vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1197) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +53 -0
  3. vllm/_custom_ops.py +1828 -0
  4. vllm/_ipex_ops.py +244 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +115 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +308 -0
  20. vllm/attention/backends/blocksparse_attn.py +461 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
  23. vllm/attention/backends/flash_attn.py +1003 -0
  24. vllm/attention/backends/flashinfer.py +1104 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +313 -0
  27. vllm/attention/backends/ipex_attn.py +398 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1385 -0
  30. vllm/attention/backends/pallas.py +351 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +975 -0
  34. vllm/attention/backends/torch_sdpa.py +703 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +802 -0
  38. vllm/attention/layer.py +468 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +906 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/prefix_prefill.py +902 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  54. vllm/attention/ops/triton_decode_attention.py +674 -0
  55. vllm/attention/ops/triton_flash_attention.py +979 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  57. vllm/attention/ops/triton_unified_attention.py +334 -0
  58. vllm/attention/selector.py +187 -0
  59. vllm/attention/utils/fa_utils.py +55 -0
  60. vllm/beam_search.py +87 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +1185 -0
  63. vllm/benchmarks/endpoint_request_func.py +381 -0
  64. vllm/benchmarks/latency.py +168 -0
  65. vllm/benchmarks/serve.py +1135 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +70 -0
  68. vllm/collect_env.py +820 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +89 -0
  71. vllm/compilation/backends.py +563 -0
  72. vllm/compilation/base_piecewise_backend.py +72 -0
  73. vllm/compilation/collective_fusion.py +127 -0
  74. vllm/compilation/compiler_interface.py +544 -0
  75. vllm/compilation/counter.py +38 -0
  76. vllm/compilation/cuda_piecewise_backend.py +214 -0
  77. vllm/compilation/decorators.py +250 -0
  78. vllm/compilation/fix_functionalization.py +191 -0
  79. vllm/compilation/fusion.py +618 -0
  80. vllm/compilation/fx_utils.py +62 -0
  81. vllm/compilation/inductor_pass.py +115 -0
  82. vllm/compilation/monitor.py +39 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +137 -0
  85. vllm/compilation/pass_manager.py +78 -0
  86. vllm/compilation/sequence_parallelism.py +268 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +67 -0
  89. vllm/compilation/wrapper.py +135 -0
  90. vllm/config.py +4746 -0
  91. vllm/connections.py +174 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +399 -0
  95. vllm/core/block/common.py +371 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  97. vllm/core/block/interfaces.py +319 -0
  98. vllm/core/block/naive_block.py +466 -0
  99. vllm/core/block/prefix_caching_block.py +1135 -0
  100. vllm/core/block/utils.py +28 -0
  101. vllm/core/block_manager.py +521 -0
  102. vllm/core/evictor.py +157 -0
  103. vllm/core/interfaces.py +135 -0
  104. vllm/core/placeholder_block_space_manager.py +100 -0
  105. vllm/core/scheduler.py +2093 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +281 -0
  108. vllm/distributed/__init__.py +6 -0
  109. vllm/distributed/communication_op.py +41 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +264 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +176 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  120. vllm/distributed/device_communicators/pynccl.py +218 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  125. vllm/distributed/kv_events.py +356 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +12 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  152. vllm/distributed/parallel_state.py +1296 -0
  153. vllm/distributed/tpu_distributed_utils.py +177 -0
  154. vllm/distributed/utils.py +536 -0
  155. vllm/engine/__init__.py +0 -0
  156. vllm/engine/arg_utils.py +1708 -0
  157. vllm/engine/async_llm_engine.py +1200 -0
  158. vllm/engine/async_timeout.py +173 -0
  159. vllm/engine/llm_engine.py +2097 -0
  160. vllm/engine/metrics.py +629 -0
  161. vllm/engine/metrics_types.py +94 -0
  162. vllm/engine/multiprocessing/__init__.py +148 -0
  163. vllm/engine/multiprocessing/client.py +681 -0
  164. vllm/engine/multiprocessing/engine.py +460 -0
  165. vllm/engine/output_processor/__init__.py +0 -0
  166. vllm/engine/output_processor/interfaces.py +75 -0
  167. vllm/engine/output_processor/multi_step.py +216 -0
  168. vllm/engine/output_processor/single_step.py +145 -0
  169. vllm/engine/output_processor/stop_checker.py +131 -0
  170. vllm/engine/output_processor/util.py +28 -0
  171. vllm/engine/protocol.py +317 -0
  172. vllm/entrypoints/__init__.py +0 -0
  173. vllm/entrypoints/api_server.py +178 -0
  174. vllm/entrypoints/chat_utils.py +1299 -0
  175. vllm/entrypoints/cli/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  177. vllm/entrypoints/cli/benchmark/base.py +39 -0
  178. vllm/entrypoints/cli/benchmark/latency.py +30 -0
  179. vllm/entrypoints/cli/benchmark/main.py +54 -0
  180. vllm/entrypoints/cli/benchmark/serve.py +30 -0
  181. vllm/entrypoints/cli/benchmark/throughput.py +30 -0
  182. vllm/entrypoints/cli/collect_env.py +35 -0
  183. vllm/entrypoints/cli/main.py +65 -0
  184. vllm/entrypoints/cli/openai.py +205 -0
  185. vllm/entrypoints/cli/run_batch.py +62 -0
  186. vllm/entrypoints/cli/serve.py +328 -0
  187. vllm/entrypoints/cli/types.py +25 -0
  188. vllm/entrypoints/launcher.py +147 -0
  189. vllm/entrypoints/llm.py +1544 -0
  190. vllm/entrypoints/logger.py +50 -0
  191. vllm/entrypoints/openai/__init__.py +0 -0
  192. vllm/entrypoints/openai/api_server.py +1387 -0
  193. vllm/entrypoints/openai/cli_args.py +315 -0
  194. vllm/entrypoints/openai/logits_processors.py +90 -0
  195. vllm/entrypoints/openai/protocol.py +1913 -0
  196. vllm/entrypoints/openai/run_batch.py +463 -0
  197. vllm/entrypoints/openai/serving_chat.py +1221 -0
  198. vllm/entrypoints/openai/serving_classification.py +160 -0
  199. vllm/entrypoints/openai/serving_completion.py +592 -0
  200. vllm/entrypoints/openai/serving_embedding.py +201 -0
  201. vllm/entrypoints/openai/serving_engine.py +986 -0
  202. vllm/entrypoints/openai/serving_models.py +315 -0
  203. vllm/entrypoints/openai/serving_pooling.py +232 -0
  204. vllm/entrypoints/openai/serving_score.py +433 -0
  205. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  206. vllm/entrypoints/openai/serving_transcription.py +424 -0
  207. vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
  208. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  209. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  210. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  211. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  212. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  213. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  214. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  215. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  216. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  217. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  218. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  219. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  220. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  221. vllm/entrypoints/score_utils.py +50 -0
  222. vllm/entrypoints/ssl.py +75 -0
  223. vllm/entrypoints/utils.py +233 -0
  224. vllm/env_override.py +41 -0
  225. vllm/envs.py +944 -0
  226. vllm/executor/__init__.py +0 -0
  227. vllm/executor/executor_base.py +401 -0
  228. vllm/executor/mp_distributed_executor.py +244 -0
  229. vllm/executor/msgspec_utils.py +30 -0
  230. vllm/executor/multiproc_worker_utils.py +313 -0
  231. vllm/executor/ray_distributed_executor.py +701 -0
  232. vllm/executor/ray_utils.py +399 -0
  233. vllm/executor/uniproc_executor.py +139 -0
  234. vllm/forward_context.py +179 -0
  235. vllm/inputs/__init__.py +41 -0
  236. vllm/inputs/data.py +331 -0
  237. vllm/inputs/parse.py +151 -0
  238. vllm/inputs/preprocess.py +909 -0
  239. vllm/inputs/registry.py +237 -0
  240. vllm/jsontree.py +80 -0
  241. vllm/logger.py +212 -0
  242. vllm/logging_utils/__init__.py +8 -0
  243. vllm/logging_utils/dump_input.py +85 -0
  244. vllm/logging_utils/formatter.py +18 -0
  245. vllm/logits_process.py +119 -0
  246. vllm/lora/__init__.py +0 -0
  247. vllm/lora/fully_sharded_layers.py +355 -0
  248. vllm/lora/layers.py +1285 -0
  249. vllm/lora/lora.py +199 -0
  250. vllm/lora/models.py +818 -0
  251. vllm/lora/ops/__init__.py +0 -0
  252. vllm/lora/ops/torch_ops/__init__.py +16 -0
  253. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  254. vllm/lora/ops/triton_ops/__init__.py +12 -0
  255. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  256. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  257. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  258. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  259. vllm/lora/ops/triton_ops/utils.py +120 -0
  260. vllm/lora/ops/xla_ops/__init__.py +7 -0
  261. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  262. vllm/lora/peft_helper.py +136 -0
  263. vllm/lora/punica_wrapper/__init__.py +10 -0
  264. vllm/lora/punica_wrapper/punica_base.py +485 -0
  265. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  266. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  267. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  268. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  269. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  270. vllm/lora/punica_wrapper/utils.py +164 -0
  271. vllm/lora/request.py +99 -0
  272. vllm/lora/resolver.py +85 -0
  273. vllm/lora/utils.py +240 -0
  274. vllm/lora/worker_manager.py +259 -0
  275. vllm/model_executor/__init__.py +16 -0
  276. vllm/model_executor/custom_op.py +152 -0
  277. vllm/model_executor/guided_decoding/__init__.py +181 -0
  278. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  279. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  280. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  281. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  282. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  283. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  284. vllm/model_executor/guided_decoding/utils.py +242 -0
  285. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  286. vllm/model_executor/layers/__init__.py +0 -0
  287. vllm/model_executor/layers/activation.py +369 -0
  288. vllm/model_executor/layers/fused_moe/__init__.py +54 -0
  289. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
  290. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  455. vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
  456. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
  457. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
  458. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
  459. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
  460. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
  461. vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
  462. vllm/model_executor/layers/fused_moe/layer.py +1535 -0
  463. vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
  464. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  465. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  466. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  467. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  468. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
  469. vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
  470. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
  471. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
  472. vllm/model_executor/layers/fused_moe/utils.py +98 -0
  473. vllm/model_executor/layers/layernorm.py +288 -0
  474. vllm/model_executor/layers/lightning_attn.py +652 -0
  475. vllm/model_executor/layers/linear.py +1524 -0
  476. vllm/model_executor/layers/logits_processor.py +197 -0
  477. vllm/model_executor/layers/mamba/__init__.py +0 -0
  478. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  479. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  480. vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
  481. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  482. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  483. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  484. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  485. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  486. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  487. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  488. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  489. vllm/model_executor/layers/pooler.py +350 -0
  490. vllm/model_executor/layers/quantization/__init__.py +157 -0
  491. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  492. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  493. vllm/model_executor/layers/quantization/awq.py +194 -0
  494. vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
  495. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  496. vllm/model_executor/layers/quantization/base_config.py +151 -0
  497. vllm/model_executor/layers/quantization/bitblas.py +461 -0
  498. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  505. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  506. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
  507. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
  508. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  509. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  510. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  511. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  512. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  513. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  514. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  515. vllm/model_executor/layers/quantization/experts_int8.py +196 -0
