vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1197) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +53 -0
  3. vllm/_custom_ops.py +1828 -0
  4. vllm/_ipex_ops.py +244 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +115 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +308 -0
  20. vllm/attention/backends/blocksparse_attn.py +461 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
  23. vllm/attention/backends/flash_attn.py +1003 -0
  24. vllm/attention/backends/flashinfer.py +1104 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +313 -0
  27. vllm/attention/backends/ipex_attn.py +398 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1385 -0
  30. vllm/attention/backends/pallas.py +351 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +975 -0
  34. vllm/attention/backends/torch_sdpa.py +703 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +802 -0
  38. vllm/attention/layer.py +468 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +906 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/prefix_prefill.py +902 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  54. vllm/attention/ops/triton_decode_attention.py +674 -0
  55. vllm/attention/ops/triton_flash_attention.py +979 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  57. vllm/attention/ops/triton_unified_attention.py +334 -0
  58. vllm/attention/selector.py +187 -0
  59. vllm/attention/utils/fa_utils.py +55 -0
  60. vllm/beam_search.py +87 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +1185 -0
  63. vllm/benchmarks/endpoint_request_func.py +381 -0
  64. vllm/benchmarks/latency.py +168 -0
  65. vllm/benchmarks/serve.py +1135 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +70 -0
  68. vllm/collect_env.py +820 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +89 -0
  71. vllm/compilation/backends.py +563 -0
  72. vllm/compilation/base_piecewise_backend.py +72 -0
  73. vllm/compilation/collective_fusion.py +127 -0
  74. vllm/compilation/compiler_interface.py +544 -0
  75. vllm/compilation/counter.py +38 -0
  76. vllm/compilation/cuda_piecewise_backend.py +214 -0
  77. vllm/compilation/decorators.py +250 -0
  78. vllm/compilation/fix_functionalization.py +191 -0
  79. vllm/compilation/fusion.py +618 -0
  80. vllm/compilation/fx_utils.py +62 -0
  81. vllm/compilation/inductor_pass.py +115 -0
  82. vllm/compilation/monitor.py +39 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +137 -0
  85. vllm/compilation/pass_manager.py +78 -0
  86. vllm/compilation/sequence_parallelism.py +268 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +67 -0
  89. vllm/compilation/wrapper.py +135 -0
  90. vllm/config.py +4746 -0
  91. vllm/connections.py +174 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +399 -0
  95. vllm/core/block/common.py +371 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  97. vllm/core/block/interfaces.py +319 -0
  98. vllm/core/block/naive_block.py +466 -0
  99. vllm/core/block/prefix_caching_block.py +1135 -0
  100. vllm/core/block/utils.py +28 -0
  101. vllm/core/block_manager.py +521 -0
  102. vllm/core/evictor.py +157 -0
  103. vllm/core/interfaces.py +135 -0
  104. vllm/core/placeholder_block_space_manager.py +100 -0
  105. vllm/core/scheduler.py +2093 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +281 -0
  108. vllm/distributed/__init__.py +6 -0
  109. vllm/distributed/communication_op.py +41 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +264 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +176 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  120. vllm/distributed/device_communicators/pynccl.py +218 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  125. vllm/distributed/kv_events.py +356 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +12 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  152. vllm/distributed/parallel_state.py +1296 -0
  153. vllm/distributed/tpu_distributed_utils.py +177 -0
  154. vllm/distributed/utils.py +536 -0
  155. vllm/engine/__init__.py +0 -0
  156. vllm/engine/arg_utils.py +1708 -0
  157. vllm/engine/async_llm_engine.py +1200 -0
  158. vllm/engine/async_timeout.py +173 -0
  159. vllm/engine/llm_engine.py +2097 -0
  160. vllm/engine/metrics.py +629 -0
  161. vllm/engine/metrics_types.py +94 -0
  162. vllm/engine/multiprocessing/__init__.py +148 -0
  163. vllm/engine/multiprocessing/client.py +681 -0
  164. vllm/engine/multiprocessing/engine.py +460 -0
  165. vllm/engine/output_processor/__init__.py +0 -0
  166. vllm/engine/output_processor/interfaces.py +75 -0
  167. vllm/engine/output_processor/multi_step.py +216 -0
  168. vllm/engine/output_processor/single_step.py +145 -0
  169. vllm/engine/output_processor/stop_checker.py +131 -0
  170. vllm/engine/output_processor/util.py +28 -0
  171. vllm/engine/protocol.py +317 -0
  172. vllm/entrypoints/__init__.py +0 -0
  173. vllm/entrypoints/api_server.py +178 -0
  174. vllm/entrypoints/chat_utils.py +1299 -0
  175. vllm/entrypoints/cli/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  177. vllm/entrypoints/cli/benchmark/base.py +39 -0
  178. vllm/entrypoints/cli/benchmark/latency.py +30 -0
  179. vllm/entrypoints/cli/benchmark/main.py +54 -0
  180. vllm/entrypoints/cli/benchmark/serve.py +30 -0
  181. vllm/entrypoints/cli/benchmark/throughput.py +30 -0
  182. vllm/entrypoints/cli/collect_env.py +35 -0
  183. vllm/entrypoints/cli/main.py +65 -0
  184. vllm/entrypoints/cli/openai.py +205 -0
  185. vllm/entrypoints/cli/run_batch.py +62 -0
  186. vllm/entrypoints/cli/serve.py +328 -0
  187. vllm/entrypoints/cli/types.py +25 -0
  188. vllm/entrypoints/launcher.py +147 -0
  189. vllm/entrypoints/llm.py +1544 -0
  190. vllm/entrypoints/logger.py +50 -0
  191. vllm/entrypoints/openai/__init__.py +0 -0
  192. vllm/entrypoints/openai/api_server.py +1387 -0
  193. vllm/entrypoints/openai/cli_args.py +315 -0
  194. vllm/entrypoints/openai/logits_processors.py +90 -0
  195. vllm/entrypoints/openai/protocol.py +1913 -0
  196. vllm/entrypoints/openai/run_batch.py +463 -0
  197. vllm/entrypoints/openai/serving_chat.py +1221 -0
  198. vllm/entrypoints/openai/serving_classification.py +160 -0
  199. vllm/entrypoints/openai/serving_completion.py +592 -0
  200. vllm/entrypoints/openai/serving_embedding.py +201 -0
  201. vllm/entrypoints/openai/serving_engine.py +986 -0
  202. vllm/entrypoints/openai/serving_models.py +315 -0
  203. vllm/entrypoints/openai/serving_pooling.py +232 -0
  204. vllm/entrypoints/openai/serving_score.py +433 -0
  205. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  206. vllm/entrypoints/openai/serving_transcription.py +424 -0
  207. vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
  208. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  209. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  210. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  211. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  212. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  213. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  214. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  215. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  216. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  217. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  218. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  219. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  220. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  221. vllm/entrypoints/score_utils.py +50 -0
  222. vllm/entrypoints/ssl.py +75 -0
  223. vllm/entrypoints/utils.py +233 -0
  224. vllm/env_override.py +41 -0
  225. vllm/envs.py +944 -0
  226. vllm/executor/__init__.py +0 -0
  227. vllm/executor/executor_base.py +401 -0
  228. vllm/executor/mp_distributed_executor.py +244 -0
  229. vllm/executor/msgspec_utils.py +30 -0
  230. vllm/executor/multiproc_worker_utils.py +313 -0
  231. vllm/executor/ray_distributed_executor.py +701 -0
  232. vllm/executor/ray_utils.py +399 -0
  233. vllm/executor/uniproc_executor.py +139 -0
  234. vllm/forward_context.py +179 -0
  235. vllm/inputs/__init__.py +41 -0
  236. vllm/inputs/data.py +331 -0
  237. vllm/inputs/parse.py +151 -0
  238. vllm/inputs/preprocess.py +909 -0
  239. vllm/inputs/registry.py +237 -0
  240. vllm/jsontree.py +80 -0
  241. vllm/logger.py +212 -0
  242. vllm/logging_utils/__init__.py +8 -0
  243. vllm/logging_utils/dump_input.py +85 -0
  244. vllm/logging_utils/formatter.py +18 -0
  245. vllm/logits_process.py +119 -0
  246. vllm/lora/__init__.py +0 -0
  247. vllm/lora/fully_sharded_layers.py +355 -0
  248. vllm/lora/layers.py +1285 -0
  249. vllm/lora/lora.py +199 -0
  250. vllm/lora/models.py +818 -0
  251. vllm/lora/ops/__init__.py +0 -0
  252. vllm/lora/ops/torch_ops/__init__.py +16 -0
  253. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  254. vllm/lora/ops/triton_ops/__init__.py +12 -0
  255. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  256. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  257. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  258. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  259. vllm/lora/ops/triton_ops/utils.py +120 -0
  260. vllm/lora/ops/xla_ops/__init__.py +7 -0
  261. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  262. vllm/lora/peft_helper.py +136 -0
  263. vllm/lora/punica_wrapper/__init__.py +10 -0
  264. vllm/lora/punica_wrapper/punica_base.py +485 -0
  265. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  266. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  267. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  268. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  269. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  270. vllm/lora/punica_wrapper/utils.py +164 -0
  271. vllm/lora/request.py +99 -0
  272. vllm/lora/resolver.py +85 -0
  273. vllm/lora/utils.py +240 -0
  274. vllm/lora/worker_manager.py +259 -0
  275. vllm/model_executor/__init__.py +16 -0
  276. vllm/model_executor/custom_op.py +152 -0
  277. vllm/model_executor/guided_decoding/__init__.py +181 -0
  278. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  279. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  280. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  281. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  282. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  283. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  284. vllm/model_executor/guided_decoding/utils.py +242 -0
  285. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  286. vllm/model_executor/layers/__init__.py +0 -0
  287. vllm/model_executor/layers/activation.py +369 -0
  288. vllm/model_executor/layers/fused_moe/__init__.py +54 -0
  289. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
  290. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  455. vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
  456. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
  457. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
  458. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
  459. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
  460. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
  461. vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
  462. vllm/model_executor/layers/fused_moe/layer.py +1535 -0
  463. vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
  464. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  465. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  466. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  467. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  468. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
  469. vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
  470. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
  471. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
  472. vllm/model_executor/layers/fused_moe/utils.py +98 -0
  473. vllm/model_executor/layers/layernorm.py +288 -0
  474. vllm/model_executor/layers/lightning_attn.py +652 -0
  475. vllm/model_executor/layers/linear.py +1524 -0
  476. vllm/model_executor/layers/logits_processor.py +197 -0
  477. vllm/model_executor/layers/mamba/__init__.py +0 -0
  478. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  479. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  480. vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
  481. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  482. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  483. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  484. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  485. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  486. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  487. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  488. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  489. vllm/model_executor/layers/pooler.py +350 -0
  490. vllm/model_executor/layers/quantization/__init__.py +157 -0
  491. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  492. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  493. vllm/model_executor/layers/quantization/awq.py +194 -0
  494. vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
  495. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  496. vllm/model_executor/layers/quantization/base_config.py +151 -0
  497. vllm/model_executor/layers/quantization/bitblas.py +461 -0
  498. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  505. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  506. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
  507. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
  508. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  509. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  510. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  511. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  512. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  513. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  514. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  515. vllm/model_executor/layers/quantization/experts_int8.py +196 -0
  516. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  517. vllm/model_executor/layers/quantization/fp8.py +906 -0
  518. vllm/model_executor/layers/quantization/gguf.py +565 -0
  519. vllm/model_executor/layers/quantization/gptq.py +278 -0
  520. vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
  521. vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
  522. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  523. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  524. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  525. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  526. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  527. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  528. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  529. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  530. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  531. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
  532. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  533. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  534. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  535. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  536. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  537. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  538. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  539. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  540. vllm/model_executor/layers/quantization/marlin.py +261 -0
  541. vllm/model_executor/layers/quantization/modelopt.py +737 -0
  542. vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
  543. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  544. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  545. vllm/model_executor/layers/quantization/qqq.py +275 -0
  546. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  547. vllm/model_executor/layers/quantization/quark/quark.py +441 -0
  548. vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
  549. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  550. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  551. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  552. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
  553. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  554. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  555. vllm/model_executor/layers/quantization/schema.py +86 -0
  556. vllm/model_executor/layers/quantization/torchao.py +161 -0
  557. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  558. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  559. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  560. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
