vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1197) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +53 -0
  3. vllm/_custom_ops.py +1828 -0
  4. vllm/_ipex_ops.py +244 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +115 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +308 -0
  20. vllm/attention/backends/blocksparse_attn.py +461 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
  23. vllm/attention/backends/flash_attn.py +1003 -0
  24. vllm/attention/backends/flashinfer.py +1104 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +313 -0
  27. vllm/attention/backends/ipex_attn.py +398 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1385 -0
  30. vllm/attention/backends/pallas.py +351 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +975 -0
  34. vllm/attention/backends/torch_sdpa.py +703 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +802 -0
  38. vllm/attention/layer.py +468 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +906 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/prefix_prefill.py +902 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  54. vllm/attention/ops/triton_decode_attention.py +674 -0
  55. vllm/attention/ops/triton_flash_attention.py +979 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  57. vllm/attention/ops/triton_unified_attention.py +334 -0
  58. vllm/attention/selector.py +187 -0
  59. vllm/attention/utils/fa_utils.py +55 -0
  60. vllm/beam_search.py +87 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +1185 -0
  63. vllm/benchmarks/endpoint_request_func.py +381 -0
  64. vllm/benchmarks/latency.py +168 -0
  65. vllm/benchmarks/serve.py +1135 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +70 -0
  68. vllm/collect_env.py +820 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +89 -0
  71. vllm/compilation/backends.py +563 -0
  72. vllm/compilation/base_piecewise_backend.py +72 -0
  73. vllm/compilation/collective_fusion.py +127 -0
  74. vllm/compilation/compiler_interface.py +544 -0
  75. vllm/compilation/counter.py +38 -0
  76. vllm/compilation/cuda_piecewise_backend.py +214 -0
  77. vllm/compilation/decorators.py +250 -0
  78. vllm/compilation/fix_functionalization.py +191 -0
  79. vllm/compilation/fusion.py +618 -0
  80. vllm/compilation/fx_utils.py +62 -0
  81. vllm/compilation/inductor_pass.py +115 -0
  82. vllm/compilation/monitor.py +39 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +137 -0
  85. vllm/compilation/pass_manager.py +78 -0
  86. vllm/compilation/sequence_parallelism.py +268 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +67 -0
  89. vllm/compilation/wrapper.py +135 -0
  90. vllm/config.py +4746 -0
  91. vllm/connections.py +174 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +399 -0
  95. vllm/core/block/common.py +371 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  97. vllm/core/block/interfaces.py +319 -0
  98. vllm/core/block/naive_block.py +466 -0
  99. vllm/core/block/prefix_caching_block.py +1135 -0
  100. vllm/core/block/utils.py +28 -0
  101. vllm/core/block_manager.py +521 -0
  102. vllm/core/evictor.py +157 -0
  103. vllm/core/interfaces.py +135 -0
  104. vllm/core/placeholder_block_space_manager.py +100 -0
  105. vllm/core/scheduler.py +2093 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +281 -0
  108. vllm/distributed/__init__.py +6 -0
  109. vllm/distributed/communication_op.py +41 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +264 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +176 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  120. vllm/distributed/device_communicators/pynccl.py +218 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  125. vllm/distributed/kv_events.py +356 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +12 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  152. vllm/distributed/parallel_state.py +1296 -0
  153. vllm/distributed/tpu_distributed_utils.py +177 -0
  154. vllm/distributed/utils.py +536 -0
  155. vllm/engine/__init__.py +0 -0
  156. vllm/engine/arg_utils.py +1708 -0
  157. vllm/engine/async_llm_engine.py +1200 -0
  158. vllm/engine/async_timeout.py +173 -0
  159. vllm/engine/llm_engine.py +2097 -0
  160. vllm/engine/metrics.py +629 -0
  161. vllm/engine/metrics_types.py +94 -0
  162. vllm/engine/multiprocessing/__init__.py +148 -0
  163. vllm/engine/multiprocessing/client.py +681 -0
  164. vllm/engine/multiprocessing/engine.py +460 -0
  165. vllm/engine/output_processor/__init__.py +0 -0
  166. vllm/engine/output_processor/interfaces.py +75 -0
  167. vllm/engine/output_processor/multi_step.py +216 -0
  168. vllm/engine/output_processor/single_step.py +145 -0
  169. vllm/engine/output_processor/stop_checker.py +131 -0
  170. vllm/engine/output_processor/util.py +28 -0
  171. vllm/engine/protocol.py +317 -0
  172. vllm/entrypoints/__init__.py +0 -0
  173. vllm/entrypoints/api_server.py +178 -0
  174. vllm/entrypoints/chat_utils.py +1299 -0
  175. vllm/entrypoints/cli/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  177. vllm/entrypoints/cli/benchmark/base.py +39 -0
  178. vllm/entrypoints/cli/benchmark/latency.py +30 -0
  179. vllm/entrypoints/cli/benchmark/main.py +54 -0
  180. vllm/entrypoints/cli/benchmark/serve.py +30 -0
  181. vllm/entrypoints/cli/benchmark/throughput.py +30 -0
  182. vllm/entrypoints/cli/collect_env.py +35 -0
  183. vllm/entrypoints/cli/main.py +65 -0
  184. vllm/entrypoints/cli/openai.py +205 -0
  185. vllm/entrypoints/cli/run_batch.py +62 -0
  186. vllm/entrypoints/cli/serve.py +328 -0
  187. vllm/entrypoints/cli/types.py +25 -0
  188. vllm/entrypoints/launcher.py +147 -0
  189. vllm/entrypoints/llm.py +1544 -0
  190. vllm/entrypoints/logger.py +50 -0
  191. vllm/entrypoints/openai/__init__.py +0 -0
  192. vllm/entrypoints/openai/api_server.py +1387 -0
  193. vllm/entrypoints/openai/cli_args.py +315 -0
  194. vllm/entrypoints/openai/logits_processors.py +90 -0
  195. vllm/entrypoints/openai/protocol.py +1913 -0
  196. vllm/entrypoints/openai/run_batch.py +463 -0
  197. vllm/entrypoints/openai/serving_chat.py +1221 -0
  198. vllm/entrypoints/openai/serving_classification.py +160 -0
  199. vllm/entrypoints/openai/serving_completion.py +592 -0
  200. vllm/entrypoints/openai/serving_embedding.py +201 -0
  201. vllm/entrypoints/openai/serving_engine.py +986 -0
  202. vllm/entrypoints/openai/serving_models.py +315 -0
  203. vllm/entrypoints/openai/serving_pooling.py +232 -0
  204. vllm/entrypoints/openai/serving_score.py +433 -0
  205. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  206. vllm/entrypoints/openai/serving_transcription.py +424 -0
  207. vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
  208. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  209. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  210. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  211. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  212. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  213. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  214. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  215. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  216. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  217. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  218. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  219. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  220. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  221. vllm/entrypoints/score_utils.py +50 -0
  222. vllm/entrypoints/ssl.py +75 -0
  223. vllm/entrypoints/utils.py +233 -0
  224. vllm/env_override.py +41 -0
  225. vllm/envs.py +944 -0
  226. vllm/executor/__init__.py +0 -0
  227. vllm/executor/executor_base.py +401 -0
  228. vllm/executor/mp_distributed_executor.py +244 -0
  229. vllm/executor/msgspec_utils.py +30 -0
  230. vllm/executor/multiproc_worker_utils.py +313 -0
  231. vllm/executor/ray_distributed_executor.py +701 -0
  232. vllm/executor/ray_utils.py +399 -0
  233. vllm/executor/uniproc_executor.py +139 -0
  234. vllm/forward_context.py +179 -0
  235. vllm/inputs/__init__.py +41 -0
  236. vllm/inputs/data.py +331 -0
  237. vllm/inputs/parse.py +151 -0
  238. vllm/inputs/preprocess.py +909 -0
  239. vllm/inputs/registry.py +237 -0
  240. vllm/jsontree.py +80 -0
  241. vllm/logger.py +212 -0
  242. vllm/logging_utils/__init__.py +8 -0
  243. vllm/logging_utils/dump_input.py +85 -0
  244. vllm/logging_utils/formatter.py +18 -0
  245. vllm/logits_process.py +119 -0
  246. vllm/lora/__init__.py +0 -0
  247. vllm/lora/fully_sharded_layers.py +355 -0
  248. vllm/lora/layers.py +1285 -0
  249. vllm/lora/lora.py +199 -0
  250. vllm/lora/models.py +818 -0
  251. vllm/lora/ops/__init__.py +0 -0
  252. vllm/lora/ops/torch_ops/__init__.py +16 -0
  253. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  254. vllm/lora/ops/triton_ops/__init__.py +12 -0
  255. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  256. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  257. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  258. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  259. vllm/lora/ops/triton_ops/utils.py +120 -0
  260. vllm/lora/ops/xla_ops/__init__.py +7 -0
  261. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  262. vllm/lora/peft_helper.py +136 -0
  263. vllm/lora/punica_wrapper/__init__.py +10 -0
  264. vllm/lora/punica_wrapper/punica_base.py +485 -0
  265. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  266. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  267. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  268. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  269. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  270. vllm/lora/punica_wrapper/utils.py +164 -0
  271. vllm/lora/request.py +99 -0
  272. vllm/lora/resolver.py +85 -0
  273. vllm/lora/utils.py +240 -0
  274. vllm/lora/worker_manager.py +259 -0
  275. vllm/model_executor/__init__.py +16 -0
  276. vllm/model_executor/custom_op.py +152 -0
  277. vllm/model_executor/guided_decoding/__init__.py +181 -0
  278. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  279. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  280. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  281. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  282. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  283. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  284. vllm/model_executor/guided_decoding/utils.py +242 -0
  285. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  286. vllm/model_executor/layers/__init__.py +0 -0
  287. vllm/model_executor/layers/activation.py +369 -0
  288. vllm/model_executor/layers/fused_moe/__init__.py +54 -0
  289. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
  290. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  455. vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
  456. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
  457. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
  458. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
  459. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
  460. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
  461. vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
  462. vllm/model_executor/layers/fused_moe/layer.py +1535 -0
  463. vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
  464. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  465. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  466. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  467. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  468. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
  469. vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
  470. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
  471. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
  472. vllm/model_executor/layers/fused_moe/utils.py +98 -0
  473. vllm/model_executor/layers/layernorm.py +288 -0
  474. vllm/model_executor/layers/lightning_attn.py +652 -0
  475. vllm/model_executor/layers/linear.py +1524 -0
  476. vllm/model_executor/layers/logits_processor.py +197 -0
  477. vllm/model_executor/layers/mamba/__init__.py +0 -0
  478. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  479. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  480. vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
  481. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  482. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  483. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  484. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  485. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  486. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  487. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  488. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  489. vllm/model_executor/layers/pooler.py +350 -0
  490. vllm/model_executor/layers/quantization/__init__.py +157 -0
  491. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  492. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  493. vllm/model_executor/layers/quantization/awq.py +194 -0