  516. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  517. vllm/model_executor/layers/quantization/fp8.py +906 -0
  518. vllm/model_executor/layers/quantization/gguf.py +565 -0
  519. vllm/model_executor/layers/quantization/gptq.py +278 -0
  520. vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
  521. vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
  522. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  523. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  524. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  525. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  526. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  527. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  528. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  529. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  530. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  531. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
  532. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  533. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  534. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  535. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  536. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  537. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  538. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  539. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  540. vllm/model_executor/layers/quantization/marlin.py +261 -0
  541. vllm/model_executor/layers/quantization/modelopt.py +737 -0
  542. vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
  543. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  544. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  545. vllm/model_executor/layers/quantization/qqq.py +275 -0
  546. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  547. vllm/model_executor/layers/quantization/quark/quark.py +441 -0
  548. vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
  549. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  550. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  551. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  552. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
  553. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  554. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  555. vllm/model_executor/layers/quantization/schema.py +86 -0
  556. vllm/model_executor/layers/quantization/torchao.py +161 -0
  557. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  558. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  559. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  560. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
  764. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  765. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  766. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  767. vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
  768. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  769. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  770. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  771. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  772. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  773. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  774. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  775. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
  776. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  777. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  778. vllm/model_executor/layers/rejection_sampler.py +406 -0
  779. vllm/model_executor/layers/resampler.py +270 -0
  780. vllm/model_executor/layers/rotary_embedding.py +1862 -0
  781. vllm/model_executor/layers/sampler.py +1204 -0
  782. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  783. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  784. vllm/model_executor/layers/utils.py +95 -0
  785. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  786. vllm/model_executor/model_loader/__init__.py +76 -0
  787. vllm/model_executor/model_loader/base_loader.py +43 -0
  788. vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
  789. vllm/model_executor/model_loader/default_loader.py +282 -0
  790. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  791. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  792. vllm/model_executor/model_loader/neuron.py +476 -0
  793. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  794. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  795. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  796. vllm/model_executor/model_loader/tensorizer.py +600 -0
  797. vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
  798. vllm/model_executor/model_loader/tpu.py +112 -0
  799. vllm/model_executor/model_loader/utils.py +302 -0
  800. vllm/model_executor/model_loader/weight_utils.py +782 -0
  801. vllm/model_executor/models/__init__.py +28 -0
  802. vllm/model_executor/models/adapters.py +248 -0
  803. vllm/model_executor/models/aimv2.py +246 -0
  804. vllm/model_executor/models/arctic.py +559 -0
  805. vllm/model_executor/models/aria.py +657 -0
  806. vllm/model_executor/models/aya_vision.py +466 -0
  807. vllm/model_executor/models/baichuan.py +474 -0
  808. vllm/model_executor/models/bamba.py +543 -0
  809. vllm/model_executor/models/bart.py +938 -0
  810. vllm/model_executor/models/bert.py +523 -0
  811. vllm/model_executor/models/bert_with_rope.py +769 -0
  812. vllm/model_executor/models/blip.py +339 -0
  813. vllm/model_executor/models/blip2.py +718 -0
  814. vllm/model_executor/models/bloom.py +373 -0
  815. vllm/model_executor/models/chameleon.py +1136 -0
  816. vllm/model_executor/models/chatglm.py +478 -0
  817. vllm/model_executor/models/clip.py +407 -0
  818. vllm/model_executor/models/commandr.py +472 -0
  819. vllm/model_executor/models/constant_size_cache.py +137 -0
  820. vllm/model_executor/models/dbrx.py +472 -0
  821. vllm/model_executor/models/deepseek.py +486 -0
  822. vllm/model_executor/models/deepseek_mtp.py +269 -0
  823. vllm/model_executor/models/deepseek_v2.py +843 -0
  824. vllm/model_executor/models/deepseek_vl2.py +648 -0
  825. vllm/model_executor/models/eagle.py +260 -0
  826. vllm/model_executor/models/exaone.py +551 -0
  827. vllm/model_executor/models/fairseq2_llama.py +154 -0
  828. vllm/model_executor/models/falcon.py +510 -0
  829. vllm/model_executor/models/falcon_h1.py +685 -0
  830. vllm/model_executor/models/florence2.py +1103 -0
  831. vllm/model_executor/models/fuyu.py +389 -0
  832. vllm/model_executor/models/gemma.py +425 -0
  833. vllm/model_executor/models/gemma2.py +425 -0
  834. vllm/model_executor/models/gemma3.py +533 -0
  835. vllm/model_executor/models/gemma3_mm.py +709 -0
  836. vllm/model_executor/models/glm.py +23 -0
  837. vllm/model_executor/models/glm4.py +305 -0
  838. vllm/model_executor/models/glm4v.py +648 -0
  839. vllm/model_executor/models/gpt2.py +328 -0
  840. vllm/model_executor/models/gpt_bigcode.py +335 -0
  841. vllm/model_executor/models/gpt_j.py +339 -0
  842. vllm/model_executor/models/gpt_neox.py +332 -0
  843. vllm/model_executor/models/granite.py +493 -0
  844. vllm/model_executor/models/granite_speech.py +779 -0
  845. vllm/model_executor/models/granitemoe.py +437 -0
  846. vllm/model_executor/models/granitemoehybrid.py +586 -0
  847. vllm/model_executor/models/granitemoeshared.py +341 -0
  848. vllm/model_executor/models/gritlm.py +224 -0
  849. vllm/model_executor/models/grok1.py +546 -0
  850. vllm/model_executor/models/h2ovl.py +546 -0
  851. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  852. vllm/model_executor/models/idefics3.py +776 -0
  853. vllm/model_executor/models/interfaces.py +572 -0
  854. vllm/model_executor/models/interfaces_base.py +164 -0
  855. vllm/model_executor/models/intern_vit.py +480 -0
  856. vllm/model_executor/models/internlm2.py +455 -0
  857. vllm/model_executor/models/internlm2_ve.py +147 -0
  858. vllm/model_executor/models/internvl.py +1418 -0
  859. vllm/model_executor/models/jais.py +373 -0
  860. vllm/model_executor/models/jamba.py +592 -0
  861. vllm/model_executor/models/kimi_vl.py +577 -0
  862. vllm/model_executor/models/llama.py +644 -0
  863. vllm/model_executor/models/llama4.py +532 -0
  864. vllm/model_executor/models/llama_eagle.py +165 -0
  865. vllm/model_executor/models/llama_eagle3.py +263 -0
  866. vllm/model_executor/models/llava.py +866 -0
  867. vllm/model_executor/models/llava_next.py +586 -0
  868. vllm/model_executor/models/llava_next_video.py +471 -0
  869. vllm/model_executor/models/llava_onevision.py +956 -0
  870. vllm/model_executor/models/mamba.py +273 -0
  871. vllm/model_executor/models/mamba2.py +308 -0
  872. vllm/model_executor/models/mamba_cache.py +76 -0
  873. vllm/model_executor/models/medusa.py +219 -0
  874. vllm/model_executor/models/mimo.py +192 -0
  875. vllm/model_executor/models/mimo_mtp.py +285 -0
  876. vllm/model_executor/models/minicpm.py +592 -0
  877. vllm/model_executor/models/minicpm3.py +230 -0
  878. vllm/model_executor/models/minicpm_eagle.py +391 -0
  879. vllm/model_executor/models/minicpmo.py +759 -0
  880. vllm/model_executor/models/minicpmv.py +1287 -0
  881. vllm/model_executor/models/minimax_cache.py +36 -0
  882. vllm/model_executor/models/minimax_text_01.py +1301 -0
  883. vllm/model_executor/models/minimax_vl_01.py +364 -0
  884. vllm/model_executor/models/mistral3.py +604 -0
  885. vllm/model_executor/models/mixtral.py +488 -0
  886. vllm/model_executor/models/mixtral_quant.py +453 -0
  887. vllm/model_executor/models/mllama.py +1624 -0
  888. vllm/model_executor/models/mllama4.py +938 -0
  889. vllm/model_executor/models/mlp_speculator.py +206 -0
  890. vllm/model_executor/models/modernbert.py +331 -0
  891. vllm/model_executor/models/module_mapping.py +72 -0
  892. vllm/model_executor/models/molmo.py +1568 -0
  893. vllm/model_executor/models/moonvit.py +630 -0
  894. vllm/model_executor/models/mpt.py +331 -0
  895. vllm/model_executor/models/nemotron.py +508 -0
  896. vllm/model_executor/models/nemotron_h.py +573 -0
  897. vllm/model_executor/models/nemotron_nas.py +484 -0
  898. vllm/model_executor/models/nvlm_d.py +216 -0
  899. vllm/model_executor/models/olmo.py +389 -0
  900. vllm/model_executor/models/olmo2.py +414 -0
  901. vllm/model_executor/models/olmoe.py +468 -0
  902. vllm/model_executor/models/opt.py +412 -0
  903. vllm/model_executor/models/orion.py +349 -0
  904. vllm/model_executor/models/ovis.py +567 -0
  905. vllm/model_executor/models/paligemma.py +398 -0
  906. vllm/model_executor/models/persimmon.py +344 -0
  907. vllm/model_executor/models/phi.py +356 -0
  908. vllm/model_executor/models/phi3.py +19 -0
  909. vllm/model_executor/models/phi3_small.py +465 -0
  910. vllm/model_executor/models/phi3v.py +723 -0
  911. vllm/model_executor/models/phi4mm.py +1246 -0
  912. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  913. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  914. vllm/model_executor/models/phimoe.py +665 -0
  915. vllm/model_executor/models/pixtral.py +1316 -0
  916. vllm/model_executor/models/plamo2.py +738 -0
  917. vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
  918. vllm/model_executor/models/qwen.py +362 -0
  919. vllm/model_executor/models/qwen2.py +497 -0
  920. vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
  921. vllm/model_executor/models/qwen2_5_vl.py +1166 -0
  922. vllm/model_executor/models/qwen2_audio.py +410 -0
  923. vllm/model_executor/models/qwen2_moe.py +540 -0
  924. vllm/model_executor/models/qwen2_rm.py +132 -0
  925. vllm/model_executor/models/qwen2_vl.py +1405 -0
  926. vllm/model_executor/models/qwen3.py +321 -0
  927. vllm/model_executor/models/qwen3_moe.py +535 -0
  928. vllm/model_executor/models/qwen_vl.py +785 -0
  929. vllm/model_executor/models/registry.py +622 -0
  930. vllm/model_executor/models/roberta.py +276 -0
  931. vllm/model_executor/models/siglip.py +524 -0
  932. vllm/model_executor/models/skyworkr1v.py +951 -0
  933. vllm/model_executor/models/smolvlm.py +52 -0
  934. vllm/model_executor/models/solar.py +506 -0
  935. vllm/model_executor/models/stablelm.py +343 -0
  936. vllm/model_executor/models/starcoder2.py +356 -0
  937. vllm/model_executor/models/tarsier.py +643 -0
  938. vllm/model_executor/models/telechat2.py +140 -0
  939. vllm/model_executor/models/teleflm.py +79 -0
  940. vllm/model_executor/models/transformers.py +508 -0
  941. vllm/model_executor/models/ultravox.py +656 -0
  942. vllm/model_executor/models/utils.py +731 -0
  943. vllm/model_executor/models/vision.py +147 -0
  944. vllm/model_executor/models/whisper.py +747 -0
  945. vllm/model_executor/models/zamba2.py +1009 -0
  946. vllm/model_executor/parameter.py +459 -0
  947. vllm/model_executor/pooling_metadata.py +72 -0
  948. vllm/model_executor/sampling_metadata.py +597 -0
  949. vllm/model_executor/utils.py +77 -0
  950. vllm/multimodal/__init__.py +33 -0
  951. vllm/multimodal/audio.py +106 -0
  952. vllm/multimodal/base.py +219 -0
  953. vllm/multimodal/hasher.py +118 -0
  954. vllm/multimodal/image.py +97 -0
  955. vllm/multimodal/inputs.py +876 -0
  956. vllm/multimodal/parse.py +461 -0
  957. vllm/multimodal/processing.py +1895 -0
  958. vllm/multimodal/profiling.py +258 -0
  959. vllm/multimodal/registry.py +331 -0
  960. vllm/multimodal/utils.py +436 -0
  961. vllm/multimodal/video.py +198 -0
  962. vllm/outputs.py +512 -0
  963. vllm/platforms/__init__.py +291 -0
  964. vllm/platforms/cpu.py +266 -0
  965. vllm/platforms/cuda.py +526 -0
  966. vllm/platforms/hpu.py +106 -0
  967. vllm/platforms/interface.py +538 -0
  968. vllm/platforms/neuron.py +150 -0
  969. vllm/platforms/rocm.py +435 -0
  970. vllm/platforms/tpu.py +216 -0
  971. vllm/platforms/xpu.py +156 -0
  972. vllm/plugins/__init__.py +94 -0
  973. vllm/plugins/lora_resolvers/README.md +15 -0
  974. vllm/plugins/lora_resolvers/__init__.py +0 -0
  975. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  976. vllm/pooling_params.py +54 -0
