vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +53 -0
- vllm/_custom_ops.py +1828 -0
- vllm/_ipex_ops.py +244 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +106 -0
- vllm/adapter_commons/request.py +26 -0
- vllm/adapter_commons/utils.py +93 -0
- vllm/adapter_commons/worker_manager.py +39 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +34 -0
- vllm/assets/video.py +115 -0
- vllm/attention/__init__.py +20 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +308 -0
- vllm/attention/backends/blocksparse_attn.py +461 -0
- vllm/attention/backends/cpu_mla.py +307 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
- vllm/attention/backends/flash_attn.py +1003 -0
- vllm/attention/backends/flashinfer.py +1104 -0
- vllm/attention/backends/flashmla.py +244 -0
- vllm/attention/backends/hpu_attn.py +313 -0
- vllm/attention/backends/ipex_attn.py +398 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1385 -0
- vllm/attention/backends/pallas.py +351 -0
- vllm/attention/backends/placeholder_attn.py +400 -0
- vllm/attention/backends/rocm_aiter_mla.py +435 -0
- vllm/attention/backends/rocm_flash_attn.py +975 -0
- vllm/attention/backends/torch_sdpa.py +703 -0
- vllm/attention/backends/triton_mla.py +115 -0
- vllm/attention/backends/utils.py +610 -0
- vllm/attention/backends/xformers.py +802 -0
- vllm/attention/layer.py +468 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
- vllm/attention/ops/blocksparse_attention/interface.py +239 -0
- vllm/attention/ops/blocksparse_attention/utils.py +246 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
- vllm/attention/ops/flashmla.py +116 -0
- vllm/attention/ops/hpu_paged_attn.py +88 -0
- vllm/attention/ops/ipex_attn.py +195 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/nki_flash_attn.py +906 -0
- vllm/attention/ops/paged_attn.py +256 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +100 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +674 -0
- vllm/attention/ops/triton_flash_attention.py +979 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_unified_attention.py +334 -0
- vllm/attention/selector.py +187 -0
- vllm/attention/utils/fa_utils.py +55 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +1185 -0
- vllm/benchmarks/endpoint_request_func.py +381 -0
- vllm/benchmarks/latency.py +168 -0
- vllm/benchmarks/serve.py +1135 -0
- vllm/benchmarks/throughput.py +609 -0
- vllm/benchmarks/utils.py +70 -0
- vllm/collect_env.py +820 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +89 -0
- vllm/compilation/backends.py +563 -0
- vllm/compilation/base_piecewise_backend.py +72 -0
- vllm/compilation/collective_fusion.py +127 -0
- vllm/compilation/compiler_interface.py +544 -0
- vllm/compilation/counter.py +38 -0
- vllm/compilation/cuda_piecewise_backend.py +214 -0
- vllm/compilation/decorators.py +250 -0
- vllm/compilation/fix_functionalization.py +191 -0
- vllm/compilation/fusion.py +618 -0
- vllm/compilation/fx_utils.py +62 -0
- vllm/compilation/inductor_pass.py +115 -0
- vllm/compilation/monitor.py +39 -0
- vllm/compilation/multi_output_match.py +109 -0
- vllm/compilation/noop_elimination.py +137 -0
- vllm/compilation/pass_manager.py +78 -0
- vllm/compilation/sequence_parallelism.py +268 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +67 -0
- vllm/compilation/wrapper.py +135 -0
- vllm/config.py +4746 -0
- vllm/connections.py +174 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +399 -0
- vllm/core/block/common.py +371 -0
- vllm/core/block/cpu_gpu_block_allocator.py +441 -0
- vllm/core/block/interfaces.py +319 -0
- vllm/core/block/naive_block.py +466 -0
- vllm/core/block/prefix_caching_block.py +1135 -0
- vllm/core/block/utils.py +28 -0
- vllm/core/block_manager.py +521 -0
- vllm/core/evictor.py +157 -0
- vllm/core/interfaces.py +135 -0
- vllm/core/placeholder_block_space_manager.py +100 -0
- vllm/core/scheduler.py +2093 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +281 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +264 -0
- vllm/distributed/device_communicators/base_device_communicator.py +260 -0
- vllm/distributed/device_communicators/cpu_communicator.py +145 -0
- vllm/distributed/device_communicators/cuda_communicator.py +176 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
- vllm/distributed/device_communicators/hpu_communicator.py +46 -0
- vllm/distributed/device_communicators/neuron_communicator.py +20 -0
- vllm/distributed/device_communicators/pynccl.py +218 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
- vllm/distributed/device_communicators/shm_broadcast.py +585 -0
- vllm/distributed/device_communicators/tpu_communicator.py +103 -0
- vllm/distributed/device_communicators/xpu_communicator.py +55 -0
- vllm/distributed/kv_events.py +356 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +12 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
- vllm/distributed/parallel_state.py +1296 -0
- vllm/distributed/tpu_distributed_utils.py +177 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1708 -0
- vllm/engine/async_llm_engine.py +1200 -0
- vllm/engine/async_timeout.py +173 -0
- vllm/engine/llm_engine.py +2097 -0
- vllm/engine/metrics.py +629 -0
- vllm/engine/metrics_types.py +94 -0
- vllm/engine/multiprocessing/__init__.py +148 -0
- vllm/engine/multiprocessing/client.py +681 -0
- vllm/engine/multiprocessing/engine.py +460 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +75 -0
- vllm/engine/output_processor/multi_step.py +216 -0
- vllm/engine/output_processor/single_step.py +145 -0
- vllm/engine/output_processor/stop_checker.py +131 -0
- vllm/engine/output_processor/util.py +28 -0
- vllm/engine/protocol.py +317 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1299 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +39 -0
- vllm/entrypoints/cli/benchmark/latency.py +30 -0
- vllm/entrypoints/cli/benchmark/main.py +54 -0
- vllm/entrypoints/cli/benchmark/serve.py +30 -0
- vllm/entrypoints/cli/benchmark/throughput.py +30 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +65 -0
- vllm/entrypoints/cli/openai.py +205 -0
- vllm/entrypoints/cli/run_batch.py +62 -0
- vllm/entrypoints/cli/serve.py +328 -0
- vllm/entrypoints/cli/types.py +25 -0
- vllm/entrypoints/launcher.py +147 -0
- vllm/entrypoints/llm.py +1544 -0
- vllm/entrypoints/logger.py +50 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1387 -0
- vllm/entrypoints/openai/cli_args.py +315 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +1913 -0
- vllm/entrypoints/openai/run_batch.py +463 -0
- vllm/entrypoints/openai/serving_chat.py +1221 -0
- vllm/entrypoints/openai/serving_classification.py +160 -0
- vllm/entrypoints/openai/serving_completion.py +592 -0
- vllm/entrypoints/openai/serving_embedding.py +201 -0
- vllm/entrypoints/openai/serving_engine.py +986 -0
- vllm/entrypoints/openai/serving_models.py +315 -0
- vllm/entrypoints/openai/serving_pooling.py +232 -0
- vllm/entrypoints/openai/serving_score.py +433 -0
- vllm/entrypoints/openai/serving_tokenization.py +157 -0
- vllm/entrypoints/openai/serving_transcription.py +424 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/score_utils.py +50 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/utils.py +233 -0
- vllm/env_override.py +41 -0
- vllm/envs.py +944 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +401 -0
- vllm/executor/mp_distributed_executor.py +244 -0
- vllm/executor/msgspec_utils.py +30 -0
- vllm/executor/multiproc_worker_utils.py +313 -0
- vllm/executor/ray_distributed_executor.py +701 -0
- vllm/executor/ray_utils.py +399 -0
- vllm/executor/uniproc_executor.py +139 -0
- vllm/forward_context.py +179 -0
- vllm/inputs/__init__.py +41 -0
- vllm/inputs/data.py +331 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +909 -0
- vllm/inputs/registry.py +237 -0
- vllm/jsontree.py +80 -0
- vllm/logger.py +212 -0
- vllm/logging_utils/__init__.py +8 -0
- vllm/logging_utils/dump_input.py +85 -0
- vllm/logging_utils/formatter.py +18 -0
- vllm/logits_process.py +119 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +355 -0
- vllm/lora/layers.py +1285 -0
- vllm/lora/lora.py +199 -0
- vllm/lora/models.py +818 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
- vllm/lora/ops/triton_ops/utils.py +120 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +145 -0
- vllm/lora/peft_helper.py +136 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +485 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +290 -0
- vllm/lora/punica_wrapper/punica_hpu.py +145 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +405 -0
- vllm/lora/punica_wrapper/utils.py +164 -0
- vllm/lora/request.py +99 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +240 -0
- vllm/lora/worker_manager.py +259 -0
- vllm/model_executor/__init__.py +16 -0
- vllm/model_executor/custom_op.py +152 -0
- vllm/model_executor/guided_decoding/__init__.py +181 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
- vllm/model_executor/guided_decoding/guided_fields.py +41 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
- vllm/model_executor/guided_decoding/utils.py +242 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +369 -0
- vllm/model_executor/layers/fused_moe/__init__.py +54 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
- vllm/model_executor/layers/fused_moe/layer.py +1535 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/utils.py +98 -0
- vllm/model_executor/layers/layernorm.py +288 -0
- vllm/model_executor/layers/lightning_attn.py +652 -0
- vllm/model_executor/layers/linear.py +1524 -0
- vllm/model_executor/layers/logits_processor.py +197 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
- vllm/model_executor/layers/pooler.py +350 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/auto_round.py +310 -0
- vllm/model_executor/layers/quantization/awq.py +194 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +151 -0