  764. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  765. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  766. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  767. vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
  768. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  769. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  770. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  771. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  772. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  773. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  774. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  775. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
  776. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  777. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  778. vllm/model_executor/layers/rejection_sampler.py +406 -0
  779. vllm/model_executor/layers/resampler.py +270 -0
  780. vllm/model_executor/layers/rotary_embedding.py +1862 -0
  781. vllm/model_executor/layers/sampler.py +1204 -0
  782. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  783. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  784. vllm/model_executor/layers/utils.py +95 -0
  785. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  786. vllm/model_executor/model_loader/__init__.py +76 -0
  787. vllm/model_executor/model_loader/base_loader.py +43 -0
  788. vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
  789. vllm/model_executor/model_loader/default_loader.py +282 -0
  790. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  791. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  792. vllm/model_executor/model_loader/neuron.py +476 -0
  793. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  794. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  795. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  796. vllm/model_executor/model_loader/tensorizer.py +600 -0
  797. vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
  798. vllm/model_executor/model_loader/tpu.py +112 -0
  799. vllm/model_executor/model_loader/utils.py +302 -0
  800. vllm/model_executor/model_loader/weight_utils.py +782 -0
  801. vllm/model_executor/models/__init__.py +28 -0
  802. vllm/model_executor/models/adapters.py +248 -0
  803. vllm/model_executor/models/aimv2.py +246 -0
  804. vllm/model_executor/models/arctic.py +559 -0
  805. vllm/model_executor/models/aria.py +657 -0
  806. vllm/model_executor/models/aya_vision.py +466 -0
  807. vllm/model_executor/models/baichuan.py +474 -0
  808. vllm/model_executor/models/bamba.py +543 -0
  809. vllm/model_executor/models/bart.py +938 -0
  810. vllm/model_executor/models/bert.py +523 -0
  811. vllm/model_executor/models/bert_with_rope.py +769 -0
  812. vllm/model_executor/models/blip.py +339 -0
  813. vllm/model_executor/models/blip2.py +718 -0
  814. vllm/model_executor/models/bloom.py +373 -0
  815. vllm/model_executor/models/chameleon.py +1136 -0
  816. vllm/model_executor/models/chatglm.py +478 -0
  817. vllm/model_executor/models/clip.py +407 -0
  818. vllm/model_executor/models/commandr.py +472 -0
  819. vllm/model_executor/models/constant_size_cache.py +137 -0
  820. vllm/model_executor/models/dbrx.py +472 -0
  821. vllm/model_executor/models/deepseek.py +486 -0
  822. vllm/model_executor/models/deepseek_mtp.py +269 -0
  823. vllm/model_executor/models/deepseek_v2.py +843 -0
  824. vllm/model_executor/models/deepseek_vl2.py +648 -0
  825. vllm/model_executor/models/eagle.py +260 -0
  826. vllm/model_executor/models/exaone.py +551 -0
  827. vllm/model_executor/models/fairseq2_llama.py +154 -0
  828. vllm/model_executor/models/falcon.py +510 -0
  829. vllm/model_executor/models/falcon_h1.py +685 -0
  830. vllm/model_executor/models/florence2.py +1103 -0
  831. vllm/model_executor/models/fuyu.py +389 -0
  832. vllm/model_executor/models/gemma.py +425 -0
  833. vllm/model_executor/models/gemma2.py +425 -0
  834. vllm/model_executor/models/gemma3.py +533 -0
  835. vllm/model_executor/models/gemma3_mm.py +709 -0
  836. vllm/model_executor/models/glm.py +23 -0
  837. vllm/model_executor/models/glm4.py +305 -0
  838. vllm/model_executor/models/glm4v.py +648 -0
  839. vllm/model_executor/models/gpt2.py +328 -0
  840. vllm/model_executor/models/gpt_bigcode.py +335 -0
  841. vllm/model_executor/models/gpt_j.py +339 -0
  842. vllm/model_executor/models/gpt_neox.py +332 -0
  843. vllm/model_executor/models/granite.py +493 -0
  844. vllm/model_executor/models/granite_speech.py +779 -0
  845. vllm/model_executor/models/granitemoe.py +437 -0
  846. vllm/model_executor/models/granitemoehybrid.py +586 -0
  847. vllm/model_executor/models/granitemoeshared.py +341 -0
  848. vllm/model_executor/models/gritlm.py +224 -0
  849. vllm/model_executor/models/grok1.py +546 -0
  850. vllm/model_executor/models/h2ovl.py +546 -0
  851. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  852. vllm/model_executor/models/idefics3.py +776 -0
  853. vllm/model_executor/models/interfaces.py +572 -0
  854. vllm/model_executor/models/interfaces_base.py +164 -0
  855. vllm/model_executor/models/intern_vit.py +480 -0
  856. vllm/model_executor/models/internlm2.py +455 -0
  857. vllm/model_executor/models/internlm2_ve.py +147 -0
  858. vllm/model_executor/models/internvl.py +1418 -0
  859. vllm/model_executor/models/jais.py +373 -0
  860. vllm/model_executor/models/jamba.py +592 -0
  861. vllm/model_executor/models/kimi_vl.py +577 -0
  862. vllm/model_executor/models/llama.py +644 -0
  863. vllm/model_executor/models/llama4.py +532 -0
  864. vllm/model_executor/models/llama_eagle.py +165 -0
  865. vllm/model_executor/models/llama_eagle3.py +263 -0
  866. vllm/model_executor/models/llava.py +866 -0
  867. vllm/model_executor/models/llava_next.py +586 -0
  868. vllm/model_executor/models/llava_next_video.py +471 -0
  869. vllm/model_executor/models/llava_onevision.py +956 -0
  870. vllm/model_executor/models/mamba.py +273 -0
  871. vllm/model_executor/models/mamba2.py +308 -0
  872. vllm/model_executor/models/mamba_cache.py +76 -0
  873. vllm/model_executor/models/medusa.py +219 -0
  874. vllm/model_executor/models/mimo.py +192 -0
  875. vllm/model_executor/models/mimo_mtp.py +285 -0
  876. vllm/model_executor/models/minicpm.py +592 -0
  877. vllm/model_executor/models/minicpm3.py +230 -0
  878. vllm/model_executor/models/minicpm_eagle.py +391 -0
  879. vllm/model_executor/models/minicpmo.py +759 -0
  880. vllm/model_executor/models/minicpmv.py +1287 -0
  881. vllm/model_executor/models/minimax_cache.py +36 -0
  882. vllm/model_executor/models/minimax_text_01.py +1301 -0
  883. vllm/model_executor/models/minimax_vl_01.py +364 -0
  884. vllm/model_executor/models/mistral3.py +604 -0
  885. vllm/model_executor/models/mixtral.py +488 -0
  886. vllm/model_executor/models/mixtral_quant.py +453 -0
  887. vllm/model_executor/models/mllama.py +1624 -0
  888. vllm/model_executor/models/mllama4.py +938 -0
  889. vllm/model_executor/models/mlp_speculator.py +206 -0
  890. vllm/model_executor/models/modernbert.py +331 -0
  891. vllm/model_executor/models/module_mapping.py +72 -0
  892. vllm/model_executor/models/molmo.py +1568 -0
  893. vllm/model_executor/models/moonvit.py +630 -0
  894. vllm/model_executor/models/mpt.py +331 -0
  895. vllm/model_executor/models/nemotron.py +508 -0
  896. vllm/model_executor/models/nemotron_h.py +573 -0
  897. vllm/model_executor/models/nemotron_nas.py +484 -0
  898. vllm/model_executor/models/nvlm_d.py +216 -0
  899. vllm/model_executor/models/olmo.py +389 -0
  900. vllm/model_executor/models/olmo2.py +414 -0
  901. vllm/model_executor/models/olmoe.py +468 -0
  902. vllm/model_executor/models/opt.py +412 -0
  903. vllm/model_executor/models/orion.py +349 -0
  904. vllm/model_executor/models/ovis.py +567 -0
  905. vllm/model_executor/models/paligemma.py +398 -0
  906. vllm/model_executor/models/persimmon.py +344 -0
  907. vllm/model_executor/models/phi.py +356 -0
  908. vllm/model_executor/models/phi3.py +19 -0
  909. vllm/model_executor/models/phi3_small.py +465 -0
  910. vllm/model_executor/models/phi3v.py +723 -0
  911. vllm/model_executor/models/phi4mm.py +1246 -0
  912. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  913. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  914. vllm/model_executor/models/phimoe.py +665 -0
  915. vllm/model_executor/models/pixtral.py +1316 -0
  916. vllm/model_executor/models/plamo2.py +738 -0
  917. vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
  918. vllm/model_executor/models/qwen.py +362 -0
  919. vllm/model_executor/models/qwen2.py +497 -0
  920. vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
  921. vllm/model_executor/models/qwen2_5_vl.py +1166 -0
  922. vllm/model_executor/models/qwen2_audio.py +410 -0
  923. vllm/model_executor/models/qwen2_moe.py +540 -0
  924. vllm/model_executor/models/qwen2_rm.py +132 -0
  925. vllm/model_executor/models/qwen2_vl.py +1405 -0
  926. vllm/model_executor/models/qwen3.py +321 -0
  927. vllm/model_executor/models/qwen3_moe.py +535 -0
  928. vllm/model_executor/models/qwen_vl.py +785 -0
  929. vllm/model_executor/models/registry.py +622 -0
  930. vllm/model_executor/models/roberta.py +276 -0
  931. vllm/model_executor/models/siglip.py +524 -0
  932. vllm/model_executor/models/skyworkr1v.py +951 -0
  933. vllm/model_executor/models/smolvlm.py +52 -0
  934. vllm/model_executor/models/solar.py +506 -0
  935. vllm/model_executor/models/stablelm.py +343 -0
  936. vllm/model_executor/models/starcoder2.py +356 -0
  937. vllm/model_executor/models/tarsier.py +643 -0
  938. vllm/model_executor/models/telechat2.py +140 -0
  939. vllm/model_executor/models/teleflm.py +79 -0
  940. vllm/model_executor/models/transformers.py +508 -0
  941. vllm/model_executor/models/ultravox.py +656 -0
  942. vllm/model_executor/models/utils.py +731 -0
  943. vllm/model_executor/models/vision.py +147 -0
  944. vllm/model_executor/models/whisper.py +747 -0
  945. vllm/model_executor/models/zamba2.py +1009 -0
  946. vllm/model_executor/parameter.py +459 -0
  947. vllm/model_executor/pooling_metadata.py +72 -0
  948. vllm/model_executor/sampling_metadata.py +597 -0
  949. vllm/model_executor/utils.py +77 -0
  950. vllm/multimodal/__init__.py +33 -0
  951. vllm/multimodal/audio.py +106 -0
  952. vllm/multimodal/base.py +219 -0
  953. vllm/multimodal/hasher.py +118 -0
  954. vllm/multimodal/image.py +97 -0
  955. vllm/multimodal/inputs.py +876 -0
  956. vllm/multimodal/parse.py +461 -0
  957. vllm/multimodal/processing.py +1895 -0
  958. vllm/multimodal/profiling.py +258 -0
  959. vllm/multimodal/registry.py +331 -0
  960. vllm/multimodal/utils.py +436 -0
  961. vllm/multimodal/video.py +198 -0
  962. vllm/outputs.py +512 -0
  963. vllm/platforms/__init__.py +291 -0
  964. vllm/platforms/cpu.py +266 -0
  965. vllm/platforms/cuda.py +526 -0
  966. vllm/platforms/hpu.py +106 -0
  967. vllm/platforms/interface.py +538 -0
  968. vllm/platforms/neuron.py +150 -0
  969. vllm/platforms/rocm.py +435 -0
  970. vllm/platforms/tpu.py +216 -0
  971. vllm/platforms/xpu.py +156 -0
  972. vllm/plugins/__init__.py +94 -0
  973. vllm/plugins/lora_resolvers/README.md +15 -0
  974. vllm/plugins/lora_resolvers/__init__.py +0 -0
  975. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  976. vllm/pooling_params.py +54 -0
  977. vllm/profiler/__init__.py +0 -0
  978. vllm/profiler/layerwise_profile.py +375 -0
  979. vllm/profiler/utils.py +148 -0
  980. vllm/prompt_adapter/__init__.py +0 -0
  981. vllm/prompt_adapter/layers.py +83 -0
  982. vllm/prompt_adapter/models.py +358 -0
  983. vllm/prompt_adapter/request.py +37 -0
  984. vllm/prompt_adapter/utils.py +98 -0
  985. vllm/prompt_adapter/worker_manager.py +179 -0
  986. vllm/py.typed +2 -0
  987. vllm/reasoning/__init__.py +15 -0
  988. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  989. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  990. vllm/reasoning/granite_reasoning_parser.py +363 -0
  991. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  992. vllm/sampling_params.py +602 -0
  993. vllm/scalar_type.py +347 -0
  994. vllm/scripts.py +15 -0
  995. vllm/sequence.py +1568 -0
  996. vllm/spec_decode/__init__.py +0 -0
  997. vllm/spec_decode/batch_expansion.py +506 -0
  998. vllm/spec_decode/draft_model_runner.py +349 -0
  999. vllm/spec_decode/interfaces.py +99 -0
  1000. vllm/spec_decode/medusa_worker.py +138 -0
  1001. vllm/spec_decode/metrics.py +213 -0
  1002. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1003. vllm/spec_decode/mqa_scorer.py +160 -0
  1004. vllm/spec_decode/multi_step_worker.py +423 -0
  1005. vllm/spec_decode/ngram_worker.py +196 -0
  1006. vllm/spec_decode/proposer_worker_base.py +59 -0
  1007. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1008. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1009. vllm/spec_decode/target_model_runner.py +45 -0
  1010. vllm/spec_decode/top1_proposer.py +275 -0
  1011. vllm/spec_decode/util.py +277 -0
  1012. vllm/test_utils.py +130 -0
  1013. vllm/third_party/__init__.py +0 -0
  1014. vllm/third_party/pynvml.py +6140 -0
  1015. vllm/tracing.py +131 -0
  1016. vllm/transformers_utils/__init__.py +24 -0
  1017. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1018. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1019. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1020. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1021. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1022. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1023. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1024. vllm/transformers_utils/config.py +887 -0
  1025. vllm/transformers_utils/configs/__init__.py +61 -0
  1026. vllm/transformers_utils/configs/arctic.py +207 -0
  1027. vllm/transformers_utils/configs/chatglm.py +72 -0
  1028. vllm/transformers_utils/configs/cohere2.py +195 -0
  1029. vllm/transformers_utils/configs/dbrx.py +280 -0
  1030. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1031. vllm/transformers_utils/configs/eagle.py +85 -0
  1032. vllm/transformers_utils/configs/exaone.py +190 -0
  1033. vllm/transformers_utils/configs/falcon.py +90 -0
  1034. vllm/transformers_utils/configs/h2ovl.py +16 -0
  1035. vllm/transformers_utils/configs/internvl.py +54 -0
  1036. vllm/transformers_utils/configs/jais.py +238 -0
  1037. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1038. vllm/transformers_utils/configs/medusa.py +63 -0
  1039. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1040. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1041. vllm/transformers_utils/configs/mllama.py +31 -0
  1042. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1043. vllm/transformers_utils/configs/moonvit.py +33 -0
  1044. vllm/transformers_utils/configs/mpt.py +180 -0
  1045. vllm/transformers_utils/configs/nemotron.py +205 -0
  1046. vllm/transformers_utils/configs/nemotron_h.py +258 -0
  1047. vllm/transformers_utils/configs/nvlm_d.py +15 -0
  1048. vllm/transformers_utils/configs/ovis.py +184 -0
  1049. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1050. vllm/transformers_utils/configs/solar.py +247 -0
  1051. vllm/transformers_utils/configs/telechat2.py +64 -0
  1052. vllm/transformers_utils/configs/ultravox.py +108 -0
  1053. vllm/transformers_utils/detokenizer.py +168 -0
  1054. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1055. vllm/transformers_utils/processor.py +221 -0
  1056. vllm/transformers_utils/processors/__init__.py +8 -0
  1057. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1058. vllm/transformers_utils/processors/ovis.py +420 -0
  1059. vllm/transformers_utils/s3_utils.py +162 -0
  1060. vllm/transformers_utils/tokenizer.py +302 -0
  1061. vllm/transformers_utils/tokenizer_base.py +149 -0
  1062. vllm/transformers_utils/tokenizer_group.py +120 -0
  1063. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1064. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1065. vllm/transformers_utils/utils.py +99 -0
  1066. vllm/triton_utils/__init__.py +14 -0
  1067. vllm/triton_utils/importing.py +50 -0
  1068. vllm/usage/__init__.py +0 -0
  1069. vllm/usage/usage_lib.py +256 -0
  1070. vllm/utils.py +2910 -0
  1071. vllm/v1/__init__.py +0 -0
  1072. vllm/v1/attention/__init__.py +0 -0
  1073. vllm/v1/attention/backends/__init__.py +0 -0
  1074. vllm/v1/attention/backends/cpu_attn.py +163 -0
  1075. vllm/v1/attention/backends/flash_attn.py +869 -0
  1076. vllm/v1/attention/backends/flashinfer.py +651 -0
  1077. vllm/v1/attention/backends/flex_attention.py +477 -0
  1078. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1079. vllm/v1/attention/backends/mla/common.py +931 -0
  1080. vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
  1081. vllm/v1/attention/backends/mla/flashmla.py +152 -0