  977. vllm/profiler/__init__.py +0 -0
  978. vllm/profiler/layerwise_profile.py +375 -0
  979. vllm/profiler/utils.py +148 -0
  980. vllm/prompt_adapter/__init__.py +0 -0
  981. vllm/prompt_adapter/layers.py +83 -0
  982. vllm/prompt_adapter/models.py +358 -0
  983. vllm/prompt_adapter/request.py +37 -0
  984. vllm/prompt_adapter/utils.py +98 -0
  985. vllm/prompt_adapter/worker_manager.py +179 -0
  986. vllm/py.typed +2 -0
  987. vllm/reasoning/__init__.py +15 -0
  988. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  989. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  990. vllm/reasoning/granite_reasoning_parser.py +363 -0
  991. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  992. vllm/sampling_params.py +602 -0
  993. vllm/scalar_type.py +347 -0
  994. vllm/scripts.py +15 -0
  995. vllm/sequence.py +1568 -0
  996. vllm/spec_decode/__init__.py +0 -0
  997. vllm/spec_decode/batch_expansion.py +506 -0
  998. vllm/spec_decode/draft_model_runner.py +349 -0
  999. vllm/spec_decode/interfaces.py +99 -0
  1000. vllm/spec_decode/medusa_worker.py +138 -0
  1001. vllm/spec_decode/metrics.py +213 -0
  1002. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1003. vllm/spec_decode/mqa_scorer.py +160 -0
  1004. vllm/spec_decode/multi_step_worker.py +423 -0
  1005. vllm/spec_decode/ngram_worker.py +196 -0
  1006. vllm/spec_decode/proposer_worker_base.py +59 -0
  1007. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1008. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1009. vllm/spec_decode/target_model_runner.py +45 -0
  1010. vllm/spec_decode/top1_proposer.py +275 -0
  1011. vllm/spec_decode/util.py +277 -0
  1012. vllm/test_utils.py +130 -0
  1013. vllm/third_party/__init__.py +0 -0
  1014. vllm/third_party/pynvml.py +6140 -0
  1015. vllm/tracing.py +131 -0
  1016. vllm/transformers_utils/__init__.py +24 -0
  1017. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1018. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1019. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1020. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1021. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1022. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1023. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1024. vllm/transformers_utils/config.py +887 -0
  1025. vllm/transformers_utils/configs/__init__.py +61 -0
  1026. vllm/transformers_utils/configs/arctic.py +207 -0
  1027. vllm/transformers_utils/configs/chatglm.py +72 -0
  1028. vllm/transformers_utils/configs/cohere2.py +195 -0
  1029. vllm/transformers_utils/configs/dbrx.py +280 -0
  1030. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1031. vllm/transformers_utils/configs/eagle.py +85 -0
  1032. vllm/transformers_utils/configs/exaone.py +190 -0
  1033. vllm/transformers_utils/configs/falcon.py +90 -0
  1034. vllm/transformers_utils/configs/h2ovl.py +16 -0
  1035. vllm/transformers_utils/configs/internvl.py +54 -0
  1036. vllm/transformers_utils/configs/jais.py +238 -0
  1037. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1038. vllm/transformers_utils/configs/medusa.py +63 -0
  1039. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1040. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1041. vllm/transformers_utils/configs/mllama.py +31 -0
  1042. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1043. vllm/transformers_utils/configs/moonvit.py +33 -0
  1044. vllm/transformers_utils/configs/mpt.py +180 -0
  1045. vllm/transformers_utils/configs/nemotron.py +205 -0
  1046. vllm/transformers_utils/configs/nemotron_h.py +258 -0
  1047. vllm/transformers_utils/configs/nvlm_d.py +15 -0
  1048. vllm/transformers_utils/configs/ovis.py +184 -0
  1049. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1050. vllm/transformers_utils/configs/solar.py +247 -0
  1051. vllm/transformers_utils/configs/telechat2.py +64 -0
  1052. vllm/transformers_utils/configs/ultravox.py +108 -0
  1053. vllm/transformers_utils/detokenizer.py +168 -0
  1054. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1055. vllm/transformers_utils/processor.py +221 -0
  1056. vllm/transformers_utils/processors/__init__.py +8 -0
  1057. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1058. vllm/transformers_utils/processors/ovis.py +420 -0
  1059. vllm/transformers_utils/s3_utils.py +162 -0
  1060. vllm/transformers_utils/tokenizer.py +302 -0
  1061. vllm/transformers_utils/tokenizer_base.py +149 -0
  1062. vllm/transformers_utils/tokenizer_group.py +120 -0
  1063. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1064. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1065. vllm/transformers_utils/utils.py +99 -0
  1066. vllm/triton_utils/__init__.py +14 -0
  1067. vllm/triton_utils/importing.py +50 -0
  1068. vllm/usage/__init__.py +0 -0
  1069. vllm/usage/usage_lib.py +256 -0
  1070. vllm/utils.py +2910 -0
  1071. vllm/v1/__init__.py +0 -0
  1072. vllm/v1/attention/__init__.py +0 -0
  1073. vllm/v1/attention/backends/__init__.py +0 -0
  1074. vllm/v1/attention/backends/cpu_attn.py +163 -0
  1075. vllm/v1/attention/backends/flash_attn.py +869 -0
  1076. vllm/v1/attention/backends/flashinfer.py +651 -0
  1077. vllm/v1/attention/backends/flex_attention.py +477 -0
  1078. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1079. vllm/v1/attention/backends/mla/common.py +931 -0
  1080. vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
  1081. vllm/v1/attention/backends/mla/flashmla.py +152 -0
  1082. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
  1083. vllm/v1/attention/backends/mla/triton_mla.py +120 -0
  1084. vllm/v1/attention/backends/pallas.py +240 -0
  1085. vllm/v1/attention/backends/triton_attn.py +285 -0
  1086. vllm/v1/attention/backends/utils.py +52 -0
  1087. vllm/v1/core/__init__.py +0 -0
  1088. vllm/v1/core/block_pool.py +349 -0
  1089. vllm/v1/core/encoder_cache_manager.py +150 -0
  1090. vllm/v1/core/kv_cache_coordinator.py +363 -0
  1091. vllm/v1/core/kv_cache_manager.py +392 -0
  1092. vllm/v1/core/kv_cache_utils.py +996 -0
  1093. vllm/v1/core/sched/__init__.py +0 -0
  1094. vllm/v1/core/sched/interface.py +150 -0
  1095. vllm/v1/core/sched/output.py +154 -0
  1096. vllm/v1/core/sched/scheduler.py +1044 -0
  1097. vllm/v1/core/sched/utils.py +23 -0
  1098. vllm/v1/core/single_type_kv_cache_manager.py +403 -0
  1099. vllm/v1/engine/__init__.py +173 -0
  1100. vllm/v1/engine/async_llm.py +558 -0
  1101. vllm/v1/engine/coordinator.py +253 -0
  1102. vllm/v1/engine/core.py +961 -0
  1103. vllm/v1/engine/core_client.py +1129 -0
  1104. vllm/v1/engine/detokenizer.py +261 -0
  1105. vllm/v1/engine/exceptions.py +17 -0
  1106. vllm/v1/engine/llm_engine.py +317 -0
  1107. vllm/v1/engine/logprobs.py +199 -0
  1108. vllm/v1/engine/mm_input_cache.py +91 -0
  1109. vllm/v1/engine/output_processor.py +428 -0
  1110. vllm/v1/engine/parallel_sampling.py +133 -0
  1111. vllm/v1/engine/processor.py +407 -0
  1112. vllm/v1/executor/__init__.py +0 -0
  1113. vllm/v1/executor/abstract.py +113 -0
  1114. vllm/v1/executor/multiproc_executor.py +537 -0
  1115. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1116. vllm/v1/kv_cache_interface.py +194 -0
  1117. vllm/v1/metrics/__init__.py +0 -0
  1118. vllm/v1/metrics/loggers.py +523 -0
  1119. vllm/v1/metrics/prometheus.py +82 -0
  1120. vllm/v1/metrics/ray_wrappers.py +131 -0
  1121. vllm/v1/metrics/reader.py +246 -0
  1122. vllm/v1/metrics/stats.py +239 -0
  1123. vllm/v1/outputs.py +116 -0
  1124. vllm/v1/request.py +193 -0
  1125. vllm/v1/sample/__init__.py +0 -0
  1126. vllm/v1/sample/metadata.py +44 -0
  1127. vllm/v1/sample/ops/__init__.py +0 -0
  1128. vllm/v1/sample/ops/bad_words.py +39 -0
  1129. vllm/v1/sample/ops/penalties.py +59 -0
  1130. vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
  1131. vllm/v1/sample/rejection_sampler.py +631 -0
  1132. vllm/v1/sample/sampler.py +286 -0
  1133. vllm/v1/sample/tpu/__init__.py +0 -0
  1134. vllm/v1/sample/tpu/metadata.py +124 -0
  1135. vllm/v1/sample/tpu/sampler.py +145 -0
  1136. vllm/v1/serial_utils.py +315 -0
  1137. vllm/v1/spec_decode/__init__.py +0 -0
  1138. vllm/v1/spec_decode/eagle.py +432 -0
  1139. vllm/v1/spec_decode/medusa.py +62 -0
  1140. vllm/v1/spec_decode/metadata.py +62 -0
  1141. vllm/v1/spec_decode/metrics.py +178 -0
  1142. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1143. vllm/v1/spec_decode/utils.py +46 -0
  1144. vllm/v1/structured_output/__init__.py +222 -0
  1145. vllm/v1/structured_output/backend_guidance.py +245 -0
  1146. vllm/v1/structured_output/backend_types.py +134 -0
  1147. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1148. vllm/v1/structured_output/request.py +86 -0
  1149. vllm/v1/structured_output/utils.py +175 -0
  1150. vllm/v1/utils.py +743 -0
  1151. vllm/v1/worker/__init__.py +0 -0
  1152. vllm/v1/worker/block_table.py +142 -0
  1153. vllm/v1/worker/cpu_model_runner.py +86 -0
  1154. vllm/v1/worker/cpu_worker.py +152 -0
  1155. vllm/v1/worker/gpu_input_batch.py +681 -0
  1156. vllm/v1/worker/gpu_model_runner.py +2320 -0
  1157. vllm/v1/worker/gpu_worker.py +393 -0
  1158. vllm/v1/worker/lora_model_runner_mixin.py +173 -0
  1159. vllm/v1/worker/tpu_model_runner.py +1673 -0
  1160. vllm/v1/worker/tpu_worker.py +299 -0
  1161. vllm/v1/worker/utils.py +111 -0
  1162. vllm/v1/worker/worker_base.py +65 -0
  1163. vllm/version.py +41 -0
  1164. vllm/vllm_flash_attn/.gitkeep +0 -0
  1165. vllm/worker/__init__.py +0 -0
  1166. vllm/worker/cache_engine.py +145 -0
  1167. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1168. vllm/worker/cpu_model_runner.py +671 -0
  1169. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1170. vllm/worker/cpu_worker.py +450 -0
  1171. vllm/worker/enc_dec_model_runner.py +555 -0
  1172. vllm/worker/hpu_model_runner.py +2320 -0
  1173. vllm/worker/hpu_worker.py +484 -0
  1174. vllm/worker/model_runner.py +2178 -0
  1175. vllm/worker/model_runner_base.py +282 -0
  1176. vllm/worker/multi_step_hpu_worker.py +123 -0
  1177. vllm/worker/multi_step_model_runner.py +911 -0
  1178. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1179. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1180. vllm/worker/multi_step_tpu_worker.py +108 -0
  1181. vllm/worker/multi_step_worker.py +197 -0
  1182. vllm/worker/neuron_model_runner.py +460 -0
  1183. vllm/worker/neuron_worker.py +193 -0
  1184. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1185. vllm/worker/pooling_model_runner.py +211 -0
  1186. vllm/worker/tpu_model_runner.py +909 -0
  1187. vllm/worker/tpu_worker.py +337 -0
  1188. vllm/worker/utils.py +53 -0
  1189. vllm/worker/worker.py +577 -0
  1190. vllm/worker/worker_base.py +646 -0
  1191. vllm/worker/xpu_model_runner.py +606 -0
  1192. vllm/worker/xpu_worker.py +186 -0
  1193. vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
  1194. vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
  1195. vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
  1196. vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
  1197. vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
vllm/sequence.py ADDED
@@ -0,0 +1,1568 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ """Sequence and its related classes."""
4
+ import copy
5
+ import enum
6
+ from abc import ABC, abstractmethod
7
+ from array import array
8
+ from collections import defaultdict
9
+ from collections.abc import Mapping
10
+ from collections.abc import Sequence as GenericSequence
11
+ from dataclasses import dataclass, field
12
+ from functools import reduce
13
+ from typing import Any, Callable, Optional, Union
14
+
15
+ import msgspec
16
+ import torch
17
+
18
+ from vllm.inputs import SingletonInputs
19
+ from vllm.lora.request import LoRARequest
20
+ from vllm.multimodal import MultiModalKwargs, MultiModalPlaceholderDict
21
+ from vllm.pooling_params import PoolingParams
22
+ from vllm.prompt_adapter.request import PromptAdapterRequest
23
+ from vllm.sampling_params import RequestOutputKind, SamplingParams
24
+
25
+ VLLM_TOKEN_ID_ARRAY_TYPE = "l"
26
+
27
+ VLLM_INVALID_TOKEN_ID = -1
28
+
29
+
30
+ def array_full(token_id: int, count: int):
31
+ """[`array`][] equivalent of [numpy.full][]."""
32
+ return array(VLLM_TOKEN_ID_ARRAY_TYPE, [token_id]) * count
33
+
34
+
35
+ # We use dataclass for now because it is used for
36
+ # openai server output, and msgspec is not serializable.
37
+ # TODO(sang): Fix it.
38
+ @dataclass
39
+ class Logprob:
40
+ """Infos for supporting OpenAI compatible logprobs and token ranks.
41
+
42
+ Attributes:
43
+ logprob: The logprob of chosen token
44
+ rank: The vocab rank of chosen token (>=1)
45
+ decoded_token: The decoded chosen token index
46
+ """
47
+ logprob: float
48
+ rank: Optional[int] = None
49
+ decoded_token: Optional[str] = None
50
+
51
+
52
+ # {token_id -> logprob} per each sequence group. None if the corresponding
53
+ # sequence group doesn't require prompt logprob.
54
+ PromptLogprobs = list[Optional[dict[int, Logprob]]]
55
+ # {token_id -> logprob} for each sequence group.
56
+ SampleLogprobs = list[dict[int, Logprob]]
57
+
58
+
59
+ class SequenceStatus(enum.IntEnum):
60
+ """Status of a sequence."""
61
+ WAITING = 0
62
+ RUNNING = 1
63
+ SWAPPED = 2
64
+ # Note: anything after SWAPPED (2) will be considered
65
+ # as a finished status.
66
+ FINISHED_STOPPED = 3
67
+ FINISHED_LENGTH_CAPPED = 4
68
+ FINISHED_ABORTED = 5
69
+ FINISHED_IGNORED = 6
70
+
71
+ @staticmethod
72
+ def is_finished(status: "SequenceStatus") -> bool:
73
+ return status > SequenceStatus.SWAPPED
74
+
75
+ @staticmethod
76
+ def get_finished_reason(status: "SequenceStatus") -> Union[str, None]:
77
+ if status == SequenceStatus.FINISHED_STOPPED:
78
+ finish_reason = "stop"
79
+ elif status == SequenceStatus.FINISHED_LENGTH_CAPPED:
80
+ finish_reason = "length"
81
+ elif status == SequenceStatus.FINISHED_ABORTED:
82
+ finish_reason = "abort"
83
+ elif status == SequenceStatus.FINISHED_IGNORED:
84
+ # The ignored sequences are the sequences whose prompt lengths
85
+ # are longer than the model's length cap. Therefore, the stop
86
+ # reason should also be "length" as in OpenAI API.