- vllm/model_executor/layers/quantization/bitblas.py +461 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
- vllm/model_executor/layers/quantization/experts_int8.py +196 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +906 -0
- vllm/model_executor/layers/quantization/gguf.py +565 -0
- vllm/model_executor/layers/quantization/gptq.py +278 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +139 -0
- vllm/model_executor/layers/quantization/marlin.py +261 -0
- vllm/model_executor/layers/quantization/modelopt.py +737 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
- vllm/model_executor/layers/quantization/qqq.py +275 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +441 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +161 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
- vllm/model_executor/layers/rejection_sampler.py +406 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding.py +1862 -0
- vllm/model_executor/layers/sampler.py +1204 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
- vllm/model_executor/layers/utils.py +95 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +76 -0
- vllm/model_executor/model_loader/base_loader.py +43 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
- vllm/model_executor/model_loader/default_loader.py +282 -0
- vllm/model_executor/model_loader/dummy_loader.py +27 -0
- vllm/model_executor/model_loader/gguf_loader.py +120 -0
- vllm/model_executor/model_loader/neuron.py +476 -0
- vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
- vllm/model_executor/model_loader/tensorizer.py +600 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
- vllm/model_executor/model_loader/tpu.py +112 -0
- vllm/model_executor/model_loader/utils.py +302 -0
- vllm/model_executor/model_loader/weight_utils.py +782 -0
- vllm/model_executor/models/__init__.py +28 -0
- vllm/model_executor/models/adapters.py +248 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +657 -0
- vllm/model_executor/models/aya_vision.py +466 -0
- vllm/model_executor/models/baichuan.py +474 -0
- vllm/model_executor/models/bamba.py +543 -0
- vllm/model_executor/models/bart.py +938 -0
- vllm/model_executor/models/bert.py +523 -0
- vllm/model_executor/models/bert_with_rope.py +769 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +718 -0
- vllm/model_executor/models/bloom.py +373 -0
- vllm/model_executor/models/chameleon.py +1136 -0
- vllm/model_executor/models/chatglm.py +478 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/commandr.py +472 -0
- vllm/model_executor/models/constant_size_cache.py +137 -0
- vllm/model_executor/models/dbrx.py +472 -0
- vllm/model_executor/models/deepseek.py +486 -0
- vllm/model_executor/models/deepseek_mtp.py +269 -0
- vllm/model_executor/models/deepseek_v2.py +843 -0
- vllm/model_executor/models/deepseek_vl2.py +648 -0
- vllm/model_executor/models/eagle.py +260 -0
- vllm/model_executor/models/exaone.py +551 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +510 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/florence2.py +1103 -0
- vllm/model_executor/models/fuyu.py +389 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +425 -0
- vllm/model_executor/models/gemma3.py +533 -0
- vllm/model_executor/models/gemma3_mm.py +709 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4v.py +648 -0
- vllm/model_executor/models/gpt2.py +328 -0
- vllm/model_executor/models/gpt_bigcode.py +335 -0
- vllm/model_executor/models/gpt_j.py +339 -0
- vllm/model_executor/models/gpt_neox.py +332 -0
- vllm/model_executor/models/granite.py +493 -0
- vllm/model_executor/models/granite_speech.py +779 -0
- vllm/model_executor/models/granitemoe.py +437 -0
- vllm/model_executor/models/granitemoehybrid.py +586 -0
- vllm/model_executor/models/granitemoeshared.py +341 -0
- vllm/model_executor/models/gritlm.py +224 -0
- vllm/model_executor/models/grok1.py +546 -0
- vllm/model_executor/models/h2ovl.py +546 -0
- vllm/model_executor/models/idefics2_vision_model.py +389 -0
- vllm/model_executor/models/idefics3.py +776 -0
- vllm/model_executor/models/interfaces.py +572 -0
- vllm/model_executor/models/interfaces_base.py +164 -0
- vllm/model_executor/models/intern_vit.py +480 -0
- vllm/model_executor/models/internlm2.py +455 -0
- vllm/model_executor/models/internlm2_ve.py +147 -0
- vllm/model_executor/models/internvl.py +1418 -0
- vllm/model_executor/models/jais.py +373 -0
- vllm/model_executor/models/jamba.py +592 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +644 -0
- vllm/model_executor/models/llama4.py +532 -0
- vllm/model_executor/models/llama_eagle.py +165 -0
- vllm/model_executor/models/llama_eagle3.py +263 -0
- vllm/model_executor/models/llava.py +866 -0
- vllm/model_executor/models/llava_next.py +586 -0
- vllm/model_executor/models/llava_next_video.py +471 -0
- vllm/model_executor/models/llava_onevision.py +956 -0
- vllm/model_executor/models/mamba.py +273 -0
- vllm/model_executor/models/mamba2.py +308 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +219 -0
- vllm/model_executor/models/mimo.py +192 -0
- vllm/model_executor/models/mimo_mtp.py +285 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +391 -0
- vllm/model_executor/models/minicpmo.py +759 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +36 -0
- vllm/model_executor/models/minimax_text_01.py +1301 -0
- vllm/model_executor/models/minimax_vl_01.py +364 -0
- vllm/model_executor/models/mistral3.py +604 -0
- vllm/model_executor/models/mixtral.py +488 -0
- vllm/model_executor/models/mixtral_quant.py +453 -0
- vllm/model_executor/models/mllama.py +1624 -0
- vllm/model_executor/models/mllama4.py +938 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +331 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1568 -0
- vllm/model_executor/models/moonvit.py +630 -0
- vllm/model_executor/models/mpt.py +331 -0
- vllm/model_executor/models/nemotron.py +508 -0
- vllm/model_executor/models/nemotron_h.py +573 -0
- vllm/model_executor/models/nemotron_nas.py +484 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +389 -0
- vllm/model_executor/models/olmo2.py +414 -0
- vllm/model_executor/models/olmoe.py +468 -0
- vllm/model_executor/models/opt.py +412 -0
- vllm/model_executor/models/orion.py +349 -0
- vllm/model_executor/models/ovis.py +567 -0
- vllm/model_executor/models/paligemma.py +398 -0
- vllm/model_executor/models/persimmon.py +344 -0
- vllm/model_executor/models/phi.py +356 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3_small.py +465 -0
- vllm/model_executor/models/phi3v.py +723 -0
- vllm/model_executor/models/phi4mm.py +1246 -0
- vllm/model_executor/models/phi4mm_audio.py +1233 -0
- vllm/model_executor/models/phi4mm_utils.py +1884 -0
- vllm/model_executor/models/phimoe.py +665 -0
- vllm/model_executor/models/pixtral.py +1316 -0
- vllm/model_executor/models/plamo2.py +738 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
- vllm/model_executor/models/qwen.py +362 -0
- vllm/model_executor/models/qwen2.py +497 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
- vllm/model_executor/models/qwen2_5_vl.py +1166 -0
- vllm/model_executor/models/qwen2_audio.py +410 -0
- vllm/model_executor/models/qwen2_moe.py +540 -0
- vllm/model_executor/models/qwen2_rm.py +132 -0
- vllm/model_executor/models/qwen2_vl.py +1405 -0
- vllm/model_executor/models/qwen3.py +321 -0
- vllm/model_executor/models/qwen3_moe.py +535 -0
- vllm/model_executor/models/qwen_vl.py +785 -0
- vllm/model_executor/models/registry.py +622 -0
- vllm/model_executor/models/roberta.py +276 -0
- vllm/model_executor/models/siglip.py +524 -0
- vllm/model_executor/models/skyworkr1v.py +951 -0
- vllm/model_executor/models/smolvlm.py +52 -0
- vllm/model_executor/models/solar.py +506 -0
- vllm/model_executor/models/stablelm.py +343 -0
- vllm/model_executor/models/starcoder2.py +356 -0
- vllm/model_executor/models/tarsier.py +643 -0
- vllm/model_executor/models/telechat2.py +140 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/transformers.py +508 -0
- vllm/model_executor/models/ultravox.py +656 -0
- vllm/model_executor/models/utils.py +731 -0
- vllm/model_executor/models/vision.py +147 -0
- vllm/model_executor/models/whisper.py +747 -0
- vllm/model_executor/models/zamba2.py +1009 -0
- vllm/model_executor/parameter.py +459 -0
- vllm/model_executor/pooling_metadata.py +72 -0
- vllm/model_executor/sampling_metadata.py +597 -0
- vllm/model_executor/utils.py +77 -0
- vllm/multimodal/__init__.py +33 -0
- vllm/multimodal/audio.py +106 -0
- vllm/multimodal/base.py +219 -0
- vllm/multimodal/hasher.py +118 -0
- vllm/multimodal/image.py +97 -0
- vllm/multimodal/inputs.py +876 -0
- vllm/multimodal/parse.py +461 -0
- vllm/multimodal/processing.py +1895 -0
- vllm/multimodal/profiling.py +258 -0
- vllm/multimodal/registry.py +331 -0
- vllm/multimodal/utils.py +436 -0
- vllm/multimodal/video.py +198 -0
- vllm/outputs.py +512 -0
- vllm/platforms/__init__.py +291 -0
- vllm/platforms/cpu.py +266 -0
- vllm/platforms/cuda.py +526 -0
- vllm/platforms/hpu.py +106 -0
- vllm/platforms/interface.py +538 -0
- vllm/platforms/neuron.py +150 -0
- vllm/platforms/rocm.py +435 -0
- vllm/platforms/tpu.py +216 -0
- vllm/platforms/xpu.py +156 -0
- vllm/plugins/__init__.py +94 -0
- vllm/plugins/lora_resolvers/README.md +15 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +54 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +83 -0
- vllm/prompt_adapter/models.py +358 -0
- vllm/prompt_adapter/request.py +37 -0
- vllm/prompt_adapter/utils.py +98 -0
- vllm/prompt_adapter/worker_manager.py +179 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +15 -0
- vllm/reasoning/abs_reasoning_parsers.py +192 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/qwen3_reasoning_parser.py +151 -0
- vllm/sampling_params.py +602 -0
