % block_size == 0, (
1144
+ f'last dim has to be multiple of 16, but got {n}.')
1145
+ assert input.dtype in (torch.float16, torch.bfloat16), (
1146
+ f'input.dtype needs to be fp16 or bf16 but got {input.dtype}.')
1147
+
1148
+ # Two fp4 values will be packed into an uint8.
1149
+ output = torch.empty((m, n // 2), device=device, dtype=torch.uint8)
1150
+
1151
+ # We use the rounded values to store the swizzled values. Due to the
1152
+ # requirement of the Tensor Core, the minimum tile is 128x4 for the scales.
1153
+ # So, we first pad the scales to multiples of 128 and 4. Then, the scales
1154
+ # (in float8_e4m3fn) are packed into an int32 for every 4 values. More:
1155
+ # https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x
1156
+ round_up = lambda x, y: (x + y - 1) // y * y
1157
+ rounded_m = round_up(m, 128)
1158
+ scale_n = n // block_size
1159
+ rounded_n = round_up(scale_n, 4)
1160
+ output_scale = torch.empty((rounded_m, rounded_n // 4),
1161
+ device=device,
1162
+ dtype=torch.int32)
1163
+
1164
+ torch.ops._C.scaled_fp4_quant(output, input, output_scale,
1165
+ input_global_scale)
1166
+ output_scale = output_scale.view(torch.float8_e4m3fn)
1167
+ return output, output_scale
1168
+
1169
+
1170
+ def scaled_fp4_experts_quant(
1171
+ input_tensor: torch.Tensor,
1172
+ input_global_scale: torch.Tensor,
1173
+ expert_offsets: torch.Tensor,
1174
+ blockscale_offsets: torch.Tensor,
1175
+ topk: int,
1176
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1177
+ """
1178
+ Quantize input tensor to FP4 and return quantized tensor and scale, for
1179
+ packed MoE Inputs.
1180
+ Args:
1181
+ input_tensor: The input tensor to be quantized to FP4
1182
+ input_global_scale: A scalar scaling factor for the entire tensor.
1183
+ expert_offsets: The expert offsets tensor
1184
+ blockscale_offsets: The blockscale offsets tensor
1185
+ Outputs:
1186
+ output: The quantized tensor in FP4
1187
+ output_scales: The blockscale tensor in FP8-E4M3
1188
+ """
1189
+ assert not current_platform.is_rocm()
1190
+ assert input_tensor.ndim == 2, (
1191
+ f'input.ndim needs to be == 2, but got {input_tensor.ndim}.')
1192
+
1193
+ # Control the maximum number of tokens per expert supported by the
1194
+ # NVFP4 MoE Expert Quantization. This is used to prevent the kernel
1195
+ # from running out of memory. This value can also be increased to support
1196
+ # larger models.
1197
+ MAX_TOKENS_PER_EXPERT = envs.VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE
1198
+ m_numtopk, k = input_tensor.shape
1199
+
1200
+ assert (m_numtopk <= MAX_TOKENS_PER_EXPERT * topk), (
1201
+ f"m_numtopk must be less than MAX_TOKENS_PER_EXPERT("
1202
+ f"{MAX_TOKENS_PER_EXPERT})"
1203
+ f" for cutlass_moe_fp4, observed m_numtopk = {m_numtopk}. Use"
1204
+ f" VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE to set this value.")
1205
+ scales_k = k // 16
1206
+ padded_k = (scales_k + (4 - 1)) // 4
1207
+
1208
+ # output is uint8 and packed fp4 values
1209
+ output = torch.empty(m_numtopk,
1210
+ k // 2,
1211
+ device=input_tensor.device,
1212
+ dtype=torch.uint8)
1213
+ output_scales = torch.empty(MAX_TOKENS_PER_EXPERT * topk,
1214
+ padded_k,
1215
+ dtype=torch.int32,
1216
+ device=input_tensor.device)
1217
+ torch.ops._C.scaled_fp4_experts_quant(output, output_scales, input_tensor,
1218
+ input_global_scale, expert_offsets,
1219
+ blockscale_offsets)
1220
+ output_scales = output_scales.view(torch.float8_e4m3fn)
1221
+ return output, output_scales
1222
+
1223
+
1224
+ # fp8
1225
+ def scaled_fp8_quant(
1226
+ input: torch.Tensor,
1227
+ scale: Optional[torch.Tensor] = None,
1228
+ num_token_padding: Optional[int] = None,
1229
+ scale_ub: Optional[torch.Tensor] = None,
1230
+ use_per_token_if_dynamic: bool = False,
1231
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1232
+ """
1233
+ Quantize input tensor to FP8 and return quantized tensor and scale.