87
+ finish_reason = "length"
88
+ else:
89
+ finish_reason = None
90
+ return finish_reason
91
+
92
+
93
+ class SequenceStage(enum.Enum):
94
+ PREFILL = enum.auto()
95
+ DECODE = enum.auto()
96
+
97
+
98
+ @dataclass
99
+ class RequestMetrics:
100
+ """Metrics associated with a request.
101
+
102
+ Attributes:
103
+ arrival_time: The time when the request arrived.
104
+ first_scheduled_time: The time when the request was first scheduled.
105
+ first_token_time: The time when the first token was generated.
106
+ time_in_queue: The time the request spent in the queue.
107
+ finished_time: The time when the request was finished.
108
+ scheduler_time: The time spent in the scheduler when this request was
109
+ being considered by the scheduler.
110
+ model_forward_time: The time spent in the model forward pass when this
111
+ request was in the batch.
112
+ model_execute_time: The time spent in the model execute function. This
113
+ will include model forward, block/sync across
114
+ workers, cpu-gpu sync time and sampling time.
115
+ spec_token_acceptance_counts: number of accepted speculative tokens at
116
+ each position; the first token is from
117
+ the target model and is always accepted;
118
+ e.g., when it's [10, 8, 4, 2] for a req,
119
+ it means there were 10 forward passes in
120
+ total, and there were 8, 4, 2 accepted
121
+ tokens at 1st, 2nd, 3rd speculation step.
122
+ """
123
+ arrival_time: float
124
+ last_token_time: float
125
+ first_scheduled_time: Optional[float]
126
+ first_token_time: Optional[float]
127
+ time_in_queue: Optional[float]
128
+ finished_time: Optional[float] = None
129
+ scheduler_time: Optional[float] = None
130
+ model_forward_time: Optional[float] = None
131
+ model_execute_time: Optional[float] = None
132
+ spec_token_acceptance_counts: Optional[list[int]] = None
133
+
134
+
135
+ class SequenceDataDelta(
136
+ msgspec.Struct,
137
+ array_like=True, # type: ignore[call-arg]
138
+ omit_defaults=True): # type: ignore[call-arg]
139
+ """Delta SequenceData to send to workers per step."""
140
+ # A new token to be appended to existing SequenceData.
141
+ new_output_token_ids: list[int]
142
+ # Overwriting existing `cumulative_logprob`
143
+ new_cumulative_logprob: float
144
+ # Overwriting existing `num_computed_tokens`.
145
+ new_num_computed_tokens: int
146
+ # Overwriting existing `stage`.
147
+ new_stage: SequenceStage
148
+
149
+
150
+ class SequenceData(msgspec.Struct,
151
+ omit_defaults=True): # type: ignore[call-arg]
152
+ """Data associated with a sequence.
153
+
154
+ Args:
155
+ prompt_token_ids: The token IDs of the prompt.
156
+ output_token_ids: The token IDs of the output. Set to an empty list if
157
+ None.
158
+
159
+ Attributes:
160
+ prompt_token_ids: The token IDs of the prompt.
161
+ output_token_ids: The token IDs of the output.
162
+ cumulative_logprob: The cumulative log probability of the output.
163
+ """
164
+ # NOTE: we cannot use Union[list, array] because msgspec cannot support
165
+ # union of 2 list types.
166
+ _prompt_token_ids: array
167
+ _output_token_ids: array = msgspec.field(
168
+ default_factory=lambda: array(VLLM_TOKEN_ID_ARRAY_TYPE, []))
169
+
170
+ _prompt_embeds: Optional[torch.Tensor] = None
171
+ _output_embeds: Optional[torch.Tensor] = None
172
+
173
+ ### The below fields should not be passed as an argument ###
174
+ _cumulative_logprob: float = 0.0
175
+ _prompt_token_ids_tuple: tuple[int,
176
+ ...] = msgspec.field(default_factory=tuple)
177
+ # The number of tokens that are computed (that run against the model).
178
+ _num_computed_tokens: int = 0
179
+ # The number of tokens with prefix cache hit.
180
+ _num_cached_tokens: int = 0
181
+ _stage: SequenceStage = SequenceStage.PREFILL
182
+ _cached_all_token_ids: list[int] = msgspec.field(default_factory=list)
183
+ _cached_all_token_embeds: Optional[torch.Tensor] = None
184
+
185
+ # It is used to get delta input. It is reset when `get_delta_and_reset`
186
+ # is called.
187
+ _new_appended_tokens: list[int] = msgspec.field(default_factory=list)
188
+
189
+ # It is used to compute mrope_position_ids.
190
+ _mrope_position_delta: Optional[int] = None
191
+
192
+ @staticmethod
193
+ def from_prompt_token_counts(
194
+ *token_counts: tuple[int, int]) -> "SequenceData":
195
+ """
196
+ Construct a [`SequenceData`][vllm.sequence.SequenceData] instance
197
+ by concatenating prompt token sequences.
198
+
199
+ Each tuple represents one token sequence, expressed in the form
200
+ `(token_id, count)`.
201
+ """
202
+ if len(token_counts) == 0:
203
+ return SequenceData.from_seqs([])
204
+
205
+ prompt_token_ids_arr = reduce(
206
+ array.__iadd__,
207
+ (array_full(token_id, count) for token_id, count in token_counts),
208
+ )
209
+
210
+ return SequenceData(prompt_token_ids_arr)
211
+
212
+ @staticmethod
213
+ def from_seqs(
214
+ prompt_token_ids: GenericSequence[int],
215
+ output_token_ids: Optional[GenericSequence[int]] = None,
216
+ *,
217
+ prompt_embeds: Optional[torch.Tensor] = None,
218
+ ) -> "SequenceData":
219
+ """
220
+ Construct a [`SequenceData`][vllm.sequence.SequenceData] instance
221
+ from prompt and output token sequences.
222
+ """
223
+ prompt_token_ids_arr = array(VLLM_TOKEN_ID_ARRAY_TYPE,
224
+ prompt_token_ids)
225
+
226
+ if output_token_ids is None:
227
+ return SequenceData(prompt_token_ids_arr,
228
+ _prompt_embeds=prompt_embeds)
229
+
230
+ output_token_ids_arr = array(VLLM_TOKEN_ID_ARRAY_TYPE,
231
+ output_token_ids)
232
+
233
+ return SequenceData(prompt_token_ids_arr,
234
+ _output_token_ids=output_token_ids_arr,
235
+ _prompt_embeds=prompt_embeds)
236
+
237
+ def __post_init__(self) -> None:
238
+ assert self._prompt_token_ids.typecode == "l"
239
+ assert self._output_token_ids.typecode == "l"
240
+ self._prompt_token_ids_tuple: tuple[int, ...] = tuple(
241
+ self._prompt_token_ids)
242
+ self._update_cached_all_tokens()
243
+ if self._prompt_embeds is not None:
244
+ self._update_cached_all_token_embeds()
245
+
246
+ def _update_cached_all_tokens(self):
247
+ assert isinstance(self._prompt_token_ids, array)
248
+ assert isinstance(self._output_token_ids, array)
249
+ self._cached_all_token_ids: list[int] = list(self._prompt_token_ids +
250
+ self._output_token_ids)
251
+
252
+ def _update_cached_all_token_embeds(self):
253
+ assert isinstance(self._prompt_embeds, torch.Tensor)
254
+ self._cached_all_token_embeds: torch.Tensor = self._prompt_embeds
255
+ if self._output_embeds is not None:
256
+ self._cached_all_token_embeds = torch.cat(
257
+ (self._cached_all_token_embeds, self._output_embeds), dim=0)
258
+
259
+ @property
260
+ def cumulative_logprob(self) -> float:
261
+ return self._cumulative_logprob
262
+
263
+ @property
264
+ def prompt_token_ids(self) -> tuple[int, ...]:
265
+ return self._prompt_token_ids_tuple
266
+
267
+ @prompt_token_ids.setter
268
+ def prompt_token_ids(self, new_prompt_token_ids) -> None:
269
+ raise NotImplementedError
270
+
271
+ @property
272
+ def prompt_token_ids_array(self) -> array:
273
+ """Return the prompt token ids in array type.
274
+
275
+ Note that the array is in "I" type, and it is not compatible
276
+ with torch.long (2 bytes vs 4 bytes). So beware of the usage.
277
+ """
278
+ return self._prompt_token_ids
279
+
280
+ @property
281
+ def output_token_ids(self) -> tuple[int, ...]:
282
+ return tuple(self._output_token_ids)
283
+
284
+ @output_token_ids.setter
285
+ def output_token_ids(self,
286
+ new_output_token_ids: GenericSequence[int]) -> None:
287
+ self._output_token_ids = array(VLLM_TOKEN_ID_ARRAY_TYPE,
288
+ new_output_token_ids)
289
+ self._update_cached_all_tokens()
290
+
291
+ @property
292
+ def output_embeds(self) -> Optional[torch.Tensor]:
293
+ return self._output_embeds
294
+
295
+ @output_embeds.setter
296
+ def output_embeds(self, new_output_token_embeds: torch.Tensor) -> None:
297
+ self._output_token_embeds = new_output_token_embeds
298
+ self._update_cached_all_token_embeds()
299
+
300
+ @property
301
+ def output_token_ids_array(self) -> array:
302
+ """Return the prompt token ids in array type.
303
+
304
+ Note that the array is in "I" type, and it is not compatible
305
+ with torch.long (2 bytes vs 4 bytes). So beware of the usage.
306
+ """
307
+ assert isinstance(self._output_token_ids, array)
308
+ return self._output_token_ids
309
+
310
+ @property
311
+ def prompt_embeds(self) -> Optional[torch.Tensor]:
312
+ return self._prompt_embeds
313
+
314
+ @prompt_embeds.setter
315
+ def prompt_embeds(self, prompt_embeds: torch.Tensor) -> None:
316
+ self._prompt_embeds = prompt_embeds
317
+ self._update_cached_all_token_embeds()
318
+
319
+ @property
320
+ def mrope_position_delta(self) -> Optional[int]:
321
+ return self._mrope_position_delta
322
+
323
+ @mrope_position_delta.setter
324
+ def mrope_position_delta(self, new_mrope_position_delta):
325
+ self._mrope_position_delta = new_mrope_position_delta
326
+
327
+ def append_token_id(self,
328
+ token_id: int,
329
+ logprob: float,
330
+ token_embed: Optional[torch.Tensor] = None) -> None:
331
+ self._output_token_ids.append(token_id)
332
+ self._new_appended_tokens.append(token_id)
333
+ self._cached_all_token_ids.append(token_id)
334
+ self._cumulative_logprob += logprob
335
+ if token_embed is not None:
336
+ # Do not pass in with batch or sequence dimensions
337
+ assert token_embed.ndim == 1
338
+ token_embed = token_embed.detach().cpu().unsqueeze(0)
339
+ if self._output_embeds is None:
340
+ self._output_embeds = token_embed
341
+ else:
342
+ self._output_embeds = torch.cat(
343
+ (self._output_embeds, token_embed), dim=0)
344
+ assert self._cached_all_token_embeds is not None
345
+ self._cached_all_token_embeds = torch.cat(
346
+ (self._cached_all_token_embeds,
347
+ token_embed.to(device=self._cached_all_token_embeds.device)),
348
+ dim=0)
349
+
350
+ def get_len(self) -> int:
351
+ return len(self._output_token_ids) + len(self._prompt_token_ids)
352
+
353
+ def get_prompt_len(self) -> int:
354
+ return len(self._prompt_token_ids)
355
+
356
+ def get_output_len(self) -> int:
357
+ return len(self._output_token_ids)
358
+
359
+ def get_token_ids(self) -> list[int]:
360
+ return self._cached_all_token_ids
361
+
362
+ def get_token_embeddings(self) -> Optional[torch.Tensor]:
363
+ return self._cached_all_token_embeds
364
+
365
+ def get_prefix_token_ids(
366
+ self, num_tokens: int
367
+ ) -> tuple[tuple[int, ...], Optional[tuple[int, ...]]]:
368
+ """Get prefix tokens, and make the return value hashable"""
369
+ prompt_length = self.get_prompt_len()
370
+ if num_tokens > prompt_length:
371
+ return (self._prompt_token_ids_tuple,
372
+ tuple(self._output_token_ids[:num_tokens - prompt_length]))
373
+ else:
374
+ return (self._prompt_token_ids_tuple[:num_tokens], None)
375
+
376
+ def get_num_computed_tokens(self) -> int:
377
+ """Return the number of prefill tokens that are already computed."""
378
+ return self._num_computed_tokens
379
+
380
+ def update_num_computed_tokens(self, num_new_computed_tokens: int):
381
+ """Update number of tokens computed so far."""