  494. vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
  495. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  496. vllm/model_executor/layers/quantization/base_config.py +151 -0
  497. vllm/model_executor/layers/quantization/bitblas.py +461 -0
  498. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  505. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  506. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
  507. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
  508. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  509. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  510. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  511. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  512. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  513. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  514. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  515. vllm/model_executor/layers/quantization/experts_int8.py +196 -0
  516. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  517. vllm/model_executor/layers/quantization/fp8.py +906 -0
  518. vllm/model_executor/layers/quantization/gguf.py +565 -0
  519. vllm/model_executor/layers/quantization/gptq.py +278 -0
  520. vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
  521. vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
  522. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  523. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  524. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  525. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  526. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  527. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  528. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  529. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  530. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  531. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
  532. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  533. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  534. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  535. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  536. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  537. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  538. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  539. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  540. vllm/model_executor/layers/quantization/marlin.py +261 -0
  541. vllm/model_executor/layers/quantization/modelopt.py +737 -0
  542. vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
  543. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  544. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  545. vllm/model_executor/layers/quantization/qqq.py +275 -0
  546. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  547. vllm/model_executor/layers/quantization/quark/quark.py +441 -0
  548. vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
  549. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  550. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  551. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  552. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
  553. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  554. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  555. vllm/model_executor/layers/quantization/schema.py +86 -0
  556. vllm/model_executor/layers/quantization/torchao.py +161 -0
  557. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  558. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  559. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  560. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
  764. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  765. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  766. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  767. vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
  768. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  769. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  770. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  771. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  772. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  773. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  774. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  775. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
  776. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  777. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  778. vllm/model_executor/layers/rejection_sampler.py +406 -0
  779. vllm/model_executor/layers/resampler.py +270 -0
  780. vllm/model_executor/layers/rotary_embedding.py +1862 -0
  781. vllm/model_executor/layers/sampler.py +1204 -0
  782. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  783. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  784. vllm/model_executor/layers/utils.py +95 -0
  785. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  786. vllm/model_executor/model_loader/__init__.py +76 -0
  787. vllm/model_executor/model_loader/base_loader.py +43 -0
  788. vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
  789. vllm/model_executor/model_loader/default_loader.py +282 -0
  790. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  791. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  792. vllm/model_executor/model_loader/neuron.py +476 -0
  793. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  794. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  795. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  796. vllm/model_executor/model_loader/tensorizer.py +600 -0
  797. vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
  798. vllm/model_executor/model_loader/tpu.py +112 -0
  799. vllm/model_executor/model_loader/utils.py +302 -0
  800. vllm/model_executor/model_loader/weight_utils.py +782 -0
  801. vllm/model_executor/models/__init__.py +28 -0
  802. vllm/model_executor/models/adapters.py +248 -0
  803. vllm/model_executor/models/aimv2.py +246 -0
  804. vllm/model_executor/models/arctic.py +559 -0
  805. vllm/model_executor/models/aria.py +657 -0
  806. vllm/model_executor/models/aya_vision.py +466 -0
  807. vllm/model_executor/models/baichuan.py +474 -0
  808. vllm/model_executor/models/bamba.py +543 -0
  809. vllm/model_executor/models/bart.py +938 -0
  810. vllm/model_executor/models/bert.py +523 -0
  811. vllm/model_executor/models/bert_with_rope.py +769 -0
  812. vllm/model_executor/models/blip.py +339 -0
  813. vllm/model_executor/models/blip2.py +718 -0
  814. vllm/model_executor/models/bloom.py +373 -0
  815. vllm/model_executor/models/chameleon.py +1136 -0
  816. vllm/model_executor/models/chatglm.py +478 -0
  817. vllm/model_executor/models/clip.py +407 -0
  818. vllm/model_executor/models/commandr.py +472 -0
  819. vllm/model_executor/models/constant_size_cache.py +137 -0
  820. vllm/model_executor/models/dbrx.py +472 -0
  821. vllm/model_executor/models/deepseek.py +486 -0
  822. vllm/model_executor/models/deepseek_mtp.py +269 -0
  823. vllm/model_executor/models/deepseek_v2.py +843 -0
  824. vllm/model_executor/models/deepseek_vl2.py +648 -0
  825. vllm/model_executor/models/eagle.py +260 -0
  826. vllm/model_executor/models/exaone.py +551 -0
  827. vllm/model_executor/models/fairseq2_llama.py +154 -0
  828. vllm/model_executor/models/falcon.py +510 -0
  829. vllm/model_executor/models/falcon_h1.py +685 -0
  830. vllm/model_executor/models/florence2.py +1103 -0
  831. vllm/model_executor/models/fuyu.py +389 -0
  832. vllm/model_executor/models/gemma.py +425 -0
  833. vllm/model_executor/models/gemma2.py +425 -0
  834. vllm/model_executor/models/gemma3.py +533 -0
  835. vllm/model_executor/models/gemma3_mm.py +709 -0
  836. vllm/model_executor/models/glm.py +23 -0
  837. vllm/model_executor/models/glm4.py +305 -0
  838. vllm/model_executor/models/glm4v.py +648 -0
  839. vllm/model_executor/models/gpt2.py +328 -0
  840. vllm/model_executor/models/gpt_bigcode.py +335 -0
  841. vllm/model_executor/models/gpt_j.py +339 -0
  842. vllm/model_executor/models/gpt_neox.py +332 -0
  843. vllm/model_executor/models/granite.py +493 -0
  844. vllm/model_executor/models/granite_speech.py +779 -0
  845. vllm/model_executor/models/granitemoe.py +437 -0
  846. vllm/model_executor/models/granitemoehybrid.py +586 -0
  847. vllm/model_executor/models/granitemoeshared.py +341 -0
  848. vllm/model_executor/models/gritlm.py +224 -0
  849. vllm/model_executor/models/grok1.py +546 -0
  850. vllm/model_executor/models/h2ovl.py +546 -0
  851. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  852. vllm/model_executor/models/idefics3.py +776 -0
  853. vllm/model_executor/models/interfaces.py +572 -0
  854. vllm/model_executor/models/interfaces_base.py +164 -0
  855. vllm/model_executor/models/intern_vit.py +480 -0
  856. vllm/model_executor/models/internlm2.py +455 -0
  857. vllm/model_executor/models/internlm2_ve.py +147 -0
  858. vllm/model_executor/models/internvl.py +1418 -0
  859. vllm/model_executor/models/jais.py +373 -0
  860. vllm/model_executor/models/jamba.py +592 -0
  861. vllm/model_executor/models/kimi_vl.py +577 -0
  862. vllm/model_executor/models/llama.py +644 -0
  863. vllm/model_executor/models/llama4.py +532 -0
  864. vllm/model_executor/models/llama_eagle.py +165 -0
  865. vllm/model_executor/models/llama_eagle3.py +263 -0
  866. vllm/model_executor/models/llava.py +866 -0
  867. vllm/model_executor/models/llava_next.py +586 -0
  868. vllm/model_executor/models/llava_next_video.py +471 -0
  869. vllm/model_executor/models/llava_onevision.py +956 -0
  870. vllm/model_executor/models/mamba.py +273 -0
  871. vllm/model_executor/models/mamba2.py +308 -0
  872. vllm/model_executor/models/mamba_cache.py +76 -0
  873. vllm/model_executor/models/medusa.py +219 -0
  874. vllm/model_executor/models/mimo.py +192 -0
  875. vllm/model_executor/models/mimo_mtp.py +285 -0
  876. vllm/model_executor/models/minicpm.py +592 -0
  877. vllm/model_executor/models/minicpm3.py +230 -0
  878. vllm/model_executor/models/minicpm_eagle.py +391 -0
  879. vllm/model_executor/models/minicpmo.py +759 -0
  880. vllm/model_executor/models/minicpmv.py +1287 -0
  881. vllm/model_executor/models/minimax_cache.py +36 -0
  882. vllm/model_executor/models/minimax_text_01.py +1301 -0
  883. vllm/model_executor/models/minimax_vl_01.py +364 -0
  884. vllm/model_executor/models/mistral3.py +604 -0
  885. vllm/model_executor/models/mixtral.py +488 -0
  886. vllm/model_executor/models/mixtral_quant.py +453 -0
  887. vllm/model_executor/models/mllama.py +1624 -0
  888. vllm/model_executor/models/mllama4.py +938 -0
  889. vllm/model_executor/models/mlp_speculator.py +206 -0
  890. vllm/model_executor/models/modernbert.py +331 -0
  891. vllm/model_executor/models/module_mapping.py +72 -0
  892. vllm/model_executor/models/molmo.py +1568 -0
  893. vllm/model_executor/models/moonvit.py +630 -0
  894. vllm/model_executor/models/mpt.py +331 -0
  895. vllm/model_executor/models/nemotron.py +508 -0
  896. vllm/model_executor/models/nemotron_h.py +573 -0
  897. vllm/model_executor/models/nemotron_nas.py +484 -0
  898. vllm/model_executor/models/nvlm_d.py +216 -0
  899. vllm/model_executor/models/olmo.py +389 -0
  900. vllm/model_executor/models/olmo2.py +414 -0
  901. vllm/model_executor/models/olmoe.py +468 -0
  902. vllm/model_executor/models/opt.py +412 -0
  903. vllm/model_executor/models/orion.py +349 -0
  904. vllm/model_executor/models/ovis.py +567 -0
  905. vllm/model_executor/models/paligemma.py +398 -0
  906. vllm/model_executor/models/persimmon.py +344 -0
  907. vllm/model_executor/models/phi.py +356 -0
  908. vllm/model_executor/models/phi3.py +19 -0
  909. vllm/model_executor/models/phi3_small.py +465 -0
  910. vllm/model_executor/models/phi3v.py +723 -0
  911. vllm/model_executor/models/phi4mm.py +1246 -0
  912. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  913. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  914. vllm/model_executor/models/phimoe.py +665 -0
  915. vllm/model_executor/models/pixtral.py +1316 -0
  916. vllm/model_executor/models/plamo2.py +738 -0
  917. vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
  918. vllm/model_executor/models/qwen.py +362 -0
  919. vllm/model_executor/models/qwen2.py +497 -0
  920. vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
  921. vllm/model_executor/models/qwen2_5_vl.py +1166 -0
  922. vllm/model_executor/models/qwen2_audio.py +410 -0
  923. vllm/model_executor/models/qwen2_moe.py +540 -0
  924. vllm/model_executor/models/qwen2_rm.py +132 -0
  925. vllm/model_executor/models/qwen2_vl.py +1405 -0
  926. vllm/model_executor/models/qwen3.py +321 -0
  927. vllm/model_executor/models/qwen3_moe.py +535 -0
  928. vllm/model_executor/models/qwen_vl.py +785 -0
  929. vllm/model_executor/models/registry.py +622 -0
  930. vllm/model_executor/models/roberta.py +276 -0
  931. vllm/model_executor/models/siglip.py +524 -0
  932. vllm/model_executor/models/skyworkr1v.py +951 -0
  933. vllm/model_executor/models/smolvlm.py +52 -0
  934. vllm/model_executor/models/solar.py +506 -0
  935. vllm/model_executor/models/stablelm.py +343 -0