1234
+
1235
+ This function supports both static and dynamic quantization: If you
1236
+ provide the scale, it will use static scaling and if you omit it,
1237
+ the scale will be determined dynamically. The function also allows
1238
+ optional padding of the output tensors for downstream kernels that
1239
+ will benefit from padding.
1240
+
1241
+ Args:
1242
+ input: The input tensor to be quantized to FP8
1243
+ scale: Optional scaling factor for the FP8 quantization
1244
+ scale_ub: Optional upper bound for scaling factor in dynamic
1245
+ per token case
1246
+ num_token_padding: If specified, pad the first dimension
1247
+ of the output to at least this value.
1248
+ use_per_token_if_dynamic: Whether to do per_tensor or per_token
1249
+ in the dynamic quantization case.
1250
+
1251
+ Returns:
1252
+ tuple[torch.Tensor, torch.Tensor]: The output tensor in FP8 and
1253
+ scaling factor.
1254
+ """
1255
+ # This code assumes batch_dim and num_tokens are flattened
1256
+ assert (input.ndim == 2)
1257
+ shape: Union[tuple[int, int], torch.Size] = input.shape
1258
+ # For ROCm on MI300, the output fp8 dtype is torch.float_e3m3fnuz
1259
+ out_dtype: torch.dtype = current_platform.fp8_dtype()
1260
+ if num_token_padding:
1261
+ shape = (max(num_token_padding, input.shape[0]), shape[1])
1262
+ output = torch.empty(shape, device=input.device, dtype=out_dtype)
1263
+
1264
+ if scale is None:
1265
+ if use_per_token_if_dynamic:
1266
+ scale = torch.empty((shape[0], 1),
1267
+ device=input.device,
1268
+ dtype=torch.float32)
1269
+ torch.ops._C.dynamic_per_token_scaled_fp8_quant(
1270
+ output, input, scale, scale_ub)
1271
+ else:
1272
+ scale = torch.zeros(1, device=input.device, dtype=torch.float32)
1273
+ torch.ops._C.dynamic_scaled_fp8_quant(output, input, scale)
1274
+ else:
1275
+ # num_token_padding not implemented for this case
1276
+ assert (scale.numel() == 1 or num_token_padding is None)
1277
+ torch.ops._C.static_scaled_fp8_quant(output, input, scale)
1278
+
1279
+ return output, scale
1280
+
1281
+
1282
+ # gptq allspark
1283
+ def allspark_repack_weight(
1284
+ qweight: torch.Tensor,
1285
+ scale: torch.Tensor,
1286
+ zero_point: Optional[torch.Tensor] = None,
1287
+ has_zp: bool = False
1288
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
1289
+ """
1290
+ Rearrange qweight, scale, and zero_point(if asymmetric) to n32k16 format
1291
+ for Ampere W8A16 Fused Gemm kernel
1292
+
1293
+ Args:
1294
+ qweight: uint8 weight tensor, original k x n format.
1295
+ scale: fp16/bf16 weight scale tensor, 1 x n format.
1296
+ zero_point: fp16/bf16 weight zero_point tensor, 1 x n format.
1297
+ Must be provided for asymmetric quantization.
1298
+ has_zp: if use symmetric quantization, has_zp = False.
1299
+ if use asymmetric quantization, has_zp = True.
1300
+
1301
+ Returns:
1302
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] :
1303
+ rearranged weight, scale, and optionally zero_point.
1304
+ """
1305
+ K = qweight.shape[0]
1306
+ N = qweight.shape[1]
1307
+ N_32align = (N + 32 - 1) // 32 * 32
1308
+
1309
+ qweight_reorder = torch.empty((N_32align, K),
1310
+ device=qweight.device,
1311
+ dtype=qweight.dtype)
1312
+ scale_reorder = torch.empty((1, N_32align),
1313
+ device=scale.device,
1314
+ dtype=scale.dtype)
1315
+ zero_point_reorder = None
1316
+ if has_zp:
1317
+ assert zero_point is not None, (
1318
+ "zero_point must be provided for asymmetric quantization.")