382
+ self._num_computed_tokens += num_new_computed_tokens
383
+ assert self._num_computed_tokens <= self.get_len(), (
384
+ self._num_computed_tokens, self.get_len())
385
+ # If all tokens are computed, it means it is in decoding phase.
386
+ if self.get_num_uncomputed_tokens() == 0:
387
+ self._stage = SequenceStage.DECODE
388
+
389
+ def get_num_cached_tokens(self) -> int:
390
+ """Return the number of tokens with prefix cache hit."""
391
+ return self._num_cached_tokens
392
+
393
+ def update_num_cached_tokens(self, num_cached_tokens: int):
394
+ """Update the number of tokens with prefix cache hit."""
395
+ self._num_cached_tokens = num_cached_tokens
396
+
397
+ def reset_state_for_recompute(self) -> None:
398
+ """Reset the number of computed tokens from this sequence. It is
399
+ supposed to be called when a sequence needs to be started from
400
+ the beginning again (e.g., sequence is preempted).
401
+ """
402
+ self._num_computed_tokens = 0
403
+ self._stage = SequenceStage.PREFILL
404
+ self._new_appended_tokens = []
405
+
406
+ def get_num_uncomputed_tokens(self) -> int:
407
+ """Return the number of prefill tokens that are not computed."""
408
+ # we use `get_len()` which includes prompt_len + output_len instead
409
+ # of prompt_len here. This is because during recompute we need to
410
+ # prefill for both prompt and output.
411
+ return self.get_len() - self.get_num_computed_tokens()
412
+
413
+ def get_last_token_id(self) -> int:
414
+ if not self._output_token_ids:
415
+ return self._prompt_token_ids[-1]
416
+ return self._output_token_ids[-1]
417
+
418
+ def get_prompt_token_ids(self) -> tuple[int, ...]:
419
+ return self.prompt_token_ids
420
+
421
+ def get_output_token_ids(self) -> tuple[int, ...]:
422
+ return self.output_token_ids
423
+
424
+ def get_delta_and_reset(self) -> SequenceDataDelta:
425
+ delta = SequenceDataDelta(self._new_appended_tokens,
426
+ self._cumulative_logprob,
427
+ self.get_num_computed_tokens(), self.stage)
428
+ # Reset delta state.
429
+ self._new_appended_tokens = []
430
+ return delta
431
+
432
+ def apply_delta(self, delta: SequenceDataDelta):
433
+ self._num_computed_tokens = delta.new_num_computed_tokens
434
+ self._cumulative_logprob = delta.new_cumulative_logprob
435
+ self._stage = delta.new_stage
436
+ self._output_token_ids.extend(delta.new_output_token_ids)
437
+ self._cached_all_token_ids.extend(delta.new_output_token_ids)
438
+
439
+ @property
440
+ def stage(self) -> SequenceStage:
441
+ return self._stage
442
+
443
+ def __repr__(self) -> str:
444
+ return (f"SequenceData("
445
+ f"prompt_token_ids={self._prompt_token_ids}, "
446
+ f"prompt_embeds.shape="
447
+ f"{getattr(self._prompt_embeds, 'shape', None)}, "
448
+ f"output_token_ids={self.output_token_ids}, "
449
+ f"cumulative_logprob={self.cumulative_logprob}, "
450
+ f"get_num_computed_tokens={self.get_num_computed_tokens()})")
451
+
452
+
453
+ class Sequence:
454
+ """Stores the data, status, and block information of a sequence.
455
+
456
+ The sequence is constructed from the
457
+ [`DecoderOnlyInputs`][vllm.inputs.data.DecoderOnlyInputs] (for decoder-only)
458
+ or [`EncoderDecoderInputs`][vllm.inputs.data.EncoderDecoderInputs]
459
+ (for encoder-decoder) instance passed in through the `inputs`
460
+ constructor argument.
461
+
462
+ Args:
463
+ seq_id: The ID of the sequence.
464
+ inputs: The inputs of the sequence.
465
+ block_size: The block size of the sequence. Should be the same as the
466
+ block size used by the block manager and cache engine.
467
+ eos_token_id: The end-of-sequence (EOS) token id recognized by this LLM.
468
+ lora_request: LoRA request.
469
+ prompt_adapter_request: Prompt Adapter request.
470
+ """
471
+
472
+ def __init__(
473
+ self,
474
+ seq_id: int,
475
+ inputs: SingletonInputs,
476
+ block_size: int,
477
+ eos_token_id: Optional[int] = None,
478
+ lora_request: Optional[LoRARequest] = None,
479
+ prompt_adapter_request: Optional[PromptAdapterRequest] = None,
480
+ ) -> None:
481
+ self.seq_id = seq_id
482
+ self.inputs = inputs
483
+ self.block_size = block_size
484
+ self.eos_token_id = eos_token_id
485
+ self.lora_request = lora_request
486
+ self.prompt_adapter_request = prompt_adapter_request
487
+
488
+ self.data = SequenceData.from_seqs(
489
+ self.prompt_token_ids,
490
+ prompt_embeds=self.inputs["prompt_embeds"]
491
+ if self.inputs["type"] == "embeds" else None)
492
+ self.output_logprobs: SampleLogprobs = []
493
+ self.output_text = ""
494
+
495
+ self.status = SequenceStatus.WAITING
496
+ self.stop_reason: Union[int, str, None] = None
497
+
498
+ # These are used to keep track of delta outputs
499
+ self._last_output_token_ids_offset: int = 0
500
+ self._last_output_text_offset: int = 0
501
+
502
+ # Used for incremental detokenization
503
+ self.prefix_offset = 0
504
+ self.read_offset = 0
505
+ # Input + output tokens
506
+ self.tokens: Optional[list[str]] = None
507
+
508
+ @property
509
+ def n_blocks(self) -> int:
510
+ return (self.get_len() + self.block_size - 1) // self.block_size
511
+
512
+ @property
513
+ def prompt(self) -> Optional[str]:
514
+ if self.inputs["type"] == "embeds":
515
+ return None
516
+ return self.inputs.get("prompt")
517
+
518
+ @property
519
+ def prompt_token_ids(self) -> list[int]:
520
+ if self.inputs["type"] == "embeds":
521
+ return [0] * len(self.inputs["prompt_embeds"])
522
+ return self.inputs["prompt_token_ids"]
523
+
524
+ @property
525
+ def token_type_ids(self) -> list[int]:
526
+ if self.inputs["type"] == "embeds":
527
+ return []
528
+ return self.inputs.get("token_type_ids", [])
529
+
530
+ @property
531
+ def multi_modal_data(self) -> MultiModalKwargs:
532
+ if self.inputs["type"] == "multimodal":
533
+ return self.inputs["mm_kwargs"]
534
+
535
+ return MultiModalKwargs({})
536
+
537
+ @property
538
+ def multi_modal_placeholders(self) -> MultiModalPlaceholderDict:
539
+ if self.inputs["type"] == "multimodal":
540
+ return self.inputs["mm_placeholders"]
541
+
542
+ return {}
543
+
544
+ @property
545
+ def lora_int_id(self) -> int:
546
+ return self.lora_request.lora_int_id if self.lora_request else 0
547
+
548
+ @property
549
+ def prompt_adapter_id(self) -> int:
550
+ return self.prompt_adapter_request.prompt_adapter_id \
551
+ if self.prompt_adapter_request else 0
552
+
553
+ def get_output_text_to_return(self, buffer_length: int,
554
+ delta: bool) -> str:
555
+ """If delta is True, only new text since the last call to
556
+ this method is returned"""
557
+
558
+ # We return the full output text if the sequence is finished.
559
+ truncate = buffer_length and not self.is_finished()
560
+ if not delta:
561
+ return self.output_text[:-buffer_length] if truncate else (
562
+ self.output_text)
563
+ length = len(self.output_text)
564
+ if truncate:
565
+ length -= buffer_length
566
+ last_offset = self._last_output_text_offset
567
+ if last_offset < length:
568
+ self._last_output_text_offset = length
569
+ return self.output_text[last_offset:length]
570
+ return ""
571
+
572
+ def get_output_token_ids_to_return(
573
+ self, delta: bool) -> Union[GenericSequence[int], int]:
574
+ """If delta is True, only new tokens since the last call to
575
+ this method are returned"""
576
+ if not delta:
577
+ return self.get_output_token_ids()
578
+
579
+ output_len = self.get_output_len()
580
+
581
+ # Get the number of new tokens
582
+ num_new_tokens = output_len - self._last_output_token_ids_offset
583
+ self._last_output_token_ids_offset = output_len
584
+
585
+ # Return new tokens
586
+ if num_new_tokens == 1:
587
+ # Optimization for single decode token case
588
+ # (which is what we have most of the time)
589
+ return self.data._cached_all_token_ids[-1]
590
+
591
+ if num_new_tokens == 0:
592
+ return []
593
+
594
+ return self.data._cached_all_token_ids[-num_new_tokens:]
595
+
596
+ def hash_of_block(self, logical_idx: int) -> int:
597
+ # TODO This can produce incorrect hash when block size > prompt size
598
+
599
+ # Compute the number of tokens in the sequence
600
+ # TODO: The current hashing function is O(L^2). We should optimize
601
+ # this in the future.
602
+ num_tokens = self.num_hashed_tokens_of_block(logical_idx)
603
+ hashed_tokens = self.data.get_prefix_token_ids(num_tokens)
604
+ return hash((hashed_tokens, self.lora_int_id))
605
+
606
+ def extra_hash(self) -> Optional[int]:
607
+ """
608
+ This function computes an extra hash for a sequence, specifically
609
+ designed for prefix caching mode. The final sequence hash is determined
610
+ by applying token_ids from the sequence's blocks.
611
+ """
612
+ if self.prompt_adapter_id == 0 and self.lora_int_id == 0:
613
+ return None
614
+
615
+ # NOTE: If there are additional factors influencing the block aside from
616
+ # token_ids, include them as input parameters to the hash.
617
+ return hash((self.prompt_adapter_id, self.lora_int_id))
618
+
619
+ def num_hashed_tokens_of_block(self, logical_idx: int):
620
+ return logical_idx * self.block_size + self.block_size
621
+
622
+ def reset_state_for_recompute(self):
623
+ """Reset the sequence states for recomputation."""
624
+ self.data.reset_state_for_recompute()
625
+
626
+ def append_token_id(self,
627
+ token_id: int,
628
+ logprobs: dict[int, Logprob],
629
+ token_embed: Optional[torch.Tensor] = None) -> None:
630
+ assert token_id in logprobs
631
+ self.output_logprobs.append(logprobs)
632
+ self.data.append_token_id(token_id, logprobs[token_id].logprob,
633
+ token_embed)
634
+
635
+ def get_len(self) -> int:
636
+ return self.data.get_len()
637
+
638
+ def get_prompt_len(self) -> int:
639
+ return self.data.get_prompt_len()
640
+
641
+ def get_output_len(self) -> int:
642
+ return self.data.get_output_len()
643
+
644
+ def get_token_ids(self) -> list[int]:
645
+ return self.data.get_token_ids()
646
+
647
+ def get_prompt_token_ids(self) -> tuple[int, ...]:
648
+ return self.data.get_prompt_token_ids()
649
+
650
+ def get_last_token_id(self) -> int:
651
+ return self.data.get_last_token_id()
652
+
653
+ def get_output_token_ids(self) -> tuple[int, ...]:
654
+ return self.data.get_output_token_ids()
655
+
656
+ def get_cumulative_logprob(self) -> float:
657
+ return self.data.cumulative_logprob
658
+
659
+ def is_finished(self) -> bool:
660
+ return SequenceStatus.is_finished(self.status)
661
+
662
+ def fork(self, new_seq_id: int) -> "Sequence":
663
+ new_seq = copy.deepcopy(self)
664
+ new_seq.seq_id = new_seq_id
665
+ return new_seq
666
+
667
+ def get_num_new_tokens(self) -> int:
668
+ """Get the number of new tokens to be computed.
669
+
670
+ Returns:
671
+ The new number of tokens to be computed. I.e., 1 for decode, or
672
+ the remaining prompt size for prefill.
673
+ """
674
+ if self.data.stage == SequenceStage.DECODE:
675
+ return 1
676
+ return self.data.get_num_uncomputed_tokens()
677
+
678
+ def get_num_computed_tokens(self) -> int:
679
+ return self.data.get_num_computed_tokens()
680
+
681
+ def is_prefill(self) -> bool:
682
+ return self.data.stage == SequenceStage.PREFILL
683
+
684
+ def __repr__(self) -> str:
685
+ return (f"Sequence(seq_id={self.seq_id}, "
686
+ f"status={self.status.name}, "
687
+ f"num_blocks={self.n_blocks})")
688
+
689
+
690
+ class SequenceGroupState(msgspec.Struct,
691
+ omit_defaults=True): # type: ignore[call-arg]
692
+ """Mutable state tied to a specific sequence group"""
693
+
694
+ # for multi-step decoding
695
+ num_steps: int = 1
696
+ current_step: int = 0
697
+
698
+ @property
699
+ def remaining_steps(self) -> int:
700
+ return self.num_steps - self.current_step
701
+
702
+
703
+ class SequenceGroup:
704
+ """A group of sequences that are generated from the same prompt.
705
+
706
+ Args:
707
+ request_id: The ID of the request.
708
+ seqs: The list of sequences.