  936. vllm/model_executor/models/starcoder2.py +356 -0
  937. vllm/model_executor/models/tarsier.py +643 -0
  938. vllm/model_executor/models/telechat2.py +140 -0
  939. vllm/model_executor/models/teleflm.py +79 -0
  940. vllm/model_executor/models/transformers.py +508 -0
  941. vllm/model_executor/models/ultravox.py +656 -0
  942. vllm/model_executor/models/utils.py +731 -0
  943. vllm/model_executor/models/vision.py +147 -0
  944. vllm/model_executor/models/whisper.py +747 -0
  945. vllm/model_executor/models/zamba2.py +1009 -0
  946. vllm/model_executor/parameter.py +459 -0
  947. vllm/model_executor/pooling_metadata.py +72 -0
  948. vllm/model_executor/sampling_metadata.py +597 -0
  949. vllm/model_executor/utils.py +77 -0
  950. vllm/multimodal/__init__.py +33 -0
  951. vllm/multimodal/audio.py +106 -0
  952. vllm/multimodal/base.py +219 -0
  953. vllm/multimodal/hasher.py +118 -0
  954. vllm/multimodal/image.py +97 -0
  955. vllm/multimodal/inputs.py +876 -0
  956. vllm/multimodal/parse.py +461 -0
  957. vllm/multimodal/processing.py +1895 -0
  958. vllm/multimodal/profiling.py +258 -0
  959. vllm/multimodal/registry.py +331 -0
  960. vllm/multimodal/utils.py +436 -0
  961. vllm/multimodal/video.py +198 -0
  962. vllm/outputs.py +512 -0
  963. vllm/platforms/__init__.py +291 -0
  964. vllm/platforms/cpu.py +266 -0
  965. vllm/platforms/cuda.py +526 -0
  966. vllm/platforms/hpu.py +106 -0
  967. vllm/platforms/interface.py +538 -0
  968. vllm/platforms/neuron.py +150 -0
  969. vllm/platforms/rocm.py +435 -0
  970. vllm/platforms/tpu.py +216 -0
  971. vllm/platforms/xpu.py +156 -0
  972. vllm/plugins/__init__.py +94 -0
  973. vllm/plugins/lora_resolvers/README.md +15 -0
  974. vllm/plugins/lora_resolvers/__init__.py +0 -0
  975. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  976. vllm/pooling_params.py +54 -0
  977. vllm/profiler/__init__.py +0 -0
  978. vllm/profiler/layerwise_profile.py +375 -0
  979. vllm/profiler/utils.py +148 -0
  980. vllm/prompt_adapter/__init__.py +0 -0
  981. vllm/prompt_adapter/layers.py +83 -0
  982. vllm/prompt_adapter/models.py +358 -0
  983. vllm/prompt_adapter/request.py +37 -0
  984. vllm/prompt_adapter/utils.py +98 -0
  985. vllm/prompt_adapter/worker_manager.py +179 -0
  986. vllm/py.typed +2 -0
  987. vllm/reasoning/__init__.py +15 -0
  988. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  989. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  990. vllm/reasoning/granite_reasoning_parser.py +363 -0
  991. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  992. vllm/sampling_params.py +602 -0
  993. vllm/scalar_type.py +347 -0
  994. vllm/scripts.py +15 -0
  995. vllm/sequence.py +1568 -0
  996. vllm/spec_decode/__init__.py +0 -0
  997. vllm/spec_decode/batch_expansion.py +506 -0
  998. vllm/spec_decode/draft_model_runner.py +349 -0
  999. vllm/spec_decode/interfaces.py +99 -0
  1000. vllm/spec_decode/medusa_worker.py +138 -0
  1001. vllm/spec_decode/metrics.py +213 -0
  1002. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1003. vllm/spec_decode/mqa_scorer.py +160 -0
  1004. vllm/spec_decode/multi_step_worker.py +423 -0
  1005. vllm/spec_decode/ngram_worker.py +196 -0
  1006. vllm/spec_decode/proposer_worker_base.py +59 -0
  1007. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1008. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1009. vllm/spec_decode/target_model_runner.py +45 -0
  1010. vllm/spec_decode/top1_proposer.py +275 -0
  1011. vllm/spec_decode/util.py +277 -0
  1012. vllm/test_utils.py +130 -0
  1013. vllm/third_party/__init__.py +0 -0
  1014. vllm/third_party/pynvml.py +6140 -0
  1015. vllm/tracing.py +131 -0
  1016. vllm/transformers_utils/__init__.py +24 -0
  1017. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1018. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1019. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1020. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1021. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1022. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1023. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1024. vllm/transformers_utils/config.py +887 -0
  1025. vllm/transformers_utils/configs/__init__.py +61 -0
  1026. vllm/transformers_utils/configs/arctic.py +207 -0
  1027. vllm/transformers_utils/configs/chatglm.py +72 -0
  1028. vllm/transformers_utils/configs/cohere2.py +195 -0
  1029. vllm/transformers_utils/configs/dbrx.py +280 -0
  1030. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1031. vllm/transformers_utils/configs/eagle.py +85 -0
  1032. vllm/transformers_utils/configs/exaone.py +190 -0
  1033. vllm/transformers_utils/configs/falcon.py +90 -0
  1034. vllm/transformers_utils/configs/h2ovl.py +16 -0
  1035. vllm/transformers_utils/configs/internvl.py +54 -0
  1036. vllm/transformers_utils/configs/jais.py +238 -0
  1037. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1038. vllm/transformers_utils/configs/medusa.py +63 -0
  1039. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1040. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1041. vllm/transformers_utils/configs/mllama.py +31 -0
  1042. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1043. vllm/transformers_utils/configs/moonvit.py +33 -0
  1044. vllm/transformers_utils/configs/mpt.py +180 -0
  1045. vllm/transformers_utils/configs/nemotron.py +205 -0
  1046. vllm/transformers_utils/configs/nemotron_h.py +258 -0
  1047. vllm/transformers_utils/configs/nvlm_d.py +15 -0
  1048. vllm/transformers_utils/configs/ovis.py +184 -0
  1049. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1050. vllm/transformers_utils/configs/solar.py +247 -0
  1051. vllm/transformers_utils/configs/telechat2.py +64 -0
  1052. vllm/transformers_utils/configs/ultravox.py +108 -0
  1053. vllm/transformers_utils/detokenizer.py +168 -0
  1054. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1055. vllm/transformers_utils/processor.py +221 -0
  1056. vllm/transformers_utils/processors/__init__.py +8 -0
  1057. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1058. vllm/transformers_utils/processors/ovis.py +420 -0
  1059. vllm/transformers_utils/s3_utils.py +162 -0
  1060. vllm/transformers_utils/tokenizer.py +302 -0
  1061. vllm/transformers_utils/tokenizer_base.py +149 -0
  1062. vllm/transformers_utils/tokenizer_group.py +120 -0
  1063. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1064. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1065. vllm/transformers_utils/utils.py +99 -0
  1066. vllm/triton_utils/__init__.py +14 -0
  1067. vllm/triton_utils/importing.py +50 -0
  1068. vllm/usage/__init__.py +0 -0
  1069. vllm/usage/usage_lib.py +256 -0
  1070. vllm/utils.py +2910 -0
  1071. vllm/v1/__init__.py +0 -0
  1072. vllm/v1/attention/__init__.py +0 -0
  1073. vllm/v1/attention/backends/__init__.py +0 -0
  1074. vllm/v1/attention/backends/cpu_attn.py +163 -0
  1075. vllm/v1/attention/backends/flash_attn.py +869 -0
  1076. vllm/v1/attention/backends/flashinfer.py +651 -0
  1077. vllm/v1/attention/backends/flex_attention.py +477 -0
  1078. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1079. vllm/v1/attention/backends/mla/common.py +931 -0
  1080. vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
  1081. vllm/v1/attention/backends/mla/flashmla.py +152 -0
  1082. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
  1083. vllm/v1/attention/backends/mla/triton_mla.py +120 -0
  1084. vllm/v1/attention/backends/pallas.py +240 -0
  1085. vllm/v1/attention/backends/triton_attn.py +285 -0
  1086. vllm/v1/attention/backends/utils.py +52 -0
  1087. vllm/v1/core/__init__.py +0 -0
  1088. vllm/v1/core/block_pool.py +349 -0
  1089. vllm/v1/core/encoder_cache_manager.py +150 -0
  1090. vllm/v1/core/kv_cache_coordinator.py +363 -0
  1091. vllm/v1/core/kv_cache_manager.py +392 -0
  1092. vllm/v1/core/kv_cache_utils.py +996 -0
  1093. vllm/v1/core/sched/__init__.py +0 -0
  1094. vllm/v1/core/sched/interface.py +150 -0
  1095. vllm/v1/core/sched/output.py +154 -0
  1096. vllm/v1/core/sched/scheduler.py +1044 -0
  1097. vllm/v1/core/sched/utils.py +23 -0
  1098. vllm/v1/core/single_type_kv_cache_manager.py +403 -0
  1099. vllm/v1/engine/__init__.py +173 -0
  1100. vllm/v1/engine/async_llm.py +558 -0
  1101. vllm/v1/engine/coordinator.py +253 -0
  1102. vllm/v1/engine/core.py +961 -0
  1103. vllm/v1/engine/core_client.py +1129 -0
  1104. vllm/v1/engine/detokenizer.py +261 -0
  1105. vllm/v1/engine/exceptions.py +17 -0
  1106. vllm/v1/engine/llm_engine.py +317 -0
  1107. vllm/v1/engine/logprobs.py +199 -0
  1108. vllm/v1/engine/mm_input_cache.py +91 -0
  1109. vllm/v1/engine/output_processor.py +428 -0
  1110. vllm/v1/engine/parallel_sampling.py +133 -0
  1111. vllm/v1/engine/processor.py +407 -0
  1112. vllm/v1/executor/__init__.py +0 -0
  1113. vllm/v1/executor/abstract.py +113 -0
  1114. vllm/v1/executor/multiproc_executor.py +537 -0
  1115. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1116. vllm/v1/kv_cache_interface.py +194 -0
  1117. vllm/v1/metrics/__init__.py +0 -0
  1118. vllm/v1/metrics/loggers.py +523 -0
  1119. vllm/v1/metrics/prometheus.py +82 -0
  1120. vllm/v1/metrics/ray_wrappers.py +131 -0
  1121. vllm/v1/metrics/reader.py +246 -0
  1122. vllm/v1/metrics/stats.py +239 -0
  1123. vllm/v1/outputs.py +116 -0
  1124. vllm/v1/request.py +193 -0
  1125. vllm/v1/sample/__init__.py +0 -0
  1126. vllm/v1/sample/metadata.py +44 -0
  1127. vllm/v1/sample/ops/__init__.py +0 -0
  1128. vllm/v1/sample/ops/bad_words.py +39 -0
  1129. vllm/v1/sample/ops/penalties.py +59 -0
  1130. vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
  1131. vllm/v1/sample/rejection_sampler.py +631 -0
  1132. vllm/v1/sample/sampler.py +286 -0
  1133. vllm/v1/sample/tpu/__init__.py +0 -0
  1134. vllm/v1/sample/tpu/metadata.py +124 -0
  1135. vllm/v1/sample/tpu/sampler.py +145 -0
  1136. vllm/v1/serial_utils.py +315 -0
  1137. vllm/v1/spec_decode/__init__.py +0 -0
  1138. vllm/v1/spec_decode/eagle.py +432 -0
  1139. vllm/v1/spec_decode/medusa.py +62 -0
  1140. vllm/v1/spec_decode/metadata.py +62 -0
  1141. vllm/v1/spec_decode/metrics.py +178 -0
  1142. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1143. vllm/v1/spec_decode/utils.py +46 -0
  1144. vllm/v1/structured_output/__init__.py +222 -0
  1145. vllm/v1/structured_output/backend_guidance.py +245 -0
  1146. vllm/v1/structured_output/backend_types.py +134 -0
  1147. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1148. vllm/v1/structured_output/request.py +86 -0
  1149. vllm/v1/structured_output/utils.py +175 -0
  1150. vllm/v1/utils.py +743 -0
  1151. vllm/v1/worker/__init__.py +0 -0
  1152. vllm/v1/worker/block_table.py +142 -0
  1153. vllm/v1/worker/cpu_model_runner.py +86 -0
  1154. vllm/v1/worker/cpu_worker.py +152 -0
  1155. vllm/v1/worker/gpu_input_batch.py +681 -0
  1156. vllm/v1/worker/gpu_model_runner.py +2320 -0
  1157. vllm/v1/worker/gpu_worker.py +393 -0
  1158. vllm/v1/worker/lora_model_runner_mixin.py +173 -0
  1159. vllm/v1/worker/tpu_model_runner.py +1673 -0
  1160. vllm/v1/worker/tpu_worker.py +299 -0
  1161. vllm/v1/worker/utils.py +111 -0
  1162. vllm/v1/worker/worker_base.py +65 -0
  1163. vllm/version.py +41 -0
  1164. vllm/vllm_flash_attn/.gitkeep +0 -0
  1165. vllm/worker/__init__.py +0 -0
  1166. vllm/worker/cache_engine.py +145 -0
  1167. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1168. vllm/worker/cpu_model_runner.py +671 -0
  1169. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1170. vllm/worker/cpu_worker.py +450 -0
  1171. vllm/worker/enc_dec_model_runner.py +555 -0
  1172. vllm/worker/hpu_model_runner.py +2320 -0
  1173. vllm/worker/hpu_worker.py +484 -0
  1174. vllm/worker/model_runner.py +2178 -0
  1175. vllm/worker/model_runner_base.py +282 -0
  1176. vllm/worker/multi_step_hpu_worker.py +123 -0
  1177. vllm/worker/multi_step_model_runner.py +911 -0
  1178. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1179. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1180. vllm/worker/multi_step_tpu_worker.py +108 -0
  1181. vllm/worker/multi_step_worker.py +197 -0
  1182. vllm/worker/neuron_model_runner.py +460 -0
  1183. vllm/worker/neuron_worker.py +193 -0
  1184. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1185. vllm/worker/pooling_model_runner.py +211 -0
  1186. vllm/worker/tpu_model_runner.py +909 -0
  1187. vllm/worker/tpu_worker.py +337 -0
  1188. vllm/worker/utils.py +53 -0
  1189. vllm/worker/worker.py +577 -0
  1190. vllm/worker/worker_base.py +646 -0
  1191. vllm/worker/xpu_model_runner.py +606 -0
  1192. vllm/worker/xpu_worker.py +186 -0
  1193. vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
  1194. vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
  1195. vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
  1196. vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
  1197. vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1405 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ # Adapted from
5
+ # https://github.com/huggingface/transformers/blob/19e6e80e10118f855137b90740936c0b11ac397f/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py
6
+ # Copyright 2024 The Qwen team.