- vllm/scalar_type.py +347 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +1568 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +506 -0
- vllm/spec_decode/draft_model_runner.py +349 -0
- vllm/spec_decode/interfaces.py +99 -0
- vllm/spec_decode/medusa_worker.py +138 -0
- vllm/spec_decode/metrics.py +213 -0
- vllm/spec_decode/mlp_speculator_worker.py +94 -0
- vllm/spec_decode/mqa_scorer.py +160 -0
- vllm/spec_decode/multi_step_worker.py +423 -0
- vllm/spec_decode/ngram_worker.py +196 -0
- vllm/spec_decode/proposer_worker_base.py +59 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
- vllm/spec_decode/spec_decode_worker.py +1326 -0
- vllm/spec_decode/target_model_runner.py +45 -0
- vllm/spec_decode/top1_proposer.py +275 -0
- vllm/spec_decode/util.py +277 -0
- vllm/test_utils.py +130 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +131 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +60 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/config.py +887 -0
- vllm/transformers_utils/configs/__init__.py +61 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/cohere2.py +195 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +85 -0
- vllm/transformers_utils/configs/exaone.py +190 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/h2ovl.py +16 -0
- vllm/transformers_utils/configs/internvl.py +54 -0
- vllm/transformers_utils/configs/jais.py +238 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/minimax_text_01.py +70 -0
- vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
- vllm/transformers_utils/configs/mllama.py +31 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/mpt.py +180 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +258 -0
- vllm/transformers_utils/configs/nvlm_d.py +15 -0
- vllm/transformers_utils/configs/ovis.py +184 -0
- vllm/transformers_utils/configs/skyworkr1v.py +54 -0
- vllm/transformers_utils/configs/solar.py +247 -0
- vllm/transformers_utils/configs/telechat2.py +64 -0
- vllm/transformers_utils/configs/ultravox.py +108 -0
- vllm/transformers_utils/detokenizer.py +168 -0
- vllm/transformers_utils/detokenizer_utils.py +189 -0
- vllm/transformers_utils/processor.py +221 -0
- vllm/transformers_utils/processors/__init__.py +8 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/s3_utils.py +162 -0
- vllm/transformers_utils/tokenizer.py +302 -0
- vllm/transformers_utils/tokenizer_base.py +149 -0
- vllm/transformers_utils/tokenizer_group.py +120 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +493 -0
- vllm/transformers_utils/utils.py +99 -0
- vllm/triton_utils/__init__.py +14 -0
- vllm/triton_utils/importing.py +50 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +256 -0
- vllm/utils.py +2910 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +163 -0
- vllm/v1/attention/backends/flash_attn.py +869 -0
- vllm/v1/attention/backends/flashinfer.py +651 -0
- vllm/v1/attention/backends/flex_attention.py +477 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +931 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
- vllm/v1/attention/backends/mla/flashmla.py +152 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
- vllm/v1/attention/backends/mla/triton_mla.py +120 -0
- vllm/v1/attention/backends/pallas.py +240 -0
- vllm/v1/attention/backends/triton_attn.py +285 -0
- vllm/v1/attention/backends/utils.py +52 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +349 -0
- vllm/v1/core/encoder_cache_manager.py +150 -0
- vllm/v1/core/kv_cache_coordinator.py +363 -0
- vllm/v1/core/kv_cache_manager.py +392 -0
- vllm/v1/core/kv_cache_utils.py +996 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +150 -0
- vllm/v1/core/sched/output.py +154 -0
- vllm/v1/core/sched/scheduler.py +1044 -0
- vllm/v1/core/sched/utils.py +23 -0
- vllm/v1/core/single_type_kv_cache_manager.py +403 -0
- vllm/v1/engine/__init__.py +173 -0
- vllm/v1/engine/async_llm.py +558 -0
- vllm/v1/engine/coordinator.py +253 -0
- vllm/v1/engine/core.py +961 -0
- vllm/v1/engine/core_client.py +1129 -0
- vllm/v1/engine/detokenizer.py +261 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +317 -0
- vllm/v1/engine/logprobs.py +199 -0
- vllm/v1/engine/mm_input_cache.py +91 -0
- vllm/v1/engine/output_processor.py +428 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +407 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +113 -0
- vllm/v1/executor/multiproc_executor.py +537 -0
- vllm/v1/executor/ray_distributed_executor.py +62 -0
- vllm/v1/kv_cache_interface.py +194 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +523 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +131 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +239 -0
- vllm/v1/outputs.py +116 -0
- vllm/v1/request.py +193 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/penalties.py +59 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +286 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +145 -0
- vllm/v1/serial_utils.py +315 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +432 -0
- vllm/v1/spec_decode/medusa.py +62 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +178 -0
- vllm/v1/spec_decode/ngram_proposer.py +132 -0
- vllm/v1/spec_decode/utils.py +46 -0
- vllm/v1/structured_output/__init__.py +222 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +318 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +175 -0
- vllm/v1/utils.py +743 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +142 -0
- vllm/v1/worker/cpu_model_runner.py +86 -0
- vllm/v1/worker/cpu_worker.py +152 -0
- vllm/v1/worker/gpu_input_batch.py +681 -0
- vllm/v1/worker/gpu_model_runner.py +2320 -0
- vllm/v1/worker/gpu_worker.py +393 -0
- vllm/v1/worker/lora_model_runner_mixin.py +173 -0
- vllm/v1/worker/tpu_model_runner.py +1673 -0
- vllm/v1/worker/tpu_worker.py +299 -0
- vllm/v1/worker/utils.py +111 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +145 -0
- vllm/worker/cpu_enc_dec_model_runner.py +326 -0
- vllm/worker/cpu_model_runner.py +671 -0
- vllm/worker/cpu_pooling_model_runner.py +125 -0
- vllm/worker/cpu_worker.py +450 -0
- vllm/worker/enc_dec_model_runner.py +555 -0
- vllm/worker/hpu_model_runner.py +2320 -0
- vllm/worker/hpu_worker.py +484 -0
- vllm/worker/model_runner.py +2178 -0
- vllm/worker/model_runner_base.py +282 -0
- vllm/worker/multi_step_hpu_worker.py +123 -0
- vllm/worker/multi_step_model_runner.py +911 -0
- vllm/worker/multi_step_neuron_model_runner.py +84 -0
- vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
- vllm/worker/multi_step_tpu_worker.py +108 -0
- vllm/worker/multi_step_worker.py +197 -0
- vllm/worker/neuron_model_runner.py +460 -0
- vllm/worker/neuron_worker.py +193 -0
- vllm/worker/neuronx_distributed_model_runner.py +294 -0
- vllm/worker/pooling_model_runner.py +211 -0
- vllm/worker/tpu_model_runner.py +909 -0
- vllm/worker/tpu_worker.py +337 -0
- vllm/worker/utils.py +53 -0
- vllm/worker/worker.py +577 -0
- vllm/worker/worker_base.py +646 -0
- vllm/worker/xpu_model_runner.py +606 -0
- vllm/worker/xpu_worker.py +186 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,869 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
"""Attention layer with FlashAttention."""
|
|
4
|
+
from dataclasses import dataclass
|
|
5
|
+
from typing import TYPE_CHECKING, Any, Optional
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
import torch
|
|
9
|
+
|
|
10
|
+
from vllm import _custom_ops as ops
|
|
11
|
+
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
|
12
|
+
AttentionMetadata, AttentionType,
|
|
13
|
+
is_quantized_kv_cache)
|
|
14
|
+
from vllm.attention.layer import Attention
|
|
15
|
+
from vllm.attention.ops.merge_attn_states import merge_attn_states
|
|
16
|
+
from vllm.attention.utils.fa_utils import (flash_attn_supports_fp8,
|
|
17
|
+
get_flash_attn_version)
|
|
18
|
+
from vllm.config import VllmConfig, get_layers_from_vllm_config
|
|
19
|
+
from vllm.distributed.kv_transfer.kv_connector.utils import (
|
|
20
|
+
get_kv_connector_cache_layout)
|
|
21
|
+
from vllm.logger import init_logger
|
|
22
|
+
from vllm.platforms import current_platform
|
|
23
|
+
from vllm.utils import cdiv
|
|
24
|
+
from vllm.v1.attention.backends.utils import CommonAttentionMetadata
|
|
25
|
+
from vllm.v1.kv_cache_interface import AttentionSpec
|
|
26
|
+
from vllm.v1.worker.block_table import BlockTable
|
|
27
|
+
|
|
28
|
+
if TYPE_CHECKING:
|
|
29
|
+
from vllm.v1.core.sched.output import SchedulerOutput
|
|
30
|
+
from vllm.v1.worker.gpu_input_batch import InputBatch
|
|
31
|
+
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
|
|
32
|
+
|
|
33
|
+
if current_platform.is_cuda():
|
|
34
|
+
from vllm.vllm_flash_attn import (flash_attn_varlen_func,
|
|
35
|
+
get_scheduler_metadata)
|
|
36
|
+
|
|
37
|
+
logger = init_logger(__name__)
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
class FlashAttentionBackend(AttentionBackend):
|
|
41
|
+
|
|
42
|
+
accept_output_buffer: bool = True
|
|
43
|
+
|
|
44
|
+
@staticmethod
|
|
45
|
+
def get_supported_head_sizes() -> list[int]:
|
|
46
|
+
return [32, 64, 96, 128, 160, 192, 224, 256]
|
|
47
|
+
|
|
48
|
+
@staticmethod
|
|
49
|
+
def get_name() -> str:
|
|
50
|
+
return "FLASH_ATTN_VLLM_V1"
|
|
51
|
+
|
|
52
|
+
@staticmethod
|
|
53
|
+
def get_impl_cls() -> type["FlashAttentionImpl"]:
|
|
54
|
+
return FlashAttentionImpl
|
|
55
|
+
|
|
56
|
+
@staticmethod
|
|
57
|
+
def get_metadata_cls() -> type["AttentionMetadata"]:
|
|
58
|
+
return FlashAttentionMetadata
|
|
59
|
+
|
|
60
|
+
@staticmethod
|
|
61
|
+
def get_builder_cls() -> type["FlashAttentionMetadataBuilder"]:
|
|
62
|
+
return FlashAttentionMetadataBuilder
|
|
63
|
+
|
|
64
|
+
@staticmethod
|
|
65
|
+
def get_kv_cache_shape(
|
|
66
|
+
num_blocks: int,
|
|
67
|
+
block_size: int,
|
|
68
|
+
num_kv_heads: int,
|
|
69
|
+
head_size: int,
|
|
70
|
+
) -> tuple[int, ...]:
|
|
71
|
+
if block_size % 16 != 0:
|
|
72
|
+
raise ValueError("Block size must be a multiple of 16.")