709
+ sampling_params: The sampling parameters used to generate the outputs.
710
+ arrival_time: The arrival time of the request.
711
+ lora_request: LoRA request.
712
+ pooling_params: The parameters used to generate the pooler
713
+ for a pooling model.
714
+ pooled_data: The extracted hidden states from a pooling model.
715
+ encoder_seq: Optional, the single encoder sequence. Should be None
716
+ unless you are working with an encoder/decoder model.
717
+ trace_headers: OpenTelemetry trace headers.
718
+ prompt_adapter_request: Prompt Adapter request.
719
+ priority: User-defined priority of the request.
720
+ draft_size: The number of speculative tokens plus one from the target
721
+ model; equal to max number of tokens a step can generate
722
+ for single-draft speculative decoding but larger than
723
+ that for multi-draft SD (currently not supported).
724
+ """
725
+
726
+ def __init__(self,
727
+ request_id: str,
728
+ seqs: list[Sequence],
729
+ arrival_time: float,
730
+ sampling_params: Optional[SamplingParams] = None,
731
+ lora_request: Optional[LoRARequest] = None,
732
+ pooling_params: Optional[PoolingParams] = None,
733
+ pooled_data: Optional[torch.Tensor] = None,
734
+ encoder_seq: Optional[Sequence] = None,
735
+ trace_headers: Optional[Mapping[str, str]] = None,
736
+ prompt_adapter_request: Optional[PromptAdapterRequest] = None,
737
+ priority: int = 0,
738
+ draft_size: int = 1) -> None:
739
+ self.request_id = request_id
740
+ self.seqs = seqs
741
+ self.first_seq = seqs[0]
742
+ self.arrival_time = arrival_time
743
+ self.is_single_seq = len(seqs) == 1
744
+ self.seqs_dict = {seq.seq_id: seq for seq in seqs}
745
+
746
+ self.sampling_params = sampling_params
747
+ self.metrics = RequestMetrics(arrival_time=arrival_time,
748
+ last_token_time=arrival_time,
749
+ first_scheduled_time=None,
750
+ first_token_time=None,
751
+ time_in_queue=None,
752
+ spec_token_acceptance_counts=[0] *
753
+ draft_size)
754
+ self.last_token_latency = 0.0
755
+ self.lora_request = lora_request
756
+ self.prompt_logprobs: Optional[PromptLogprobs] = None
757
+ self.state = SequenceGroupState()
758
+ self.pooling_params = pooling_params
759
+ self.pooled_data = pooled_data
760
+ self.prompt_adapter_request = prompt_adapter_request
761
+ self.encoder_seq = encoder_seq
762
+ self.trace_headers = trace_headers
763
+ self.priority = priority
764
+
765
+ self.cached_request_output = None
766
+
767
+ @property
768
+ def prompt(self) -> Optional[str]:
769
+ return self.first_seq.prompt
770
+
771
+ @property
772
+ def prompt_token_ids(self) -> list[int]:
773
+ return self.first_seq.prompt_token_ids
774
+
775
+ @property
776
+ def encoder_prompt(self) -> Optional[str]:
777
+ # There are either 0 or 1 encoder sequences
778
+ # If one is present, its prompt is distinct
779
+ # from the decoder's.
780
+ return (self.encoder_seq.prompt
781
+ if self.encoder_seq is not None else None)
782
+
783
+ @property
784
+ def encoder_prompt_token_ids(self) -> Optional[list[int]]:
785
+ # There are either 0 or 1 encoder sequences
786
+ # If one is present, its prompt token ids are
787
+ # distinct from the decoder's.
788
+ return (self.encoder_seq.prompt_token_ids
789
+ if self.encoder_seq is not None else None)
790
+
791
+ @property
792
+ def token_type_ids(self) -> Optional[list[int]]:
793
+ return self.first_seq.token_type_ids
794
+
795
+ @property
796
+ def multi_modal_data(self) -> MultiModalKwargs:
797
+ if self.first_seq.multi_modal_data:
798
+ return self.first_seq.multi_modal_data
799
+ elif self.encoder_seq is not None:
800
+ return self.encoder_seq.multi_modal_data
801
+ return MultiModalKwargs({})
802
+
803
+ @property
804
+ def multi_modal_placeholders(self) -> MultiModalPlaceholderDict:
805
+ if self.first_seq.multi_modal_data:
806
+ return self.first_seq.multi_modal_placeholders
807
+ elif self.encoder_seq is not None:
808
+ return self.encoder_seq.multi_modal_placeholders
809
+ return {}
810
+
811
+ @property
812
+ def lora_int_id(self) -> int:
813
+ return self.lora_request.lora_int_id if self.lora_request else 0
814
+
815
+ @property
816
+ def prompt_adapter_id(self) -> int:
817
+ return self.prompt_adapter_request.prompt_adapter_id \
818
+ if self.prompt_adapter_request else 0
819
+
820
+ @property
821
+ def prompt_adapter_num_virtual_tokens(self) -> int:
822
+ return self.prompt_adapter_request.prompt_adapter_num_virtual_tokens\
823
+ if self.prompt_adapter_request else 0
824
+
825
+ def init_multi_step(self, num_steps: int) -> None:
826
+ self.state.num_steps = num_steps
827
+ self.state.current_step = 0
828
+
829
+ def init_multi_step_from_lookahead_slots(self, num_lookahead_slots: int,
830
+ num_scheduler_steps: int,
831
+ is_multi_step: bool,
832
+ enable_chunking: bool) -> None:
833
+
834
+ if not is_multi_step:
835
+ self.init_multi_step(num_steps=num_scheduler_steps)
836
+ return
837
+
838
+ # Multi-Step case
839
+ is_prefill = self.is_prefill()
840
+
841
+ # The asserts below reflect the expectations of the current system.
842
+ if is_prefill and enable_chunking:
843
+ assert num_lookahead_slots == num_scheduler_steps
844
+ self.init_multi_step(num_steps=num_lookahead_slots)
845
+ else:
846
+ is_decode: bool = not is_prefill
847
+ # If it is a prefill, num_lookahead_slots must be 0
848
+ assert num_lookahead_slots == 0 or is_decode
849
+ # If it is a decode, num_lookahead_slots + 1 must match
850
+ # the scheduler steps.
851
+ assert num_lookahead_slots + 1 == num_scheduler_steps or is_prefill
852
+ self.init_multi_step(num_steps=num_lookahead_slots + 1)
853
+
854
+ def set_last_token_time(self, now: float) -> None:
855
+ """Sets the last token time for Request level timings."""
856
+ # If still in prefill phase, assertion fails.
857
+ assert not self.is_prefill(), (
858
+ "seq_group.set_last_token_time() should not be called "
859
+ "if the seq_group is in prefill phase.")
860
+ self.last_token_latency = now - self.metrics.last_token_time
861
+ self.metrics.last_token_time = now
862
+
863
+ def get_last_token_latency(self) -> float:
864
+ """Returns the latency of the last token."""
865
+ assert not self.is_prefill(), (
866
+ "seq_group.get_last_token_latency() should not be called "
867
+ "if the seq_group is in prefill phase.")
868
+ return self.last_token_latency
869
+
870
+ def maybe_set_first_token_time(self, time: float) -> None:
871
+ """Sets the first token time for Request level timings."""
872
+ # Note: in a case where a sequence_group is swapped and
873
+ # recomputed, the time between iterations is counted
874
+ # in TPOT, rather than recalculating TTFT (since from the )
875
+ # POV of the user, there is simply a long generation delay.
876
+ if (self.metrics.first_token_time is None
877
+ and self.first_seq.get_output_len() == 1):
878
+ self.metrics.first_token_time = time
879
+
880
+ def maybe_set_first_scheduled_time(self, time: float) -> None:
881
+ """Sets the first scheduled time and time in queue for Request
882
+ level timings."""
883
+ if self.metrics.first_scheduled_time is None:
884
+ self.metrics.first_scheduled_time = time
885
+ self.metrics.time_in_queue = time - self.metrics.arrival_time
886
+
887
+ def set_finished_time(self, time: Optional[float]) -> None:
888
+ """Sets the finished time for Request level timings."""
889
+ self.metrics.finished_time = time
890
+
891
+ def get_max_num_running_seqs(self) -> int:
892
+ """The maximum number of sequences running in parallel in the remaining
893
+ lifetime of the request."""
894
+ if self.is_single_seq:
895
+ return 0 if self.first_seq.is_finished() else 1
896
+ return self.num_seqs() - self.num_finished_seqs()
897
+
898
+ def get_seqs(
899
+ self,
900
+ status: Optional[SequenceStatus] = None,
901
+ ) -> list[Sequence]:
902
+ if status is None:
903
+ return self.seqs
904
+
905
+ if self.is_single_seq:
906
+ return self.seqs if self.first_seq.status == status else []
907
+
908
+ return [seq for seq in self.seqs if seq.status == status]
909
+
910
+ def is_encoder_decoder(self) -> bool:
911
+ return self.encoder_seq is not None
912
+
913
+ def get_encoder_seq(self) -> Optional[Sequence]:
914
+ return self.encoder_seq
915
+
916
+ def get_finished_seqs(self) -> list[Sequence]:
917
+ if self.is_single_seq:
918
+ return self.seqs if self.first_seq.is_finished() else []
919
+
920
+ return [seq for seq in self.seqs if seq.is_finished()]
921
+
922
+ def update_num_computed_tokens(self, num_new_computed_tokens: int):
923
+ """Update number of tokens computed so far."""
924
+ for seq in self.seqs:
925
+ if not seq.is_finished():
926
+ seq.data.update_num_computed_tokens(num_new_computed_tokens)
927
+
928
+ def get_num_uncomputed_tokens(self) -> int:
929
+ num_uncomputed_tokens = 0
930
+ for seq in self.seqs:
931
+ if not seq.is_finished():
932
+ num_uncomputed_tokens += seq.data.get_num_uncomputed_tokens()
933
+ return num_uncomputed_tokens
934
+
935
+ def num_seqs(self, status: Optional[SequenceStatus] = None) -> int:
936
+ # Optimization. We don't need to call get_seqs if we don't need to
937
+ # filter by states.
938
+ if status is None:
939
+ return len(self.seqs)
940
+
941
+ if self.is_single_seq:
942
+ return 1 if self.seqs[0].status == status else 0
943
+
944
+ return len(self.get_seqs(status))
945
+
946
+ def num_finished_seqs(self) -> int:
947
+ if self.is_single_seq:
948
+ return 1 if self.seqs[0].is_finished() else 0
949
+ return len(self.get_finished_seqs())
950
+
951
+ def is_finished(self) -> bool:
952
+ if self.is_single_seq:
953
+ return self.first_seq.is_finished()
954
+ return all(seq.is_finished() for seq in self.seqs)
955
+
956
+ def is_prefill(self) -> bool:
957
+ return self.first_seq.is_prefill()
958
+
959
+ def __repr__(self) -> str:
960
+ return (f"SequenceGroup(request_id={self.request_id}, "
961
+ f"sampling_params={self.sampling_params}, "
962
+ f"num_seqs={len(self.seqs)})")
963
+
964
+ def uses_prompt_embeds(self) -> bool:
965
+ """Returns True if the sequence group uses input embeds."""
966
+ return any(seq.data.prompt_embeds is not None for seq in self.seqs)
967
+
968
+
969
+ class SequenceGroupMetadataDelta(
970
+ msgspec.Struct,
971
+ tag=True, # type: ignore[call-arg]
972
+ array_like=True, # type: ignore[call-arg]
973
+ omit_defaults=True): # type: ignore[call-arg]
974
+ """Delta of SequenceGroupMetadata.
975
+
976
+ After sending the first SequenceGroupMetadata, vLLM scheduler
977
+ only sends delta to reduce the data payload size.
978
+ """
979
+ seq_data_delta: dict[int, SequenceDataDelta]
980
+ request_id: str
981
+ block_tables: dict[int, list[int]]
982
+ is_prompt: bool
983
+ do_sample: bool = True
984
+ token_chunk_size: Optional[int] = None
985
+ computed_block_nums: Optional[list[int]] = None
986
+ state: Optional[SequenceGroupState] = msgspec.field(
987
+ default_factory=lambda: SequenceGroupState())
988
+
989
+
990
+ class SequenceGroupMetadata(
991
+ msgspec.Struct,
992
+ tag=True, # type: ignore[call-arg]
993
+ array_like=True, # type: ignore[call-arg]
994
+ omit_defaults=True): # type: ignore[call-arg]
995
+ """Metadata for a sequence group. Used to create `AttentionMetadata`.
996
+
997
+ Args:
998
+ request_id: The ID of the request.
999
+ is_prompt: Whether the request is at prompt stage.
1000
+ seq_data: The sequence data. (Seq id -> sequence data)
1001
+ sampling_params: The sampling parameters used to generate the outputs.
1002
+ block_tables: The block tables. (Seq id -> list of physical block
1003
+ numbers)
1004
+ do_sample: True if sampling is required. Sampling is not required when
1005
+ e.g., prefill is chunked, and the current iteration only computes
1006
+ query tokens for prefill, we don't need sampling.
1007
+ token_chunk_size: The number of tokens to be processed (per sequence).
1008
+ None if chunking is not required.
1009
+ lora_request: LoRA request.