  1082. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
  1083. vllm/v1/attention/backends/mla/triton_mla.py +120 -0
  1084. vllm/v1/attention/backends/pallas.py +240 -0
  1085. vllm/v1/attention/backends/triton_attn.py +285 -0
  1086. vllm/v1/attention/backends/utils.py +52 -0
  1087. vllm/v1/core/__init__.py +0 -0
  1088. vllm/v1/core/block_pool.py +349 -0
  1089. vllm/v1/core/encoder_cache_manager.py +150 -0
  1090. vllm/v1/core/kv_cache_coordinator.py +363 -0
  1091. vllm/v1/core/kv_cache_manager.py +392 -0
  1092. vllm/v1/core/kv_cache_utils.py +996 -0
  1093. vllm/v1/core/sched/__init__.py +0 -0
  1094. vllm/v1/core/sched/interface.py +150 -0
  1095. vllm/v1/core/sched/output.py +154 -0
  1096. vllm/v1/core/sched/scheduler.py +1044 -0
  1097. vllm/v1/core/sched/utils.py +23 -0
  1098. vllm/v1/core/single_type_kv_cache_manager.py +403 -0
  1099. vllm/v1/engine/__init__.py +173 -0
  1100. vllm/v1/engine/async_llm.py +558 -0
  1101. vllm/v1/engine/coordinator.py +253 -0
  1102. vllm/v1/engine/core.py +961 -0
  1103. vllm/v1/engine/core_client.py +1129 -0
  1104. vllm/v1/engine/detokenizer.py +261 -0
  1105. vllm/v1/engine/exceptions.py +17 -0
  1106. vllm/v1/engine/llm_engine.py +317 -0
  1107. vllm/v1/engine/logprobs.py +199 -0
  1108. vllm/v1/engine/mm_input_cache.py +91 -0
  1109. vllm/v1/engine/output_processor.py +428 -0
  1110. vllm/v1/engine/parallel_sampling.py +133 -0
  1111. vllm/v1/engine/processor.py +407 -0
  1112. vllm/v1/executor/__init__.py +0 -0
  1113. vllm/v1/executor/abstract.py +113 -0
  1114. vllm/v1/executor/multiproc_executor.py +537 -0
  1115. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1116. vllm/v1/kv_cache_interface.py +194 -0
  1117. vllm/v1/metrics/__init__.py +0 -0
  1118. vllm/v1/metrics/loggers.py +523 -0
  1119. vllm/v1/metrics/prometheus.py +82 -0
  1120. vllm/v1/metrics/ray_wrappers.py +131 -0
  1121. vllm/v1/metrics/reader.py +246 -0
  1122. vllm/v1/metrics/stats.py +239 -0
  1123. vllm/v1/outputs.py +116 -0
  1124. vllm/v1/request.py +193 -0
  1125. vllm/v1/sample/__init__.py +0 -0
  1126. vllm/v1/sample/metadata.py +44 -0
  1127. vllm/v1/sample/ops/__init__.py +0 -0
  1128. vllm/v1/sample/ops/bad_words.py +39 -0
  1129. vllm/v1/sample/ops/penalties.py +59 -0
  1130. vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
  1131. vllm/v1/sample/rejection_sampler.py +631 -0
  1132. vllm/v1/sample/sampler.py +286 -0
  1133. vllm/v1/sample/tpu/__init__.py +0 -0
  1134. vllm/v1/sample/tpu/metadata.py +124 -0
  1135. vllm/v1/sample/tpu/sampler.py +145 -0
  1136. vllm/v1/serial_utils.py +315 -0
  1137. vllm/v1/spec_decode/__init__.py +0 -0
  1138. vllm/v1/spec_decode/eagle.py +432 -0
  1139. vllm/v1/spec_decode/medusa.py +62 -0
  1140. vllm/v1/spec_decode/metadata.py +62 -0
  1141. vllm/v1/spec_decode/metrics.py +178 -0
  1142. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1143. vllm/v1/spec_decode/utils.py +46 -0
  1144. vllm/v1/structured_output/__init__.py +222 -0
  1145. vllm/v1/structured_output/backend_guidance.py +245 -0
  1146. vllm/v1/structured_output/backend_types.py +134 -0
  1147. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1148. vllm/v1/structured_output/request.py +86 -0
  1149. vllm/v1/structured_output/utils.py +175 -0
  1150. vllm/v1/utils.py +743 -0
  1151. vllm/v1/worker/__init__.py +0 -0
  1152. vllm/v1/worker/block_table.py +142 -0
  1153. vllm/v1/worker/cpu_model_runner.py +86 -0
  1154. vllm/v1/worker/cpu_worker.py +152 -0
  1155. vllm/v1/worker/gpu_input_batch.py +681 -0
  1156. vllm/v1/worker/gpu_model_runner.py +2320 -0
  1157. vllm/v1/worker/gpu_worker.py +393 -0
  1158. vllm/v1/worker/lora_model_runner_mixin.py +173 -0
  1159. vllm/v1/worker/tpu_model_runner.py +1673 -0
  1160. vllm/v1/worker/tpu_worker.py +299 -0
  1161. vllm/v1/worker/utils.py +111 -0
  1162. vllm/v1/worker/worker_base.py +65 -0
  1163. vllm/version.py +41 -0
  1164. vllm/vllm_flash_attn/.gitkeep +0 -0
  1165. vllm/worker/__init__.py +0 -0
  1166. vllm/worker/cache_engine.py +145 -0
  1167. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1168. vllm/worker/cpu_model_runner.py +671 -0
  1169. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1170. vllm/worker/cpu_worker.py +450 -0
  1171. vllm/worker/enc_dec_model_runner.py +555 -0
  1172. vllm/worker/hpu_model_runner.py +2320 -0
  1173. vllm/worker/hpu_worker.py +484 -0
  1174. vllm/worker/model_runner.py +2178 -0
  1175. vllm/worker/model_runner_base.py +282 -0
  1176. vllm/worker/multi_step_hpu_worker.py +123 -0
  1177. vllm/worker/multi_step_model_runner.py +911 -0
  1178. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1179. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1180. vllm/worker/multi_step_tpu_worker.py +108 -0
  1181. vllm/worker/multi_step_worker.py +197 -0
  1182. vllm/worker/neuron_model_runner.py +460 -0
  1183. vllm/worker/neuron_worker.py +193 -0
  1184. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1185. vllm/worker/pooling_model_runner.py +211 -0
  1186. vllm/worker/tpu_model_runner.py +909 -0
  1187. vllm/worker/tpu_worker.py +337 -0
  1188. vllm/worker/utils.py +53 -0
  1189. vllm/worker/worker.py +577 -0
  1190. vllm/worker/worker_base.py +646 -0
  1191. vllm/worker/xpu_model_runner.py +606 -0
  1192. vllm/worker/xpu_worker.py +186 -0
  1193. vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
  1194. vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
  1195. vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
  1196. vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
  1197. vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2178 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import dataclasses
5
+ import gc
6
+ import inspect
7
+ import itertools
8
+ import time
9
+ import weakref
10
+ from contextlib import contextmanager
11
+ from dataclasses import dataclass
12
+ from typing import (TYPE_CHECKING, Any, Callable, Dict, List, Optional, Set,
13
+ Tuple, Type, TypeVar, Union)
14
+
15
+ import numpy as np
16
+ import torch
17
+ import torch.distributed
18
+ import torch.nn as nn
19
+ from tqdm.auto import tqdm
20
+
21
+ import vllm.envs as envs
22
+ from vllm.attention import AttentionMetadata, get_attn_backend
23
+ from vllm.attention.backends.abstract import AttentionState
24
+ from vllm.attention.backends.utils import CommonAttentionState
25
+ from vllm.config import CompilationLevel, VllmConfig
26
+ from vllm.core.scheduler import SchedulerOutputs
27
+ from vllm.distributed import broadcast_tensor_dict, get_pp_group
28
+ from vllm.distributed.kv_transfer import get_kv_transfer_group
29
+ from vllm.distributed.parallel_state import (get_tensor_model_parallel_rank,
30
+ graph_capture)
31
+ from vllm.forward_context import get_forward_context, set_forward_context
32
+ from vllm.inputs import INPUT_REGISTRY, InputRegistry
33
+ from vllm.logger import init_logger
34
+ from vllm.lora.layers import LoRAMapping
35
+ from vllm.lora.request import LoRARequest
36
+ from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
37
+ from vllm.model_executor import SamplingMetadata, SamplingMetadataCache
38
+ from vllm.model_executor.layers.rotary_embedding import MRotaryEmbedding
39
+ from vllm.model_executor.layers.sampler import (Sampler, SamplerOutput,
40
+ get_sampler)
41
+ from vllm.model_executor.model_loader import get_model
42
+ from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
43
+ from vllm.model_executor.models import supports_lora, supports_multimodal
44
+ from vllm.model_executor.models.utils import set_cpu_offload_max_bytes
45
+ from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
46
+ MultiModalKwargs, MultiModalPlaceholderMap,
47
+ MultiModalRegistry)
48
+ from vllm.prompt_adapter.layers import PromptAdapterMapping
49
+ from vllm.prompt_adapter.request import PromptAdapterRequest
50
+ from vllm.prompt_adapter.worker_manager import (
51
+ LRUCacheWorkerPromptAdapterManager)
52
+ from vllm.sampling_params import SamplingParams
53
+ from vllm.sequence import IntermediateTensors, SequenceGroupMetadata
54
+ from vllm.utils import (DeviceMemoryProfiler, GiB_bytes, PyObjectCache,
55
+ async_tensor_h2d, flatten_2d_lists,
56
+ is_pin_memory_available, supports_dynamo,
57
+ weak_ref_tensor)
58
+ from vllm.worker.model_runner_base import (
59
+ InputProcessingError, ModelRunnerBase, ModelRunnerInputBase,
60
+ ModelRunnerInputBuilderBase, _add_attn_metadata_broadcastable_dict,
61
+ _add_sampling_metadata_broadcastable_dict,
62
+ _init_attn_metadata_from_tensor_dict,
63
+ _init_sampling_metadata_from_tensor_dict)
64
+
65
+ if TYPE_CHECKING:
66
+ from vllm.attention.backends.abstract import AttentionBackend
67
+
68
+ logger = init_logger(__name__)
69
+
70
+ LORA_WARMUP_RANK = 8
71
+
72
+ _NUM_WARMUP_ITERS = 2
73
+
74
+ TModelInputForGPU = TypeVar('TModelInputForGPU', bound="ModelInputForGPU")
75
+
76
+ # For now, bump up cache limits for recompilations during CUDA graph warmups.
77
+ torch._dynamo.config.cache_size_limit = 128
78
+ torch._dynamo.config.accumulated_cache_size_limit = 128
79
+
80
+
81
+ @dataclass(frozen=True)
82
+ class ModelInputForGPU(ModelRunnerInputBase):
83
+ """
84
+ This base class contains metadata needed for the base model forward pass
85
+ but not metadata for possible additional steps, e.g., sampling. Model
86
+ runners that run additional steps should subclass this method to add
87
+ additional fields.
88
+ """
89
+ input_tokens: Optional[torch.Tensor] = None
90
+ inputs_embeds: Optional[torch.Tensor] = None
91
+ input_positions: Optional[torch.Tensor] = None
92
+ token_types: Optional[torch.Tensor] = None
93
+ seq_lens: Optional[List[int]] = None
94
+ query_lens: Optional[List[int]] = None
95
+ lora_mapping: Optional["LoRAMapping"] = None
96
+ lora_requests: Optional[Set[LoRARequest]] = None
97
+ attn_metadata: Optional["AttentionMetadata"] = None
98
+ prompt_adapter_mapping: Optional[PromptAdapterMapping] = None
99
+ prompt_adapter_requests: Optional[Set[PromptAdapterRequest]] = None
100
+ multi_modal_kwargs: Optional[BatchedTensorInputs] = None
101
+ request_ids_to_seq_ids: Optional[Dict[str, List[int]]] = None
102
+ finished_requests_ids: Optional[List[str]] = None
103
+ virtual_engine: int = 0
104
+ async_callback: Optional[Callable] = None
105
+ scheduler_outputs: Optional[SchedulerOutputs] = None
106
+ previous_hidden_states: Optional[torch.Tensor] = None
107
+
108
+ def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
109
+ tensor_dict = {
110
+ "input_tokens": self.input_tokens,
111
+ "inputs_embeds": self.inputs_embeds,
112
+ "input_positions": self.input_positions,
113
+ "lora_requests": self.lora_requests,
114
+ "lora_mapping": self.lora_mapping,
115
+ "multi_modal_kwargs": self.multi_modal_kwargs,
116
+ "prompt_adapter_mapping": self.prompt_adapter_mapping,
117
+ "prompt_adapter_requests": self.prompt_adapter_requests,
118
+ "virtual_engine": self.virtual_engine,
119
+ "request_ids_to_seq_ids": self.request_ids_to_seq_ids,
120
+ "finished_requests_ids": self.finished_requests_ids,
121
+ }
122
+ _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
123
+ return tensor_dict
124
+
125
+ @classmethod
126
+ def from_broadcasted_tensor_dict(
127
+ cls: Type[TModelInputForGPU],
128
+ tensor_dict: Dict[str, Any],
129
+ attn_backend: Optional["AttentionBackend"] = None,
130
+ ) -> TModelInputForGPU:
131
+ if attn_backend is not None:
132
+ tensor_dict = _init_attn_metadata_from_tensor_dict(
133
+ attn_backend, tensor_dict)
134
+ return cls(**tensor_dict)
135
+
136
+ # Exclude `async_callback` to be able to pickle this object
137
+ def __getstate__(self):
138
+ state = self.__dict__.copy()
139
+ del state["async_callback"]
140
+ return state
141
+
142
+ # TODO: What happens when we depickle this object?
143
+ # How can we update this callback to properly pass it to the engine?
144
+ def __setstate__(self, state):
145
+ self.__dict__.update(state)
146
+ self.__dict__.update({'async_callback': None})
147
+
148
+
149
+ @dataclass(frozen=True)
150
+ class ModelInputForGPUWithSamplingMetadata(ModelInputForGPU):
151
+ """
152
+ Used by the ModelRunner.
153
+ """
154
+ sampling_metadata: Optional["SamplingMetadata"] = None
155
+ # Used for speculative decoding. We do not broadcast it because it is only
156
+ # used by the driver worker.
157
+ is_prompt: Optional[bool] = None
158
+
159
+ def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
160
+ tensor_dict = {
161
+ "input_tokens": self.input_tokens,
162
+ "inputs_embeds": self.inputs_embeds,
163
+ "input_positions": self.input_positions,
164
+ "lora_requests": self.lora_requests,
165
+ "lora_mapping": self.lora_mapping,
166
+ "multi_modal_kwargs": self.multi_modal_kwargs,
167
+ "prompt_adapter_mapping": self.prompt_adapter_mapping,
168
+ "prompt_adapter_requests": self.prompt_adapter_requests,
169
+ "virtual_engine": self.virtual_engine,
170
+ "request_ids_to_seq_ids": self.request_ids_to_seq_ids,
171
+ "finished_requests_ids": self.finished_requests_ids,
172
+ }
173
+ _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
174
+ _add_sampling_metadata_broadcastable_dict(tensor_dict,
175
+ self.sampling_metadata)
176
+ return tensor_dict
177
+
178
+ @classmethod
179
+ def from_broadcasted_tensor_dict(
180
+ cls,
181
+ tensor_dict: Dict[str, Any],
182
+ attn_backend: Optional["AttentionBackend"] = None,
183
+ ) -> "ModelInputForGPUWithSamplingMetadata":
184
+ tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
185
+ if attn_backend is not None:
186
+ tensor_dict = _init_attn_metadata_from_tensor_dict(
187
+ attn_backend, tensor_dict)
188
+ return cls(**tensor_dict)
189
+
190
+
191
+ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
192
+ """Build ModelInputForGPU from SequenceGroupMetadata."""
193
+
194
+ # Note: ideally we would be using a dataclass(kw_only=True)
195
+ # here, so that this can be subclassed easily,
196
+ # but kw_only is not supported in python<3.10.
197
+ class InterDataForSeqGroup:
198
+ """Intermediate data for the current sequence group."""
199
+
200
+ def simple_reinit(self):
201
+ self.input_tokens[0].clear() # type: ignore
202
+ self.inputs_embeds = None # type: ignore
203
+ self.input_positions[0].clear() # type: ignore
204
+ self.token_types[0].clear() # type: ignore
205
+ self.mrope_input_positions = None # type: ignore
206
+ self.seq_lens[0] = 0 # type: ignore
207
+ self.orig_seq_lens[0] = 0 # type: ignore
208
+ self.prompt_lens[0] = 0 # type: ignore
209
+ self.query_lens[0] = 0 # type: ignore
210
+ self.context_lens[0] = 0 # type: ignore
211
+ self.curr_sliding_window_blocks[0] = 0 # type: ignore
212
+ self.lora_index_mapping.clear() # type: ignore
213
+ self.lora_prompt_mapping.clear() # type: ignore
214
+ self.lora_requests.clear() # type: ignore
215
+ self.prompt_adapter_index_mapping.clear() # type: ignore
216
+ self.prompt_adapter_prompt_mapping.clear() # type: ignore
217
+
218
+ def __init__(
219
+ self,
220
+ *,
221
+ # From sequence group metadata.
222
+ request_id: str,
223
+ seq_ids: List[int],
224
+ is_prompt: bool,
225
+ block_tables: Optional[Dict[int, List[int]]],
226
+ computed_block_nums: List[int],
227
+ n_seqs: int = 0,
228
+
229
+ # Input tokens and positions.
230
+ input_tokens: Optional[List[List[int]]] = None,
231
+ inputs_embeds: Optional[torch.Tensor] = None,
232
+ input_positions: Optional[List[List[int]]] = None,
233
+ token_types: Optional[List[List[int]]] = None,
234
+ mrope_input_positions: Optional[List[List[List[int]]]] = None,
235
+
236
+ # The sequence length (may be capped to the sliding window).
237
+ seq_lens: Optional[List[int]] = None,
238
+ # The original sequence length (before applying sliding window).
239
+ # This is used to compute slot mapping.
240
+ orig_seq_lens: Optional[List[int]] = None,
241
+ # This is used in the dual-chunk flash attention backend.
242
+ prompt_lens: Optional[List[int]] = None,
243
+ # The query length.
244
+ query_lens: Optional[List[int]] = None,
245
+ # The number of tokens that are already computed.
246
+ context_lens: Optional[List[int]] = None,
247
+ # The current sliding window block.
248
+ curr_sliding_window_blocks: Optional[List[int]] = None,
249
+
250
+ # LoRA inputs.
251
+ lora_index_mapping: Optional[List[List[int]]] = None,
252
+ lora_prompt_mapping: Optional[List[List[int]]] = None,
253
+ lora_requests: Optional[Set[LoRARequest]] = None,
254
+
255
+ # Prompt adapter inputs.
256
+ prompt_adapter_index_mapping: Optional[List[int]] = None,
257
+ prompt_adapter_prompt_mapping: Optional[List[int]] = None,
258
+ prompt_adapter_request: Optional[PromptAdapterRequest] = None,
259
+
260
+ # Multi-modal inputs.
261
+ multi_modal_kwargs: Optional[MultiModalKwargs] = None,
262
+ multi_modal_placeholder_maps: Optional[Dict[
263
+ str, MultiModalPlaceholderMap]] = None,
264
+
265
+ # Whether the prefix cache is hit (prefill only).