|
|
73
|
+
return (2, num_blocks, block_size, num_kv_heads, head_size)
|
|
74
|
+
|
|
75
|
+
@staticmethod
|
|
76
|
+
def get_kv_cache_stride_order() -> tuple[int, ...]:
|
|
77
|
+
# NOTE When running disaggregated PD with NIXL, HND layout is used for
|
|
78
|
+
# faster transfer. `stride_order` indicates the permutation that gets
|
|
79
|
+
# us from `get_kv_cache_shape` to the actual memory layout we want.
|
|
80
|
+
cache_layout = get_kv_connector_cache_layout()
|
|
81
|
+
if cache_layout == "NHD":
|
|
82
|
+
stride_order = (0, 1, 2, 3, 4)
|
|
83
|
+
elif cache_layout == "HND":
|
|
84
|
+
stride_order = (0, 1, 3, 2, 4)
|
|
85
|
+
else:
|
|
86
|
+
raise ValueError("Unknown cache layout format %s.", cache_layout)
|
|
87
|
+
return stride_order
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
@dataclass
|
|
91
|
+
class FlashAttentionMetadata:
|
|
92
|
+
# NOTE(sang): Definition of context_len, query_len, and seq_len.
|
|
93
|
+
# |---------- N-1 iteration --------|
|
|
94
|
+
# |---------------- N iteration ---------------------|
|
|
95
|
+
# |- tokenA -|......................|-- newTokens ---|
|
|
96
|
+
# |---------- context_len ----------|
|
|
97
|
+
# |-------------------- seq_len ---------------------|
|
|
98
|
+
# |-- query_len ---|
|
|
99
|
+
|
|
100
|
+
num_actual_tokens: int # Number of tokens excluding padding.
|
|
101
|
+
max_query_len: int
|
|
102
|
+
query_start_loc: torch.Tensor
|
|
103
|
+
max_seq_len: int
|
|
104
|
+
seq_lens: torch.Tensor
|
|
105
|
+
block_table: torch.Tensor
|
|
106
|
+
slot_mapping: torch.Tensor
|
|
107
|
+
|
|
108
|
+
# For cascade attention.
|
|
109
|
+
use_cascade: bool
|
|
110
|
+
common_prefix_len: int
|
|
111
|
+
cu_prefix_query_lens: Optional[torch.Tensor]
|
|
112
|
+
prefix_kv_lens: Optional[torch.Tensor]
|
|
113
|
+
suffix_kv_lens: Optional[torch.Tensor]
|
|
114
|
+
|
|
115
|
+
# Optional aot scheduling
|
|
116
|
+
scheduler_metadata: Optional[torch.Tensor] = None
|
|
117
|
+
prefix_scheduler_metadata: Optional[torch.Tensor] = None
|
|
118
|
+
|
|
119
|
+
# for local attention
|
|
120
|
+
@dataclass
|
|
121
|
+
class LocalAttentionMetadata:
|
|
122
|
+
local_query_start_loc: torch.Tensor
|
|
123
|
+
local_seqused_k: torch.Tensor
|
|
124
|
+
local_block_table: torch.Tensor
|
|
125
|
+
local_max_query_len: int
|
|
126
|
+
local_max_seq_len: int
|
|
127
|
+
local_scheduler_metadata: Optional[torch.Tensor]
|
|
128
|
+
|
|
129
|
+
local_attn_metadata: Optional[LocalAttentionMetadata] = None
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
#
|
|
133
|
+
# Take in `query_start_loc_np` and `seq_lens_np` and break the sequences into
|
|
134
|
+
# local attention blocks, where each block is passed to the attention kernel
|
|
135
|
+
# as an independent local ("virtual") batch item.
|
|
136
|
+
#
|
|
137
|
+
# For example, if are performing a chunked prefill a batch of 3 sequences:
|
|
138
|
+
# q_seqlens = [4, 10, 5]
|
|
139
|
+
# kv_seqlens = [6, 17, 9]
|
|
140
|
+
# Then normally for regular attention we would compute with an attention mask
|
|
141
|
+
# for batch idx 0 (q_seqlens = 4, kv_seqlens = 6) like:
|
|
142
|
+
# batch idx: 0 (q_seqlens = 4, kv_seqlens = 6)
|
|
143
|
+
# k_toks > 0 1 2 3 4 5
|
|
144
|
+
# q_toks v _____________
|
|
145
|
+
# 0 | 1 1 1
|
|
146
|
+
# 1 | 1 1 1 1
|
|
147
|
+
# 2 | 1 1 1 1 1
|
|
148
|
+
# 3 | 1 1 1 1 1 1
|
|
149
|
+
#
|
|
150
|
+
# for local attention (with attn_chunk_size = 4) we would compute with an
|
|
151
|
+
# attention mask like:
|
|
152
|
+
# batch idx: 0 (q_seqlens = 4, kv_seqlens = 6, attn_chunk_size = 4)
|
|
153
|
+
# k_toks > 0 1 2 3 4 5
|
|
154
|
+
# q_toks v _____________
|
|
155
|
+
# 0 | 1 1 1
|
|
156
|
+
# 1 | 1 1 1 1
|
|
157
|
+
# 2 | 1
|
|
158
|
+
# 3 | 1 1
|
|
159
|
+
#
|
|
160
|
+
# We can simulate this mask using standard flash-attention by breaking the
|
|
161
|
+
# sequences into local ("virtual") batches, where each local batch item is a
|
|
162
|
+
# local attention block, so in this case batch idx 0 would be broken up into:
|
|
163
|
+
#
|
|
164
|
+
# local-batch idx: 0 (q_seqlens = 2, kv_seqlens = 4) (batch 0)
|
|
165
|
+
# k_toks > 0 1 2 3
|
|
166
|
+
# q_toks v _____________
|
|
167
|
+
# 0 | 1 1 1
|
|
168
|
+
# 1 | 1 1 1 1
|
|
169
|
+
# local-batch idx: 1 (q_seqlens = 2, kv_seqlens = 2) (batch 0)
|
|
170
|
+
# k_toks > 4 5
|
|
171
|
+
# q_toks v _____________
|
|
172
|
+
# 2 | 1
|
|
173
|
+
# 3 | 1 1
|
|
174
|
+
#
|
|
175
|
+
# e.g. if we have:
|
|
176
|
+
# attn_chunk_size = 4
|
|
177
|
+
# query_start_loc_np = [0, 4, 14, 19] (q_seqlens = [4, 10, 5])
|
|
178
|
+
# Then this function would return:
|
|
179
|
+
# __b0__ ______b1______ __b2__ < orig batch indices
|
|
180
|
+
# q_seqlens_local = [ 2, 2, 1, 4, 4, 1, 4, 1]
|
|
181
|
+
# cu_seqlens_q_local = [0, 4, 6, 10, 14, 18, 19, 23, 24]
|
|
182
|
+
# seqlens_k_local = [ 4, 2, 4, 4, 4, 1, 4, 1]
|
|
183
|
+
# block_table_local : shape[local_virtual_batches, pages_per_local_batch]
|
|
184
|
+
def make_local_attention_virtual_batches(
|
|
185
|
+
attn_chunk_size: int,
|
|
186
|
+
query_start_loc_np: np.ndarray,
|
|
187
|
+
seq_lens_np: np.ndarray,
|
|
188
|
+
block_table: torch.Tensor,
|
|
189
|
+
block_size: int = 0,
|
|
190
|
+
) -> tuple[np.ndarray, np.ndarray, np.ndarray, torch.Tensor]:
|
|
191
|
+
q_seqlens = query_start_loc_np[1:] - query_start_loc_np[:-1]
|
|
192
|
+
actual_batch_size = seq_lens_np.shape[0]