7
+ # Copyright 2023 The vLLM team.
8
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
9
+ #
10
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
11
+ # and OPT implementations in this library. It has been modified from its
12
+ # original forms to accommodate minor architectural differences compared
13
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
14
+ #
15
+ # Licensed under the Apache License, Version 2.0 (the "License");
16
+ # you may not use this file except in compliance with the License.
17
+ # You may obtain a copy of the License at
18
+ #
19
+ # http://www.apache.org/licenses/LICENSE-2.0
20
+ #
21
+ # Unless required by applicable law or agreed to in writing, software
22
+ # distributed under the License is distributed on an "AS IS" BASIS,
23
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
24
+ # See the License for the specific language governing permissions and
25
+ # limitations under the License.
26
+ """Inference-only Qwen2-VL model compatible with HuggingFace weights."""
27
+ from collections.abc import Iterable, Mapping, Sequence
28
+ from functools import partial
29
+ from typing import Any, Callable, Literal, Optional, TypedDict, Union
30
+
31
+ import torch
32
+ import torch.nn as nn
33
+ import torch.nn.functional as F
34
+ from einops import rearrange, repeat
35
+ from transformers import BatchFeature
36
+ from transformers.models.qwen2_vl import (Qwen2VLImageProcessor,
37
+ Qwen2VLProcessor)
38
+ from transformers.models.qwen2_vl.configuration_qwen2_vl import (
39
+ Qwen2VLConfig, Qwen2VLVisionConfig)
40
+ from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
41
+
42
+ from vllm.config import VllmConfig
43
+ from vllm.distributed import parallel_state, tensor_model_parallel_all_gather
44
+ from vllm.distributed import utils as dist_utils
45
+ from vllm.logger import init_logger
46
+ from vllm.model_executor import SamplingMetadata
47
+ from vllm.model_executor.layers.activation import QuickGELU
48
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
49
+ RowParallelLinear)
50
+ from vllm.model_executor.layers.quantization import QuantizationConfig
51
+ from vllm.model_executor.layers.quantization.gptq import GPTQConfig
52
+ from vllm.model_executor.layers.quantization.gptq_marlin import (
53
+ GPTQMarlinConfig)
54
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
55
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
56
+ from vllm.multimodal import MULTIMODAL_REGISTRY
57
+ from vllm.multimodal.inputs import (ImageItem, ModalityData,
58
+ MultiModalDataDict, MultiModalFieldConfig,
59
+ MultiModalKwargs, VideoItem)
60
+ from vllm.multimodal.parse import (DictEmbeddingItems, ImageSize,
61
+ ModalityDataItems, MultiModalDataItems,
62
+ MultiModalDataParser)
63
+ from vllm.multimodal.processing import (BaseMultiModalProcessor,
64
+ BaseProcessingInfo, PromptReplacement,
65
+ PromptUpdate)
66
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
67
+ from vllm.platforms import _Backend, current_platform
68
+ from vllm.sequence import IntermediateTensors
69
+ from vllm.transformers_utils.config import uses_mrope
70
+ from vllm.transformers_utils.processor import (
71
+ cached_image_processor_from_config)
72
+
73
+ from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
74
+ SupportsMultiModal, SupportsPP)
75
+ from .utils import (AutoWeightsLoader, WeightsMapper,
76
+ init_vllm_registered_model, maybe_prefix,
77
+ merge_multimodal_embeddings)
78
+ from .vision import get_vit_attn_backend
79
+
80
+ logger = init_logger(__name__)
81
+
82
+ # For profile run
83
+ _MAX_FRAMES_PER_VIDEO = 16
84
+
85
+ # === Vision Inputs === #
86
+
87
+
88
+ class Qwen2VLImagePixelInputs(TypedDict):
89
+ type: Literal["pixel_values"]
90
+ pixel_values: torch.Tensor
91
+ """Shape:
92
+ `(num_patches, num_channels * patch_size * patch_size)`
93
+ """
94
+
95
+ image_grid_thw: torch.Tensor
96
+ """Shape: `(num_images, 3)`
97
+ This should be in `(grid_t, grid_h, grid_w)` format.
98
+ """
99
+
100
+
101
+ class Qwen2VLImageEmbeddingInputs(TypedDict):
102
+ type: Literal["image_embeds"]
103
+ image_embeds: torch.Tensor
104
+ """Supported types:
105
+ - list[`torch.Tensor`]: A list of tensors holding all images' features.
106
+ Each tensor holds an image's features.
107
+ - `torch.Tensor`: A tensor holding all images' features
108
+ (concatenation of all images' feature tensors).
109
+
110
+ Tensor shape: `(num_image_features, hidden_size)`
111
+ - `num_image_features` varies based on
112
+ the number and resolution of the images.
113
+ - `hidden_size` must match the hidden size of language model backbone.
114
+ """
115
+
116
+ image_grid_thw: torch.Tensor
117
+ """Shape: `(num_images, 3)`
118
+ This should be in `(grid_t, grid_h, grid_w)` format.
119
+ """
120
+
121
+
122
+ Qwen2VLImageInputs = Union[Qwen2VLImagePixelInputs,
123
+ Qwen2VLImageEmbeddingInputs]
124
+
125
+
126
+ class Qwen2VLVideoPixelInputs(TypedDict):
127
+ type: Literal["pixel_values_videos"]
128
+ pixel_values_videos: torch.Tensor
129
+ """Shape:
130
+ `(num_patches,
131
+ num_channels * temporal_patch_size * patch_size * patch_size)`
132
+ """
133
+
134
+ video_grid_thw: torch.Tensor
135
+ """Shape: `(num_videos, 3)`
136
+
137
+ This should be in `(grid_t, grid_h, grid_w)` format.
138
+ """
139
+
140
+
141
+ class Qwen2VLVideoEmbeddingInputs(TypedDict):
142
+ type: Literal["video_embeds"]
143
+ video_embeds: torch.Tensor
144
+ """Supported types:
145
+ - list[`torch.Tensor`]: A list of tensors holding all videos' features.
146
+ Each tensor holds an video's features.
147
+ - `torch.Tensor`: A tensor holding all videos' features
148
+ (concatenation of all videos' feature tensors).
149
+
150
+ Tensor shape: `(num_image_features, hidden_size)`
151
+ - `num_image_features` varies based on
152
+ the number and resolution of the videos.
153
+ - `hidden_size` must match the hidden size of language model backbone.
154
+ """
155
+
156
+ video_grid_thw: torch.Tensor
157
+ """Shape: `(num_videos, 3)`
158
+ This should be in `(grid_t, grid_h, grid_w)` format.
159
+ """
160
+
161
+
162
+ Qwen2VLVideoInputs = Union[Qwen2VLVideoPixelInputs,
163
+ Qwen2VLVideoEmbeddingInputs]
164
+
165
+ # === Vision Encoder === #
166
+
167
+
168
+ class Qwen2VisionMLP(nn.Module):
169
+
170
+ def __init__(
171
+ self,
172
+ in_features: int,
173
+ hidden_features: int,
174
+ act_layer: type[nn.Module] = QuickGELU,
175
+ quant_config: Optional[QuantizationConfig] = None,
176
+ prefix: str = "",
177
+ ):
178
+ super().__init__()
179
+ self.fc1 = ColumnParallelLinear(in_features,
180
+ hidden_features,
181
+ quant_config=quant_config,
182
+ prefix=f"{prefix}.fc1")
183
+ self.act = act_layer()
184
+ self.fc2 = RowParallelLinear(hidden_features,
185
+ in_features,
186
+ quant_config=quant_config,
187
+ prefix=f"{prefix}.fc2")
188
+
189
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
190
+ x_parallel, _ = self.fc1(x)
191
+ x_parallel = self.act(x_parallel)
192
+ x, _ = self.fc2(x_parallel)
193
+ return x
194
+
195
+
196
+ def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
197
+ if not interleaved:
198
+ x1, x2 = x.chunk(2, dim=-1)
199
+ return torch.cat((-x2, x1), dim=-1)
200
+ else:
201
+ x1, x2 = x[..., ::2], x[..., 1::2]
202
+ return rearrange(torch.stack((-x2, x1), dim=-1),
203
+ "... d two -> ... (d two)",
204
+ two=2)
205
+
206
+
207
+ def apply_rotary_emb_torch(x: torch.Tensor,
208
+ cos: torch.Tensor,
209
+ sin: torch.Tensor,
210
+ interleaved: bool = False) -> torch.Tensor:
211
+ """
212
+ x: (batch_size, seqlen, nheads, headdim)
213
+ cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
214
+ """
215
+ ro_dim = cos.shape[-1] * 2
216
+ assert ro_dim <= x.shape[-1]
217
+ cos = repeat(
218
+ cos,
219
+ "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
220
+ sin = repeat(
221
+ sin,
222
+ "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
223
+ return torch.cat(
224
+ [
225
+ x[..., :ro_dim] * cos +
226
+ rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]
227
+ ],
228
+ dim=-1,
229
+ )
230
+
231
+
232
+ def apply_rotary_pos_emb_vision(t: torch.Tensor,
233
+ freqs: torch.Tensor) -> torch.Tensor:
234
+ t_ = t.float()
235
+ cos = freqs.cos()
236
+ sin = freqs.sin()
237
+ apply_rotary_emb = apply_rotary_emb_torch
238
+ if current_platform.is_cuda():
239
+ from vllm.vllm_flash_attn.layers.rotary import apply_rotary_emb
240
+ output = apply_rotary_emb(t_, cos, sin).type_as(t)
241
+ return output
242
+
243
+
244
+ class Qwen2VisionAttention(nn.Module):
245
+
246
+ def __init__(
247
+ self,
248
+ embed_dim: int,
249
+ num_heads: int,
250
+ projection_size: int,
251
+ quant_config: Optional[QuantizationConfig] = None,
252
+ prefix: str = "",
253
+ ) -> None:
254
+ super().__init__()
255
+ # Per attention head and per partition values.