266
+ prefix_cache_hit: bool = False,
267
+ reinit: bool = False,
268
+ reinit_use_defaults: bool = False,
269
+ encoder_seq_len: int = 0,
270
+ ):
271
+ if reinit:
272
+ assert len(self.seq_ids) == len(seq_ids) # type: ignore
273
+ for i, seq_id in enumerate(seq_ids):
274
+ self.seq_ids[i] = seq_id # type: ignore
275
+ else:
276
+ self.seq_ids = seq_ids
277
+
278
+ self.request_id = request_id
279
+ self.is_prompt = is_prompt
280
+ self.block_tables = block_tables
281
+ self.computed_block_nums = computed_block_nums
282
+ self.n_seqs = n_seqs
283
+ self.encoder_seq_len = encoder_seq_len
284
+
285
+ if reinit:
286
+ if len(self.seq_ids) == 1 and reinit_use_defaults:
287
+ self.simple_reinit()
288
+ else:
289
+ if input_tokens:
290
+ self.input_tokens = input_tokens
291
+ else:
292
+ for seq_id in range(len(self.seq_ids)):
293
+ self.input_tokens[seq_id].clear()
294
+
295
+ self.inputs_embeds = inputs_embeds
296
+
297
+ if input_positions:
298
+ self.input_positions = input_positions
299
+ else:
300
+ for seq_id in range(len(self.seq_ids)):
301
+ self.input_positions[seq_id].clear()
302
+
303
+ if token_types:
304
+ self.token_types = token_types
305
+ else:
306
+ for seq_id in range(len(self.seq_ids)):
307
+ self.token_types[seq_id].clear()
308
+
309
+ self.mrope_input_positions = None
310
+
311
+ if seq_lens:
312
+ self.seq_lens = seq_lens
313
+ else:
314
+ for seq_id in range(len(self.seq_ids)):
315
+ self.seq_lens[seq_id] = 0
316
+
317
+ if orig_seq_lens:
318
+ self.orig_seq_lens = orig_seq_lens
319
+ else:
320
+ for seq_id in range(len(self.seq_ids)):
321
+ self.orig_seq_lens[seq_id] = 0
322
+
323
+ if prompt_lens:
324
+ self.prompt_lens = prompt_lens
325
+ else:
326
+ for seq_id in range(len(self.seq_ids)):
327
+ self.prompt_lens[seq_id] = 0
328
+
329
+ if query_lens:
330
+ self.query_lens = query_lens
331
+ else:
332
+ for seq_id in range(len(self.seq_ids)):
333
+ self.query_lens[seq_id] = 0
334
+
335
+ if context_lens:
336
+ self.context_lens = context_lens
337
+ else:
338
+ for seq_id in range(len(self.seq_ids)):
339
+ self.context_lens[seq_id] = 0
340
+
341
+ if curr_sliding_window_blocks:
342
+ self.curr_sliding_window_blocks = \
343
+ curr_sliding_window_blocks
344
+ else:
345
+ for seq_id in range(len(self.seq_ids)):
346
+ self.curr_sliding_window_blocks[seq_id] = 0
347
+
348
+ if lora_index_mapping:
349
+ self.lora_index_mapping = lora_index_mapping
350
+ else:
351
+ self.lora_index_mapping.clear()
352
+
353
+ if lora_prompt_mapping:
354
+ self.lora_prompt_mapping = lora_prompt_mapping
355
+ else:
356
+ self.lora_prompt_mapping.clear()
357
+
358
+ if lora_requests:
359
+ self.lora_requests = lora_requests
360
+ else:
361
+ self.lora_requests.clear()
362
+
363
+ if prompt_adapter_index_mapping:
364
+ self.prompt_adapter_index_mapping = \
365
+ prompt_adapter_index_mapping
366
+ else:
367
+ self.prompt_adapter_index_mapping.clear()
368
+
369
+ if prompt_adapter_prompt_mapping:
370
+ self.prompt_adapter_prompt_mapping = \
371
+ prompt_adapter_prompt_mapping
372
+ else:
373
+ self.prompt_adapter_prompt_mapping.clear()
374
+
375
+ else:
376
+ self.input_tokens = input_tokens or []
377
+ self.inputs_embeds = inputs_embeds
378
+ self.input_positions = input_positions or []
379
+ self.token_types = token_types or []
380
+ self.mrope_input_positions = mrope_input_positions or None
381
+ self.seq_lens = seq_lens or []
382
+ self.orig_seq_lens = orig_seq_lens or []
383
+ self.prompt_lens = prompt_lens or []
384
+ self.query_lens = query_lens or []
385
+ self.context_lens = context_lens or []
386
+ self.curr_sliding_window_blocks = \
387
+ curr_sliding_window_blocks or []
388
+
389
+ self.lora_index_mapping = lora_index_mapping or []
390
+ self.lora_prompt_mapping = lora_prompt_mapping or []
391
+ self.lora_requests = lora_requests or set()
392
+
393
+ self.prompt_adapter_index_mapping = (
394
+ prompt_adapter_index_mapping or [])
395
+ self.prompt_adapter_prompt_mapping = (
396
+ prompt_adapter_prompt_mapping or [])
397
+
398
+ self.prompt_adapter_request = prompt_adapter_request
399
+ self.multi_modal_kwargs = multi_modal_kwargs
400
+ self.multi_modal_placeholder_maps = multi_modal_placeholder_maps
401
+ self.prefix_cache_hit = prefix_cache_hit
402
+
403
+ self.n_seqs = len(self.seq_ids)
404
+
405
+ if not reinit:
406
+ self.__post_init__()
407
+
408
+ def __post_init__(self):
409
+ self.n_seqs = len(self.seq_ids)
410
+
411
+ self.input_tokens = [[] for _ in range(self.n_seqs)]
412
+ self.input_positions = [[] for _ in range(self.n_seqs)]
413
+ self.token_types = [[] for _ in range(self.n_seqs)]
414
+ self.mrope_input_positions = None
415
+ self.seq_lens = [0] * self.n_seqs
416
+ self.orig_seq_lens = [0] * self.n_seqs
417
+ self.prompt_lens = [0] * self.n_seqs
418
+ self.query_lens = [0] * self.n_seqs
419
+ self.context_lens = [0] * self.n_seqs
420
+ self.curr_sliding_window_blocks = [0] * self.n_seqs
421
+
422
+ self.lora_index_mapping = []
423
+ self.lora_prompt_mapping = []
424
+
425
+ def __repr__(self) -> str:
426
+ return (f"InterDataForSeqGroup("
427
+ f"request_id={self.request_id}, "
428
+ f"seq_ids={self.seq_ids}, "
429
+ f"is_prompt={self.is_prompt}, "
430
+ f"block_tables={self.block_tables}, "
431
+ f"computed_block_nums={self.computed_block_nums}, "
432
+ f"n_seqs={self.n_seqs}, "
433
+ f"input_tokens={self.input_tokens}, "
434
+ f"inputs_embeds.shape="
435
+ f"{getattr(self.inputs_embeds, 'shape', None)}, "
436
+ f"input_positions={self.input_positions}, "
437
+ f"token_types={self.token_types}, "
438
+ f"mrope_input_positions={self.mrope_input_positions}, "
439
+ f"seq_lens={self.seq_lens}, "
440
+ f"orig_seq_lens={self.orig_seq_lens}, "
441
+ f"query_lens={self.query_lens}, "
442
+ f"context_lens={self.context_lens}, "
443
+ f"multi_modal_kwargs={self.multi_modal_kwargs}")
444
+
445
+ def gen_inter_data_builder(self, num_seqs: int):
446
+ return lambda: ModelInputForGPUBuilder.InterDataForSeqGroup(
447
+ request_id="",
448
+ seq_ids=[0] * num_seqs,
449
+ is_prompt=True,
450
+ block_tables=None,
451
+ computed_block_nums=[])
452
+
453
+ def init_cached_inter_data(self, *args, **kwargs):
454
+ assert len(args) == 0
455
+ assert "seq_ids" in kwargs
456
+ seq_ids = kwargs["seq_ids"]
457
+ num_seqs = len(seq_ids)
458
+
459
+ # The inter-data cache is per model_runner
460
+ inter_data_cache = self.runner.inter_data_cache
461
+ if num_seqs not in inter_data_cache:
462
+ inter_data_cache[num_seqs] = PyObjectCache(
463
+ self.gen_inter_data_builder(num_seqs))
464
+
465
+ obj = inter_data_cache[num_seqs].get_object()
466
+ obj.__init__(*args, **kwargs)
467
+ return obj
468
+
469
+ def reset_cached_inter_data(self):
470
+ for cache in self.runner.inter_data_cache.values():
471
+ cache.reset()
472
+
473
+ def __init__(self,
474
+ runner: "GPUModelRunnerBase",
475
+ finished_requests_ids: Optional[List[str]] = None):
476
+ super().__init__()
477
+ # Compute functions for each sequence in a sequence group.
478
+ # WARNING: The order of the functions matters!
479
+ self.per_seq_compute_fns = [
480
+ self._compute_lens,
481
+ self._compute_for_prefix_cache_hit,
482
+ self._compute_for_sliding_window,
483
+ self._compute_lora_input,
484
+ ]
485
+ # Compute functions for each sequence group.
486
+ # WARNING: The order of the functions matters!
487
+ self.per_seq_group_compute_fns = [
488
+ self._compute_prompt_adapter_input,
489
+ self._compute_multi_modal_input,
490
+ ]
491
+
492
+ self.runner = runner
493
+ self.model_input_cls = self.runner._model_input_cls
494
+ self.attn_backend = self.runner.attn_backend
495
+ self.scheduler_config = self.runner.scheduler_config
496
+ self.sliding_window = self.runner.sliding_window
497
+ self.block_size = self.runner.block_size
498
+ self.enable_lora = self.runner.lora_config is not None
499
+ self.enable_prompt_adapter = (self.runner.prompt_adapter_config
500
+ is not None)
501
+
502
+ # Attention metadata inputs.
503
+ if self.attn_backend is not None:
504
+ # spec decode (e.g. Medusa) does not have atten backend
505
+ self.attn_metadata_builder = self.attn_backend.get_builder_cls()(
506
+ weakref.proxy(self))
507
+
508
+ # Engine/Model configurations.
509
+ self.chunked_prefill_enabled = (
510
+ self.scheduler_config is not None
511
+ and self.scheduler_config.chunked_prefill_enabled)
512
+ if self.sliding_window is not None:
513
+ self.sliding_window_blocks = (
514
+ self.sliding_window + self.block_size - 1) // self.block_size
515
+ self.block_aligned_sliding_window = \
516
+ self.sliding_window_blocks * self.block_size
517
+
518
+ def prepare(self,
519
+ finished_requests_ids: Optional[List[str]] = None) -> None:
520
+ self.finished_requests_ids = finished_requests_ids
521
+
522
+ # if the current batch is decode-only.
523
+ # will be set to False if there is any non-decode request.
524
+ self.decode_only = True
525
+
526
+ # Intermediate data (data in CPU before going to GPU) for
527
+ # the current sequence group.
528
+ self.inter_data_list: List[
529
+ ModelInputForGPUBuilder.InterDataForSeqGroup] = []
530
+
531
+ self.attn_metadata_builder.prepare()
532
+
533
+ def _compute_lens(self, inter_data: InterDataForSeqGroup, seq_idx: int,
534
+ seq_group_metadata: SequenceGroupMetadata):
535
+ """Compute context length, sequence length and tokens
536
+ for the given sequence data.
537
+ """
538
+ seq_data = seq_group_metadata.seq_data[inter_data.seq_ids[seq_idx]]
539
+ token_chunk_size = seq_group_metadata.token_chunk_size
540
+
541
+ # Compute context length (the number of tokens that are
542
+ # already computed) and sequence length (total number of tokens).
543
+
544
+ seq_len = seq_data.get_len()
545
+ if inter_data.is_prompt:
546
+ context_len = seq_data.get_num_computed_tokens()
547
+ seq_len = min(seq_len, context_len + token_chunk_size)
548
+ elif self.runner.scheduler_config.is_multi_step or \
549
+ self.runner.model_config.is_encoder_decoder:
550
+ context_len = seq_len - 1
551
+ else:
552
+ context_len = seq_data.get_num_computed_tokens()
553
+
554
+ # Compute tokens.
555
+ if seq_data.prompt_embeds is None:
556
+ tokens = seq_data.get_token_ids()[context_len:seq_len]
557
+ prompt_embeds = None
558
+ else:
559
+ tokens = [0] * (seq_len - context_len)
560
+ prompt_embeds = seq_data.get_token_embeddings(
561
+ )[context_len:seq_len]
562
+
563
+ token_types = seq_group_metadata.token_type_ids
564
+
565
+ inter_data.seq_lens[seq_idx] = seq_len
566
+ inter_data.orig_seq_lens[seq_idx] = seq_len
567
+ inter_data.prompt_lens[seq_idx] = seq_data.get_prompt_len()
568
+ inter_data.context_lens[seq_idx] = context_len
569
+ inter_data.input_tokens[seq_idx].extend(tokens)
570
+ inter_data.inputs_embeds = prompt_embeds
571
+ inter_data.input_positions[seq_idx].extend(range(context_len, seq_len))
572
+ inter_data.token_types[seq_idx].extend(
573
+ token_types if token_types else [])
574
+ inter_data.query_lens[seq_idx] = seq_len - context_len
575
+
576
+ if seq_data.mrope_position_delta is not None:
577
+ if inter_data.mrope_input_positions is None:
578
+ inter_data.mrope_input_positions = [None] * inter_data.n_seqs
579
+
580
+ inter_data.mrope_input_positions[
581
+ seq_idx] = MRotaryEmbedding.get_next_input_positions(
582
+ seq_data.mrope_position_delta,
583
+ context_len,
584
+ seq_len,
585
+ )
586
+
587
+ def _compute_for_prefix_cache_hit(
588
+ self, inter_data: InterDataForSeqGroup, seq_idx: int,
589
+ seq_group_metadata: SequenceGroupMetadata):
590
+ """Check if hit prefix cache (i.e., some blocks are already computed).
591
+ If hit, update input tokens and positions to only compute the
592
+ remaining blocks.
593
+ """
594
+ computed_block_nums = inter_data.computed_block_nums
595
+
596
+ # Note that prefix caching does not support sliding window.
597
+ prefix_cache_hit = (computed_block_nums is not None
598
+ and len(computed_block_nums) > 0
599
+ and self.sliding_window is None
600
+ and inter_data.is_prompt)
601
+ inter_data.prefix_cache_hit = prefix_cache_hit
602
+
603
+ if not prefix_cache_hit:
604
+ return
605
+
606
+ assert computed_block_nums is not None
607
+ # The cache hit prompt tokens in this sequence. Note that
608
+ # this may be larger than the sequence length if chunked
609
+ # prefill is enabled.
610
+ prefix_cache_len = len(computed_block_nums) * self.block_size
611
+ seq_group_metadata.seq_data[inter_data.seq_ids[
612
+ seq_idx]].update_num_cached_tokens(prefix_cache_len)
613
+
614
+ # The number of so far computed prompt tokens in this sequence.
615
+ context_len = inter_data.context_lens[seq_idx]
616
+ # The total number of prompt tokens in this sequence.
617
+ # When chunked prefill is enabled, this is the token number of
618
+ # computed chunks + current chunk.
619
+ seq_len = inter_data.seq_lens[seq_idx]
620
+ if prefix_cache_len <= context_len:
621
+ # We already passed the cache hit region,
622
+ # so do normal computation.
623
+ pass
624
+ elif context_len < prefix_cache_len < seq_len:
625
+ # Partial hit. Compute the missing part.
626
+ uncomputed_start = prefix_cache_len - context_len
627
+ inter_data.input_tokens[seq_idx] = inter_data.input_tokens[
628
+ seq_idx][uncomputed_start:]
629
+ inter_data.input_positions[seq_idx] = inter_data.input_positions[
630
+ seq_idx][uncomputed_start:]
631
+ inter_data.token_types[seq_idx] = inter_data.token_types[seq_idx][
632
+ uncomputed_start:]
633
+ context_len = prefix_cache_len
634
+
635
+ inter_data.context_lens[seq_idx] = context_len
636
+ inter_data.query_lens[
637
+ seq_idx] = inter_data.seq_lens[seq_idx] - context_len
638
+ elif seq_len <= prefix_cache_len:
639
+ # Full hit. Only compute the last token to avoid
640
+ # erroneous behavior. FIXME: Ideally we should directly
641
+ # mark all tokens as computed in the scheduler and do not
642
+ # schedule this sequence, so this case should not happen.
643
+ inter_data.input_tokens[seq_idx] = inter_data.input_tokens[
644
+ seq_idx][-1:]
645
+ inter_data.input_positions[seq_idx] = inter_data.input_positions[
646
+ seq_idx][-1:]
647
+ inter_data.token_types[seq_idx] = inter_data.token_types[seq_idx][
648
+ -1:]
649
+ inter_data.query_lens[seq_idx] = 1
650
+ inter_data.context_lens[seq_idx] = inter_data.seq_lens[seq_idx] - 1
651
+
652
+ def _compute_for_sliding_window(self, inter_data: InterDataForSeqGroup,
653
+ seq_idx: int,
654
+ seq_group_metadata: SequenceGroupMetadata):
655
+ """Update seq_len and curr_sliding_window_block for the given
656
+ sequence data (only required by decoding) if sliding window is enabled.
657
+ """
658
+ curr_sliding_window_block = 0
659
+ sliding_seq_len = inter_data.seq_lens[seq_idx]
660
+ if not inter_data.is_prompt and self.sliding_window is not None:
661
+ # TODO(sang): This is a hack to make sliding window work with
662
+ # paged attn. We can remove it if we make paged attn kernel
663
+ # to properly handle slinding window attn.
664
+ curr_sliding_window_block = self.sliding_window_blocks
665
+ # number of elements in last block
666
+ suff_len = inter_data.seq_lens[seq_idx] % self.block_size
667
+ sliding_seq_len = min(inter_data.seq_lens[seq_idx],
668
+ self.block_aligned_sliding_window + suff_len)
669
+ if suff_len > 0:
670
+ curr_sliding_window_block += 1
671
+
672
+ inter_data.curr_sliding_window_blocks[
673
+ seq_idx] = curr_sliding_window_block
674
+ inter_data.seq_lens[seq_idx] = sliding_seq_len
675
+
676
+ def _compute_lora_input(self, inter_data: InterDataForSeqGroup,
677
+ seq_idx: int,
678
+ seq_group_metadata: SequenceGroupMetadata):
679
+ """If LoRA is enabled, compute LoRA index and prompt mapping."""