1319
+ zero_point_reorder = torch.empty((1, N_32align),
1320
+ device=zero_point.device,
1321
+ dtype=zero_point.dtype)
1322
+
1323
+ torch.ops._C.rearrange_kn_weight_as_n32k16_order(
1324
+ qweight, scale, zero_point, has_zp, qweight_reorder, scale_reorder,
1325
+ zero_point_reorder, K, N, N_32align)
1326
+
1327
+ return qweight_reorder, scale_reorder, zero_point_reorder
1328
+
1329
+
1330
+ def allspark_w8a16_gemm(a: torch.Tensor, b_qweight: torch.Tensor,
1331
+ b_scales: torch.Tensor,
1332
+ b_qzeros: Optional[torch.Tensor], n: int,
1333
+ group_size: int, sm_count: int, sm_version: int,
1334
+ CUBLAS_M_THRESHOLD: int, has_zp: bool,
1335
+ n32k16_reorder: bool) -> torch.Tensor:
1336
+
1337
+ return torch.ops._C.allspark_w8a16_gemm(a, b_qweight, b_scales, b_qzeros,
1338
+ n, group_size, sm_count,
1339
+ sm_version, CUBLAS_M_THRESHOLD,
1340
+ has_zp, n32k16_reorder)
1341
+
1342
+
1343
+ # int8
1344
+ def scaled_int8_quant(
1345
+ input: torch.Tensor,
1346
+ scale: Optional[torch.Tensor] = None,
1347
+ azp: Optional[torch.Tensor] = None,
1348
+ symmetric: bool = True
1349
+ ) -> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
1350
+ """
1351
+ Quantize the input tensor to int8 and return the quantized tensor and scale, and maybe azp.
1352
+
1353
+ Args:
1354
+ input: The input tensor to be quantized to int8.
1355
+ scale: Optional scaling factor for the int8 quantization.
1356
+ When not provided, we invoke dynamic-per-token quantization.
1357
+ azp: Optional zero-point for the int8 quantization.
1358
+ Must be provided for asymmetric quantization if `scale` is provided.
1359
+ symmetric: Whether to use symmetric quantization (scale only, azp ignored).
1360
+
1361
+ Returns:
1362
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] : Output int8 tensor, scales, and optionally azp.
1363
+ """
1364
+ output = torch.empty_like(input, dtype=torch.int8)
1365
+ if scale is not None:
1366
+ # static-per-tensor quantization.
1367
+ assert symmetric == (
1368
+ azp
1369
+ is None), "azp must only be provided for asymmetric quantization."
1370
+ torch.ops._C.static_scaled_int8_quant(output, input, scale, azp)
1371
+ return output, scale, azp
1372
+
1373
+ # dynamic-per-token quantization.
1374
+ input_scales = torch.empty((input.numel() // input.shape[-1], 1),
1375
+ device=input.device,
1376
+ dtype=torch.float32)
1377
+ input_azp = None if symmetric else torch.empty_like(input_scales,
1378
+ dtype=torch.int32)
1379
+ torch.ops._C.dynamic_scaled_int8_quant(output, input, input_scales,
1380
+ input_azp)
1381
+ return output, input_scales, input_azp
1382
+
1383
+
1384
+ # qqq ops
1385
+ def marlin_qqq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
1386
+ s_tok: torch.Tensor, s_ch: torch.Tensor,
1387
+ s_group: torch.Tensor, workspace: torch.Tensor,
1388
+ size_m: int, size_n: int, size_k: int) -> torch.Tensor:
1389
+ return torch.ops._C.marlin_qqq_gemm(a, b_q_weight, s_tok, s_ch, s_group,
1390
+ workspace, size_m, size_n, size_k)
1391
+
1392
+
1393
+ # gguf
1394
+ def ggml_dequantize(W: torch.Tensor, quant_type: int, m: int, n: int,
1395
+ dtype: Optional[torch.dtype]) -> torch.Tensor:
1396