1010
+ computed_block_nums: The block numbers that are already computed,
1011
+ used in prefix caching.
1012
+ state: Internal state tied to this sequence group.
1013
+ multi_modal_data: Multi modal data.
1014
+ mm_processor_kwargs: Multimodal input processor / mapper overrides.
1015
+ encoder_seq_data: Optional sequence data for encoder prompt
1016
+ (SequenceGroup.encoder_seq). Should be None
1017
+ unless you are working with an encoder/decoder
1018
+ model.
1019
+ cross_block_table: Optional cross-attention block table associated
1020
+ with the encoder prompt
1021
+ (SequenceGroup.encoder_seq). Should be None
1022
+ unless you are working with an encoder/decoder
1023
+ model.
1024
+ prompt_adapter_request: Prompt Adapter request.
1025
+ """
1026
+
1027
+ request_id: str
1028
+ is_prompt: bool
1029
+ seq_data: dict[int, SequenceData]
1030
+ sampling_params: Optional[SamplingParams]
1031
+ block_tables: dict[int, list[int]]
1032
+ do_sample: bool = True
1033
+ pooling_params: Optional[PoolingParams] = None
1034
+ lora_request: Optional[LoRARequest] = None
1035
+ computed_block_nums: Optional[list[int]] = None
1036
+ state: Optional[SequenceGroupState] = msgspec.field(
1037
+ default_factory=lambda: SequenceGroupState())
1038
+ token_type_ids: Optional[list[int]] = None
1039
+ multi_modal_data: Optional[MultiModalKwargs] = None
1040
+ multi_modal_placeholders: Optional[MultiModalPlaceholderDict] = None
1041
+ encoder_seq_data: Optional[SequenceData] = None
1042
+ cross_block_table: Optional[list[int]] = None
1043
+ prompt_adapter_request: Optional[PromptAdapterRequest] = None
1044
+ token_chunk_size: Optional[int] = None
1045
+
1046
+ ### Stateful fields that are lazily defined. ###
1047
+ # The number of speculative tokens adopted in this request.
1048
+ # None means specuative decoding is not used.
1049
+ # Zero means speculative decoding is disabled for some reasons.
1050
+ # TODO: We should maintain this states out of the sequence group.
1051
+ num_speculative_tokens: Optional[int] = None
1052
+
1053
+ def __post_init__(self):
1054
+ if self.seq_data is not None and self.token_chunk_size is None:
1055
+ if self.is_prompt:
1056
+ self.token_chunk_size = next(iter(
1057
+ self.seq_data.values())).get_len()
1058
+ else:
1059
+ self.token_chunk_size = 1
1060
+
1061
+ @property
1062
+ def lora_int_id(self) -> int:
1063
+ return self.lora_request.lora_int_id if self.lora_request else 0
1064
+
1065
+ @property
1066
+ def prompt_adapter_id(self) -> int:
1067
+ return self.prompt_adapter_request.prompt_adapter_id \
1068
+ if self.prompt_adapter_request else 0
1069
+
1070
+ @property
1071
+ def prompt_adapter_num_virtual_tokens(self) -> int:
1072
+ return self.prompt_adapter_request.prompt_adapter_num_virtual_tokens \
1073
+ if self.prompt_adapter_request else 0
1074
+
1075
+ # Multi-Step Chunked-Prefill property
1076
+ @property
1077
+ def is_single_step_prompt(self) -> bool:
1078
+ # do_sample is true, only when the token_chunk_size matches the
1079
+ # num_uncomputed_tokens of the sequence. This indicates that
1080
+ # the prompt will finish processing in a single `execute_model`
1081
+ # step.
1082
+ return self.is_prompt and self.do_sample
1083
+
1084
+ def get_first_seq_id(self) -> int:
1085
+ # This is an efficient way of fetching the seq_id when
1086
+ # we know this SequenceGroup has only one sequence.
1087
+ return next(iter(self.seq_data))
1088
+
1089
+ def apply_delta(self,
1090
+ sequence_group_metadata_delta: SequenceGroupMetadataDelta):
1091
+ for id, delta in sequence_group_metadata_delta.seq_data_delta.items():
1092
+ self.seq_data[id].apply_delta(delta)
1093
+ assert self.request_id == sequence_group_metadata_delta.request_id
1094
+ self.block_tables = sequence_group_metadata_delta.block_tables
1095
+ self.token_chunk_size = sequence_group_metadata_delta.token_chunk_size
1096
+ self.do_sample = sequence_group_metadata_delta.do_sample
1097
+ self.is_prompt = sequence_group_metadata_delta.is_prompt
1098
+
1099
+ def finish_step(self) -> None:
1100
+ assert self.state is not None
1101
+ assert self.state.current_step < self.state.num_steps, \
1102
+ f"current step {self.state.current_step}, num_steps {self.state.num_steps}" # noqa
1103
+ self.state.current_step += 1
1104
+
1105
+
1106
+ class SequenceOutput(
1107
+ msgspec.Struct,
1108
+ omit_defaults=True, # type: ignore[call-arg]
1109
+ array_like=True): # type: ignore[call-arg]
1110
+ """The model output associated with a sequence.
1111
+
1112
+ Args:
1113
+ parent_seq_id: The ID of the parent sequence (for forking in beam
1114
+ search).
1115
+ output_token: The output token ID.
1116
+ logprobs: The logprobs of the output token.
1117
+ (Token id -> logP(x_i+1 | x_0, ..., x_i))
1118
+ """
1119
+ parent_seq_id: int
1120
+ output_token: int
1121
+ logprobs: dict[int, Logprob]
1122
+ output_embed: Optional[torch.Tensor] = None
1123
+
1124
+ def __repr__(self) -> str:
1125
+ output_embed_shape = \
1126
+ self.output_embed.shape if self.output_embed is not None else None
1127
+ return (f"SequenceOutput(parent_seq_id={self.parent_seq_id}, "
1128
+ f"output_token={self.output_token}, "
1129
+ f"output_embed.shape={output_embed_shape}, "
1130
+ f"logprobs={self.logprobs})")
1131
+
1132
+ def __eq__(self, other: object) -> bool:
1133
+ if not isinstance(other, SequenceOutput):
1134
+ raise NotImplementedError()
1135
+ equal = (self.parent_seq_id == other.parent_seq_id
1136
+ and self.output_token == other.output_token)
1137
+ log_probs_equal = other.logprobs == self.logprobs
1138
+ return equal and log_probs_equal
1139
+
1140
+
1141
+ class SequenceGroupOutput(ABC):
1142
+ """The base class for model outputs associated with a sequence group."""
1143
+
1144
+ @abstractmethod
1145
+ def __repr__(self) -> str:
1146
+ pass
1147
+
1148
+ @abstractmethod
1149
+ def __eq__(self, other: object) -> bool:
1150
+ pass
1151
+
1152
+
1153
+ class CompletionSequenceGroupOutput(
1154
+ msgspec.Struct,
1155
+ omit_defaults=True, # type: ignore[call-arg]
1156
+ array_like=True): # type: ignore[call-arg]
1157
+ """The model output associated with a completion sequence group."""
1158
+ __metaclass__ = SequenceGroupOutput
1159
+ samples: list[SequenceOutput]
1160
+ # Prompt logprob for each prompt query token.
1161
+ prompt_logprobs: Optional[PromptLogprobs]
1162
+ step_index: Optional[int] = 0
1163
+
1164
+ def __repr__(self) -> str:
1165
+ return (f"CompletionSequenceGroupOutput(samples={self.samples}, "
1166
+ f"prompt_logprobs={self.prompt_logprobs})")
1167
+
1168
+ def __eq__(self, other: object) -> bool:
1169
+ if not isinstance(other, CompletionSequenceGroupOutput):
1170
+ raise NotImplementedError()
1171
+ return (self.samples == other.samples
1172
+ and self.prompt_logprobs == other.prompt_logprobs)
1173
+
1174
+
1175
+ class PoolingSequenceGroupOutput(
1176
+ msgspec.Struct,
1177
+ omit_defaults=True, # type: ignore[call-arg]
1178
+ array_like=True, # type: ignore[call-arg]
1179
+ ):
1180
+ """The model output associated with a pooling sequence group."""
1181
+ __metaclass__ = SequenceGroupOutput
1182
+ # Annotated as Any to be compatible with msgspec
1183
+ # The actual type is in SequenceGroup.pooled_data
1184
+ data: Any
1185
+
1186
+ def __repr__(self) -> str:
1187
+ return f"PoolingSequenceGroupOutput(data={self.data}"
1188
+
1189
+ def __eq__(self, other: object) -> bool:
1190
+ if not isinstance(other, PoolingSequenceGroupOutput):
1191
+ raise NotImplementedError()
1192
+ return self.data == other.data
1193
+
1194
+
1195
+ # cannot use msgspec.Struct here because Dynamo does not support it
1196
+ @dataclass
1197
+ class IntermediateTensors:
1198
+ """For all pipeline stages except the last, we need to return the hidden
1199
+ states and residuals to be sent to the next stage. This data structure
1200
+ contains the hidden states and residuals for a request.
1201
+ """
1202
+
1203
+ tensors: dict[str, torch.Tensor]
1204
+
1205
+ def __init__(self, tensors):
1206
+ # manually define this function, so that
1207
+ # Dynamo knows `IntermediateTensors()` comes from this file.
1208
+ # Otherwise, dataclass will generate this function by evaluating
1209
+ # a string, and we will lose the information about the source file.
1210
+ self.tensors = tensors
1211
+
1212
+ def __getitem__(self, key: Union[str, slice]):
1213
+ if isinstance(key, str):
1214
+ return self.tensors[key]
1215
+ elif isinstance(key, slice):
1216
+ return self.__class__({k: v[key] for k, v in self.tensors.items()})
1217
+
1218
+ def __setitem__(self, key: str, value: torch.Tensor):
1219
+ self.tensors[key] = value
1220
+
1221
+ def items(self):
1222
+ return self.tensors.items()
1223
+
1224
+ def __len__(self):
1225
+ return len(self.tensors)
1226
+
1227
+ def __eq__(self, other: object):
1228
+ return isinstance(other, self.__class__) and self
1229
+
1230
+ def __repr__(self) -> str:
1231
+ return f"IntermediateTensors(tensors={self.tensors})"
1232
+
1233
+
1234
+ class PoolerOutput(
1235
+ msgspec.Struct,
1236
+ omit_defaults=True, # type: ignore[call-arg]
1237
+ array_like=True): # type: ignore[call-arg]
1238
+ """The output from a pooling operation in the pooling model."""
1239
+ outputs: list[PoolingSequenceGroupOutput]
1240
+
1241
+ def __getitem__(self, idx: int) -> PoolingSequenceGroupOutput:
1242
+ return self.outputs[idx]
1243
+
1244
+ def __setitem__(self, idx: int, value: PoolingSequenceGroupOutput):
1245
+ self.outputs[idx] = value
1246
+
1247
+ def __len__(self):
1248
+ return len(self.outputs)
1249
+
1250
+ def __eq__(self, other: object):
1251
+ return isinstance(other,
1252
+ self.__class__) and self.outputs == other.outputs
1253
+
1254
+
1255
+ def get_all_seq_ids(
1256
+ seq_group_metadata_list: list[SequenceGroupMetadata]) -> list[int]:
1257
+ """Given a list of SequenceGroupMetadata, create a list of all
1258
+ sequence ids.
1259
+ """
1260
+ return [seq_id for sg in seq_group_metadata_list for seq_id in sg.seq_data]
1261
+
1262
+
1263
+ def get_all_seq_ids_and_request_ids(
1264
+ seq_group_metadata_list: list[SequenceGroupMetadata]
1265
+ ) -> tuple[list[int], dict[str, set[int]]]:
1266
+ """Given a list of SequenceGroupMetadata, create a list of all
1267
+ sequence ids.
1268
+ """
1269
+ seq_ids: list[int] = []
1270
+ request_id_seq_ids_mapping: defaultdict[str, set[int]] = defaultdict(set)
1271
+ for sg in seq_group_metadata_list:
1272
+ for seq_id in sg.seq_data:
1273
+ seq_ids.append(seq_id)
1274
+ request_id_seq_ids_mapping[sg.request_id].add(seq_id)
1275
+ return seq_ids, request_id_seq_ids_mapping
1276
+
1277
+
1278
+ class HiddenStates(msgspec.Struct, array_like=True,
1279
+ omit_defaults=True): # type: ignore[call-arg]
1280
+ """Hidden states corresponding to in-progress sequences.
1281
+ Used in speculative decoding to pass hidden states from
1282
+ the target model to the proposer model.
1283
+
1284
+ seq_ids are the sequence ids of each entry of the batch
1285
+ dimension of the hidden_states tensor"""
1286
+ # Scorer hidden states. For prefill step, it is used for hidden states of
1287
+ # all tokens, whereas for decode step, it use used for last accepted tokens.
1288
+ hidden_states: torch.Tensor
1289
+ # The sequence group metadata list. Only needed for decode step.
1290
+ seq_group_metadata_list: Optional[list[SequenceGroupMetadata]] = None
1291
+ # Scorer hidden states of the 2nd last token proposed by the proposer (
1292
+ # irrespective of whether it was accepted or not). Only used for cases when
1293
+ # last proposed token is accepted (i.e., in case of bonus tokens). For the
1294
+ # case of no bonus tokens, these are ignored.