680
+ if not self.enable_lora:
681
+ return
682
+
683
+ lora_id = seq_group_metadata.lora_int_id
684
+ if lora_id > 0:
685
+ inter_data.lora_requests.add(seq_group_metadata.lora_request)
686
+ query_len = inter_data.query_lens[seq_idx]
687
+ inter_data.lora_index_mapping.append([lora_id] * query_len)
688
+ sampling_params = seq_group_metadata.sampling_params
689
+ if sampling_params and sampling_params.prompt_logprobs is not None:
690
+ inter_data.lora_prompt_mapping.append([lora_id] * query_len)
691
+ elif not self.chunked_prefill_enabled or seq_group_metadata.do_sample:
692
+ inter_data.lora_prompt_mapping.append([lora_id])
693
+ else:
694
+ inter_data.lora_prompt_mapping.append([])
695
+
696
+ def _compute_prompt_adapter_input(
697
+ self, inter_data: InterDataForSeqGroup,
698
+ seq_group_metadata: SequenceGroupMetadata):
699
+ """If prompt adapter is enabled, compute index and prompt mapping.
700
+ """
701
+ # Note that when is_prompt=True, we expect only one sequence
702
+ # in the group.
703
+ if not self.enable_prompt_adapter:
704
+ return
705
+
706
+ prompt_adapter_id = seq_group_metadata.prompt_adapter_id
707
+ if prompt_adapter_id <= 0 or not inter_data.is_prompt:
708
+ return
709
+
710
+ # We expect only one sequence in the group when is_prompt=True.
711
+ assert inter_data.n_seqs == 1
712
+ query_len = inter_data.query_lens[0]
713
+ inter_data.prompt_adapter_request = (
714
+ seq_group_metadata.prompt_adapter_request)
715
+
716
+ num_tokens = seq_group_metadata.prompt_adapter_num_virtual_tokens
717
+ inter_data.prompt_adapter_index_mapping = [
718
+ prompt_adapter_id
719
+ ] * num_tokens + [0] * (query_len - num_tokens)
720
+ inter_data.prompt_adapter_prompt_mapping = [prompt_adapter_id] * (
721
+ query_len if seq_group_metadata.sampling_params
722
+ and seq_group_metadata.sampling_params.prompt_logprobs else 1)
723
+
724
+ def _compute_multi_modal_input(self, inter_data: InterDataForSeqGroup,
725
+ seq_group_metadata: SequenceGroupMetadata):
726
+ """If multi-modal data is given, add it to the input."""
727
+ # NOTE: mm_kwargs only includes the subset of multi-modal items that
728
+ # intersect with the current prefill positions.
729
+ positions = inter_data.input_positions[0]
730
+ mm_kwargs, placeholder_maps = MultiModalPlaceholderMap.from_seq_group(
731
+ seq_group_metadata,
732
+ range(positions[0], positions[0] + len(positions)))
733
+
734
+ # M-RoPE requires mrope_positions even for plain text; return early
735
+ # when mm_kwargs is empty only if inter_data.is_prompt is False.
736
+ if not mm_kwargs and not inter_data.is_prompt:
737
+ return
738
+
739
+ inter_data.multi_modal_kwargs = mm_kwargs
740
+ inter_data.multi_modal_placeholder_maps = placeholder_maps
741
+
742
+ # special processing for mrope position deltas.
743
+ if self.runner.model_config.uses_mrope:
744
+ image_grid_thw = mm_kwargs.get("image_grid_thw", None)
745
+ video_grid_thw = mm_kwargs.get("video_grid_thw", None)
746
+ audio_feature_lengths = mm_kwargs.get("audio_feature_lengths",
747
+ None)
748
+
749
+ second_per_grid_ts = mm_kwargs.get("second_per_grid_ts", None)
750
+ use_audio_in_video = mm_kwargs.get("use_audio_in_video", False)
751
+ hf_config = self.runner.model_config.hf_config
752
+
753
+ inter_data.mrope_input_positions = [None] * inter_data.n_seqs
754
+ for seq_idx in range(inter_data.n_seqs):
755
+ seq_data = seq_group_metadata.seq_data[
756
+ inter_data.seq_ids[seq_idx]]
757
+ token_ids = seq_data.get_token_ids()
758
+
759
+ mrope_input_positions, mrope_position_delta = \
760
+ MRotaryEmbedding.get_input_positions(
761
+ token_ids,
762
+ hf_config=hf_config,
763
+ image_grid_thw=image_grid_thw,
764
+ video_grid_thw=video_grid_thw,
765
+ second_per_grid_ts=second_per_grid_ts,
766
+ context_len=inter_data.context_lens[seq_idx],
767
+ seq_len=inter_data.seq_lens[seq_idx],
768
+ audio_feature_lengths=audio_feature_lengths,
769
+ use_audio_in_video=use_audio_in_video,
770
+ )
771
+
772
+ seq_data.mrope_position_delta = mrope_position_delta
773
+ inter_data.mrope_input_positions[
774
+ seq_idx] = mrope_input_positions
775
+
776
+ def add_seq_group(self, seq_group_metadata: SequenceGroupMetadata):
777
+ """Add a sequence group to the builder."""
778
+ seq_ids = seq_group_metadata.seq_data.keys()
779
+ n_seqs = len(seq_ids)
780
+ is_prompt = seq_group_metadata.is_prompt
781
+
782
+ if is_prompt:
783
+ assert n_seqs == 1
784
+ self.decode_only = False
785
+
786
+ encoder_seq_len = 0
787
+
788
+ if self.runner.model_config.is_encoder_decoder:
789
+ encoder_seq_len = seq_group_metadata.encoder_seq_data.get_len()
790
+
791
+ inter_data = self.init_cached_inter_data(
792
+ request_id=seq_group_metadata.request_id,
793
+ seq_ids=seq_ids,
794
+ is_prompt=is_prompt,
795
+ block_tables=seq_group_metadata.block_tables,
796
+ computed_block_nums=seq_group_metadata.computed_block_nums,
797
+ reinit=True,
798
+ reinit_use_defaults=True,
799
+ encoder_seq_len=encoder_seq_len)
800
+
801
+ self.inter_data_list.append(inter_data)
802
+
803
+ for seq_idx in range(n_seqs):
804
+ for per_seq_fn in self.per_seq_compute_fns:
805
+ per_seq_fn(inter_data, seq_idx, seq_group_metadata)
806
+ for per_seq_group_fn in self.per_seq_group_compute_fns:
807
+ per_seq_group_fn(inter_data, seq_group_metadata)
808
+
809
+ def _use_captured_graph(self,
810
+ batch_size: int,
811
+ decode_only: bool,
812
+ max_decode_seq_len: int,
813
+ max_encoder_seq_len: int = 0) -> bool:
814
+ return (decode_only and not self.runner.model_config.enforce_eager
815
+ and max_decode_seq_len <= self.runner.max_seq_len_to_capture
816
+ and max_encoder_seq_len <= self.runner.max_seq_len_to_capture
817
+ and batch_size <= self.runner.max_batchsize_to_capture)
818
+
819
+ def _get_cuda_graph_pad_size(self,
820
+ num_seqs: int,
821
+ max_decode_seq_len: int,
822
+ max_encoder_seq_len: int = 0) -> int:
823
+ """
824
+ Determine the number of padding sequences required for running in
825
+ CUDA graph mode. Returns -1 if CUDA graphs cannot be used.
826
+
827
+ In the multi-step + chunked-prefill case, only the first step
828
+ has Prefills (if any). The rest of the steps are guaranteed to be all
829
+ decodes. In this case, we set up the padding as if all the sequences
830
+ are decodes so we may run all steps except the first step in CUDA graph
831
+ mode. The padding is accounted for in the multi-step `advance_step`
832
+ family of functions.
833
+
834
+ Args:
835
+ num_seqs (int): Number of sequences scheduled to run.
836
+ max_decode_seq_len (int): Greatest of all the decode sequence
837
+ lengths. Used only in checking the viablility of using
838
+ CUDA graphs.
839
+ max_encoder_seq_len (int, optional): Greatest of all the encode
840
+ sequence lengths. Defaults to 0. Used only in checking the
841
+ viability of using CUDA graphs.
842
+ Returns:
843
+ int: Returns the determined number of padding sequences. If
844
+ CUDA graphs is not viable, returns -1.
845
+ """
846
+ is_mscp: bool = self.runner.scheduler_config.is_multi_step and \
847
+ self.runner.scheduler_config.chunked_prefill_enabled
848
+ decode_only = self.decode_only or is_mscp
849
+ if not decode_only:
850
+ # Early exit so we can treat num_seqs as the batch_size below.
851
+ return -1
852
+
853
+ # batch_size out of this function refers to the number of input
854
+ # tokens being scheduled. This conflation of num_seqs as batch_size
855
+ # is valid as this is a decode-only case.
856
+ batch_size = num_seqs
857
+ if not self._use_captured_graph(batch_size, decode_only,
858
+ max_decode_seq_len,
859
+ max_encoder_seq_len):
860
+ return -1
861
+
862
+ graph_batch_size = self.runner.vllm_config.pad_for_cudagraph(
863
+ batch_size)
864
+ assert graph_batch_size >= batch_size
865
+ return graph_batch_size - batch_size
866
+
867
+ def build(self) -> ModelInputForGPU:
868
+ """Finalize the builder intermediate data and
869
+ create on-device tensors.
870
+ """
871
+ # Combine and flatten intermediate data.
872
+ input_tokens = list[int]()
873
+ inputs_embeds_list = list[torch.Tensor]()
874
+ token_types = list[int]()
875
+ for inter_data in self.inter_data_list:
876
+ for cur_input_tokens in inter_data.input_tokens:
877
+ input_tokens.extend(cur_input_tokens)
878
+ for cur_token_types in inter_data.token_types:
879
+ token_types.extend(cur_token_types)
880
+ if inter_data.inputs_embeds is not None:
881
+ inputs_embeds_list.append(
882
+ inter_data.inputs_embeds.to(
883
+ dtype=self.runner.model_config.dtype,
884
+ device=self.runner.device))
885
+ inputs_embeds: Optional[torch.Tensor]
886
+ if len(inputs_embeds_list) == 0:
887
+ inputs_embeds = None
888
+ else:
889
+ inputs_embeds = torch.cat(inputs_embeds_list, dim=0).to(
890
+ dtype=self.runner.model_config.dtype,
891
+ device=self.runner.device)
892
+ assert len(inputs_embeds) == len(input_tokens)
893
+
894
+ if not input_tokens and inputs_embeds is None:
895
+ # This may happen when all prefill requests hit
896
+ # prefix caching and there is no decode request.
897
+ return self.model_input_cls()
898
+
899
+ mrope_input_positions: Optional[List[List[int]]] = None
900
+ if any(inter_data.mrope_input_positions is not None
901
+ for inter_data in self.inter_data_list):
902
+ mrope_input_positions = [[] for _ in range(3)]
903
+ for idx in range(3):
904
+ for inter_data in self.inter_data_list:
905
+ msections = inter_data.mrope_input_positions
906
+ if msections is None:
907
+ for _seq_input_positions in inter_data.input_positions:
908
+ mrope_input_positions[idx].extend(
909
+ _seq_input_positions)
910
+ else:
911
+ for _seq_mrope_input_positions in msections:
912
+ mrope_input_positions[idx].extend(
913
+ _seq_mrope_input_positions[idx])
914
+ input_positions = None
915
+ else:
916
+ input_positions = []
917
+ for inter_data in self.inter_data_list:
918
+ for cur_input_positions in inter_data.input_positions:
919
+ input_positions.extend(cur_input_positions)
920
+
921
+ seq_lens = []
922
+ query_lens = []
923
+ max_decode_seq_len = 0
924
+ max_encoder_seq_len = 0
925
+ for inter_data in self.inter_data_list:
926
+ seq_lens.extend(inter_data.seq_lens)
927
+ query_lens.extend(inter_data.query_lens)
928
+ if not inter_data.is_prompt:
929
+ max_decode_seq_len = max(max_decode_seq_len,
930
+ max(inter_data.seq_lens))
931
+ if self.runner.model_config.is_encoder_decoder:
932
+ max_encoder_seq_len = max(max_encoder_seq_len,
933
+ inter_data.encoder_seq_len)
934
+
935
+ # Mapping from request IDs to sequence IDs. Used for Jamba models
936
+ # that manages the cache by itself.
937
+ request_ids_to_seq_ids = {
938
+ data.request_id: data.seq_ids
939
+ for data in self.inter_data_list
940
+ }
941
+
942
+ cuda_graph_pad_size = self._get_cuda_graph_pad_size(
943
+ num_seqs=len(seq_lens),
944
+ max_decode_seq_len=max_decode_seq_len,
945
+ max_encoder_seq_len=max_encoder_seq_len)
946
+
947
+ batch_size = len(input_tokens)
948
+ if cuda_graph_pad_size != -1:
949
+ # If cuda graph can be used, pad tensors accordingly.
950
+ # See `capture_model` API for more details.
951
+ # vLLM uses cuda graph only for decoding requests.
952
+ batch_size += cuda_graph_pad_size
953
+
954
+ # Tokens and positions.
955
+ if cuda_graph_pad_size:
956
+ input_tokens.extend(itertools.repeat(0, cuda_graph_pad_size))
957
+ assert self.runner.device is not None
958
+ input_tokens_tensor = async_tensor_h2d(input_tokens, torch.long,
959
+ self.runner.device,
960
+ self.runner.pin_memory)
961
+
962
+ token_types_tensor = async_tensor_h2d(token_types, torch.long,
963
+ self.runner.device,
964
+ self.runner.pin_memory) \
965
+ if token_types else None
966
+
967
+ if mrope_input_positions is not None:
968
+ for idx in range(3):
969
+ mrope_input_positions[idx].extend(
970
+ itertools.repeat(0, cuda_graph_pad_size))
971
+ input_positions_tensor = async_tensor_h2d(mrope_input_positions,
972
+ torch.long,
973
+ self.runner.device,
974
+ self.runner.pin_memory)
975
+ else:
976
+ input_positions.extend(itertools.repeat(0, cuda_graph_pad_size))
977
+ input_positions_tensor = async_tensor_h2d(input_positions,
978
+ torch.long,
979
+ self.runner.device,
980
+ self.runner.pin_memory)
981
+ # Sequence and query lengths.
982
+ if cuda_graph_pad_size:
983
+ seq_lens.extend(itertools.repeat(1, cuda_graph_pad_size))
984
+
985
+ # Attention metadata.
986
+ attn_metadata = self.attn_metadata_builder.build(
987
+ seq_lens, query_lens, cuda_graph_pad_size, batch_size)
988
+
989
+ # LoRA data.
990
+ lora_requests = set()
991
+ lora_mapping = None
992
+ if self.enable_lora:
993
+ lora_requests = set(r for data in self.inter_data_list
994
+ for r in data.lora_requests)
995
+ lora_index_mapping = flatten_2d_lists([
996
+ flatten_2d_lists(inter_data.lora_index_mapping)
997
+ for inter_data in self.inter_data_list
998
+ ])
999
+ if cuda_graph_pad_size:
1000
+ lora_index_mapping.extend(
1001
+ itertools.repeat(0, cuda_graph_pad_size))
1002
+ lora_prompt_mapping = flatten_2d_lists([
1003
+ flatten_2d_lists(inter_data.lora_prompt_mapping)
1004
+ for inter_data in self.inter_data_list
1005
+ ])
1006
+
1007
+ lora_mapping = LoRAMapping(
1008
+ **dict(index_mapping=lora_index_mapping,
1009
+ prompt_mapping=lora_prompt_mapping,
1010
+ is_prefill=not self.decode_only))
1011
+
1012
+ # Prompt adapter data.
1013
+ prompt_adapter_requests: Set[PromptAdapterRequest] = set()
1014
+ prompt_adapter_mapping = None
1015
+ if self.enable_prompt_adapter:
1016
+ prompt_adapter_requests = set(
1017
+ data.prompt_adapter_request for data in self.inter_data_list
1018
+ if data.prompt_adapter_request is not None)
1019
+ prompt_adapter_index_mapping = flatten_2d_lists([
1020
+ inter_data.prompt_adapter_index_mapping
1021
+ for inter_data in self.inter_data_list
1022
+ ])
1023
+ if cuda_graph_pad_size:
1024
+ prompt_adapter_index_mapping.extend(
1025
+ itertools.repeat(0, cuda_graph_pad_size))
1026
+ prompt_adapter_prompt_mapping = flatten_2d_lists([
1027
+ inter_data.prompt_adapter_prompt_mapping
1028
+ for inter_data in self.inter_data_list
1029
+ ])
1030
+ prompt_adapter_mapping = PromptAdapterMapping(
1031
+ prompt_adapter_index_mapping,
1032
+ prompt_adapter_prompt_mapping,
1033
+ )
1034
+
1035
+ # Multi-modal data.