+ return torch.ops._C.ggml_dequantize(W, quant_type, m, n, dtype)
1397
+
1398
+
1399
+ def ggml_mul_mat_vec_a8(
1400
+ W: torch.Tensor,
1401
+ X: torch.Tensor,
1402
+ quant_type: int,
1403
+ row: int,
1404
+ ) -> torch.Tensor:
1405
+ return torch.ops._C.ggml_mul_mat_vec_a8(W, X, quant_type, row)
1406
+
1407
+
1408
+ def ggml_mul_mat_a8(
1409
+ W: torch.Tensor,
1410
+ X: torch.Tensor,
1411
+ quant_type: int,
1412
+ row: int,
1413
+ ) -> torch.Tensor:
1414
+ return torch.ops._C.ggml_mul_mat_a8(W, X, quant_type, row)
1415
+
1416
+
1417
+ def ggml_moe_a8(
1418
+ X: torch.Tensor,
1419
+ W: torch.Tensor,
1420
+ sorted_token_ids: torch.Tensor,
1421
+ expert_ids: torch.Tensor,
1422
+ num_tokens_post_padded: torch.Tensor,
1423
+ quant_type: int,
1424
+ row: int,
1425
+ top_k: int,
1426
+ tokens: int,
1427
+ ) -> torch.Tensor:
1428
+ return torch.ops._C.ggml_moe_a8(X, W, sorted_token_ids, expert_ids,
1429
+ num_tokens_post_padded, quant_type, row,
1430
+ top_k, tokens)
1431
+
1432
+
1433
+ def ggml_moe_a8_vec(
1434
+ X: torch.Tensor,
1435
+ W: torch.Tensor,
1436
+ topk_ids: torch.Tensor,
1437
+ top_k: int,
1438
+ quant_type: int,
1439
+ row: torch.SymInt,
1440
+ tokens: torch.SymInt,
1441
+ ) -> torch.Tensor:
1442
+ return torch.ops._C.ggml_moe_a8_vec(X, W, topk_ids, top_k, quant_type, row,
1443
+ tokens)
1444
+
1445
+
1446
+ def ggml_moe_get_block_size(quant_type: int) -> int:
1447
+ return torch.ops._C.ggml_moe_get_block_size(quant_type)
1448
+
1449
+
1450
+ # mamba
1451
+ def causal_conv1d_fwd(x: torch.Tensor, weight: torch.Tensor,
1452
+ bias_: Optional[torch.Tensor],
1453
+ conv_states: Optional[torch.Tensor],
1454
+ query_start_loc: Optional[torch.Tensor],
1455
+ cache_indices: Optional[torch.Tensor],
1456
+ has_initial_state: Optional[torch.Tensor],
1457
+ silu_activation: bool, pad_slot_id: int):
1458
+ torch.ops._C.causal_conv1d_fwd(x, weight, bias_, conv_states,
1459
+ query_start_loc, cache_indices,
1460
+ has_initial_state, silu_activation,
1461
+ pad_slot_id)
1462
+
1463
+
1464
+ def causal_conv1d_update(x: torch.Tensor, conv_state: torch.Tensor,
1465
+ weight: torch.Tensor, bias_: Optional[torch.Tensor],
1466
+ silu_activation: bool,
1467
+ cache_seqlens: Optional[torch.Tensor],
1468
+ conv_state_indices: Optional[torch.Tensor],
1469
+ pad_slot_id: int):
1470
+ torch.ops._C.causal_conv1d_update(x, conv_state, weight, bias_,
1471
+ silu_activation, cache_seqlens,
1472
+ conv_state_indices, pad_slot_id)
1473
+
1474
+
1475
+ def selective_scan_fwd(u: torch.Tensor, delta: torch.Tensor, A: torch.Tensor,
1476
+ B: torch.Tensor, C: torch.Tensor,
1477
+ D_: Optional[torch.Tensor], z_: Optional[torch.Tensor],
1478
+ delta_bias_: Optional[torch.Tensor],
1479
+ delta_softplus: bool,
1480
+ query_start_loc: Optional[torch.Tensor],
1481
+ cache_indices: Optional[torch.Tensor],
1482
+ has_initial_state: Optional[torch.Tensor],
1483
+ ssm_states: torch.Tensor, pad_slot_id: int):
1484
+ torch.ops._C.selective_scan_fwd(u, delta, A, B, C, D_, z_, delta_bias_,
1485
+ delta_softplus, query_start_loc,
1486
+ cache_indices, has_initial_state,
1487
+ ssm_states, pad_slot_id)
1488
+
1489
+
1490
+ # ROCm skinny gemms
1491
+ def LLMM1(a: torch.Tensor, b: torch.Tensor,