|
|
193
|
+
|
|
194
|
+
# Handle if we are starting in the middle of a local attention block,
|
|
195
|
+
# we assume q_seqlens > 0 (for all elements), for each batch idx we compute
|
|
196
|
+
# the number of tokens that are not in the first local attention block and
|
|
197
|
+
# then we can simply use a cdiv for the rest.
|
|
198
|
+
# For example if we have:
|
|
199
|
+
# attn_chunk_size = 4
|
|
200
|
+
# q_seqlens = [4, 10, 5]
|
|
201
|
+
# k_seqlens = [6, 17, 9]
|
|
202
|
+
# Then we would get:
|
|
203
|
+
# new_tokens_in_first_block = [2, 1, 4]
|
|
204
|
+
# local_blocks = [2, 4, 2]
|
|
205
|
+
q_tokens_in_first_block = np.minimum(
|
|
206
|
+
attn_chunk_size - ((seq_lens_np - q_seqlens) % attn_chunk_size),
|
|
207
|
+
q_seqlens).astype(np.int32)
|
|
208
|
+
tokens_in_last_block = attn_chunk_size + (seq_lens_np % -attn_chunk_size)
|
|
209
|
+
local_blocks = 1 + cdiv(q_seqlens - q_tokens_in_first_block,
|
|
210
|
+
attn_chunk_size)
|
|
211
|
+
|
|
212
|
+
# Once we know the number of local blocks we can compute the request spans
|
|
213
|
+
# for each batch idx, we can figure out the number of "virtual" requests we
|
|
214
|
+
# have to make,
|
|
215
|
+
# For the above example we would get:
|
|
216
|
+
# seqlens_q_local = [2, 2, 1, 4, 4, 1, 4, 1]
|
|
217
|
+
#
|
|
218
|
+
# First Get batched arange. (E.g., [2, 4, 2] -> [0, 1, 0, 1, 2, 3, 0, 1])
|
|
219
|
+
# (TODO: max a utility to share this code with _prepare_inputs)
|
|
220
|
+
# arange step 1. [2, 4, 2] -> [2, 6, 8]
|
|
221
|
+
cu_num_blocks = np.cumsum(local_blocks)
|
|
222
|
+
virtual_batches = cu_num_blocks[-1]
|
|
223
|
+
# arange step 2. [2, 6, 8] -> [0, 0, 2, 2, 2, 2, 6, 6]
|
|
224
|
+
block_offsets = np.repeat(cu_num_blocks - local_blocks, local_blocks)
|
|
225
|
+
# arange step 3. [0, 1, 0, 1, 2, 3, 0, 1]
|
|
226
|
+
arange = np.arange(virtual_batches, dtype=np.int32) - block_offsets
|
|
227
|
+
# also compute reverse arange (i.e. [1, 0, 3, 2, 1, 0, 1, 0])
|
|
228
|
+
rarange = np.repeat(local_blocks, local_blocks) - arange - 1
|
|
229
|
+
# Then we can compute the seqlens_q_local, handling the fact that the
|
|
230
|
+
# first and last blocks could be partial
|
|
231
|
+
seqlens_q_local = \
|
|
232
|
+
np.repeat(q_seqlens - q_tokens_in_first_block, local_blocks)
|
|
233
|
+
# set the first block since this may be a partial block
|
|
234
|
+
seqlens_q_local[arange == 0] = q_tokens_in_first_block
|
|
235
|
+
# set the remaining blocks
|
|
236
|
+
seqlens_q_local[arange > 0] = np.minimum(
|
|
237
|
+
seqlens_q_local - attn_chunk_size * (arange - 1),
|
|
238
|
+
attn_chunk_size)[arange > 0]
|
|
239
|
+
|
|
240
|
+
# convert from q_seqlens to cu_seqlens_q
|
|
241
|
+
cu_seqlens_q_local = np.pad(np.cumsum(seqlens_q_local), (1, 0))\
|
|
242
|
+
.astype(np.int32)
|
|
243
|
+
|
|
244
|
+
# compute the seqlens_k_local,
|
|
245
|
+
# basically a full local attention block for all but the last block in each
|
|
246
|
+
# batch
|
|
247
|
+
# For our example this will be:
|
|
248
|
+
# seqlens_k_local = [4, 2, 4, 4, 4, 1, 4, 1]
|
|
249
|
+
seqlens_k_local = np.full(cu_num_blocks[-1],
|
|
250
|
+
attn_chunk_size,
|
|
251
|
+
dtype=np.int32)
|
|
252
|
+
seqlens_k_local[cu_num_blocks - 1] = tokens_in_last_block
|
|
253
|
+
|
|
254
|
+
k_seqstarts_absolute = np.repeat(seq_lens_np, local_blocks) - \
|
|
255
|
+
(rarange * attn_chunk_size + \
|
|
256
|
+
np.repeat(tokens_in_last_block, local_blocks))
|
|
257
|
+
# For the example the local attention blocks start at:
|
|
258
|
+
# _b0_ _____b1_____ _b2_
|
|
259
|
+
# k_seqstarts_absolute = [0, 4, 4, 8, 12, 16, 4, 8]
|
|
260
|
+
block_starts = k_seqstarts_absolute // block_size
|
|
261
|
+
assert attn_chunk_size % block_size == 0, \
|
|
262
|
+
f"attn_chunk_size {attn_chunk_size} is not " \
|
|
263
|
+
f"divisible by block_size {block_size}"
|
|
264
|
+
pages_per_local_batch = attn_chunk_size // block_size
|
|
265
|
+
|
|
266
|
+
# Create a block_table for the local attention blocks
|
|
267
|
+
# For out example if we have a block-table like (assuming block_size=2):
|
|
268
|
+
# block_table = [
|
|
269
|
+
# [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], < batch 0
|
|
270
|
+
# [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], < batch 1
|
|
271
|
+
# [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], < batch 2
|
|
272
|
+
# ]
|
|
273
|
+
# Then for the local batches we would want a block-table like
|
|
274
|
+
# block_table_local = [
|
|
275
|
+
# [ 0, 1 ], < local-batch 0, (batch 0, starting from k[0])
|
|
276
|
+
# [ 2, 3 ], < local-batch 1, (batch 0, starting from k[4])
|
|
277
|
+
# [ 12, 13 ], < local-batch 2, (batch 1, starting from k[4])
|
|
278
|
+
# [ 14, 15 ], < local-batch 3, (batch 1, starting from k[8])
|
|
279
|
+
# [ 16, 17 ], < local-batch 4, (batch 1, starting from k[12])
|
|
280
|
+
# [ 18, 19 ], < local-batch 5, (batch 1, starting from k[16])
|
|
281
|
+
# [ 22, 23 ], < local-batch 6, (batch 2, starting from k[4])
|
|
282
|
+
# [ 24, 25 ], < local-batch 7, (batch 2, starting from k[8])
|
|
283
|
+
# ]
|
|
284
|
+
block_indices= np.broadcast_to(
|
|
285
|
+
np.arange(pages_per_local_batch, dtype=np.int32),
|
|
286
|
+
(virtual_batches, pages_per_local_batch)) \
|
|
287
|
+
+ np.expand_dims(block_starts, axis=1)
|
|
288
|
+
block_indices = block_indices.flatten().clip(max=block_table.shape[1] - 1)
|
|
289
|
+
batch_indices = np.repeat(np.arange(actual_batch_size, dtype=np.int32),
|
|
290
|
+
local_blocks * pages_per_local_batch)
|
|
291
|
+
block_table_local = block_table[batch_indices, block_indices]\
|
|
292
|
+
.view(virtual_batches, -1)
|
|
293
|
+
|
|
294
|
+
return seqlens_q_local, cu_seqlens_q_local, seqlens_k_local, \
|
|
295
|
+
block_table_local
|
|
296
|
+
|
|
297
|
+
|
|
298
|
+
def _get_sliding_window_configs(
|
|
299
|
+
vllm_config: VllmConfig) -> set[Optional[tuple[int, int]]]:
|
|
300
|
+
"""Get the set of all sliding window configs used in the model."""
|
|
301
|
+
sliding_window_configs: set[Optional[tuple[int, int]]] = set()
|
|
302
|
+
layers = get_layers_from_vllm_config(vllm_config, Attention)
|
|
303
|
+
for layer in layers.values():
|
|
304
|
+
assert isinstance(layer.impl, FlashAttentionImpl)
|
|
305
|
+
sliding_window_configs.add(layer.impl.sliding_window)
|
|
306
|
+
return sliding_window_configs
|
|
307
|
+
|
|
308
|
+
|
|
309
|
+
class FlashAttentionMetadataBuilder:
|
|
310
|
+
|
|
311
|
+
def __init__(self, runner: "GPUModelRunner", kv_cache_spec: AttentionSpec,
|
|
312
|
+
block_table: BlockTable):
|
|
313
|
+
model_config = runner.model_config
|
|
314
|
+
compilation_config = runner.vllm_config.compilation_config
|
|
315
|
+
|
|
316
|
+
self.runner = runner
|
|
317
|
+
self.num_heads_q = model_config.get_num_attention_heads(
|
|
318
|
+
runner.parallel_config)
|
|
319
|
+
self.num_heads_kv = model_config.get_num_kv_heads(
|
|
320
|
+
runner.parallel_config)
|
|
321
|
+
self.headdim = model_config.get_head_size()
|
|
322
|
+
self.block_size = kv_cache_spec.block_size
|
|
323
|
+
self.kv_cache_spec = kv_cache_spec
|
|
324
|
+
self.block_table = block_table
|
|
325
|
+
|
|
326
|
+
self.aot_schedule = (get_flash_attn_version() == 3)
|
|
327
|
+
self.use_full_cuda_graph = compilation_config.full_cuda_graph
|
|
328
|
+
if self.use_full_cuda_graph and not self.aot_schedule:
|
|
329
|
+
raise ValueError("Full CUDA graph mode requires AOT scheduling, "
|
|
330
|
+
"which requires FlashAttention 3.")
|
|
331
|
+
self.scheduler_metadata = torch.zeros(self.runner.max_num_reqs + 1,
|
|
332
|
+
dtype=torch.int32,
|
|
333
|
+
device=self.runner.device)
|
|
334
|
+
|
|
335
|
+
# Sliding window size to be used with the AOT scheduler will be
|
|
336
|
+
# populated on first build() call.
|
|
337
|
+
self.aot_sliding_window: Optional[tuple[int, int]] = None
|
|
338
|
+
|
|
339
|
+
def reorder_batch(self, input_batch: "InputBatch",
|
|
340
|
+
scheduler_output: "SchedulerOutput") -> bool:
|
|
341
|
+
return False
|
|
342
|
+
|
|
343
|
+
def build(self, num_reqs: int, num_actual_tokens: int, max_query_len: int,
|
|
344
|
+
common_prefix_len: int,
|
|
345
|
+
common_attn_metadata: CommonAttentionMetadata):
|
|
346
|
+
max_seq_len = int(self.runner.seq_lens_np[:num_reqs].max())
|
|
347
|
+
query_start_loc = common_attn_metadata.query_start_loc
|
|
348
|
+
seq_lens = common_attn_metadata.seq_lens
|
|
349
|
+
block_table = self.block_table
|
|
350
|
+
block_table_tensor = block_table.get_device_tensor()[:num_reqs]
|
|
351
|
+
|
|
352
|
+
block_table.slot_mapping[:num_actual_tokens].copy_(
|
|
353
|
+
block_table.slot_mapping_cpu[:num_actual_tokens],
|
|
354
|
+
non_blocking=True)
|
|
355
|
+
# Fill unused with -1. Needed for reshape_and_cache in full cuda graph
|
|
356
|
+
# mode.
|
|
357
|
+
block_table.slot_mapping[num_actual_tokens:].fill_(-1)
|
|
358
|
+
|
|
359
|
+
slot_mapping = block_table.slot_mapping[:num_actual_tokens]
|
|
360
|
+
|
|
361
|
+
if self.aot_sliding_window is None:
|
|
362
|
+
self.aot_sliding_window = (-1, -1)