1036
+ multi_modal_kwargs_list = [
1037
+ data.multi_modal_kwargs for data in self.inter_data_list
1038
+ if data.multi_modal_kwargs is not None
1039
+ ]
1040
+ multi_modal_kwargs = MultiModalKwargs.batch(multi_modal_kwargs_list)
1041
+
1042
+ return self.model_input_cls(
1043
+ input_tokens=input_tokens_tensor,
1044
+ inputs_embeds=inputs_embeds,
1045
+ input_positions=input_positions_tensor,
1046
+ token_types=token_types_tensor,
1047
+ attn_metadata=attn_metadata,
1048
+ seq_lens=seq_lens,
1049
+ query_lens=query_lens,
1050
+ lora_mapping=lora_mapping,
1051
+ lora_requests=lora_requests,
1052
+ multi_modal_kwargs=multi_modal_kwargs,
1053
+ request_ids_to_seq_ids=request_ids_to_seq_ids,
1054
+ finished_requests_ids=self.finished_requests_ids,
1055
+ prompt_adapter_mapping=prompt_adapter_mapping,
1056
+ prompt_adapter_requests=prompt_adapter_requests)
1057
+
1058
+
1059
+ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
1060
+ """
1061
+ Helper class for shared methods between GPU model runners.
1062
+ """
1063
+ _model_input_cls: Type[TModelInputForGPU]
1064
+ _builder_cls: Type[ModelInputForGPUBuilder]
1065
+ builder: ModelInputForGPUBuilder
1066
+
1067
+ def __init__(
1068
+ self,
1069
+ vllm_config: VllmConfig,
1070
+ kv_cache_dtype: Optional[str] = "auto",
1071
+ is_driver_worker: bool = False,
1072
+ return_hidden_states: bool = False,
1073
+ input_registry: InputRegistry = INPUT_REGISTRY,
1074
+ mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
1075
+ ):
1076
+
1077
+ ModelRunnerBase.__init__(self, vllm_config)
1078
+ model_config = self.model_config
1079
+ cache_config = self.cache_config
1080
+
1081
+ self.is_driver_worker = is_driver_worker
1082
+ self.return_hidden_states = return_hidden_states
1083
+
1084
+ self.device = self.device_config.device
1085
+ self.pin_memory = is_pin_memory_available()
1086
+
1087
+ self.kv_cache_dtype = kv_cache_dtype
1088
+ self.sliding_window = model_config.get_sliding_window()
1089
+ self.block_size = cache_config.block_size
1090
+ self.max_seq_len_to_capture = self.model_config.max_seq_len_to_capture
1091
+ self.max_batchsize_to_capture = \
1092
+ self.vllm_config.compilation_config.max_capture_size
1093
+
1094
+ #
1095
+ self.graph_runners: List[Dict[Tuple[int, bool], CUDAGraphRunner]] = [
1096
+ {} for _ in range(self.parallel_config.pipeline_parallel_size)
1097
+ ]
1098
+ self.graph_memory_pool: Optional[Tuple[
1099
+ int, int]] = None # Set during graph capture.
1100
+
1101
+ self.has_inner_state = model_config.has_inner_state
1102
+
1103
+ self.in_profile_run = False
1104
+
1105
+ # When using CUDA graph, the input block tables must be padded to
1106
+ # max_seq_len_to_capture. However, creating the block table in
1107
+ # Python can be expensive. To optimize this, we cache the block table
1108
+ # in numpy and only copy the actual input content at every iteration.
1109
+ # The shape of the cached block table will be
1110
+ # (max batch size to capture, max seq len to capture / block size).
1111
+ self.graph_block_tables = np.zeros(
1112
+ (self.max_batchsize_to_capture, self.get_max_block_per_batch()),
1113
+ dtype=np.int32)
1114
+
1115
+ # Attention-free but stateful models like Mamba need a placeholder attn
1116
+ # backend, as the attention metadata is needed to manage internal state.
1117
+ # However we must bypass attention selection altogether for some models
1118
+ # used for speculative decoding to avoid a divide-by-zero in
1119
+ # model_config.get_head_size()
1120
+ num_attn_heads = self.model_config.get_num_attention_heads(
1121
+ self.parallel_config)
1122
+ needs_attn_backend = (num_attn_heads != 0
1123
+ or self.model_config.is_attention_free)
1124
+
1125
+ self.attn_backend = get_attn_backend(
1126
+ self.model_config.get_head_size(),
1127
+ self.model_config.dtype,
1128
+ self.kv_cache_dtype,
1129
+ self.block_size,
1130
+ self.model_config.is_attention_free,
1131
+ use_mla=self.model_config.use_mla,
1132
+ ) if needs_attn_backend else None
1133
+ if self.attn_backend:
1134
+ self.attn_state = self.attn_backend.get_state_cls()(
1135
+ weakref.proxy(self))
1136
+ else:
1137
+ self.attn_state = CommonAttentionState(weakref.proxy(self))
1138
+
1139
+ # Multi-modal data support
1140
+ self.input_registry = input_registry
1141
+ self.mm_registry = mm_registry
1142
+
1143
+ # Lazy initialization
1144
+ self.model: nn.Module # Set after load_model
1145
+ # Set after load_model.
1146
+ self.lora_manager: Optional[LRUCacheWorkerLoRAManager] = None
1147
+ self.prompt_adapter_manager: LRUCacheWorkerPromptAdapterManager = None
1148
+ self.sampler = get_sampler()
1149
+
1150
+ set_cpu_offload_max_bytes(
1151
+ int(self.cache_config.cpu_offload_gb * 1024**3))
1152
+
1153
+ # Used to cache python objects
1154
+ self.inter_data_cache: Dict[int, PyObjectCache] = {}
1155
+
1156
+ # Using the PythonizationCache in Pipeline-Parallel clobbers the
1157
+ # SequenceGroupToSample object. In Pipeline-Parallel, we have
1158
+ # more than 1 Scheduler, resulting in a potential back-to-back
1159
+ # prepare_model_inputs() call. This clobbers the cached
1160
+ # SequenceGroupToSample objects, as we reset the cache during
1161
+ # every prepare_model_inputs() call.
1162
+ self.sampling_metadata_cache: SamplingMetadataCache = \
1163
+ SamplingMetadataCache() \
1164
+ if self.parallel_config.pipeline_parallel_size == 1 else None
1165
+
1166
+ if hasattr(self, "_builder_cls"):
1167
+ # multi-step model runner does not have `_builder_cls`
1168
+ self.builder = self._builder_cls(weakref.proxy(self))
1169
+
1170
+ def load_model(self) -> None:
1171
+ logger.info("Starting to load model %s...", self.model_config.model)
1172
+ with DeviceMemoryProfiler(self.device) as m:
1173
+ time_before_load = time.perf_counter()
1174
+ self.model = get_model(vllm_config=self.vllm_config)
1175
+ if self.lora_config:
1176
+ assert supports_lora(
1177
+ self.model
1178
+ ), f"{self.model.__class__.__name__} does not support LoRA yet."
1179
+
1180
+ if supports_multimodal(self.model):
1181
+ logger.warning(
1182
+ "Regarding multimodal models, vLLM currently "
1183
+ "only supports adding LoRA to language model.")
1184
+
1185
+ # Use get_text_config() in case of multimodal models
1186
+ text_config = self.model_config.hf_config.get_text_config()
1187
+
1188
+ self.lora_manager = LRUCacheWorkerLoRAManager(
1189
+ self.scheduler_config.max_num_seqs,
1190
+ self.scheduler_config.max_num_batched_tokens,
1191
+ self.vocab_size,
1192
+ self.lora_config,
1193
+ self.device,
1194
+ self.model.embedding_modules,
1195
+ self.model.embedding_padding_modules,
1196
+ max_position_embeddings=text_config.
1197
+ max_position_embeddings,
1198
+ )
1199
+ self.model = self.lora_manager.create_lora_manager(self.model)
1200
+ time_after_load = time.perf_counter()
1201
+
1202
+ self.model_memory_usage = m.consumed_memory
1203
+ logger.info("Model loading took %.4f GiB and %.6f seconds",
1204
+ self.model_memory_usage / GiB_bytes,
1205
+ time_after_load - time_before_load)
1206
+ if self.prompt_adapter_config:
1207
+ self.prompt_adapter_manager = LRUCacheWorkerPromptAdapterManager(
1208
+ self.scheduler_config.max_num_seqs,
1209
+ self.scheduler_config.max_num_batched_tokens, self.device,
1210
+ self.prompt_adapter_config)
1211
+ self.model = (
1212
+ self.prompt_adapter_manager.create_prompt_adapter_manager(
1213
+ self.model))
1214
+
1215
+ if self.vllm_config.compilation_config.level ==\
1216
+ CompilationLevel.DYNAMO_AS_IS and supports_dynamo():
1217
+ backend = self.vllm_config.compilation_config.init_backend(
1218
+ self.vllm_config)
1219
+ self.model = torch.compile(
1220
+ self.model,
1221
+ fullgraph=envs.VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE,
1222
+ backend=backend)
1223
+
1224
+ def get_model(self) -> nn.Module:
1225
+ return self.model
1226
+
1227
+ def save_sharded_state(
1228
+ self,
1229
+ path: str,
1230
+ pattern: Optional[str] = None,
1231
+ max_size: Optional[int] = None,
1232
+ ) -> None:
1233
+ from vllm.model_executor.model_loader import ShardedStateLoader
1234
+ ShardedStateLoader.save_model(
1235
+ self.model,
1236
+ path,
1237
+ pattern=pattern,
1238
+ max_size=max_size,
1239
+ )
1240
+
1241
+ def save_tensorized_model(
1242
+ self,
1243
+ tensorizer_config: TensorizerConfig,
1244
+ ) -> None:
1245
+ from vllm.model_executor.model_loader import TensorizerLoader
1246
+ TensorizerLoader.save_model(
1247
+ self.model,
1248
+ tensorizer_config=tensorizer_config,
1249
+ )
1250
+
1251
+ def get_max_block_per_batch(self) -> int:
1252
+ block_size = self.block_size
1253
+ return (self.max_seq_len_to_capture + block_size - 1) // block_size
1254
+
1255
+ def _prepare_model_input_tensors(
1256
+ self,
1257
+ seq_group_metadata_list: List[SequenceGroupMetadata],
1258
+ finished_requests_ids: Optional[List[str]] = None
1259
+ ) -> TModelInputForGPU:
1260
+ """Helper method to prepare the model input based on a given sequence
1261
+ group. Prepares metadata needed for the base model forward pass but not
1262
+ metadata for possible additional steps, e.g., sampling.
1263
+
1264
+ The API assumes seq_group_metadata_list is sorted by prefill -> decode.
1265
+
1266
+ The result tensors and data structure also batches input in prefill
1267
+ -> decode order. For example,
1268
+
1269
+ - input_tokens[:num_prefill_tokens] contains prefill tokens.
1270
+ - input_tokens[num_prefill_tokens:] contains decode tokens.
1271
+
1272
+ If cuda graph is required, this API automatically pads inputs.
1273
+ """
1274
+ self.builder.prepare(finished_requests_ids)
1275
+ for seq_group_metadata in seq_group_metadata_list:
1276
+ try:
1277
+ self.builder.add_seq_group(seq_group_metadata)
1278
+ except Exception as e:
1279
+ # Raise an exception that tracks the ID of the bad request
1280
+ raise InputProcessingError(seq_group_metadata.request_id,
1281
+ str(e)) from e
1282
+
1283
+ self.builder.reset_cached_inter_data()
1284
+
1285
+ return self.builder.build() # type: ignore
1286
+
1287
+ @contextmanager
1288
+ def set_in_profile_run(self):
1289
+ self.in_profile_run = True
1290
+ try:
1291
+ yield
1292
+ finally:
1293
+ self.in_profile_run = False
1294
+
1295
+ @torch.inference_mode()
1296
+ def profile_run(self) -> None:
1297
+ max_num_batched_tokens = \
1298
+ self.scheduler_config.max_num_batched_tokens
1299
+ max_num_seqs = self.scheduler_config.max_num_seqs
1300
+ self._dummy_run(max_num_batched_tokens, max_num_seqs)
1301
+
1302
+ def _add_dummy_loras(self, num_loras: int) -> list[LoRARequest]:
1303
+ assert num_loras > 0
1304
+ assert self.lora_manager is not None
1305
+
1306
+ dummy_lora_requests: list[LoRARequest] = []
1307
+ with self.lora_manager.dummy_lora_cache():
1308
+ for idx in range(num_loras):
1309
+ lora_id = idx + 1
1310
+ dummy_lora_request = LoRARequest(
1311
+ lora_name=f"warmup_{lora_id}",
1312
+ lora_int_id=lora_id,
1313
+ lora_path="/not/a/real/path",
1314
+ )
1315
+ self.lora_manager.add_dummy_lora(dummy_lora_request,
1316
+ rank=LORA_WARMUP_RANK)
1317
+ dummy_lora_requests.append(dummy_lora_request)
1318
+ return dummy_lora_requests
1319
+
1320
+ def _remove_dummy_loras(self):
1321
+ # Remove dummy loras.
1322
+ assert self.lora_manager is not None
1323
+ self.remove_all_loras()
1324
+
1325
+ def _dummy_run(self,
1326
+ max_num_batched_tokens: int,
1327
+ max_num_seqs: int = 1) -> None:
1328
+ with self.set_in_profile_run():
1329
+ # Enable top-k sampling to reflect the accurate memory usage.
1330
+ sampling_params = \
1331
+ SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
1332
+
1333
+ # This represents the maximum number of different requests
1334
+ # that will have unique loras, and therefore the max amount of
1335
+ # memory consumption. Create dummy lora request copies from the
1336
+ # lora request passed in, which contains a lora from the lora
1337
+ # warmup path.
1338
+ dummy_lora_requests: List[LoRARequest] = []
1339
+ dummy_lora_requests_per_seq: List[LoRARequest] = []
1340
+ if self.lora_config:
1341
+ dummy_lora_requests = self._add_dummy_loras(
1342
+ self.lora_config.max_loras)
1343
+ assert len(dummy_lora_requests) == self.lora_config.max_loras
1344
+ dummy_lora_requests_per_seq = [
1345
+ dummy_lora_requests[idx % len(dummy_lora_requests)]
1346
+ for idx in range(max_num_seqs)
1347
+ ]
1348
+
1349
+ # Profile memory usage with max_num_sequences sequences and the
1350
+ # total number of tokens equal to max_num_batched_tokens.
1351
+ seqs: List[SequenceGroupMetadata] = []
1352
+ # Additional GPU memory may be needed for multi-modal encoding,
1353
+ # which needs to be accounted for when calculating the GPU blocks
1354
+ # for vLLM blocker manager.
1355
+ # To exercise the worst scenario for GPU memory consumption,
1356
+ # the number of seqs (batch_size) is chosen to maximize the number
1357
+ # of images processed.
1358
+
1359
+ max_mm_tokens = self.mm_registry.get_max_multimodal_tokens(
1360
+ self.model_config)
1361
+ if max_mm_tokens > 0:
1362
+ max_num_seqs_orig = max_num_seqs
1363
+ max_num_seqs = min(max_num_seqs,
1364
+ max_num_batched_tokens // max_mm_tokens)
1365
+ if max_num_seqs < 1:
1366
+ expr = (f"min({max_num_seqs_orig}, "
1367
+ f"{max_num_batched_tokens} // {max_mm_tokens})")
1368
+ logger.warning(
1369
+ "Computed max_num_seqs (%s) to be less than 1. "
1370
+ "Setting it to the minimum value of 1.", expr)
1371
+ max_num_seqs = 1
1372
+
1373
+ batch_size = 0
1374
+ for group_id in range(max_num_seqs):
1375
+ seq_len = (max_num_batched_tokens // max_num_seqs +
1376
+ (group_id < max_num_batched_tokens % max_num_seqs))
1377
+ batch_size += seq_len
1378
+
1379
+ dummy_data = self.input_registry \
1380
+ .dummy_data_for_profiling(self.model_config,
1381
+ seq_len,
1382
+ self.mm_registry)
1383
+
1384
+ seq = SequenceGroupMetadata(
1385
+ request_id=str(group_id),
1386
+ is_prompt=True,
1387
+ seq_data={group_id: dummy_data.seq_data},
1388
+ sampling_params=sampling_params,
1389
+ block_tables=None,
1390
+ lora_request=dummy_lora_requests_per_seq[group_id]
1391
+ if dummy_lora_requests_per_seq else None,
1392
+ multi_modal_data=dummy_data.multi_modal_data,
1393
+ multi_modal_placeholders=dummy_data.
1394
+ multi_modal_placeholders,
1395
+ )
1396
+ seqs.append(seq)
1397
+
1398
+ # Run the model with the dummy inputs.
1399
+ num_layers = self.model_config.get_num_layers(self.parallel_config)
1400
+ # use an empty tensor instead of `None`` to force Dynamo to pass
1401
+ # it by reference, rather by specializing on the value ``None``.
1402
+ # the `dtype` argument does not matter, and we use `float32` as
1403
+ # a placeholder (it has wide hardware support).
1404
+ # it is important to create tensors inside the loop, rather than
1405
+ # multiplying the list, to avoid Dynamo from treating them as
1406
+ # tensor aliasing.