256
+ world_size = parallel_state.get_tensor_model_parallel_world_size()
257
+ self.tp_size = world_size
258
+ self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
259
+ self.hidden_size_per_attention_head = dist_utils.divide(
260
+ projection_size, num_heads)
261
+ self.num_attention_heads_per_partition = dist_utils.divide(
262
+ num_heads, world_size)
263
+
264
+ self.qkv = ColumnParallelLinear(input_size=embed_dim,
265
+ output_size=3 * projection_size,
266
+ quant_config=quant_config,
267
+ prefix=f"{prefix}.qkv")
268
+ self.proj = RowParallelLinear(input_size=projection_size,
269
+ output_size=embed_dim,
270
+ quant_config=quant_config,
271
+ prefix=f"{prefix}.proj")
272
+
273
+ # Detect attention implementation.
274
+ self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
275
+ if self.attn_backend not in {
276
+ _Backend.FLASH_ATTN, _Backend.TORCH_SDPA, _Backend.XFORMERS
277
+ }:
278
+ raise RuntimeError(
279
+ f"Qwen2-VL does not support {self.attn_backend} backend now.")
280
+
281
+ def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
282
+ # [s, b, 3 * head * head_dim]
283
+ seq_len, bs, _ = qkv.shape
284
+ if self.tp_size > 1:
285
+ qkv = tensor_model_parallel_all_gather(qkv)
286
+
287
+ # [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
288
+ q, k, v = qkv.chunk(3, dim=2)
289
+
290
+ # 3 * [s, b, head * head_dim]
291
+ if self.tp_size > 1:
292
+ splitter = partial(dist_utils.split_tensor_along_last_dim,
293
+ num_partitions=self.tp_size)
294
+ q = splitter(q)[self.tp_rank]
295
+ k = splitter(k)[self.tp_rank]
296
+ v = splitter(v)[self.tp_rank]
297
+
298
+ # 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
299
+ new_shape = (seq_len, bs, self.num_attention_heads_per_partition,
300
+ self.hidden_size_per_attention_head)
301
+ q, k, v = (x.view(*new_shape) for x in (q, k, v))
302
+ return q, k, v
303
+
304
+ def forward(
305
+ self,
306
+ x: torch.Tensor,
307
+ cu_seqlens: torch.Tensor,
308
+ rotary_pos_emb: torch.Tensor,
309
+ max_seqlen: Optional[int] = None, # Only used for Flash Attention
310
+ seqlens: Optional[list[int]] = None, # Only used for xFormers
311
+ ) -> torch.Tensor:
312
+
313
+ # [s, b, c] --> [s, b, 3 * head * head_dim]
314
+ x, _ = self.qkv(x)
315
+
316
+ # [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
317
+ q, k, v = self.split_qkv(x)
318
+ batch_size = q.shape[1]
319
+
320
+ q, k, v = (rearrange(x, "s b ... -> b s ...").contiguous()
321
+ for x in (q, k, v))
322
+ if rotary_pos_emb is not None:
323
+ q = apply_rotary_pos_emb_vision(q, rotary_pos_emb)
324
+ k = apply_rotary_pos_emb_vision(k, rotary_pos_emb)
325
+
326
+ if self.attn_backend == _Backend.FLASH_ATTN:
327
+ # from vllm_flash_attn.flash_attn_interface import (
328
+ # flash_attn_varlen_func)
329
+ from flash_attn import flash_attn_varlen_func
330
+
331
+ q, k, v = (rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v])
332
+
333
+ output = flash_attn_varlen_func(q,
334
+ k,
335
+ v,
336
+ cu_seqlens_q=cu_seqlens,
337
+ cu_seqlens_k=cu_seqlens,
338
+ max_seqlen_q=max_seqlen,
339
+ max_seqlen_k=max_seqlen,
340
+ dropout_p=0,
341
+ causal=False)
342
+
343
+ context_layer = rearrange(output,
344
+ "(b s) ... -> b s ...",
345
+ b=batch_size)
346
+ elif self.attn_backend == _Backend.TORCH_SDPA:
347
+ # Execute attention entry by entry for speed & less VRAM.
348
+ outputs = []
349
+ for i in range(1, len(cu_seqlens)):
350
+ start_idx = cu_seqlens[i - 1]
351
+ end_idx = cu_seqlens[i]
352
+ q_i = q[:, start_idx:end_idx]
353
+ k_i = k[:, start_idx:end_idx]
354
+ v_i = v[:, start_idx:end_idx]
355
+ q_i, k_i, v_i = (rearrange(x, "b s h d -> b h s d")
356
+ for x in [q_i, k_i, v_i])
357
+ output_i = F.scaled_dot_product_attention(q_i,
358
+ k_i,
359
+ v_i,
360
+ dropout_p=0.0)
361
+ output_i = rearrange(output_i, "b h s d -> b s h d ")
362
+ outputs.append(output_i)
363
+ context_layer = torch.cat(outputs, dim=1)
364
+ elif self.attn_backend == _Backend.XFORMERS:
365
+ from xformers import ops as xops
366
+ from xformers.ops.fmha.attn_bias import BlockDiagonalMask
367
+
368
+ attn_bias = BlockDiagonalMask.from_seqlens(q_seqlen=seqlens,
369
+ kv_seqlen=None,
370
+ device=q.device)
371
+
372
+ context_layer = xops.memory_efficient_attention_forward(
373
+ q, k, v, attn_bias=attn_bias, p=0, scale=None)
374
+ context_layer = rearrange(context_layer,
375
+ "b s h d -> s b (h d)").contiguous()
376
+
377
+ output, _ = self.proj(context_layer)
378
+ return output
379
+
380
+
381
+ class Qwen2VisionBlock(nn.Module):
382
+
383
+ def __init__(
384
+ self,
385
+ dim: int,
386
+ num_heads: int,
387
+ mlp_ratio: float,
388
+ act_layer: type[nn.Module] = QuickGELU,
389
+ norm_layer: Optional[Callable[[int], nn.Module]] = None,
390
+ quant_config: Optional[QuantizationConfig] = None,
391
+ prefix: str = "",
392
+ ) -> None:
393
+ super().__init__()
394
+ if norm_layer is None:
395
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
396
+ self.norm1 = norm_layer(dim)
397
+ self.norm2 = norm_layer(dim)
398
+ mlp_hidden_dim = int(dim * mlp_ratio)
399
+
400
+ self.attn = Qwen2VisionAttention(embed_dim=dim,
401
+ num_heads=num_heads,
402
+ projection_size=dim,
403
+ quant_config=quant_config,
404
+ prefix=f"{prefix}.attn")
405
+ self.mlp = Qwen2VisionMLP(dim,
406
+ mlp_hidden_dim,
407
+ act_layer=act_layer,
408
+ quant_config=quant_config,
409
+ prefix=f"{prefix}.mlp")
410
+
411
+ def forward(
412
+ self,
413
+ x: torch.Tensor,
414
+ cu_seqlens: torch.Tensor,
415
+ rotary_pos_emb: torch.Tensor,
416
+ max_seqlen: Optional[int] = None, # Only used for Flash Attention
417
+ seqlens: Optional[list[int]] = None, # Only used for xFormers
418
+ ) -> torch.Tensor:
419
+ x = x + self.attn(
420
+ self.norm1(x),
421
+ cu_seqlens=cu_seqlens,
422
+ rotary_pos_emb=rotary_pos_emb,
423
+ max_seqlen=max_seqlen,
424
+ seqlens=seqlens,
425
+ )
426
+
427
+ x = x + self.mlp(self.norm2(x))
428
+ return x
429
+
430
+
431
+ class Qwen2VisionPatchEmbed(nn.Module):
432
+
433
+ def __init__(
434
+ self,
435
+ patch_size: int = 14,
436
+ temporal_patch_size: int = 2,
437
+ in_channels: int = 3,
438
+ embed_dim: int = 1152,
439
+ ) -> None:
440
+ super().__init__()
441
+ self.patch_size = patch_size
442
+ self.temporal_patch_size = temporal_patch_size
443
+ self.embed_dim = embed_dim
444
+
445
+ kernel_size = (temporal_patch_size, patch_size, patch_size)
446
+ self.proj = nn.Conv3d(in_channels,
447
+ embed_dim,
448
+ kernel_size=kernel_size,
449
+ stride=kernel_size,
450
+ bias=False)
451
+
452
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
453
+ L, C = x.shape
454
+ x = x.view(L, -1, self.temporal_patch_size, self.patch_size,
455
+ self.patch_size)
456
+ x = self.proj(x).view(L, self.embed_dim)
457
+ return x
458
+
459
+
460
+ class Qwen2VisionPatchMerger(nn.Module):
461
+
462
+ def __init__(
463
+ self,
464
+ d_model: int,
465
+ context_dim: int,
466
+ norm_layer: Optional[Callable[[int], nn.Module]] = None,
467
+ spatial_merge_size: int = 2,
468
+ quant_config: Optional[QuantizationConfig] = None,
469
+ prefix: str = "",
470
+ ) -> None:
471
+ super().__init__()
472
+ self.hidden_size = context_dim * (spatial_merge_size**2)
473
+ if norm_layer is None:
474
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
475
+ self.ln_q = norm_layer(context_dim)
476
+ self.mlp = nn.ModuleList([
477
+ ColumnParallelLinear(self.hidden_size,
478
+ self.hidden_size,
479
+ bias=True,
480
+ quant_config=quant_config,
481
+ prefix=f"{prefix}.mlp.0"),
482
+ nn.GELU(),
483
+ RowParallelLinear(self.hidden_size,
484
+ d_model,
485
+ bias=True,
486
+ quant_config=quant_config,
487
+ prefix=f"{prefix}.mlp.2"),
488
+ ])
489
+
490
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
491
+ x = self.ln_q(x)
492
+ x = x.view(-1, self.hidden_size)
493
+
494
+ mlp_fc1, mlp_act, mlp_fc2 = self.mlp
495
+ x_parallel, _ = mlp_fc1(x)
496
+ x_parallel = mlp_act(x_parallel)
497
+ out, _ = mlp_fc2(x_parallel)
498
+ return out
499
+
500
+
501
+ class Qwen2VisionRotaryEmbedding(nn.Module):
502
+
503
+ def __init__(self, dim: int, theta: float = 10000.0) -> None:
504
+ super().__init__()
505
+ self.dim = dim
506
+ self.theta = theta
507
+ inv_freq = 1.0 / (theta
508
+ **(torch.arange(0, dim, 2, dtype=torch.float) / dim))
509
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
510
+ self._seq_len_cached = 0
511
+ self._freqs_cached = None
512
+
513
+ def update_freqs_cache(self, seqlen: int) -> None:
514
+ if seqlen > self._seq_len_cached:
515
+ seqlen *= 2
516
+ self._seq_len_cached = seqlen
517
+ self.inv_freq = 1.0 / (self.theta**(torch.arange(
518
+ 0, self.dim, 2, dtype=torch.float, device=self.inv_freq.device)
519
+ / self.dim))
520
+ seq = torch.arange(seqlen,
521
+ device=self.inv_freq.device,
522
+ dtype=self.inv_freq.dtype)
523
+ freqs = torch.outer(seq, self.inv_freq)
524
+ self._freqs_cached = freqs
525
+
526
+ def forward(self, seqlen: int) -> torch.Tensor:
527
+ self.update_freqs_cache(seqlen)
528
+ return self._freqs_cached[:seqlen]
529
+
530
+
531
+ class Qwen2VisionTransformer(nn.Module):
532
+
533
+ def __init__(
534
+ self,
535
+ vision_config: Qwen2VLVisionConfig,
536
+ norm_eps: float = 1e-6,
537
+ quant_config: Optional[QuantizationConfig] = None,
538
+ prefix: str = "",
539
+ ) -> None:
540
+ super().__init__()