1492
+ rows_per_block: int) -> torch.Tensor:
1493
+ return torch.ops._rocm_C.LLMM1(a, b, rows_per_block)
1494
+
1495
+
1496
+ def wvSplitK(a: torch.Tensor, b: torch.Tensor, cu_count: int) -> torch.Tensor:
1497
+ return torch.ops._rocm_C.wvSplitK(a, b, cu_count)
1498
+
1499
+
1500
+ def wvSplitKQ(a: torch.Tensor, b: torch.Tensor, out_dtype: torch.dtype,
1501
+ scale_a: torch.Tensor, scale_b: torch.Tensor,
1502
+ cu_count: int) -> torch.Tensor:
1503
+ out = torch.empty((b.shape[0], a.shape[0]),
1504
+ dtype=out_dtype,
1505
+ device=b.device)
1506
+ torch.ops._rocm_C.wvSplitKQ(a, b, out, scale_a, scale_b, cu_count)
1507
+ return out
1508
+
1509
+
1510
+ # moe
1511
+ def moe_sum(input: torch.Tensor, output: torch.Tensor):
1512
+ torch.ops._moe_C.moe_sum(input, output)
1513
+
1514
+
1515
+ def moe_align_block_size(topk_ids: torch.Tensor, num_experts: int,
1516
+ block_size: int, sorted_token_ids: torch.Tensor,
1517
+ experts_ids: torch.Tensor,
1518
+ num_tokens_post_pad: torch.Tensor) -> None:
1519
+ torch.ops._moe_C.moe_align_block_size(topk_ids, num_experts, block_size,
1520
+ sorted_token_ids, experts_ids,
1521
+ num_tokens_post_pad)
1522
+
1523
+
1524
+ def sgl_moe_align_block_size(topk_ids: torch.Tensor, num_experts: int,
1525
+ block_size: int, sorted_token_ids: torch.Tensor,
1526
+ experts_ids: torch.Tensor,
1527
+ num_tokens_post_pad: torch.Tensor) -> None:
1528
+ torch.ops._moe_C.sgl_moe_align_block_size(topk_ids, num_experts,
1529
+ block_size, sorted_token_ids,
1530
+ experts_ids, num_tokens_post_pad)
1531
+
1532
+
1533
+ def moe_wna16_gemm(input: torch.Tensor, output: torch.Tensor,
1534
+ b_qweight: torch.Tensor, b_scales: torch.Tensor,
1535
+ b_qzeros: Optional[torch.Tensor],
1536
+ topk_weights: Optional[torch.Tensor],
1537
+ sorted_token_ids: torch.Tensor, experts_ids: torch.Tensor,
1538
+ num_tokens_post_pad: torch.Tensor, top_k: int,
1539
+ BLOCK_SIZE_M: int, BLOCK_SIZE_N: int, BLOCK_SIZE_K: int,
1540
+ bit: int) -> torch.Tensor:
1541
+ if not current_platform.is_cuda():
1542
+ raise NotImplementedError(
1543
+ "The optimized moe_wna16_gemm kernel is only "
1544
+ "available on CUDA platforms")
1545
+ torch.ops._moe_C.moe_wna16_gemm(input, output, b_qweight, b_scales,
1546
+ b_qzeros, topk_weights, sorted_token_ids,
1547
+ experts_ids, num_tokens_post_pad, top_k,
1548
+ BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K,
1549
+ bit)
1550
+
1551
+
1552
+ def topk_softmax(topk_weights: torch.Tensor, topk_ids: torch.Tensor,
1553
+ token_expert_indicies: torch.Tensor,
1554
+ gating_output: torch.Tensor) -> None:
1555
+ torch.ops._moe_C.topk_softmax(topk_weights, topk_ids,
1556
+ token_expert_indicies, gating_output)
1557
+
1558
+
1559
+ def moe_wna16_marlin_gemm(input: torch.Tensor, output: Optional[torch.Tensor],
1560
+ b_qweight: torch.Tensor, b_scales: torch.Tensor,
1561
+ global_scale: Optional[torch.Tensor],
1562
+ b_qzeros: Optional[torch.Tensor],
1563
+ g_idx: Optional[torch.Tensor],
1564
+ perm: Optional[torch.Tensor],
1565
+ workspace: torch.Tensor,
1566
+ sorted_token_ids: torch.Tensor,
1567
+ expert_ids: torch.Tensor,
1568
+ num_tokens_past_padded: torch.Tensor,