1407
+ kv_caches = [
1408
+ torch.tensor([], dtype=torch.float32, device=self.device)
1409
+ for _ in range(num_layers)
1410
+ ]
1411
+ finished_requests_ids = [seq.request_id for seq in seqs]
1412
+ model_input = self.prepare_model_input(
1413
+ seqs, finished_requests_ids=finished_requests_ids)
1414
+ intermediate_tensors = None
1415
+ if not get_pp_group().is_first_rank:
1416
+ intermediate_tensors = \
1417
+ self.model.make_empty_intermediate_tensors(
1418
+ batch_size=batch_size,
1419
+ dtype=self.model_config.dtype,
1420
+ device=self.device)
1421
+
1422
+ # Disable KV Scale Calculation for dummy data during profile run
1423
+ if model_input.attn_metadata is not None:
1424
+ model_input.attn_metadata.enable_kv_scales_calculation = False
1425
+
1426
+ self.execute_model(model_input, kv_caches, intermediate_tensors)
1427
+ torch.cuda.synchronize()
1428
+ if self.lora_config:
1429
+ self._remove_dummy_loras()
1430
+
1431
+ return
1432
+
1433
+ def remove_all_loras(self):
1434
+ if not self.lora_manager:
1435
+ raise RuntimeError("LoRA is not enabled.")
1436
+ self.lora_manager.remove_all_adapters()
1437
+
1438
+ def set_active_loras(self, lora_requests: Set[LoRARequest],
1439
+ lora_mapping: LoRAMapping) -> None:
1440
+ if not self.lora_manager:
1441
+ raise RuntimeError("LoRA is not enabled.")
1442
+ self.lora_manager.set_active_adapters(lora_requests, lora_mapping)
1443
+
1444
+ def add_lora(self, lora_request: LoRARequest) -> bool:
1445
+ if not self.lora_manager:
1446
+ raise RuntimeError("LoRA is not enabled.")
1447
+ return self.lora_manager.add_adapter(lora_request)
1448
+
1449
+ def remove_lora(self, lora_id: int) -> bool:
1450
+ if not self.lora_manager:
1451
+ raise RuntimeError("LoRA is not enabled.")
1452
+ return self.lora_manager.remove_adapter(lora_id)
1453
+
1454
+ def pin_lora(self, lora_id: int) -> bool:
1455
+ if not self.lora_manager:
1456
+ raise RuntimeError("LoRA is not enabled.")
1457
+ return self.lora_manager.pin_adapter(lora_id)
1458
+
1459
+ def list_loras(self) -> Set[int]:
1460
+ if not self.lora_manager:
1461
+ raise RuntimeError("LoRA is not enabled.")
1462
+ return self.lora_manager.list_adapters()
1463
+
1464
+ def remove_all_prompt_adapters(self):
1465
+ if not self.prompt_adapter_manager:
1466
+ raise RuntimeError("PromptAdapter is not enabled.")
1467
+ self.prompt_adapter_manager.remove_all_adapters()
1468
+
1469
+ def set_active_prompt_adapters(
1470
+ self, prompt_adapter_requests: Set[PromptAdapterRequest],
1471
+ prompt_adapter_mapping: PromptAdapterMapping) -> None:
1472
+ if not self.prompt_adapter_manager:
1473
+ raise RuntimeError("PromptAdapter is not enabled.")
1474
+ self.prompt_adapter_manager.set_active_adapters(
1475
+ prompt_adapter_requests, prompt_adapter_mapping)
1476
+
1477
+ def add_prompt_adapter(
1478
+ self, prompt_adapter_request: PromptAdapterRequest) -> bool:
1479
+ if not self.prompt_adapter_manager:
1480
+ raise RuntimeError("PromptAdapter is not enabled.")
1481
+ return self.prompt_adapter_manager.add_adapter(prompt_adapter_request)
1482
+
1483
+ def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool:
1484
+ if not self.prompt_adapter_manager:
1485
+ raise RuntimeError("PromptAdapter is not enabled.")
1486
+ return self.prompt_adapter_manager.remove_adapter(prompt_adapter_id)
1487
+
1488
+ def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool:
1489
+ if not self.prompt_adapter_manager:
1490
+ raise RuntimeError("PromptAdapter is not enabled.")
1491
+ return self.prompt_adapter_manager.pin_adapter(prompt_adapter_id)
1492
+
1493
+ def list_prompt_adapters(self) -> Set[int]:
1494
+ if not self.prompt_adapter_manager:
1495
+ raise RuntimeError("PromptAdapter is not enabled.")
1496
+ return self.prompt_adapter_manager.list_adapters()
1497
+
1498
+ @torch.inference_mode()
1499
+ def capture_model(self, kv_caches: List[List[torch.Tensor]]) -> None:
1500
+ """Cuda graph capture a model.
1501
+
1502
+ Note that CUDA graph's performance gain is negligible if number
1503
+ of batched tokens are larger than 200. And since CUDA graph
1504
+ requires fixed sized tensors, supporting large/variable batch
1505
+ size requires high GPU memory overhead. Thus, vLLM only captures
1506
+ decoding requests. Mixed batch (chunked prefill + decoding) or
1507
+ prefill requests are not captured.
1508
+
1509
+ Since it is used for decoding-only, it assumes there's only 1 token
1510
+ per sequence in the batch.
1511
+ """
1512
+ assert not self.model_config.enforce_eager
1513
+ logger.info("Capturing cudagraphs for decoding. This may lead to "
1514
+ "unexpected consequences if the model is not static. To "
1515
+ "run the model in eager mode, set 'enforce_eager=True' or "
1516
+ "use '--enforce-eager' in the CLI. "
1517
+ "If out-of-memory error occurs during cudagraph capture,"
1518
+ " consider decreasing `gpu_memory_utilization` or "
1519
+ "switching to eager mode. You can also reduce the "
1520
+ "`max_num_seqs` as needed to decrease memory usage.")
1521
+ start_time = time.perf_counter()
1522
+ start_free_gpu_memory = torch.cuda.mem_get_info()[0]
1523
+
1524
+ # Prepare dummy inputs. These will be reused for all batch sizes.
1525
+ max_batch_size = self.max_batchsize_to_capture
1526
+ input_tokens = torch.zeros(max_batch_size,
1527
+ dtype=torch.long,
1528
+ device=self.device)
1529
+ input_positions = torch.zeros(max_batch_size,
1530
+ dtype=torch.long,
1531
+ device=self.device)
1532
+ inputs_embeds = torch.zeros(
1533
+ (max_batch_size, self.model_config.get_hidden_size()),
1534
+ dtype=self.model_config.dtype,
1535
+ device=self.device)
1536
+ if self.model_config.uses_mrope:
1537
+ input_positions = torch.tile(input_positions,
1538
+ (3, 1)).cuda(device=self.device)
1539
+ # Prepare dummy previous_hidden_states only if needed by the model.
1540
+ # This is used by draft models such as EAGLE.
1541
+ previous_hidden_states = None
1542
+ if "previous_hidden_states" in inspect.signature(
1543
+ self.model.forward).parameters:
1544
+ previous_hidden_states = torch.empty(
1545
+ [max_batch_size,
1546
+ self.model_config.get_hidden_size()],
1547
+ dtype=self.model_config.dtype,
1548
+ device=self.device)
1549
+
1550
+ intermediate_inputs = None
1551
+ if not get_pp_group().is_first_rank:
1552
+ intermediate_inputs = self.model.make_empty_intermediate_tensors(
1553
+ batch_size=max_batch_size,
1554
+ dtype=self.model_config.dtype,
1555
+ device=self.device)
1556
+
1557
+ dummy_lora_id: Optional[int] = None
1558
+ dummy_lora_request: LoRARequest = []
1559
+ if self.lora_config:
1560
+ # The goal is to capture the LoRA kernels in cuda graphs.
1561
+ # for this purpose, as single dummy lora is sufficient.
1562
+ dummy_lora_requests = self._add_dummy_loras(num_loras=1)
1563
+ assert len(dummy_lora_requests) == 1
1564
+ dummy_lora_request = dummy_lora_requests[0]
1565
+ dummy_lora_id = dummy_lora_request.lora_int_id
1566
+
1567
+ with self.attn_state.graph_capture(max_batch_size), graph_capture(
1568
+ self.device) as graph_capture_context:
1569
+ # NOTE: Capturing the largest batch size first may help reduce the
1570
+ # memory usage of CUDA graph.
1571
+ for virtual_engine in range(
1572
+ self.parallel_config.pipeline_parallel_size):
1573
+ # We need to not only iterate over batch sizes, but also whether
1574
+ # to use inputs_embeds or not, hence we use the cartesian
1575
+ # product.
1576
+ cudagraph_capture_sizes = self.vllm_config.compilation_config\
1577
+ .cudagraph_capture_sizes
1578
+ cudagraph_inputs_embeds = ((
1579
+ True, False) if self.model_config.enable_prompt_embeds else
1580
+ (False, ))
1581
+ compilation_cases = itertools.product(
1582
+ cudagraph_capture_sizes,
1583
+ cudagraph_inputs_embeds,
1584
+ )
1585
+ # Only rank 0 should print progress bar during capture
1586
+ if get_tensor_model_parallel_rank() == 0:
1587
+ compilation_cases = tqdm(
1588
+ list(compilation_cases),
1589
+ desc="Capturing CUDA graph shapes")
1590
+ for batch_size, use_inputs_embeds in compilation_cases:
1591
+ attn_metadata = (
1592
+ self.attn_state.graph_capture_get_metadata_for_batch(
1593
+ batch_size,
1594
+ is_encoder_decoder_model=self.model_config.
1595
+ is_encoder_decoder))
1596
+ # Disable KV Scale Calculation for graph capture
1597
+ attn_metadata.enable_kv_scales_calculation = False
1598
+ if self.lora_config:
1599
+ lora_mapping = LoRAMapping(
1600
+ **dict(index_mapping=[dummy_lora_id] * batch_size,
1601
+ prompt_mapping=[dummy_lora_id] * batch_size,
1602
+ is_prefill=False))
1603
+ self.set_active_loras(set([dummy_lora_request]),
1604
+ lora_mapping)
1605
+
1606
+ if self.prompt_adapter_config:
1607
+ prompt_adapter_mapping = PromptAdapterMapping(
1608
+ [-1] * batch_size,
1609
+ [-1] * batch_size,
1610
+ )
1611
+ self.set_active_prompt_adapters(
1612
+ set(), prompt_adapter_mapping)
1613
+ graph_runner = CUDAGraphRunner(
1614
+ self.model, self.attn_backend.get_name(),
1615
+ self.attn_state.graph_clone(batch_size),
1616
+ self.model_config.is_encoder_decoder)
1617
+
1618
+ capture_inputs = {
1619
+ "input_ids":
1620
+ input_tokens[:batch_size],
1621
+ "inputs_embeds":
1622
+ inputs_embeds[:batch_size]
1623
+ if use_inputs_embeds else None,
1624
+ "positions":
1625
+ input_positions[..., :batch_size],
1626
+ "intermediate_inputs":
1627
+ intermediate_inputs[:batch_size]
1628
+ if intermediate_inputs is not None else None,
1629
+ "kv_caches":
1630
+ kv_caches[virtual_engine],
1631
+ "attn_metadata":
1632
+ attn_metadata,
1633
+ "memory_pool":
1634
+ self.graph_memory_pool,
1635
+ "stream":
1636
+ graph_capture_context.stream
1637
+ }
1638
+ if previous_hidden_states is not None:
1639
+ capture_inputs[
1640
+ "previous_hidden_states"] = previous_hidden_states[:
1641
+ batch_size]
1642
+
1643
+ if self.has_inner_state:
1644
+ # Only used by Mamba-based models CUDA graph atm (Jamba)
1645
+ capture_inputs.update({
1646
+ "seqlen_agnostic_capture_inputs":
1647
+ self.model.get_seqlen_agnostic_capture_inputs(
1648
+ batch_size)
1649
+ })
1650
+ if self.model_config.is_encoder_decoder:
1651
+ # add the additional inputs to capture for
1652
+ # encoder-decoder models.
1653
+ self._update_inputs_to_capture_for_enc_dec_model(
1654
+ capture_inputs)
1655
+
1656
+ with set_forward_context(attn_metadata, self.vllm_config,
1657
+ virtual_engine):
1658
+ graph_runner.capture(**capture_inputs)
1659
+ self.graph_memory_pool = graph_runner.graph.pool()
1660
+ self.graph_runners[virtual_engine][(
1661
+ batch_size, use_inputs_embeds)] = graph_runner
1662
+
1663
+ if self.lora_config:
1664
+ self._remove_dummy_loras()
1665
+
1666
+ end_time = time.perf_counter()
1667
+ end_free_gpu_memory = torch.cuda.mem_get_info()[0]
1668
+ elapsed_time = end_time - start_time
1669
+ cuda_graph_size = start_free_gpu_memory - end_free_gpu_memory
1670
+ # This usually takes < 10 seconds.
1671
+ logger.info("Graph capturing finished in %.0f secs, took %.2f GiB",
1672
+ elapsed_time, cuda_graph_size / GiB_bytes)
1673
+
1674
+ def _update_inputs_to_capture_for_enc_dec_model(self,
1675
+ capture_inputs: Dict[str,
1676
+ Any]):
1677
+ """
1678
+ Updates the set of input tensors needed for CUDA graph capture in an
1679
+ encoder-decoder model.
1680
+
1681
+ This method modifies the provided `capture_inputs` dictionary by
1682
+ adding tensors specific to encoder-decoder specific models that
1683
+ need to be captured for CUDA Graph replay.
1684
+ """
1685
+ # During the decode phase encoder_input_ids and encoder_positions are
1686
+ # unset. Do the same thing for graph capture.
1687
+ capture_inputs["encoder_input_ids"] = torch.tensor([],
1688
+ dtype=torch.long,
1689
+ device=self.device)
1690
+ capture_inputs["encoder_positions"] = torch.tensor([],
1691
+ dtype=torch.long,
1692
+ device=self.device)
1693
+
1694
+ @property
1695
+ def vocab_size(self) -> int:
1696
+ return self.model_config.get_vocab_size()
1697
+
1698
+
1699
+ class ModelRunner(GPUModelRunnerBase[ModelInputForGPUWithSamplingMetadata]):
1700
+ """
1701
+ GPU model runner with sampling step.
1702
+ """
1703
+ _model_input_cls: Type[ModelInputForGPUWithSamplingMetadata] = (
1704
+ ModelInputForGPUWithSamplingMetadata)
1705
+ _builder_cls: Type[ModelInputForGPUBuilder] = ModelInputForGPUBuilder
1706
+
1707
+ def make_model_input_from_broadcasted_tensor_dict(
1708
+ self,
1709
+ tensor_dict: Dict[str, Any],
1710
+ ) -> ModelInputForGPUWithSamplingMetadata:
1711
+ model_input = \
1712
+ ModelInputForGPUWithSamplingMetadata.from_broadcasted_tensor_dict(
1713
+ tensor_dict,
1714
+ attn_backend=self.attn_backend,
1715
+ )
1716
+ return model_input
1717
+
1718
+ def prepare_model_input(
1719
+ self,
1720
+ seq_group_metadata_list: List[SequenceGroupMetadata],
1721
+ virtual_engine: int = 0,
1722
+ finished_requests_ids: Optional[List[str]] = None,
1723
+ ) -> ModelInputForGPUWithSamplingMetadata:
1724
+ """Prepare the model input based on a given sequence group, including
1725
+ metadata for the sampling step.
1726
+
1727
+ The API assumes seq_group_metadata_list is sorted by prefill -> decode.
1728
+
1729
+ The result tensors and data structure also batches input in prefill
1730
+ -> decode order. For example,
1731
+
1732
+ - input_tokens[:num_prefill_tokens] contains prefill tokens.
1733
+ - input_tokens[num_prefill_tokens:] contains decode tokens.
1734
+
1735
+ If cuda graph is required, this API automatically pads inputs.
1736
+ """
1737
+ model_input = self._prepare_model_input_tensors(
1738
+ seq_group_metadata_list, finished_requests_ids)
1739
+ if get_pp_group().is_last_rank:
1740
+ # Sampling metadata is only required for the final pp group
1741
+ generators = self.get_generators(finished_requests_ids)
1742
+ sampling_metadata = SamplingMetadata.prepare(
1743
+ seq_group_metadata_list, model_input.seq_lens,
1744
+ model_input.query_lens, self.device, self.pin_memory,
1745
+ generators, self.sampling_metadata_cache)
1746
+ else:
1747
+ sampling_metadata = None
1748
+ is_prompt = (seq_group_metadata_list[0].is_prompt
1749
+ if seq_group_metadata_list else None)
1750
+ return dataclasses.replace(model_input,
1751
+ sampling_metadata=sampling_metadata,
1752
+ is_prompt=is_prompt,
1753
+ virtual_engine=virtual_engine)
1754
+
1755
+ @torch.inference_mode()
1756
+ def execute_model(
1757
+ self,
1758
+ model_input: ModelInputForGPUWithSamplingMetadata,
1759
+ kv_caches: List[torch.Tensor],
1760
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1761
+ num_steps: int = 1,
1762
+ **kwargs,
1763
+ ) -> Optional[Union[List[SamplerOutput], IntermediateTensors]]:
1764
+ if num_steps > 1:
1765
+ raise ValueError("num_steps > 1 is not supported in ModelRunner")
1766
+
1767
+ if self.lora_config:
1768
+ assert model_input.lora_requests is not None
1769
+ assert model_input.lora_mapping is not None
1770
+ self.set_active_loras(model_input.lora_requests,
1771
+ model_input.lora_mapping)
1772
+
1773
+ if self.prompt_adapter_config:
1774
+ assert model_input.prompt_adapter_requests is not None
1775
+ assert model_input.prompt_adapter_mapping is not None
1776
+ self.set_active_prompt_adapters(
1777
+ model_input.prompt_adapter_requests,
1778
+ model_input.prompt_adapter_mapping)
1779
+
1780
+ self.attn_state.begin_forward(model_input)
1781
+
1782
+ # Currently cuda graph is only supported by the decode phase.