541
+
542
+ patch_size = vision_config.patch_size
543
+ temporal_patch_size = vision_config.temporal_patch_size
544
+ spatial_merge_size = vision_config.spatial_merge_size
545
+ in_channels = vision_config.in_channels
546
+ hidden_size = vision_config.hidden_size
547
+ embed_dim = vision_config.embed_dim
548
+ depth = vision_config.depth
549
+ num_heads = vision_config.num_heads
550
+ mlp_ratio = vision_config.mlp_ratio
551
+
552
+ self.spatial_merge_size = spatial_merge_size
553
+ self.num_heads = num_heads
554
+ self.embed_dim = embed_dim
555
+
556
+ self.patch_embed = Qwen2VisionPatchEmbed(
557
+ patch_size=patch_size,
558
+ temporal_patch_size=temporal_patch_size,
559
+ in_channels=in_channels,
560
+ embed_dim=embed_dim,
561
+ )
562
+
563
+ norm_layer = partial(nn.LayerNorm, eps=norm_eps)
564
+ head_dim = embed_dim // num_heads
565
+ self.rotary_pos_emb = Qwen2VisionRotaryEmbedding(head_dim // 2)
566
+
567
+ self.blocks = nn.ModuleList([
568
+ Qwen2VisionBlock(dim=embed_dim,
569
+ num_heads=num_heads,
570
+ mlp_ratio=mlp_ratio,
571
+ norm_layer=norm_layer,
572
+ quant_config=quant_config,
573
+ prefix=f"{prefix}.blocks.{layer_idx}")
574
+ for layer_idx in range(depth)
575
+ ])
576
+ self.merger = Qwen2VisionPatchMerger(
577
+ d_model=hidden_size,
578
+ context_dim=embed_dim,
579
+ norm_layer=norm_layer,
580
+ quant_config=quant_config,
581
+ prefix=f"{prefix}.merger",
582
+ )
583
+ self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
584
+
585
+ @property
586
+ def dtype(self) -> torch.dtype:
587
+ return self.patch_embed.proj.weight.dtype
588
+
589
+ @property
590
+ def device(self) -> torch.device:
591
+ return self.patch_embed.proj.weight.device
592
+
593
+ def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
594
+ pos_ids = []
595
+ for t, h, w in grid_thw:
596
+ hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
597
+ wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
598
+ hpos_ids = hpos_ids.reshape(
599
+ h // self.spatial_merge_size,
600
+ self.spatial_merge_size,
601
+ w // self.spatial_merge_size,
602
+ self.spatial_merge_size,
603
+ ).permute(0, 2, 1, 3).flatten()
604
+ wpos_ids = wpos_ids.reshape(
605
+ h // self.spatial_merge_size,
606
+ self.spatial_merge_size,
607
+ w // self.spatial_merge_size,
608
+ self.spatial_merge_size,
609
+ ).permute(0, 2, 1, 3).flatten()
610
+ pos_ids.append(
611
+ torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
612
+ pos_ids = torch.cat(pos_ids, dim=0)
613
+ max_grid_size = grid_thw[:, 1:].max()
614
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
615
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
616
+ return rotary_pos_emb
617
+
618
+ def compute_attn_mask_seqlen(
619
+ self, cu_seqlens: torch.Tensor
620
+ ) -> tuple[Optional[int], Optional[list[int]]]:
621
+ max_seqlen, seqlens = None, None
622
+ if self.attn_backend == _Backend.FLASH_ATTN:
623
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
624
+ elif self.attn_backend == _Backend.XFORMERS:
625
+ seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
626
+ return max_seqlen, seqlens
627
+
628
+ def forward(
629
+ self,
630
+ x: torch.Tensor,
631
+ grid_thw: torch.Tensor,
632
+ ) -> torch.Tensor:
633
+ # patchify
634
+ x = x.to(device=self.device, dtype=self.dtype)
635
+ x = self.patch_embed(x)
636
+
637
+ # compute position embedding
638
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
639
+
640
+ # compute cu_seqlens
641
+ cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2],
642
+ grid_thw[:, 0]).cumsum(
643
+ dim=0, dtype=torch.int32)
644
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
645
+
646
+ # transformers
647
+ x = x.unsqueeze(1)
648
+
649
+ # pre-compute seqlens for attn mask to reduce cuMemcpy operations
650
+ max_seqlen, seqlens = self.compute_attn_mask_seqlen(cu_seqlens)
651
+ for blk in self.blocks:
652
+ x = blk(
653
+ x,
654
+ cu_seqlens=cu_seqlens,
655
+ rotary_pos_emb=rotary_pos_emb,
656
+ max_seqlen=max_seqlen,
657
+ seqlens=seqlens,
658
+ )
659
+
660
+ # adapter
661
+ x = self.merger(x)
662
+
663
+ return x
664
+
665
+ def load_weights(self, weights: Iterable[tuple[str,
666
+ torch.Tensor]]) -> set[str]:
667
+ stacked_params_mapping = [
668
+ # (param_name, shard_name, shard_id)
669
+ ("qkv_proj", "q_proj", "q"),
670
+ ("qkv_proj", "k_proj", "k"),
671
+ ("qkv_proj", "v_proj", "v"),
672
+ ]
673
+ params_dict = dict(self.named_parameters(remove_duplicate=False))
674
+ loaded_params: set[str] = set()
675
+
676
+ for name, loaded_weight in weights:
677
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
678
+ if weight_name not in name:
679
+ continue
680
+ name = name.replace(weight_name, param_name)
681
+
682
+ param = params_dict[name]
683
+ weight_loader = param.weight_loader
684
+ weight_loader(param, loaded_weight, shard_id)
685
+ break
686
+ else:
687
+ param = params_dict[name]
688
+ weight_loader = getattr(param, "weight_loader",
689
+ default_weight_loader)
690
+ weight_loader(param, loaded_weight)
691
+ loaded_params.add(name)
692
+ return loaded_params
693
+
694
+
695
+ def _qwen2vl_field_config(hf_inputs: Mapping[str, torch.Tensor]):
696
+ image_grid_thw = hf_inputs.get("image_grid_thw", torch.empty((0, 3)))
697
+ image_grid_sizes = image_grid_thw.prod(-1)
698
+
699
+ video_grid_thw = hf_inputs.get("video_grid_thw", torch.empty((0, 3)))
700
+ video_grid_sizes = video_grid_thw.prod(-1)
701
+
702
+ return dict(
703
+ pixel_values=MultiModalFieldConfig.flat_from_sizes(
704
+ "image", image_grid_sizes),
705
+ image_embeds=MultiModalFieldConfig.flat_from_sizes(
706
+ "image", image_grid_sizes),
707
+ image_grid_thw=MultiModalFieldConfig.batched("image"),
708
+ pixel_values_videos=MultiModalFieldConfig.flat_from_sizes(
709
+ "video", video_grid_sizes),
710
+ video_embeds=MultiModalFieldConfig.flat_from_sizes(
711
+ "video", video_grid_sizes),
712
+ video_grid_thw=MultiModalFieldConfig.batched("video"),
713
+ )
714
+
715
+
716
+ class Qwen2VLMultiModalDataParser(MultiModalDataParser):
717
+
718
+ def _parse_image_data(
719
+ self,
720
+ data: Union[dict[str, torch.Tensor], ModalityData[ImageItem]],
721
+ ) -> Optional[ModalityDataItems[Any, Any]]:
722
+ if isinstance(data, dict):
723
+ return DictEmbeddingItems(
724
+ data,
725
+ modality="image",
726
+ required_fields={"image_embeds", "image_grid_thw"},
727
+ fields_factory=_qwen2vl_field_config,
728
+ )
729
+
730
+ return super()._parse_image_data(data)
731
+
732
+ def _parse_video_data(
733
+ self,
734
+ data: Union[dict[str, torch.Tensor], ModalityData[VideoItem]],
735
+ ) -> Optional[ModalityDataItems[Any, Any]]:
736
+ if isinstance(data, dict):
737
+ return DictEmbeddingItems(
738
+ data,
739
+ modality="video",
740
+ required_fields={"video_embeds", "video_grid_thw"},
741
+ fields_factory=_qwen2vl_field_config,
742
+ )
743
+
744
+ return super()._parse_video_data(data)
745
+
746
+
747
+ class Qwen2VLProcessingInfo(BaseProcessingInfo):
748
+
749
+ def get_hf_config(self):
750
+ return self.ctx.get_hf_config(Qwen2VLConfig)
751
+
752
+ def get_hf_processor(
753
+ self,
754
+ *,
755
+ min_pixels: Optional[int] = None,
756
+ max_pixels: Optional[int] = None,
757
+ size: Optional[dict[str, int]] = None,
758
+ **kwargs: object,
759
+ ) -> Qwen2VLProcessor:
760
+ return self.ctx.get_hf_processor(
761
+ Qwen2VLProcessor,
762
+ image_processor=self.get_image_processor(
763
+ min_pixels=min_pixels,
764
+ max_pixels=max_pixels,
765
+ size=size,
766
+ use_fast=kwargs.get("use_fast")),
767
+ **kwargs,
768
+ )
769
+
770
+ def _get_image_processor_kwargs(
771
+ self,
772
+ *,
773
+ min_pixels: Optional[int] = None,
774
+ max_pixels: Optional[int] = None,
775
+ size: Optional[dict[str, int]] = None,
776
+ **kwargs: object,
777
+ ):
778
+ mm_config = self.ctx.model_config.get_multimodal_config()
779
+ if mm_config.mm_processor_kwargs:
780
+ kwargs.update(mm_config.mm_processor_kwargs)
781
+
782
+ if min_pixels is not None:
783
+ kwargs["min_pixels"] = min_pixels
784
+
785
+ if size is None:
786
+ size = {"shortest_edge": min_pixels}
787
+ else:
788
+ size["shortest_edge"] = min_pixels
789
+
790
+ if max_pixels is not None:
791
+ kwargs["max_pixels"] = max_pixels
792
+
793
+ if size is None:
794
+ size = {"longest_edge": max_pixels}
795
+ else:
796
+ size["longest_edge"] = max_pixels
797
+
798
+ if size is not None:
799
+ kwargs["size"] = size
800
+
801
+ return kwargs
802
+
803
+ def get_image_processor(
804
+ self,
805
+ *,
806
+ min_pixels: Optional[int] = None,
807
+ max_pixels: Optional[int] = None,
808
+ size: Optional[dict[str, int]] = None,
809
+ **kwargs: object,
810
+ ) -> Qwen2VLImageProcessor:
811
+ return cached_image_processor_from_config(
812
+ self.ctx.model_config,
813
+ **self._get_image_processor_kwargs(min_pixels=min_pixels,
814
+ max_pixels=max_pixels,
815
+ size=size,
816
+ **kwargs),
817
+ )
818
+
819
+ def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
820
+ return {"image": None, "video": None}
821
+
822
+ def _get_vision_info(
823
+ self,
824
+ *,
825
+ image_width: int,
826
+ image_height: int,
827
+ num_frames: int = 1,
828
+ do_resize: bool = True,
829
+ image_processor: Optional[Qwen2VLImageProcessor],
830
+ ) -> tuple[ImageSize, int]:
831
+ if image_processor is None:
832