|
|
363
|
+
# For the AOT scheduler we need the sliding window value to be
|
|
364
|
+
# constant for all layers to. We have to populate this on the first
|
|
365
|
+
# build() call so the layers are constructed (cannot populate)
|
|
366
|
+
# in __init__.
|
|
367
|
+
if self.aot_schedule:
|
|
368
|
+
sliding_window_configs = _get_sliding_window_configs(
|
|
369
|
+
self.runner.vllm_config)
|
|
370
|
+
if len(sliding_window_configs) == 1:
|
|
371
|
+
sliding_window_config = sliding_window_configs.pop()
|
|
372
|
+
if sliding_window_config is not None:
|
|
373
|
+
self.aot_sliding_window = sliding_window_config
|
|
374
|
+
elif len(sliding_window_configs) > 1:
|
|
375
|
+
self.aot_schedule = False
|
|
376
|
+
|
|
377
|
+
def schedule(batch_size, cu_query_lens, max_query_len, seqlens,
|
|
378
|
+
max_seq_len, causal):
|
|
379
|
+
if self.aot_schedule:
|
|
380
|
+
return get_scheduler_metadata(
|
|
381
|
+
batch_size=batch_size,
|
|
382
|
+
max_seqlen_q=max_query_len,
|
|
383
|
+
max_seqlen_k=max_seq_len,
|
|
384
|
+
cache_seqlens=seqlens,
|
|
385
|
+
num_heads_q=self.num_heads_q,
|
|
386
|
+
num_heads_kv=self.num_heads_kv,
|
|
387
|
+
headdim=self.headdim,
|
|
388
|
+
page_size=self.block_size,
|
|
389
|
+
cu_seqlens_q=cu_query_lens,
|
|
390
|
+
causal=causal,
|
|
391
|
+
window_size=self.aot_sliding_window,
|
|
392
|
+
)
|
|
393
|
+
return None
|
|
394
|
+
|
|
395
|
+
# for local attention
|
|
396
|
+
local_attn_metadata = None
|
|
397
|
+
if self.runner.attention_chunk_size is not None:
|
|
398
|
+
seqlens_q_local_np, virt_q_cu_seqlens_np, virt_k_seqlens_np, \
|
|
399
|
+
virt_block_table_tensor = make_local_attention_virtual_batches(
|
|
400
|
+
self.runner.attention_chunk_size,
|
|
401
|
+
self.runner.query_start_loc_np[:num_reqs + 1],
|
|
402
|
+
self.runner.seq_lens_np[:num_reqs],
|
|
403
|
+
block_table_tensor,
|
|
404
|
+
self.block_size,
|
|
405
|
+
)
|
|
406
|
+
local_query_start_loc = torch.from_numpy(virt_q_cu_seqlens_np).to(
|
|
407
|
+
self.runner.device, non_blocking=True)
|
|
408
|
+
local_seqused_k = torch.from_numpy(virt_k_seqlens_np).to(
|
|
409
|
+
self.runner.device, non_blocking=True)
|
|
410
|
+
local_max_query_len = seqlens_q_local_np.max()
|
|
411
|
+
local_max_seq_len = virt_k_seqlens_np.max()
|
|
412
|
+
local_scheduler_metadata = schedule(
|
|
413
|
+
batch_size=local_query_start_loc.shape[0] - 1,
|
|
414
|
+
cu_query_lens=local_query_start_loc,
|
|
415
|
+
max_query_len=local_max_query_len,
|
|
416
|
+
seqlens=local_seqused_k,
|
|
417
|
+
max_seq_len=local_max_seq_len,
|
|
418
|
+
causal=True)
|
|
419
|
+
|
|
420
|
+
local_attn_metadata = FlashAttentionMetadata.LocalAttentionMetadata(
|
|
421
|
+
local_query_start_loc=local_query_start_loc,
|
|
422
|
+
local_seqused_k=local_seqused_k,
|
|
423
|
+
local_block_table=virt_block_table_tensor,
|
|
424
|
+
local_max_query_len=local_max_query_len,
|
|
425
|
+
local_max_seq_len=local_max_seq_len,
|
|
426
|
+
local_scheduler_metadata=local_scheduler_metadata,
|
|
427
|
+
)
|
|
428
|
+
|
|
429
|
+
use_cascade = common_prefix_len > 0
|
|
430
|
+
|
|
431
|
+
if use_cascade:
|
|
432
|
+
cu_prefix_query_lens = torch.tensor([0, num_actual_tokens],
|
|
433
|
+
dtype=torch.int32,
|
|
434
|
+
device=self.runner.device)
|
|
435
|
+
prefix_kv_lens = torch.tensor([common_prefix_len],
|
|
436
|
+
dtype=torch.int32,
|
|
437
|
+
device=self.runner.device)
|
|
438
|
+
suffix_kv_lens = (self.runner.seq_lens_np[:num_reqs] -
|
|
439
|
+
common_prefix_len)
|
|
440
|
+
suffix_kv_lens = torch.from_numpy(suffix_kv_lens).to(
|
|
441
|
+
self.runner.device)
|
|
442
|
+
prefix_scheduler_metadata = schedule(
|
|
443
|
+
batch_size=1,
|
|
444
|
+
cu_query_lens=cu_prefix_query_lens,
|
|
445
|
+
max_query_len=num_actual_tokens,
|
|
446
|
+
seqlens=prefix_kv_lens,
|
|
447
|
+
max_seq_len=common_prefix_len,
|
|
448
|
+
causal=False)
|
|
449
|
+
scheduler_metadata = schedule(batch_size=num_reqs,
|
|
450
|
+
cu_query_lens=query_start_loc,
|
|
451
|
+
max_query_len=max_query_len,
|
|
452
|
+
seqlens=suffix_kv_lens,
|
|
453
|
+
max_seq_len=max_seq_len -
|
|
454
|
+
common_prefix_len,
|
|
455
|
+
causal=True)
|
|
456
|
+
else:
|
|
457
|
+
cu_prefix_query_lens = None
|
|
458
|
+
prefix_kv_lens = None
|
|
459
|
+
suffix_kv_lens = None
|
|
460
|
+
prefix_scheduler_metadata = None
|
|
461
|
+
scheduler_metadata = schedule(batch_size=num_reqs,
|
|
462
|
+
cu_query_lens=query_start_loc,
|
|
463
|
+
max_query_len=max_query_len,
|
|
464
|
+
seqlens=seq_lens,
|
|
465
|
+
max_seq_len=max_seq_len,
|
|
466
|
+
causal=True)
|
|
467
|
+
|
|
468
|
+
if self.use_full_cuda_graph:
|
|
469
|
+
assert scheduler_metadata is not None
|
|
470
|
+
n = scheduler_metadata.shape[0]
|
|
471
|
+
self.scheduler_metadata[:n].copy_(scheduler_metadata,
|
|
472
|
+
non_blocking=True)
|
|
473
|
+
# NOTE(woosuk): We should zero out the rest of the scheduler
|
|
474
|
+
# metadata to guarantee the correctness. Otherwise, some thread
|
|
475
|
+
# blocks may use the invalid scheduler metadata and overwrite the
|
|
476
|
+
# output buffer.
|
|
477
|
+
self.scheduler_metadata[n:] = 0
|
|
478
|
+
scheduler_metadata = self.scheduler_metadata[:n]
|
|
479
|
+
|
|
480
|
+
attn_metadata = FlashAttentionMetadata(
|
|
481
|
+
num_actual_tokens=num_actual_tokens,
|
|
482
|
+
max_query_len=max_query_len,
|
|
483
|
+
query_start_loc=query_start_loc,
|
|
484
|
+
max_seq_len=max_seq_len,
|
|
485
|
+
seq_lens=seq_lens,
|
|
486
|
+
block_table=block_table_tensor,
|
|
487
|
+
slot_mapping=slot_mapping,
|
|
488
|
+
use_cascade=use_cascade,
|
|
489
|
+
common_prefix_len=common_prefix_len,
|
|
490
|
+
scheduler_metadata=scheduler_metadata,
|
|
491
|
+
cu_prefix_query_lens=cu_prefix_query_lens,
|
|
492
|
+
prefix_kv_lens=prefix_kv_lens,
|
|
493
|
+
suffix_kv_lens=suffix_kv_lens,
|
|
494
|
+
local_attn_metadata=local_attn_metadata,
|
|
495
|
+
prefix_scheduler_metadata=prefix_scheduler_metadata,
|
|
496
|
+
)
|
|
497
|
+
return attn_metadata
|
|
498
|
+
|
|
499
|
+
def use_cascade_attention(self, *args, **kwargs) -> bool:
|
|
500
|
+
return use_cascade_attention(*args, **kwargs)
|
|
501
|
+
|
|
502
|
+
|
|
503
|
+
class FlashAttentionImpl(AttentionImpl):
|
|
504
|
+
|
|
505
|
+
def __init__(
|
|
506
|
+
self,
|
|
507
|
+
num_heads: int,
|
|
508
|
+
head_size: int,
|
|
509
|
+
scale: float,
|
|
510
|
+
num_kv_heads: int,
|
|
511
|
+
alibi_slopes: Optional[list[float]],
|
|
512
|
+
sliding_window: Optional[int],
|
|
513
|
+
kv_cache_dtype: str,
|
|
514
|
+
blocksparse_params: Optional[dict[str, Any]] = None,
|
|
515
|
+
logits_soft_cap: Optional[float] = None,
|
|
516
|
+
attn_type: AttentionType = AttentionType.DECODER,
|
|
517
|
+
kv_sharing_target_layer_name: Optional[str] = None,
|
|
518
|
+
use_irope: bool = False,
|
|
519
|
+
) -> None:
|
|
520
|
+
if blocksparse_params is not None:
|
|
521
|
+
raise ValueError(
|
|
522
|
+
"FlashAttention does not support block-sparse attention.")
|
|
523
|
+
self.num_heads = num_heads
|
|
524
|
+
self.head_size = head_size
|
|
525
|
+
self.scale = float(scale)
|
|
526
|
+
self.num_kv_heads = num_kv_heads
|
|
527
|
+
if alibi_slopes is not None:
|
|
528
|
+
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
|
|
529
|
+
self.alibi_slopes = alibi_slopes
|
|
530
|
+
if sliding_window is None:
|
|
531
|
+
self.sliding_window = (-1, -1)
|
|
532
|
+
else:
|
|
533
|
+
self.sliding_window = (sliding_window - 1, 0)
|
|
534
|
+
self.kv_cache_dtype = kv_cache_dtype
|
|
535
|
+
if logits_soft_cap is None:
|
|
536
|
+
# In flash-attn, setting logits_soft_cap as 0 means no soft cap.
|
|
537
|
+
logits_soft_cap = 0
|
|
538
|
+
self.logits_soft_cap = logits_soft_cap
|
|
539
|
+
self.kv_sharing_target_layer_name = kv_sharing_target_layer_name
|
|
540
|
+
|
|
541
|
+
assert self.num_heads % self.num_kv_heads == 0
|
|
542
|
+
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
|
543
|
+
|
|
544
|
+
support_head_sizes = FlashAttentionBackend.get_supported_head_sizes()
|
|
545
|
+
if head_size not in support_head_sizes:
|
|
546
|
+
raise ValueError(
|
|
547
|
+
f"Head size {head_size} is not supported by FlashAttention. "
|
|
548
|
+
f"Supported head sizes are: {support_head_sizes}. "
|
|
549
|
+
"Set VLLM_USE_V1=0 to use another attention backend.")