1569
+ topk_weights: torch.Tensor, moe_block_size: int,
1570
+ top_k: int, mul_topk_weights: bool, is_ep: bool,
1571
+ b_q_type: ScalarType, size_m: int, size_n: int,
1572
+ size_k: int, is_k_full: bool, use_atomic_add: bool,
1573
+ use_fp32_reduce: bool,
1574
+ is_zp_float: bool) -> torch.Tensor:
1575
+ return torch.ops._moe_C.moe_wna16_marlin_gemm(
1576
+ input, output, b_qweight, b_scales, global_scale, b_qzeros, g_idx,
1577
+ perm, workspace, sorted_token_ids, expert_ids, num_tokens_past_padded,
1578
+ topk_weights, moe_block_size, top_k, mul_topk_weights, is_ep,
1579
+ b_q_type.id, size_m, size_n, size_k, is_k_full, use_atomic_add,
1580
+ use_fp32_reduce, is_zp_float)
1581
+
1582
+
1583
+ if supports_moe_ops and hasattr(torch.ops._moe_C, "marlin_gemm_moe"):
1584
+
1585
+ @register_fake("_moe_C::marlin_gemm_moe")
1586
+ def marlin_gemm_moe_fake(a: torch.Tensor, b_q_weights: torch.Tensor,
1587
+ sorted_ids: torch.Tensor,
1588
+ topk_weights: torch.Tensor,
1589
+ topk_ids: torch.Tensor, b_scales: torch.Tensor,
1590
+ b_zero_points: torch.Tensor, g_idx: torch.Tensor,
1591
+ perm: torch.Tensor, workspace: torch.Tensor,
1592
+ b_q_type: ScalarType, size_m: torch.SymInt,
1593
+ size_n: torch.SymInt, size_k: torch.SymInt,
1594
+ is_k_full: bool, num_experts: int, topk: int,
1595
+ moe_block_size: int, replicate_input: bool,
1596
+ apply_weights: bool) -> torch.Tensor:
1597
+ return torch.empty((size_m, topk, size_n),
1598
+ dtype=a.dtype,
1599
+ device=a.device)
1600
+
1601
+ @register_fake("_moe_C::moe_wna16_marlin_gemm")
1602
+ def moe_wna16_marlin_gemm_fake(input: torch.Tensor,
1603
+ output: Optional[torch.Tensor],
1604
+ b_qweight: torch.Tensor,
1605
+ b_scales: torch.Tensor,
1606
+ b_qzeros: Optional[torch.Tensor],
1607
+ g_idx: Optional[torch.Tensor],
1608
+ perm: Optional[torch.Tensor],
1609
+ workspace: torch.Tensor,
1610
+ sorted_token_ids: torch.Tensor,
1611
+ expert_ids: torch.Tensor,
1612
+ num_tokens_past_padded: torch.Tensor,
1613
+ topk_weights: torch.Tensor,
1614
+ moe_block_size: int, top_k: int,
1615
+ mul_topk_weights: bool, is_ep: bool,
1616
+ b_q_type: ScalarType, size_m: int,
1617
+ size_n: int, size_k: int, is_k_full: bool,
1618
+ use_atomic_add: bool, use_fp32_reduce: bool,
1619
+ is_zp_float: bool) -> torch.Tensor:
1620
+ return torch.empty((size_m * top_k, size_n),
1621
+ dtype=input.dtype,
1622
+ device=input.device)
1623
+
1624
+
1625
+ def reshape_and_cache(
1626
+ key: torch.Tensor,
1627
+ value: torch.Tensor,
1628
+ key_cache: torch.Tensor,
1629
+ value_cache: torch.Tensor,
1630
+ slot_mapping: torch.Tensor,
1631
+ kv_cache_dtype: str,
1632
+ k_scale: torch.Tensor,
1633
+ v_scale: torch.Tensor,
1634
+ ) -> None:
1635
+ torch.ops._C_cache_ops.reshape_and_cache(key, value, key_cache,
1636
+ value_cache, slot_mapping,
1637
+ kv_cache_dtype, k_scale, v_scale)
1638
+
1639
+
1640
+ def reshape_and_cache_flash(
1641
+ key: torch.Tensor,
1642
+ value: torch.Tensor,
1643
+ key_cache: torch.Tensor,
1644
+ value_cache: torch.Tensor,
1645
+ slot_mapping: torch.Tensor,
1646
+ kv_cache_dtype: str,
1647
+ k_scale: torch.Tensor,
1648
+ v_scale: torch.Tensor,
1649
+ ) -> None:
1650