+ image_processor = self.get_image_processor()
833
+
834
+ hf_config = self.get_hf_config()
835
+ vision_config = hf_config.vision_config
836
+ patch_size = vision_config.patch_size
837
+ merge_size = vision_config.spatial_merge_size
838
+ temporal_patch_size = vision_config.temporal_patch_size
839
+
840
+ if do_resize:
841
+ resized_height, resized_width = smart_resize(
842
+ height=image_height,
843
+ width=image_width,
844
+ factor=patch_size * merge_size,
845
+ min_pixels=image_processor.min_pixels,
846
+ max_pixels=image_processor.max_pixels,
847
+ )
848
+ preprocessed_size = ImageSize(width=resized_width,
849
+ height=resized_height)
850
+ else:
851
+ preprocessed_size = ImageSize(width=image_width,
852
+ height=image_height)
853
+
854
+ # NOTE: Frames are padded to be divisible by `temporal_patch_size`
855
+ # https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py#L294
856
+ padded_num_frames = num_frames + num_frames % temporal_patch_size
857
+
858
+ grid_t = max(padded_num_frames // temporal_patch_size, 1)
859
+ grid_h = preprocessed_size.height // patch_size
860
+ grid_w = preprocessed_size.width // patch_size
861
+
862
+ num_patches = grid_t * grid_h * grid_w
863
+ num_vision_tokens = num_patches // (merge_size**2)
864
+
865
+ return preprocessed_size, num_vision_tokens
866
+
867
+ def get_num_image_tokens(
868
+ self,
869
+ *,
870
+ image_width: int,
871
+ image_height: int,
872
+ image_processor: Optional[Qwen2VLImageProcessor],
873
+ ) -> int:
874
+ _, num_image_tokens = self._get_vision_info(
875
+ image_width=image_width,
876
+ image_height=image_height,
877
+ image_processor=image_processor,
878
+ )
879
+ return num_image_tokens
880
+
881
+ def get_num_video_tokens(
882
+ self,
883
+ *,
884
+ image_width: int,
885
+ image_height: int,
886
+ num_frames: int,
887
+ image_processor: Optional[Qwen2VLImageProcessor],
888
+ ) -> int:
889
+ _, num_video_tokens = self._get_vision_info(
890
+ image_width=image_width,
891
+ image_height=image_height,
892
+ num_frames=num_frames,
893
+ image_processor=image_processor,
894
+ )
895
+ return num_video_tokens
896
+
897
+ def get_image_size_with_most_features(self) -> ImageSize:
898
+ max_image_size, _ = self._get_vision_info(
899
+ image_width=9999999,
900
+ image_height=9999999,
901
+ image_processor=None,
902
+ )
903
+ return max_image_size
904
+
905
+ def get_max_image_tokens(self) -> int:
906
+ target_width, target_height = self.get_image_size_with_most_features()
907
+
908
+ return self.get_num_image_tokens(
909
+ image_width=target_width,
910
+ image_height=target_height,
911
+ image_processor=None,
912
+ )
913
+
914
+ def _get_max_video_frames(self, max_tokens: int) -> int:
915
+ target_width, target_height = self.get_image_size_with_most_features()
916
+
917
+ num_frames = 0
918
+
919
+ while True:
920
+ next_num_frames = num_frames + 1
921
+ next_max_tokens = self.get_num_video_tokens(
922
+ image_width=target_width,
923
+ image_height=target_height,
924
+ num_frames=next_num_frames,
925
+ image_processor=None,
926
+ )
927
+
928
+ if next_max_tokens > max_tokens:
929
+ break
930
+
931
+ num_frames = next_num_frames
932
+
933
+ return num_frames
934
+
935
+ def get_num_frames_with_most_features(
936
+ self,
937
+ seq_len: int,
938
+ mm_counts: Mapping[str, int],
939
+ ) -> int:
940
+ max_images = mm_counts.get("image", 0)
941
+ max_videos = mm_counts.get("video", 0)
942
+
943
+ max_image_tokens = self.get_max_image_tokens() * max_images
944
+ max_total_frames = self._get_max_video_frames(seq_len -
945
+ max_image_tokens)
946
+ max_frames_per_video = min(max_total_frames // max(max_videos, 1),
947
+ _MAX_FRAMES_PER_VIDEO)
948
+
949
+ return max(max_frames_per_video, 1)
950
+
951
+ def get_max_video_tokens(
952
+ self,
953
+ seq_len: int,
954
+ mm_counts: Mapping[str, int],
955
+ ) -> int:
956
+ target_width, target_height = self.get_image_size_with_most_features()
957
+
958
+ return self.get_num_video_tokens(
959
+ image_width=target_width,
960
+ image_height=target_height,
961
+ num_frames=self.get_num_frames_with_most_features(
962
+ seq_len, mm_counts),
963
+ image_processor=None,
964
+ )
965
+
966
+
967
+ class Qwen2VLDummyInputsBuilder(BaseDummyInputsBuilder[Qwen2VLProcessingInfo]):
968
+
969
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
970
+ num_images = mm_counts.get("image", 0)
971
+ num_videos = mm_counts.get("video", 0)
972
+
973
+ hf_processor = self.info.get_hf_processor()
974
+ image_token: str = hf_processor.image_token
975
+ video_token: str = hf_processor.video_token
976
+
977
+ return image_token * num_images + video_token * num_videos
978
+
979
+ def get_dummy_mm_data(
980
+ self,
981
+ seq_len: int,
982
+ mm_counts: Mapping[str, int],
983
+ ) -> MultiModalDataDict:
984
+ num_images = mm_counts.get("image", 0)
985
+ num_videos = mm_counts.get("video", 0)
986
+
987
+ target_width, target_height = \
988
+ self.info.get_image_size_with_most_features()
989
+ target_num_frames = \
990
+ self.info.get_num_frames_with_most_features(seq_len, mm_counts)
991
+
992
+ return {
993
+ "image":
994
+ self._get_dummy_images(width=target_width,
995
+ height=target_height,
996
+ num_images=num_images),
997
+ "video":
998
+ self._get_dummy_videos(
999
+ width=target_width,
1000
+ height=target_height,
1001
+ num_frames=target_num_frames,
1002
+ num_videos=num_videos,
1003
+ )
1004
+ }
1005
+
1006
+
1007
+ class Qwen2VLMultiModalProcessor(BaseMultiModalProcessor[Qwen2VLProcessingInfo]
1008
+ ):
1009
+
1010
+ def _get_data_parser(self) -> MultiModalDataParser:
1011
+ return Qwen2VLMultiModalDataParser()
1012
+
1013
+ def _call_hf_processor(
1014
+ self,
1015
+ prompt: str,
1016
+ mm_data: Mapping[str, object],
1017
+ mm_kwargs: Mapping[str, object],
1018
+ ) -> BatchFeature:
1019
+ return self.info.ctx.call_hf_processor(
1020
+ self.info.get_hf_processor(**mm_kwargs),
1021
+ dict(text=prompt, **mm_data),
1022
+ self.info._get_image_processor_kwargs(**mm_kwargs),
1023
+ )
1024
+
1025
+ def _get_prompt_updates(
1026
+ self,
1027
+ mm_items: MultiModalDataItems,
1028
+ hf_processor_mm_kwargs: Mapping[str, Any],
1029
+ out_mm_kwargs: MultiModalKwargs,
1030
+ ) -> Sequence[PromptUpdate]:
1031
+ hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
1032
+ image_processor = self.info.get_image_processor(
1033
+ **hf_processor_mm_kwargs)
1034
+ tokenizer = self.info.get_tokenizer()
1035
+ vocab = tokenizer.get_vocab()
1036
+
1037
+ placeholder = {
1038
+ "image": vocab[hf_processor.image_token],
1039
+ "video": vocab[hf_processor.video_token],
1040
+ }
1041
+
1042
+ merge_length = image_processor.merge_size**2
1043
+
1044
+ def get_replacement_qwen2vl(item_idx: int, modality: str):
1045
+ grid_thw = out_mm_kwargs[f"{modality}_grid_thw"][item_idx]
1046
+ assert isinstance(grid_thw, torch.Tensor)
1047
+
1048
+ num_tokens = int(grid_thw.prod()) // merge_length
1049
+ return [placeholder[modality]] * num_tokens
1050
+
1051
+ return [
1052
+ PromptReplacement(
1053
+ modality=modality,
1054
+ target=[placeholder[modality]],
1055
+ replacement=partial(get_replacement_qwen2vl,
1056
+ modality=modality),
1057
+ ) for modality in ("image", "video")
1058
+ ]
1059
+
1060
+ def _get_mm_fields_config(
1061
+ self,
1062
+ hf_inputs: BatchFeature,
1063
+ hf_processor_mm_kwargs: Mapping[str, object],
1064
+ ) -> Mapping[str, MultiModalFieldConfig]:
1065
+ return _qwen2vl_field_config(hf_inputs)
1066
+
1067
+
1068
+ @MULTIMODAL_REGISTRY.register_processor(Qwen2VLMultiModalProcessor,
1069
+ info=Qwen2VLProcessingInfo,
1070
+ dummy_inputs=Qwen2VLDummyInputsBuilder)
1071
+ class Qwen2VLForConditionalGeneration(nn.Module, SupportsMultiModal,
1072
+ SupportsLoRA, SupportsPP):
1073
+
1074
+ # To ensure correct weight loading and mapping.
1075
+ hf_to_vllm_mapper = WeightsMapper(
1076
+ orig_to_new_prefix={
1077
+ # mapping for new names in checkpoint saved after transformers v4.52
1078
+ "model.language_model.": "language_model.model.",
1079
+ "model.visual.": "visual.",
1080
+ # mapping for original checkpoint
1081
+ "lm_head.": "language_model.lm_head.",
1082
+ "model.": "language_model.model.",
1083
+ })
1084
+
1085
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1086
+ super().__init__()
1087
+ config: Qwen2VLConfig = vllm_config.model_config.hf_config
1088
+ quant_config = vllm_config.quant_config
1089
+ multimodal_config = vllm_config.model_config.multimodal_config
1090
+
1091
+ self.config = config
1092
+ self.multimodal_config = multimodal_config
1093
+
1094
+ self.visual = Qwen2VisionTransformer(
1095
+ config.vision_config,
1096
+ norm_eps=getattr(config, "rms_norm_eps", 1e-6),
1097
+ quant_config=self._maybe_ignore_quant_config(quant_config),
1098
+ prefix=maybe_prefix(prefix, "visual"),
1099
+ )
1100
+
1101
+ self.language_model = init_vllm_registered_model(
1102
+ vllm_config=vllm_config,
1103
+ prefix=maybe_prefix(prefix, "language_model"),
1104
+ architectures=["Qwen2ForCausalLM"],
1105
+ )
1106
+
1107
+ self.make_empty_intermediate_tensors = (
1108
+ self.language_model.make_empty_intermediate_tensors)
1109
+
1110
+ def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig):
1111
+ # GPTQ configs do not have a list of ignored modules, however AutoGPTQ
1112
+ # seems to avoid vision encoder sections for some models.