|
|
550
|
+
|
|
551
|
+
if attn_type != AttentionType.DECODER:
|
|
552
|
+
raise NotImplementedError("Encoder self-attention and "
|
|
553
|
+
"encoder/decoder cross-attention "
|
|
554
|
+
"are not implemented for "
|
|
555
|
+
"FlashAttentionImpl")
|
|
556
|
+
self.use_irope = use_irope
|
|
557
|
+
self.vllm_flash_attn_version = get_flash_attn_version()
|
|
558
|
+
if is_quantized_kv_cache(self.kv_cache_dtype) \
|
|
559
|
+
and not flash_attn_supports_fp8():
|
|
560
|
+
raise NotImplementedError(
|
|
561
|
+
"FlashAttention does not support fp8 kv-cache on this device.")
|
|
562
|
+
|
|
563
|
+
def forward(
|
|
564
|
+
self,
|
|
565
|
+
layer: torch.nn.Module,
|
|
566
|
+
query: torch.Tensor,
|
|
567
|
+
key: torch.Tensor,
|
|
568
|
+
value: torch.Tensor,
|
|
569
|
+
kv_cache: torch.Tensor,
|
|
570
|
+
attn_metadata: FlashAttentionMetadata,
|
|
571
|
+
output: Optional[torch.Tensor] = None,
|
|
572
|
+
) -> torch.Tensor:
|
|
573
|
+
"""Forward pass with FlashAttention.
|
|
574
|
+
|
|
575
|
+
Args:
|
|
576
|
+
query: shape = [num_tokens, num_heads, head_size]
|
|
577
|
+
key: shape = [num_tokens, num_kv_heads, head_size]
|
|
578
|
+
value: shape = [num_tokens, num_kv_heads, head_size]
|
|
579
|
+
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
|
|
580
|
+
attn_metadata: Metadata for attention.
|
|
581
|
+
Returns:
|
|
582
|
+
shape = [num_tokens, num_heads * head_size]
|
|
583
|
+
NOTE: FP8 quantization, flash-attn expect the size of
|
|
584
|
+
{q,k,v}_descale to be (num_sequences, num_kv_heads).
|
|
585
|
+
We use torch's .expand() to avoid duplicating values
|
|
586
|
+
"""
|
|
587
|
+
assert output is not None, "Output tensor must be provided."
|
|
588
|
+
|
|
589
|
+
if attn_metadata is None:
|
|
590
|
+
# Profiling run.
|
|
591
|
+
return output
|
|
592
|
+
|
|
593
|
+
# IMPORTANT!
|
|
594
|
+
# NOTE(woosuk): With piece-wise CUDA graphs, this method is executed in
|
|
595
|
+
# eager-mode PyTorch. Thus, we need to be careful about any CPU overhead
|
|
596
|
+
# in this method. For example, `view` and `slice` (or `[:n]`) operations
|
|
597
|
+
# are surprisingly slow even in the case they do not invoke any GPU ops.
|
|
598
|
+
# Minimize the PyTorch ops in this method as much as possible.
|
|
599
|
+
# Whenever making a change in this method, please benchmark the
|
|
600
|
+
# performance to make sure it does not introduce any overhead.
|
|
601
|
+
|
|
602
|
+
num_actual_tokens = attn_metadata.num_actual_tokens
|
|
603
|
+
key_cache, value_cache = kv_cache.unbind(0)
|
|
604
|
+
|
|
605
|
+
if self.kv_sharing_target_layer_name is None:
|
|
606
|
+
# Reshape the input keys and values and store them in the cache.
|
|
607
|
+
# Skip this if sharing KV cache with an earlier attention layer.
|
|
608
|
+
# NOTE(woosuk): Here, key and value are padded while slot_mapping is
|
|
609
|
+
# not padded. However, we don't need to do key[:num_actual_tokens]
|
|
610
|
+
# and value[:num_actual_tokens] because the reshape_and_cache_flash
|
|
611
|
+
# op uses the slot_mapping's shape to determine the number of
|
|
612
|
+
# actual tokens.
|
|
613
|
+
torch.ops._C_cache_ops.reshape_and_cache_flash(
|
|
614
|
+
key,
|
|
615
|
+
value,
|
|
616
|
+
key_cache,
|
|
617
|
+
value_cache,
|
|
618
|
+
attn_metadata.slot_mapping,
|
|
619
|
+
self.kv_cache_dtype,
|
|
620
|
+
layer._k_scale,
|
|
621
|
+
layer._v_scale,
|
|
622
|
+
)
|
|
623
|
+
|
|
624
|
+
if self.kv_cache_dtype.startswith("fp8"):
|
|
625
|
+
key_cache = key_cache.view(torch.float8_e4m3fn)
|
|
626
|
+
value_cache = value_cache.view(torch.float8_e4m3fn)
|
|
627
|
+
num_tokens, num_heads, head_size = query.shape
|
|
628
|
+
query, _ = ops.scaled_fp8_quant(
|
|
629
|
+
query.reshape(
|
|
630
|
+
(num_tokens, num_heads * head_size)).contiguous(),
|
|
631
|
+
layer._q_scale)
|
|
632
|
+
query = query.reshape((num_tokens, num_heads, head_size))
|
|
633
|
+
|
|
634
|
+
# Compute attention and update output up to `num_actual_tokens`.
|
|
635
|
+
use_local_attn = \
|
|
636
|
+
(self.use_irope and attn_metadata.local_attn_metadata is not None)
|
|
637
|
+
|
|
638
|
+
if not attn_metadata.use_cascade or use_local_attn:
|
|
639
|
+
if use_local_attn:
|
|
640
|
+
assert attn_metadata.local_attn_metadata is not None
|
|
641
|
+
local_metadata = attn_metadata.local_attn_metadata
|
|
642
|
+
cu_seqlens_q = local_metadata.local_query_start_loc
|
|
643
|
+
seqused_k = local_metadata.local_seqused_k
|
|
644
|
+
max_seqlen_q = local_metadata.local_max_query_len
|
|
645
|
+
max_seqlen_k = local_metadata.local_max_seq_len
|
|
646
|
+
block_table = local_metadata.local_block_table
|
|
647
|
+
scheduler_metadata = local_metadata.local_scheduler_metadata
|
|
648
|
+
else:
|
|
649
|
+
cu_seqlens_q = attn_metadata.query_start_loc
|
|
650
|
+
seqused_k = attn_metadata.seq_lens
|
|
651
|
+
max_seqlen_q = attn_metadata.max_query_len
|
|
652
|
+
max_seqlen_k = attn_metadata.max_seq_len
|
|
653
|
+
block_table = attn_metadata.block_table
|
|
654
|
+
scheduler_metadata = attn_metadata.scheduler_metadata
|
|
655
|
+
|
|
656
|
+
descale_shape = (cu_seqlens_q.shape[0] - 1, key.shape[1])
|
|
657
|
+
|
|
658
|
+
flash_attn_varlen_func(
|
|
659
|
+
q=query[:num_actual_tokens],
|
|
660
|
+
k=key_cache,
|
|
661
|
+
v=value_cache,
|
|
662
|
+
out=output[:num_actual_tokens],
|
|
663
|
+
cu_seqlens_q=cu_seqlens_q,
|
|
664
|
+
max_seqlen_q=max_seqlen_q,
|
|
665
|
+
seqused_k=seqused_k,
|
|
666
|
+
max_seqlen_k=max_seqlen_k,
|
|
667
|
+
softmax_scale=self.scale,
|
|
668
|
+
causal=True,
|
|
669
|
+
alibi_slopes=self.alibi_slopes,
|
|
670
|
+
window_size=self.sliding_window,
|
|
671
|
+
block_table=block_table,
|
|
672
|
+
softcap=self.logits_soft_cap,
|
|
673
|
+
scheduler_metadata=scheduler_metadata,
|
|
674
|
+
fa_version=self.vllm_flash_attn_version,
|
|
675
|
+
q_descale=layer._q_scale.expand(descale_shape),
|
|
676
|
+
k_descale=layer._k_scale.expand(descale_shape),
|
|
677
|
+
v_descale=layer._v_scale.expand(descale_shape),
|
|
678
|
+
)
|
|
679
|
+
return output
|
|
680
|
+
|
|
681
|
+
assert not use_local_attn, (
|
|
682
|
+
"Cascade attention does not support local attention.")
|
|
683
|
+
# Cascade attention (rare case).
|
|
684
|
+
cascade_attention(
|
|
685
|
+
output[:num_actual_tokens],
|
|
686
|
+
query[:num_actual_tokens],
|
|
687
|
+
key_cache,
|
|
688
|
+
value_cache,
|
|
689
|
+
cu_query_lens=attn_metadata.query_start_loc,
|
|
690
|
+
max_query_len=attn_metadata.max_query_len,
|
|
691
|
+
cu_prefix_query_lens=attn_metadata.cu_prefix_query_lens,
|
|
692
|
+
prefix_kv_lens=attn_metadata.prefix_kv_lens,
|
|
693
|
+
suffix_kv_lens=attn_metadata.suffix_kv_lens,
|
|
694
|
+
max_kv_len=attn_metadata.max_seq_len,
|
|
695
|
+
softmax_scale=self.scale,
|
|
696
|
+
alibi_slopes=self.alibi_slopes,
|
|
697
|
+
sliding_window=self.sliding_window,
|
|
698
|
+
logits_soft_cap=self.logits_soft_cap,
|
|
699
|
+
block_table=attn_metadata.block_table,
|
|
700
|
+
common_prefix_len=attn_metadata.common_prefix_len,
|
|
701
|
+
fa_version=self.vllm_flash_attn_version,
|
|
702
|
+
prefix_scheduler_metadata=attn_metadata.prefix_scheduler_metadata,
|
|
703
|
+
suffix_scheduler_metadata=attn_metadata.scheduler_metadata,
|
|
704
|
+
q_descale=layer._q_scale,
|
|
705
|
+
k_descale=layer._k_scale,
|
|
706
|
+
v_descale=layer._v_scale,
|
|
707
|
+
)
|
|
708
|
+
return output
|
|
709
|
+
|
|
710
|
+
|
|
711
|
+
def use_cascade_attention(
|
|
712
|
+
common_prefix_len: int,
|
|
713
|
+
query_lens: np.ndarray,
|
|
714
|
+
num_query_heads: int,
|
|
715
|
+
num_kv_heads: int,
|
|
716
|
+
use_alibi: bool,
|
|
717
|
+
use_sliding_window: bool,
|
|
718
|
+
num_sms: int,
|
|
719
|
+
) -> bool:
|
|
720
|
+
"""Decide whether to use cascade attention.