1295
+ second_last_token_hidden_states: Optional[torch.Tensor] = None
1296
+
1297
+ _seq_ids: list[int] = msgspec.field(default_factory=list)
1298
+
1299
+ def __post_init__(self):
1300
+ if self.seq_group_metadata_list is not None:
1301
+ assert len(self.seq_group_metadata_list) == len(self.hidden_states)
1302
+ self._seq_ids = get_all_seq_ids(self.seq_group_metadata_list)
1303
+
1304
+ @property
1305
+ def seq_ids(self) -> list[int]:
1306
+ return self._seq_ids
1307
+
1308
+ def update(self,
1309
+ hidden_states: torch.Tensor,
1310
+ seq_group_metadata_list: list[SequenceGroupMetadata],
1311
+ second_last_token_hidden_states: Optional[torch.Tensor] = None):
1312
+ """Update hidden states from target model invocation. Only used for
1313
+ decode steps"""
1314
+ assert len(seq_group_metadata_list) == len(hidden_states)
1315
+ self._seq_ids.extend(get_all_seq_ids(seq_group_metadata_list))
1316
+ self.hidden_states = torch.cat([self.hidden_states, hidden_states])
1317
+
1318
+ if self.second_last_token_hidden_states is not None:
1319
+ # Adding dummy hidden_states to this to maintain same shape
1320
+ self.second_last_token_hidden_states = torch.cat([
1321
+ self.second_last_token_hidden_states,
1322
+ torch.zeros_like(hidden_states)
1323
+ if second_last_token_hidden_states is None else
1324
+ second_last_token_hidden_states
1325
+ ])
1326
+
1327
+ def prune(self,
1328
+ seq_group_metadata_list: list[SequenceGroupMetadata]) -> None:
1329
+ """Prune to provided list of sequence ids. Only used for decode steps.
1330
+ """
1331
+ # Currently this prunes all seq_ids not present in
1332
+ # seq_group_metadata_list which might cause problems where a sequence
1333
+ # may be "paused" then "resumed" later. This should only prune sequences
1334
+ # which are confirmed to be aborted.
1335
+ seq_ids = get_all_seq_ids(seq_group_metadata_list)
1336
+ # Only keep sequence IDs that exist in self._seq_ids
1337
+ seq_ids = [seq_id for seq_id in seq_ids if seq_id in self._seq_ids]
1338
+ if seq_ids != self._seq_ids:
1339
+ # Batch contents changed - prune removed sequences.
1340
+ index = [self._seq_ids.index(seq_id) for seq_id in seq_ids]
1341
+ self.hidden_states = self.hidden_states[index]
1342
+ if self.second_last_token_hidden_states is not None:
1343
+ self.second_last_token_hidden_states = self\
1344
+ .second_last_token_hidden_states[index]
1345
+ self._seq_ids = seq_ids
1346
+
1347
+ def expand_with_bonus_tokens(
1348
+ self, seq_with_bonus_token_in_last_step: set) -> None:
1349
+ """Expand hidden states for sequences with bonus tokens. This is in
1350
+ alignment with `MultiStepWorker._expand_execute_model_request`."""
1351
+ if self.second_last_token_hidden_states is None \
1352
+ or not seq_with_bonus_token_in_last_step:
1353
+ return
1354
+
1355
+ index = []
1356
+ for seq_id in self._seq_ids:
1357
+ i = self._seq_ids.index(seq_id)
1358
+ if seq_id in seq_with_bonus_token_in_last_step:
1359
+ index.append(i + len(self._seq_ids))
1360
+ index.append(i)
1361
+
1362
+ self.hidden_states = torch.cat(
1363
+ [self.hidden_states, self.second_last_token_hidden_states])[index]
1364
+
1365
+
1366
+ class ExecuteModelRequest(
1367
+ msgspec.Struct,
1368
+ array_like=True, # type: ignore[call-arg]
1369
+ omit_defaults=True): # type: ignore[call-arg]
1370
+ """The model execution request, containing CPU metadata only. The LLM
1371
+ engine should create an instance of this class for each request batch."""
1372
+ # The sequence group metadata list.
1373
+ seq_group_metadata_list: list[Union[SequenceGroupMetadata,
1374
+ SequenceGroupMetadataDelta]]
1375
+ # Blocks to swap in. List of CPU -> GPU block number.
1376
+ blocks_to_swap_in: list[tuple[int,
1377
+ int]] = msgspec.field(default_factory=list)
1378
+ # Blocks to swap out. List of GPU -> CPU block number.
1379
+ blocks_to_swap_out: list[tuple[int,
1380
+ int]] = msgspec.field(default_factory=list)
1381
+ # Blocks to copy. Source to dest block.
1382
+ blocks_to_copy: list[tuple[int, int]] = msgspec.field(default_factory=list)
1383
+ # Virtual engine ID for pipeline parallel.
1384
+ virtual_engine: int = 0
1385
+ # The number of slots for lookahead decoding.
1386
+ num_lookahead_slots: int = 0
1387
+ # The number of requests in the running queue.
1388
+ running_queue_size: int = 0
1389
+ # Optional hidden states from prior step.
1390
+ previous_hidden_states: Optional[HiddenStates] = None
1391
+ # The number of forward steps to run.
1392
+ num_steps: int = 1
1393
+ # The step index for spec model input.
1394
+ spec_step_idx: Optional[int] = None
1395
+ # Finished request ids since last step.
1396
+ finished_requests_ids: list[str] = msgspec.field(default_factory=list)
1397
+ # The last sampled token ids for multi step decoding.
1398
+ last_sampled_token_ids: Optional[torch.Tensor] = None
1399
+ # Async callback
1400
+ async_callback: Optional[Callable] = None
1401
+
1402
+ @property
1403
+ def is_first_multi_step(self) -> bool:
1404
+ # TODO(will) make this be able to handle batches with variable number of
1405
+ # steps
1406
+ assert len(self.seq_group_metadata_list) > 0
1407
+ first_seq_group = self.seq_group_metadata_list[0]
1408
+ assert first_seq_group.state is not None
1409
+ return first_seq_group.state.current_step == 0
1410
+
1411
+ @property
1412
+ def is_last_step(self) -> bool:
1413
+ # TODO(will) make this be able to handle batches with variable number of
1414
+ # steps
1415
+ assert len(self.seq_group_metadata_list) > 0
1416
+ first_seq_group = self.seq_group_metadata_list[0]
1417
+ assert first_seq_group.state is not None
1418
+ return first_seq_group.state.remaining_steps == 1
1419
+
1420
+ @property
1421
+ def current_step(self) -> int:
1422
+ # TODO(will) make this be able to handle batches with variable number of
1423
+ # steps
1424
+ assert len(self.seq_group_metadata_list) > 0
1425
+ state = self.seq_group_metadata_list[0].state
1426
+ assert state is not None
1427
+ return state.current_step
1428
+
1429
+ def clone(
1430
+ self, seq_group_metadata_list: list[Union[SequenceGroupMetadata,
1431
+ SequenceGroupMetadataDelta]]
1432
+ ) -> "ExecuteModelRequest":
1433
+ """Clone the request with a new sequence group metadata list."""
1434
+ return ExecuteModelRequest(
1435
+ seq_group_metadata_list=seq_group_metadata_list,
1436
+ blocks_to_swap_in=self.blocks_to_swap_in.copy(),
1437
+ blocks_to_swap_out=self.blocks_to_swap_out.copy(),
1438
+ blocks_to_copy=self.blocks_to_copy.copy(),
1439
+ virtual_engine=self.virtual_engine,
1440
+ num_lookahead_slots=self.num_lookahead_slots,
1441
+ running_queue_size=self.running_queue_size,
1442
+ previous_hidden_states=self.previous_hidden_states,
1443
+ num_steps=self.num_steps,
1444
+ finished_requests_ids=self.finished_requests_ids,
1445
+ last_sampled_token_ids=self.last_sampled_token_ids.clone()
1446
+ if self.last_sampled_token_ids is not None else None,
1447
+ async_callback=self.async_callback)
1448
+
1449
+
1450
+ @dataclass
1451
+ class SequenceGroupBase:
1452
+ group_id: str # the original request id before splitting
1453
+
1454
+ assembled_seq_group: Optional[SequenceGroup] = None
1455
+
1456
+ # seq id to a unique index inside this group
1457
+ seq_id_to_index: dict[str, int] = field(default_factory=dict)
1458
+
1459
+ # seq ids to be finished
1460
+ to_be_finished: dict[str, SequenceGroup] = field(default_factory=dict)
1461
+
1462
+ # seq id to finished sequences
1463
+ finished_reqs: dict[str, SequenceGroup] = field(default_factory=dict)
1464
+
1465
+ streaming: bool = False
1466
+
1467
+ output_produced: bool = False
1468
+
1469
+ @staticmethod
1470
+ def add_request(request_id: str, engine, params, *args, **kwargs):
1471
+ """When we are ready to add a request with request_id and params
1472
+ into the engine, we can split the request into multiple requests.
1473
+ """
1474
+ raise NotImplementedError
1475
+
1476
+ def finish_seq(self, seq: SequenceGroup):
1477
+ """The sequence `seq` finishes, we should record the information.
1478
+ """
1479
+ del self.to_be_finished[seq.request_id]
1480
+ self.finished_reqs[seq.request_id] = seq
1481
+
1482
+ def maybe_assemble_group(
1483
+ self, seq_group: SequenceGroup) -> Optional[SequenceGroup]:
1484
+ """Assemble the sequence group, for producing the final
1485
+ output, or adding request in the engine again.
1486
+ """
1487
+ raise NotImplementedError
1488
+
1489
+
1490
+ class ParallelSampleSequenceGroup(SequenceGroupBase):
1491
+
1492
+ @staticmethod
1493
+ def add_request(request_id: str, engine, params, **kwargs):
1494
+ original_params = params
1495
+ group = ParallelSampleSequenceGroup(request_id)
1496
+ seqs = []
1497
+ for i in range(original_params.n):
1498
+ request_id_i = f"{request_id}_parallel_sample_{i}"
1499
+ group.seq_id_to_index[request_id_i] = i
1500
+ params = original_params.clone()
1501
+ params.n = 1
1502
+ if params.seed is not None:
1503
+ params.seed += i
1504
+ seq_group = engine._add_processed_request(
1505
+ request_id_i,
1506
+ params=params,
1507
+ **kwargs,
1508
+ ) # type: ignore
1509
+ assert seq_group is not None
1510
+ engine.seq_id_to_seq_group[request_id_i] = group
1511
+ group.to_be_finished[request_id_i] = seq_group
1512
+ seqs.append(seq_group.seqs[0])
1513
+
1514
+ # for parallel sampling, the `assembled_seq_group` is always
1515
+ # available, since we have all the sequences ready, and they
1516
+ # will not change.
1517
+ group.assembled_seq_group = SequenceGroup(
1518
+ request_id=request_id,
1519
+ seqs=seqs,
1520
+ arrival_time=seq_group.arrival_time,
1521
+ sampling_params=original_params,
1522
+ lora_request=seq_group.lora_request,
1523
+ pooling_params=seq_group.pooling_params,
1524
+ pooled_data=seq_group.pooled_data,
1525
+ encoder_seq=seq_group.encoder_seq,
1526
+ trace_headers=seq_group.trace_headers,
1527
+ prompt_adapter_request=seq_group.prompt_adapter_request,
1528
+ priority=seq_group.priority,
1529
+ )
1530
+
1531
+ group.streaming = params.output_kind == RequestOutputKind.DELTA
1532
+ group.output_produced = False
1533
+
1534
+ def maybe_assemble_group(
1535
+ self, seq_group: SequenceGroup) -> Optional[SequenceGroup]:
1536
+
1537
+ # in the streaming mode, we will return the assembled sequence
1538
+ # for the first remaining sequence, and then return None for the
1539
+ # rest of sequences
1540
+ if self.streaming:
1541
+ first_remaining_id = next(iter(self.to_be_finished))
1542
+ if seq_group.request_id == first_remaining_id:
1543
+ return self.assembled_seq_group
1544
+ return None
1545
+
1546
+ # in the non-streaming mode, we will return the assembled sequence
1547
+ # when the last sequences finishes, and then return None for the
1548
+ # rest of the time
1549
+ if (len(self.to_be_finished) == 1
1550
+ and seq_group.request_id in self.to_be_finished
1551
+ and seq_group.is_finished()):
1552
+ assert self.assembled_seq_group is not None
1553
+ params = self.assembled_seq_group.sampling_params
1554
+ assert isinstance(params, SamplingParams)
1555
+ if not self.output_produced:
1556
+ self.output_produced = True
1557
+ if params._real_n is not None:
1558
+ # Get the top-n sequences.
1559
+ n = params._real_n or params.n
1560
+ seqs = self.assembled_seq_group.seqs
1561
+ sorting_key = lambda seq: seq.get_cumulative_logprob()
1562
+ sorted_seqs = sorted(seqs, key=sorting_key, reverse=True)
1563
+ top_n_seqs = sorted_seqs[:n]
1564
+ self.assembled_seq_group.seqs = top_n_seqs
1565
+ return self.assembled_seq_group
1566
+ if self.output_produced:
1567
+ return None
1568
+ return None