1113
+ # See: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4
1114
+ if isinstance(quant_config, (GPTQConfig, GPTQMarlinConfig)):
1115
+ return None
1116
+ return quant_config
1117
+
1118
+ def _validate_and_reshape_mm_tensor(self, mm_input: object,
1119
+ name: str) -> torch.Tensor:
1120
+ if not isinstance(mm_input, (torch.Tensor, list)):
1121
+ raise ValueError(f"Incorrect type of {name}. "
1122
+ f"Got type: {type(mm_input)}")
1123
+ if isinstance(mm_input, torch.Tensor):
1124
+ if mm_input.ndim == 2:
1125
+ return mm_input
1126
+ if mm_input.ndim != 3:
1127
+ raise ValueError(f"{name} should be 2D or batched 3D tensor. "
1128
+ f"Got ndim: {mm_input.ndim} "
1129
+ f"(shape={mm_input.shape})")
1130
+ return torch.concat(list(mm_input))
1131
+ else:
1132
+ return torch.concat(mm_input)
1133
+
1134
+ def _parse_and_validate_image_input(
1135
+ self, **kwargs: object) -> Optional[Qwen2VLImageInputs]:
1136
+ pixel_values = kwargs.pop("pixel_values", None)
1137
+ image_embeds = kwargs.pop("image_embeds", None)
1138
+ image_grid_thw = kwargs.pop("image_grid_thw", None)
1139
+
1140
+ if pixel_values is None and image_embeds is None:
1141
+ return None
1142
+
1143
+ if pixel_values is not None:
1144
+ pixel_values = self._validate_and_reshape_mm_tensor(
1145
+ pixel_values, "image pixel values")
1146
+ image_grid_thw = self._validate_and_reshape_mm_tensor(
1147
+ image_grid_thw, "image grid_thw")
1148
+
1149
+ if not isinstance(pixel_values, (torch.Tensor, list)):
1150
+ raise ValueError("Incorrect type of image pixel values. "
1151
+ f"Got type: {type(pixel_values)}")
1152
+
1153
+ return Qwen2VLImagePixelInputs(type="pixel_values",
1154
+ pixel_values=pixel_values,
1155
+ image_grid_thw=image_grid_thw)
1156
+
1157
+ if image_embeds is not None:
1158
+ image_embeds = self._validate_and_reshape_mm_tensor(
1159
+ image_embeds, "image embeds")
1160
+ image_grid_thw = self._validate_and_reshape_mm_tensor(
1161
+ image_grid_thw, "image grid_thw")
1162
+
1163
+ if not isinstance(image_embeds, torch.Tensor):
1164
+ raise ValueError("Incorrect type of image embeddings. "
1165
+ f"Got type: {type(image_embeds)}")
1166
+ return Qwen2VLImageEmbeddingInputs(type="image_embeds",
1167
+ image_embeds=image_embeds,
1168
+ image_grid_thw=image_grid_thw)
1169
+
1170
+ def _parse_and_validate_video_input(
1171
+ self, **kwargs: object) -> Optional[Qwen2VLVideoInputs]:
1172
+ pixel_values_videos = kwargs.pop("pixel_values_videos", None)
1173
+ video_embeds = kwargs.pop("video_embeds", None)
1174
+ video_grid_thw = kwargs.pop("video_grid_thw", None)
1175
+
1176
+ if pixel_values_videos is None and video_embeds is None:
1177
+ return None
1178
+
1179
+ if pixel_values_videos is not None:
1180
+ pixel_values_videos = self._validate_and_reshape_mm_tensor(
1181
+ pixel_values_videos, "video pixel values")
1182
+ video_grid_thw = self._validate_and_reshape_mm_tensor(
1183
+ video_grid_thw, "video grid_thw")
1184
+
1185
+ return Qwen2VLVideoPixelInputs(
1186
+ type="pixel_values_videos",
1187
+ pixel_values_videos=pixel_values_videos,
1188
+ video_grid_thw=video_grid_thw,
1189
+ )
1190
+
1191
+ if video_embeds is not None:
1192
+ video_embeds = self._validate_and_reshape_mm_tensor(
1193
+ video_embeds, "video embeds")
1194
+ video_grid_thw = self._validate_and_reshape_mm_tensor(
1195
+ video_grid_thw, "video grid_thw")
1196
+
1197
+ if not isinstance(video_embeds, torch.Tensor):
1198
+ raise ValueError("Incorrect type of video embeddings. "
1199
+ f"Got type: {type(video_embeds)}")
1200
+ return Qwen2VLVideoEmbeddingInputs(type="video_embeds",
1201
+ video_embeds=video_embeds,
1202
+ video_grid_thw=video_grid_thw)
1203
+
1204
+ def _process_image_input(
1205
+ self, image_input: Qwen2VLImageInputs) -> tuple[torch.Tensor, ...]:
1206
+
1207
+ grid_thw = image_input["image_grid_thw"]
1208
+ assert grid_thw.ndim == 2
1209
+
1210
+ if image_input["type"] == "image_embeds":
1211
+ image_embeds = image_input["image_embeds"].type(self.visual.dtype)
1212
+ else:
1213
+ pixel_values = image_input["pixel_values"].type(self.visual.dtype)
1214
+ image_embeds = self.visual(pixel_values, grid_thw=grid_thw)
1215
+
1216
+ # Split concatenated embeddings for each image item.
1217
+ merge_size = self.visual.spatial_merge_size
1218
+ sizes = grid_thw.prod(-1) // merge_size // merge_size
1219
+
1220
+ return image_embeds.split(sizes.tolist())
1221
+
1222
+ def _process_video_input(
1223
+ self, video_input: Qwen2VLVideoInputs) -> tuple[torch.Tensor, ...]:
1224
+
1225
+ grid_thw = video_input["video_grid_thw"]
1226
+ assert grid_thw.ndim == 2
1227
+
1228
+ if video_input["type"] == "video_embeds":
1229
+ video_embeds = video_input["video_embeds"].type(self.visual.dtype)
1230
+ else:
1231
+ pixel_values_videos = video_input["pixel_values_videos"].type(
1232
+ self.visual.dtype)
1233
+ video_embeds = self.visual(pixel_values_videos, grid_thw=grid_thw)
1234
+
1235
+ # Split concatenated embeddings for each video item.
1236
+ merge_size = self.visual.spatial_merge_size
1237
+ sizes = grid_thw.prod(-1) // merge_size // merge_size
1238
+
1239
+ return video_embeds.split(sizes.tolist())
1240
+
1241
+ def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
1242
+ modalities = {}
1243
+
1244
+ # Preserve the order of modalities if there are multiple of them
1245
+ # from the order of kwargs.
1246
+ for input_key in kwargs:
1247
+ if input_key in ("pixel_values",
1248
+ "image_embeds") and "images" not in modalities:
1249
+ modalities["images"] = self._parse_and_validate_image_input(
1250
+ **kwargs)
1251
+ if input_key in ("pixel_values_videos",
1252
+ "video_embeds") and "videos" not in modalities:
1253
+ modalities["videos"] = self._parse_and_validate_video_input(
1254
+ **kwargs)
1255
+
1256
+ return modalities
1257
+
1258
+ def get_language_model(self) -> torch.nn.Module:
1259
+ return self.language_model
1260
+
1261
+ def get_multimodal_embeddings(
1262
+ self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
1263
+
1264
+ modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
1265
+ if not modalities:
1266
+ return None
1267
+
1268
+ # The result multimodal_embeddings is tuple of tensors, with each
1269
+ # tensor correspoending to a multimodal data item (image or video).
1270
+ multimodal_embeddings: tuple[torch.Tensor, ...] = ()
1271
+
1272
+ # NOTE: It is important to iterate over the keys in this dictionary
1273
+ # to preserve the order of the modalities.
1274
+ for modality in modalities:
1275
+ if modality == "images":
1276
+ image_input = modalities["images"]
1277
+ vision_embeddings = self._process_image_input(image_input)
1278
+ multimodal_embeddings += vision_embeddings
1279
+ if modality == "videos":
1280
+ video_input = modalities["videos"]
1281
+ video_embeddings = self._process_video_input(video_input)
1282
+ multimodal_embeddings += video_embeddings
1283
+
1284
+ return multimodal_embeddings
1285
+
1286
+ def get_input_embeddings(
1287
+ self,
1288
+ input_ids: torch.Tensor,
1289
+ multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
1290
+ ) -> torch.Tensor:
1291
+ inputs_embeds = self.language_model.get_input_embeddings(input_ids)
1292
+ if multimodal_embeddings is not None:
1293
+ inputs_embeds = merge_multimodal_embeddings(
1294
+ input_ids, inputs_embeds, multimodal_embeddings,
1295
+ [self.config.image_token_id, self.config.video_token_id])
1296
+ return inputs_embeds
1297
+
1298
+ def get_input_embeddings_v0(
1299
+ self,
1300
+ input_ids: torch.Tensor,
1301
+ image_input: Optional[Qwen2VLImagePixelInputs] = None,
1302
+ video_input: Optional[Qwen2VLVideoPixelInputs] = None,
1303
+ ) -> torch.Tensor:
1304
+ inputs_embeds = self.get_input_embeddings(input_ids)
1305
+ if image_input is not None:
1306
+ image_embeds = self._process_image_input(image_input)
1307
+ inputs_embeds = merge_multimodal_embeddings(
1308
+ input_ids,
1309
+ inputs_embeds,
1310
+ image_embeds,
1311
+ placeholder_token_id=self.config.image_token_id,
1312
+ )
1313
+
1314
+ if video_input is not None:
1315
+ video_embeds = self._process_video_input(video_input)
1316
+ inputs_embeds = merge_multimodal_embeddings(
1317
+ input_ids,
1318
+ inputs_embeds,
1319
+ video_embeds,
1320
+ placeholder_token_id=self.config.video_token_id,
1321
+ )
1322
+ return inputs_embeds
1323
+
1324
+ def forward(
1325
+ self,
1326
+ input_ids: torch.Tensor,
1327
+ positions: torch.Tensor,
1328
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1329
+ inputs_embeds: Optional[torch.Tensor] = None,
1330
+ **kwargs: object,
1331
+ ) -> Union[torch.Tensor, IntermediateTensors]:
1332
+ """Run forward pass for Qwen2-VL.
1333
+
1334
+ Args:
1335
+ input_ids: Flattened (concatenated) input_ids corresponding to a
1336
+ batch.
1337
+ positions: Flattened (concatenated) position ids corresponding to a
1338
+ batch.
1339
+ **NOTE**: If mrope is enabled (default setting for Qwen2-VL
1340
+ opensource models), the shape will be `(3, seq_len)`,
1341
+ otherwise it will be `(seq_len,).
1342
+ pixel_values: Pixel values to be fed to a model.
1343
+ `None` if no images are passed.
1344
+ image_grid_thw: Tensor `(n_images, 3)` of image 3D grid in LLM.
1345
+ `None` if no images are passed.
1346
+ pixel_values_videos: Pixel values of videos to be fed to a model.
1347
+ `None` if no videos are passed.
1348
+ video_grid_thw: Tensor `(n_videos, 3)` of video 3D grid in LLM.
1349
+ `None` if no videos are passed.
1350
+ """
1351
+
1352
+ if intermediate_tensors is not None:
1353
+ inputs_embeds = None
1354
+
1355
+ # NOTE: In v1, inputs_embeds is always generated at model runner from
1356
+ # `get_multimodal_embeddings` and `get_input_embeddings`, this
1357
+ # condition is only for v0 compatibility.
1358
+ elif inputs_embeds is None:
1359
+ image_input = self._parse_and_validate_image_input(**kwargs)
1360
+ video_input = self._parse_and_validate_video_input(**kwargs)
1361
+
1362
+ if image_input is None and video_input is None:
1363
+ inputs_embeds = None
1364
+ else:
1365
+ if uses_mrope(self.config):
1366
+ assert positions.ndim == 2 and positions.size(0) == 3, (
1367
+ "multimodal section rotary embedding requires "
1368
+ f"(3, seq_len) positions, but got {positions.size()}")
1369
+ inputs_embeds = self.get_input_embeddings_v0(
1370
+ input_ids,
1371
+ image_input=image_input,
1372
+ video_input=video_input)
1373
+ input_ids = None
1374
+
1375
+ hidden_states = self.language_model.model(
1376
+ input_ids=input_ids,
1377
+ positions=positions,
1378
+ intermediate_tensors=intermediate_tensors,
1379
+ inputs_embeds=inputs_embeds,
1380
+ )
1381
+ return hidden_states
1382
+
1383
+ def compute_logits(
1384
+ self,
1385
+ hidden_states: torch.Tensor,
1386
+ sampling_metadata: SamplingMetadata,
1387
+ ) -> Optional[torch.Tensor]:
1388
+ return self.language_model.compute_logits(hidden_states,
1389
+ sampling_metadata)
1390
+
1391
+ def load_weights(self, weights: Iterable[tuple[str,
1392
+ torch.Tensor]]) -> set[str]:
1393
+
1394
+ loader = AutoWeightsLoader(self)
1395
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
1396
+
1397
+ def get_mm_mapping(self) -> MultiModelKeys:
1398
+ """
1399
+ Get the module prefix in multimodal models
1400
+ """
1401
+ return MultiModelKeys.from_string_field(
1402
+ language_model="language_model",
1403
+ connector="visual.merger.",
1404
+ tower_model="visual.",
1405
+ )