|
|
721
|
+
|
|
722
|
+
This function 1) checks whether cascade attention is supported with the
|
|
723
|
+
given configuration, and 2) heuristically decides whether using cascade
|
|
724
|
+
attention can improve performance.
|
|
725
|
+
"""
|
|
726
|
+
# Too short common prefix. Probably not worth using cascade attention.
|
|
727
|
+
# We use an arbitrary threshold of 256 tokens. TODO: Tune this threshold.
|
|
728
|
+
# NOTE(woosuk): This is the common case. We should return False as soon as
|
|
729
|
+
# possible to avoid any unnecessary computation.
|
|
730
|
+
if common_prefix_len < 256:
|
|
731
|
+
return False
|
|
732
|
+
# Cascade attention is currently not supported with these variants.
|
|
733
|
+
if use_alibi or use_sliding_window:
|
|
734
|
+
return False
|
|
735
|
+
# Too few queries. Probably not worth using cascade attention.
|
|
736
|
+
# We use an arbitrary threshold of 8 queries. TODO: Tune this threshold.
|
|
737
|
+
num_reqs = len(query_lens)
|
|
738
|
+
if num_reqs < 8:
|
|
739
|
+
return False
|
|
740
|
+
|
|
741
|
+
# Heuristics to decide whether using cascade attention is beneficial.
|
|
742
|
+
# 1. When FlashDecoding is not used for normal attention, cascade attention
|
|
743
|
+
# is likely to be faster since it saves memory bandwidth.
|
|
744
|
+
num_queries_per_kv = num_query_heads // num_kv_heads
|
|
745
|
+
# The criteria for using FlashDecoding can be found in the following link:
|
|
746
|
+
# https://github.com/vllm-project/flash-attention/blob/96266b1111111f3d11aabefaf3bacbab6a89d03c/csrc/flash_attn/flash_api.cpp#L535
|
|
747
|
+
use_flash_decoding = (num_queries_per_kv > 1 and not use_sliding_window
|
|
748
|
+
and not use_alibi and np.all(query_lens == 1))
|
|
749
|
+
if not use_flash_decoding:
|
|
750
|
+
# Use cascade attention.
|
|
751
|
+
return True
|
|
752
|
+
|
|
753
|
+
# 2. When FlashDecoding is used for normal attention, it is not clear
|
|
754
|
+
# whether cascade attention is beneficial, because FlashDecoding can
|
|
755
|
+
# launch more CTAs than cascade attention.
|
|
756
|
+
# We use a simple performance model to compare the two methods.
|
|
757
|
+
# NOTE(woosuk): The performance model is very rough and may not be
|
|
758
|
+
# accurate.
|
|
759
|
+
num_tokens = num_reqs
|
|
760
|
+
# NOTE(woosuk): These are default tile sizes. flash-attn might use
|
|
761
|
+
# different tile sizes (e.g., 64 or 256) depending on the configuration.
|
|
762
|
+
q_tile_size = 128
|
|
763
|
+
kv_tile_size = 128
|
|
764
|
+
num_prefix_tiles = cdiv(common_prefix_len, kv_tile_size)
|
|
765
|
+
|
|
766
|
+
cascade_ctas = num_query_heads * cdiv(num_tokens, q_tile_size)
|
|
767
|
+
cascade_waves = cdiv(cascade_ctas, num_sms)
|
|
768
|
+
cascade_time = cascade_waves * num_prefix_tiles
|
|
769
|
+
|
|
770
|
+
flash_decoding_ctas = (num_reqs * num_kv_heads *
|
|
771
|
+
cdiv(num_queries_per_kv, q_tile_size))
|
|
772
|
+
flash_decoding_ctas *= num_prefix_tiles
|
|
773
|
+
flash_decoding_time = cdiv(flash_decoding_ctas, num_sms)
|
|
774
|
+
|
|
775
|
+
# Use cascade attention if it is faster than FlashDecoding.
|
|
776
|
+
return cascade_time < flash_decoding_time
|
|
777
|
+
|
|
778
|
+
|
|
779
|
+
def cascade_attention(
|
|
780
|
+
output: torch.Tensor,
|
|
781
|
+
query: torch.Tensor,
|
|
782
|
+
key_cache: torch.Tensor,
|
|
783
|
+
value_cache: torch.Tensor,
|
|
784
|
+
cu_query_lens: torch.Tensor,
|
|
785
|
+
max_query_len: int,
|
|
786
|
+
cu_prefix_query_lens: torch.Tensor,
|
|
787
|
+
prefix_kv_lens: torch.Tensor,
|
|
788
|
+
suffix_kv_lens: torch.Tensor,
|
|
789
|
+
max_kv_len: int,
|
|
790
|
+
softmax_scale: float,
|
|
791
|
+
alibi_slopes: Optional[torch.Tensor],
|
|
792
|
+
sliding_window: tuple[int, int],
|
|
793
|
+
logits_soft_cap: float,
|
|
794
|
+
block_table: torch.Tensor,
|
|
795
|
+
common_prefix_len: int,
|
|
796
|
+
fa_version: int,
|
|
797
|
+
prefix_scheduler_metadata: Optional[torch.Tensor] = None,
|
|
798
|
+
suffix_scheduler_metadata: Optional[torch.Tensor] = None,
|
|
799
|
+
q_descale: Optional[torch.Tensor] = None,
|
|
800
|
+
k_descale: Optional[torch.Tensor] = None,
|
|
801
|
+
v_descale: Optional[torch.Tensor] = None,
|
|
802
|
+
) -> torch.Tensor:
|
|
803
|
+
assert alibi_slopes is None, ("Cascade attention does not support ALiBi.")
|
|
804
|
+
# TODO: Support sliding window.
|
|
805
|
+
assert sliding_window == (-1, -1), (
|
|
806
|
+
"Cascade attention does not support sliding window.")
|
|
807
|
+
|
|
808
|
+
num_tokens = query.shape[0]
|
|
809
|
+
block_size = key_cache.shape[-3]
|
|
810
|
+
assert common_prefix_len % block_size == 0
|
|
811
|
+
num_common_kv_blocks = common_prefix_len // block_size
|
|
812
|
+
assert num_common_kv_blocks > 0
|
|
813
|
+
descale_shape = (cu_prefix_query_lens.shape[0] - 1, key_cache.shape[-2])
|
|
814
|
+
|
|
815
|
+
# Process shared prefix.
|
|
816
|
+
prefix_output, prefix_lse = flash_attn_varlen_func(
|
|
817
|
+
q=query,
|
|
818
|
+
k=key_cache,
|
|
819
|
+
v=value_cache,
|
|
820
|
+
cu_seqlens_q=cu_prefix_query_lens,
|
|
821
|
+
seqused_k=prefix_kv_lens,
|
|
822
|
+
max_seqlen_q=num_tokens,
|
|
823
|
+
max_seqlen_k=common_prefix_len,
|
|
824
|
+
softmax_scale=softmax_scale,
|
|
825
|
+
causal=False,
|
|
826
|
+
window_size=sliding_window,
|
|
827
|
+
block_table=block_table[:1],
|
|
828
|
+
softcap=logits_soft_cap,
|
|
829
|
+
return_softmax_lse=True,
|
|
830
|
+
scheduler_metadata=prefix_scheduler_metadata,
|
|
831
|
+
fa_version=fa_version,
|
|
832
|
+
q_descale=q_descale.expand(descale_shape)
|
|
833
|
+
if q_descale is not None else None,
|
|
834
|
+
k_descale=k_descale.expand(descale_shape)
|
|
835
|
+
if k_descale is not None else None,
|
|
836
|
+
v_descale=v_descale.expand(descale_shape)
|
|
837
|
+
if v_descale is not None else None,
|
|
838
|
+
)
|
|
839
|
+
|
|
840
|
+
descale_shape = (cu_query_lens.shape[0] - 1, key_cache.shape[-2])
|
|
841
|
+
|
|
842
|
+
# Process suffix per query.
|
|
843
|
+
suffix_output, suffix_lse = flash_attn_varlen_func(
|
|
844
|
+
q=query,
|
|
845
|
+
k=key_cache,
|
|
846
|
+
v=value_cache,
|
|
847
|
+
cu_seqlens_q=cu_query_lens,
|
|
848
|
+
seqused_k=suffix_kv_lens,
|
|
849
|
+
max_seqlen_q=max_query_len,
|
|
850
|
+
max_seqlen_k=max_kv_len - common_prefix_len,
|
|
851
|
+
softmax_scale=softmax_scale,
|
|
852
|
+
causal=True,
|
|
853
|
+
window_size=sliding_window,
|
|
854
|
+
block_table=block_table[:, num_common_kv_blocks:],
|
|
855
|
+
softcap=logits_soft_cap,
|
|
856
|
+
return_softmax_lse=True,
|
|
857
|
+
scheduler_metadata=suffix_scheduler_metadata,
|
|
858
|
+
fa_version=fa_version,
|
|
859
|
+
q_descale=q_descale.expand(descale_shape)
|
|
860
|
+
if q_descale is not None else None,
|
|
861
|
+
k_descale=k_descale.expand(descale_shape)
|
|
862
|
+
if k_descale is not None else None,
|
|
863
|
+
v_descale=v_descale.expand(descale_shape)
|
|
864
|
+
if v_descale is not None else None,
|
|
865
|
+
)
|
|
866
|
+
|
|
867
|
+
# Merge prefix and suffix outputs, and store the result in output.
|
|
868
|
+
merge_attn_states(output, prefix_output, prefix_lse, suffix_output,
|
|
869
|
+
suffix_lse)
|