+ torch.ops._C_cache_ops.reshape_and_cache_flash(key, value, key_cache,
1651
+ value_cache, slot_mapping,
1652
+ kv_cache_dtype, k_scale,
1653
+ v_scale)
1654
+
1655
+
1656
+ def concat_and_cache_mla(
1657
+ kv_c: torch.Tensor,
1658
+ k_pe: torch.Tensor,
1659
+ kv_cache: torch.Tensor,
1660
+ slot_mapping: torch.Tensor,
1661
+ kv_cache_dtype: str,
1662
+ scale: torch.Tensor,
1663
+ ) -> None:
1664
+ torch.ops._C_cache_ops.concat_and_cache_mla(kv_c, k_pe, kv_cache,
1665
+ slot_mapping, kv_cache_dtype,
1666
+ scale)
1667
+
1668
+
1669
+ def copy_blocks(key_caches: list[torch.Tensor],
1670
+ value_caches: list[torch.Tensor],
1671
+ block_mapping: torch.Tensor) -> None:
1672
+ torch.ops._C_cache_ops.copy_blocks(key_caches, value_caches, block_mapping)
1673
+
1674
+
1675
+ def copy_blocks_mla(kv_caches: list[torch.Tensor],
1676
+ block_mapping: torch.Tensor) -> None:
1677
+ torch.ops._C_cache_ops.copy_blocks_mla(kv_caches, block_mapping)
1678
+
1679
+
1680
+ def swap_blocks(src: torch.Tensor, dst: torch.Tensor,
1681
+ block_mapping: torch.Tensor) -> None:
1682
+ torch.ops._C_cache_ops.swap_blocks(src, dst, block_mapping)
1683
+
1684
+
1685
+ def convert_fp8(output: torch.Tensor,
1686
+ input: torch.Tensor,
1687
+ scale: float = 1.0,
1688
+ kv_dtype: str = "fp8") -> None:
1689
+ torch.ops._C_cache_ops.convert_fp8(output, input, scale, kv_dtype)
1690
+
1691
+
1692
+ def gather_cache(src_cache: torch.Tensor,
1693
+ dst: torch.Tensor,
1694
+ block_table: torch.Tensor,
1695
+ cu_seq_lens: torch.Tensor,
1696
+ batch_size: int,
1697
+ seq_starts: Optional[torch.Tensor] = None) -> None:
1698
+ torch.ops._C_cache_ops.gather_cache(src_cache, dst, block_table,
1699
+ cu_seq_lens, batch_size, seq_starts)
1700
+
1701
+
1702
+ def get_device_attribute(attribute: int, device: int) -> int:
1703
+ return torch.ops._C_cuda_utils.get_device_attribute(attribute, device)
1704
+
1705
+
1706
+ def get_max_shared_memory_per_block_device_attribute(device: int) -> int:
1707
+ # ruff: noqa: E501
1708
+ return torch.ops._C_cuda_utils.get_max_shared_memory_per_block_device_attribute(
1709
+ device)
1710
+
1711
+
1712
+ # custom ar
1713
+ def init_custom_ar(ipc_tensors: list[torch.Tensor], rank_data: torch.Tensor,
1714
+ rank: int, fully_connected: bool) -> int:
1715
+ return torch.ops._C_custom_ar.init_custom_ar(ipc_tensors, rank_data, rank,
1716
+ fully_connected)
1717
+
1718
+
1719
+ def all_reduce(fa: int, inp: torch.Tensor, out: torch.Tensor, reg_buffer: int,
1720
+ reg_buffer_sz_bytes: int) -> None:
1721
+ torch.ops._C_custom_ar.all_reduce(fa, inp, out, reg_buffer,
1722
+ reg_buffer_sz_bytes)
1723
+
1724
+
1725
+ def dispose(fa: int) -> None:
1726
+ torch.ops._C_custom_ar.dispose(fa)
1727
+
1728
+
1729
+ def meta_size() -> int:
1730
+ return torch.ops._C_custom_ar.meta_size()
1731
+
1732
+
1733
+ def register_buffer(fa: int, ipc_tensors: list[int]) -> None:
1734
+ return torch.ops._C_custom_ar.register_buffer(fa, ipc_tensors)
1735
+
1736
+
1737
+ def get_graph_buffer_ipc_meta(fa: int) -> tuple[list[int], list[int]]:
1738
+ return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa)
1739
+
1740
+
1741
+ def register_graph_buffers(fa: int, handles: list[list[int]],
1742
+ offsets: list[list[int]]) -> None:
1743
+ torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
1744
+
1745
+
1746
+ def allocate_shared_buffer_and_handle(size: int) -> tuple[int, torch.Tensor]:
1747
+ return torch.ops._C_custom_ar.allocate_shared_buffer_and_handle(size)
1748
+
1749
+
1750
+ def open_mem_handle(mem_handle: torch.Tensor):
1751
+ return torch.ops._C_custom_ar.open_mem_handle(mem_handle)
1752
+
1753
+
1754
+ def free_shared_buffer(ptr: int) -> None:
1755
+ torch.ops._C_custom_ar.free_shared_buffer(ptr)
1756
+
1757
+
1758
+ def get_flash_mla_metadata(
1759
+ cache_seqlens: torch.Tensor,
1760
+ num_heads_per_head_k: int,
1761
+ num_heads_k: int,
1762
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1763
+ """
1764
+ Arguments:
1765
+ cache_seqlens: (batch_size), dtype torch.int32.
1766
+ num_heads_per_head_k: Equals to seq_len_q * num_heads_q // num_heads_k.
1767
+ num_heads_k: num_heads_k.
1768
+
1769
+ Return:
1770
+ tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), dtype torch.int32.
1771
+ num_splits: (batch_size + 1), dtype torch.int32.
1772
+ """
1773
+ return torch.ops._C.get_flash_mla_metadata(cache_seqlens,
1774
+ num_heads_per_head_k,
1775
+ num_heads_k)
1776
+
1777
+
1778
+ def flash_mla_with_kvcache(
1779
+ q: torch.Tensor,
1780
+ k_cache: torch.Tensor,
1781
+ block_table: torch.Tensor,
1782
+ cache_seqlens: torch.Tensor,
1783
+ head_dim_v: int,
1784
+ tile_scheduler_metadata: torch.Tensor,
1785
+ num_splits: torch.Tensor,
1786
+ softmax_scale: Optional[float] = None,
1787
+ causal: bool = False,
1788
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1789
+ """
1790
+ Arguments:
1791
+ q: (batch_size, seq_len_q, num_heads_q, head_dim).
1792
+ k_cache: (num_blocks, page_block_size, num_heads_k, head_dim).
1793
+ block_table: (batch_size, max_num_blocks_per_seq), torch.int32.
1794
+ cache_seqlens: (batch_size), torch.int32.
1795
+ head_dim_v: Head_dim of v.
1796
+ tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), torch.int32, return by get_mla_metadata.
1797
+ num_splits: (batch_size + 1), torch.int32, return by get_mla_metadata.
1798
+ softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim).
1799
+ causal: bool. Whether to apply causal attention mask.
1800
+
1801
+ Return:
1802
+ out: (batch_size, seq_len_q, num_heads_q, head_dim_v).
1803
+ softmax_lse: (batch_size, num_heads_q, seq_len_q), torch.float32.
1804
+ """
1805
+ if softmax_scale is None:
1806
+ softmax_scale = q.shape[-1]**(-0.5)
1807
+ out, softmax_lse = torch.ops._C.flash_mla_fwd_kvcache(
1808
+ q,
1809
+ k_cache,
1810
+ None,
1811
+ head_dim_v,
1812
+ cache_seqlens,
1813
+ block_table,
1814
+ softmax_scale,
1815
+ causal,
1816
+ tile_scheduler_metadata,
1817
+ num_splits,
1818
+ )
1819
+ return out, softmax_lse
1820
+
1821
+
1822
+ def cutlass_mla_decode(out: torch.Tensor, q_nope: torch.Tensor,
1823
+ q_pe: torch.Tensor, kv_c_and_k_pe_cache: torch.Tensor,
1824
+ seq_lens: torch.Tensor, page_table: torch.Tensor,
1825
+ scale: float) -> torch.Tensor:
1826
+ torch.ops._C.cutlass_mla_decode(out, q_nope, q_pe, kv_c_and_k_pe_cache,
1827
+ seq_lens, page_table, scale)
1828
+ return out