1783
+ assert model_input.attn_metadata is not None
1784
+ prefill_meta = model_input.attn_metadata.prefill_metadata
1785
+ decode_meta = model_input.attn_metadata.decode_metadata
1786
+ # TODO(andoorve): We can remove this once all
1787
+ # virtual engines share the same kv cache.
1788
+ virtual_engine = model_input.virtual_engine
1789
+ previous_hidden_states = kwargs.get("previous_hidden_states")
1790
+ if prefill_meta is None and decode_meta.use_cuda_graph:
1791
+ assert model_input.input_tokens is not None
1792
+ graph_batch_size = model_input.input_tokens.shape[0]
1793
+ use_inputs_embeds = model_input.inputs_embeds is not None
1794
+ model_executable = self.graph_runners[virtual_engine][(
1795
+ graph_batch_size, use_inputs_embeds)]
1796
+ if previous_hidden_states is not None:
1797
+ previous_hidden_states = torch.cat([
1798
+ previous_hidden_states,
1799
+ torch.empty([
1800
+ graph_batch_size - previous_hidden_states.shape[0],
1801
+ *previous_hidden_states.shape[1:]
1802
+ ],
1803
+ dtype=previous_hidden_states.dtype,
1804
+ device=previous_hidden_states.device)
1805
+ ])
1806
+ else:
1807
+ model_executable = self.model
1808
+
1809
+ # Receive KV cache in distributed KV cache transfer setting
1810
+ # In disagg prefill setting, it will also recv hidden states and bypass
1811
+ # model forwarding
1812
+ # In KV cache database setting, it will change the model input so that
1813
+ # we can skip prefilling on tokens that successfully received KV caches
1814
+ # NOTE: The receive operation is blocking
1815
+ bypass_model_exec = False
1816
+ if self.need_recv_kv(model_input, kv_caches):
1817
+ hidden_or_intermediate_states, bypass_model_exec, model_input = \
1818
+ get_kv_transfer_group().recv_kv_caches_and_hidden_states(
1819
+ # model is used to know which layer the current worker
1820
+ # is working on, so that we can receive KV for only those
1821
+ # layers.
1822
+ model_executable,
1823
+ model_input,
1824
+ kv_caches=kv_caches
1825
+ )
1826
+
1827
+ multi_modal_kwargs = model_input.multi_modal_kwargs or {}
1828
+ seqlen_agnostic_kwargs = {
1829
+ "finished_requests_ids": model_input.finished_requests_ids,
1830
+ "request_ids_to_seq_ids": model_input.request_ids_to_seq_ids,
1831
+ } if self.has_inner_state else {}
1832
+ model_kwargs = {}
1833
+ if previous_hidden_states is not None:
1834
+ model_kwargs["previous_hidden_states"] = previous_hidden_states
1835
+ if (self.observability_config is not None
1836
+ and self.observability_config.collect_model_forward_time):
1837
+ model_forward_start = torch.cuda.Event(enable_timing=True)
1838
+ model_forward_end = torch.cuda.Event(enable_timing=True)
1839
+ model_forward_start.record()
1840
+
1841
+ if not bypass_model_exec:
1842
+ with set_forward_context(model_input.attn_metadata,
1843
+ self.vllm_config, virtual_engine):
1844
+ hidden_or_intermediate_states = model_executable(
1845
+ input_ids=model_input.input_tokens,
1846
+ inputs_embeds=model_input.inputs_embeds,
1847
+ positions=model_input.input_positions,
1848
+ intermediate_tensors=intermediate_tensors,
1849
+ **MultiModalKwargs.as_kwargs(
1850
+ multi_modal_kwargs,
1851
+ device=self.device,
1852
+ ),
1853
+ **seqlen_agnostic_kwargs,
1854
+ **model_kwargs,
1855
+ )
1856
+
1857
+ if (self.observability_config is not None
1858
+ and self.observability_config.collect_model_forward_time):
1859
+ model_forward_end.record()
1860
+
1861
+ # Sending KV cache in distributed KV cache transfer setting
1862
+ # NOTE: the send operation is non-blocking
1863
+ if self.need_send_kv(model_input, kv_caches):
1864
+ get_kv_transfer_group().send_kv_caches_and_hidden_states(
1865
+ # model_executable is used to know which layer the current
1866
+ # worker is working on, so that we can send KV for only those
1867
+ # layers.
1868
+ model_executable,
1869
+ model_input,
1870
+ kv_caches,
1871
+ hidden_or_intermediate_states,
1872
+ )
1873
+
1874
+ # Compute the logits in the last pipeline stage.
1875
+ if not get_pp_group().is_last_rank:
1876
+ if (self.is_driver_worker
1877
+ and hidden_or_intermediate_states is not None
1878
+ and isinstance(hidden_or_intermediate_states,
1879
+ IntermediateTensors)
1880
+ and self.observability_config is not None
1881
+ and self.observability_config.collect_model_forward_time):
1882
+ model_forward_end.synchronize()
1883
+ model_forward_time = model_forward_start.elapsed_time(
1884
+ model_forward_end)
1885
+ orig_model_forward_time = 0.0
1886
+ if intermediate_tensors is not None:
1887
+ orig_model_forward_time = intermediate_tensors.tensors.get(
1888
+ "model_forward_time", torch.tensor(0.0)).item()
1889
+ hidden_or_intermediate_states.tensors["model_forward_time"] = (
1890
+ torch.tensor(model_forward_time + orig_model_forward_time))
1891
+ return hidden_or_intermediate_states
1892
+
1893
+ logits = self.model.compute_logits(hidden_or_intermediate_states,
1894
+ model_input.sampling_metadata)
1895
+
1896
+ if self.is_driver_worker:
1897
+ if model_input.async_callback is not None:
1898
+ model_input.async_callback()
1899
+
1900
+ # Sample the next token.
1901
+ assert isinstance(self.sampler, Sampler)
1902
+ orig_include_gpu_probs = self.sampler.include_gpu_probs_tensor
1903
+ if model_input.inputs_embeds is not None:
1904
+ self.sampler.include_gpu_probs_tensor = True
1905
+
1906
+ output: SamplerOutput = self.sampler(
1907
+ logits=logits,
1908
+ sampling_metadata=model_input.sampling_metadata,
1909
+ )
1910
+ if (self.observability_config is not None
1911
+ and self.observability_config.collect_model_forward_time
1912
+ and output is not None):
1913
+ model_forward_end.synchronize()
1914
+ model_forward_time = model_forward_start.elapsed_time(
1915
+ model_forward_end)
1916
+ orig_model_forward_time = 0.0
1917
+ if intermediate_tensors is not None:
1918
+ orig_model_forward_time = intermediate_tensors.tensors.get(
1919
+ "model_forward_time", torch.tensor(0.0)).item()
1920
+ # If there are multiple workers, we are still tracking the
1921
+ # latency from the start time of the driver worker to the end
1922
+ # time of the driver worker. The model forward time will then
1923
+ # end up covering the communication time as well.
1924
+ output.model_forward_time = (orig_model_forward_time +
1925
+ model_forward_time)
1926
+
1927
+ if model_input.inputs_embeds is not None:
1928
+ if self.is_driver_worker:
1929
+ sampled = broadcast_tensor_dict(
1930
+ {"token_ids": output.sampled_token_ids})
1931
+ else:
1932
+ sampled = broadcast_tensor_dict()
1933
+ if sampled["token_ids"] is not None:
1934
+ sampled_token_embeds = self.model.get_input_embeddings(
1935
+ sampled["token_ids"].squeeze(1))
1936
+ if self.is_driver_worker:
1937
+ self.sampler.include_gpu_probs_tensor = \
1938
+ orig_include_gpu_probs
1939
+
1940
+ output.sampled_token_embeds = sampled_token_embeds
1941
+
1942
+ for token_embed, sequence_group_output in zip(
1943
+ output.sampled_token_embeds, output.outputs):
1944
+ assert len(sequence_group_output.samples) == 1
1945
+ sequence_group_output.samples[
1946
+ 0].output_embed = token_embed
1947
+
1948
+ if not self.is_driver_worker:
1949
+ return []
1950
+
1951
+ if self.return_hidden_states:
1952
+ # we only need to pass hidden states of most recent token
1953
+ assert model_input.sampling_metadata is not None
1954
+ indices = model_input.sampling_metadata.selected_token_indices
1955
+ if model_input.is_prompt:
1956
+ hidden_states = hidden_or_intermediate_states.index_select(
1957
+ 0, indices)
1958
+ output.prefill_hidden_states = hidden_or_intermediate_states
1959
+ elif decode_meta.use_cuda_graph:
1960
+ hidden_states = hidden_or_intermediate_states[:len(indices)]
1961
+ else:
1962
+ hidden_states = hidden_or_intermediate_states
1963
+
1964
+ output.hidden_states = hidden_states
1965
+
1966
+ return [output]
1967
+
1968
+ def need_recv_kv(self, model_input, kv_caches) -> bool:
1969
+ """Check if we need to receive kv-cache from the other worker.
1970
+ We need to receive KV when
1971
+ 1. current vLLM instance is KV cache consumer/decode vLLM instance
1972
+ 2. this batch is not a profiling run
1973
+ 3. this batch is a prefill run
1974
+
1975
+ Args:
1976
+ model_input: input to the model executable
1977
+ kv_caches: vLLM's paged memory
1978
+ """
1979
+
1980
+ if self.vllm_config.kv_transfer_config is None:
1981
+ return False
1982
+
1983
+ prefill_meta = model_input.attn_metadata.prefill_metadata
1984
+
1985
+ # check if the current run is profiling
1986
+ is_profile_run = (kv_caches[0].numel() == 0)
1987
+ # check if the current run is prefill
1988
+ is_prefill_run = prefill_meta is not None
1989
+
1990
+ return self.vllm_config.kv_transfer_config.is_kv_consumer and (
1991
+ not is_profile_run) and is_prefill_run
1992
+
1993
+ def need_send_kv(self, model_input, kv_caches) -> bool:
1994
+ """Check if we need to send kv-cache to the other worker.
1995
+ We need to send KV when
1996
+ 1. current vLLM instance is KV cache producer/prefill vLLM instance
1997
+ 2. this batch is not a profiling run
1998
+ 3. this batch is a prefill run
1999
+
2000
+ Args:
2001
+ model_input: input to the model executable
2002
+ kv_caches: vLLM's paged memory
2003
+ """
2004
+
2005
+ if self.vllm_config.kv_transfer_config is None:
2006
+ return False
2007
+
2008
+ prefill_meta = model_input.attn_metadata.prefill_metadata
2009
+
2010
+ # check if the current run is profiling
2011
+ is_profile_run = (kv_caches[0].numel() == 0)
2012
+ # check if the current run is prefill
2013
+ is_prefill_run = prefill_meta is not None
2014
+
2015
+ return self.vllm_config.kv_transfer_config.is_kv_producer and (
2016
+ not is_profile_run) and is_prefill_run
2017
+
2018
+
2019
+ # NOTE: this is nn.Module so the profiler can properly capture/group
2020
+ # kernels calls made within the graph
2021
+ class CUDAGraphRunner(nn.Module):
2022
+
2023
+ def __init__(self, model: nn.Module, backend_name: str,
2024
+ attn_state: AttentionState, is_encoder_decoder_model: bool):
2025
+ super().__init__()
2026
+ self.model = model
2027
+ self.backend_name = backend_name
2028
+ self.attn_state = attn_state
2029
+
2030
+ self.input_buffers: Dict[str, torch.Tensor] = {}
2031
+ self.output_buffers: Dict[str, torch.Tensor] = {}
2032
+
2033
+ self._graph: Optional[torch.cuda.CUDAGraph] = None
2034
+ self._is_encoder_decoder_model = is_encoder_decoder_model
2035
+
2036
+ @property
2037
+ def graph(self):
2038
+ assert self._graph is not None
2039
+ return self._graph
2040
+
2041
+ def capture(
2042
+ self,
2043
+ input_ids: torch.Tensor,
2044
+ inputs_embeds: Optional[torch.Tensor],
2045
+ positions: torch.Tensor,
2046
+ intermediate_inputs: Optional[IntermediateTensors],
2047
+ kv_caches: List[torch.Tensor],
2048
+ attn_metadata: AttentionMetadata,
2049
+ memory_pool: Optional[Tuple[int, int]],
2050
+ stream: torch.cuda.Stream,
2051
+ **kwargs,
2052
+ ):
2053
+ assert self._graph is None
2054
+ # Run the model a few times without capturing the graph.
2055
+ # This is to make sure that the captured graph does not include the
2056
+ # kernel launches for initial benchmarking (e.g., Triton autotune).
2057
+ # Note one iteration is not enough for torch.compile
2058
+ for _ in range(_NUM_WARMUP_ITERS):
2059
+ self.model(
2060
+ input_ids=input_ids,
2061
+ inputs_embeds=inputs_embeds,
2062
+ positions=positions,
2063
+ intermediate_tensors=intermediate_inputs,
2064
+ **kwargs,
2065
+ )
2066
+ # Wait for the warm up operations to finish before proceeding with
2067
+ # Graph Capture.
2068
+ torch.cuda.synchronize()
2069
+ # Capture the graph.
2070
+ self._graph = torch.cuda.CUDAGraph()
2071
+ with torch.cuda.graph(self._graph, pool=memory_pool, stream=stream):
2072
+ output_hidden_or_intermediate_states = self.model(
2073
+ input_ids=input_ids,
2074
+ **({
2075
+ "inputs_embeds": inputs_embeds,
2076
+ } if inputs_embeds is not None else {}),
2077
+ positions=positions,
2078
+ intermediate_tensors=intermediate_inputs,
2079
+ **kwargs,
2080
+ )
2081
+
2082
+ if isinstance(output_hidden_or_intermediate_states, torch.Tensor):
2083
+ hidden_or_intermediate_states = weak_ref_tensor(
2084
+ output_hidden_or_intermediate_states)
2085
+ elif isinstance(output_hidden_or_intermediate_states,
2086
+ IntermediateTensors):
2087
+ hidden_or_intermediate_states = IntermediateTensors(
2088
+ tensors={
2089
+ key: weak_ref_tensor(value)
2090
+ for key, value in
2091
+ output_hidden_or_intermediate_states.tensors.items()
2092
+ })
2093
+
2094
+ del output_hidden_or_intermediate_states
2095
+ # make sure `output_hidden_or_intermediate_states` is deleted
2096
+ # in the graph's memory pool
2097
+ gc.collect()
2098
+ torch.cuda.synchronize()
2099
+
2100
+ # Save the input and output buffers.
2101
+ self.input_buffers = {
2102
+ "input_ids":
2103
+ input_ids,
2104
+ **({
2105
+ "inputs_embeds": inputs_embeds,
2106
+ } if inputs_embeds is not None else {}),
2107
+ "positions":
2108
+ positions,
2109
+ "kv_caches":
2110
+ kv_caches,
2111
+ **self.attn_state.get_graph_input_buffers(
2112
+ attn_metadata, self._is_encoder_decoder_model),
2113
+ **kwargs,
2114
+ }
2115
+ if intermediate_inputs is not None:
2116
+ self.input_buffers.update(intermediate_inputs.tensors)
2117
+ if get_pp_group().is_last_rank:
2118
+ self.output_buffers = {
2119
+ "hidden_states": hidden_or_intermediate_states
2120
+ }
2121
+ else:
2122
+ self.output_buffers = hidden_or_intermediate_states
2123
+
2124
+ def forward(
2125
+ self,
2126
+ input_ids: torch.Tensor,
2127
+ inputs_embeds: Optional[torch.Tensor],
2128
+ positions: torch.Tensor,
2129
+ intermediate_tensors: Optional[IntermediateTensors],
2130
+ **kwargs,
2131
+ ) -> torch.Tensor:
2132
+ attn_metadata: AttentionMetadata = get_forward_context().attn_metadata
2133
+
2134
+ # Copy the input tensors to the input buffers.
2135
+ self.input_buffers["input_ids"].copy_(input_ids, non_blocking=True)
2136
+ if positions is not None:
2137
+ # in some case like MLA, it will reuse positions in metadata
2138
+ # but truncate them to the original size
2139
+ # so the shape is not padded, we need to copy partial only
2140
+ self.input_buffers["positions"][:positions.shape[0]].copy_(
2141
+ positions, non_blocking=True)
2142
+ if inputs_embeds is not None:
2143
+ self.input_buffers["inputs_embeds"][:inputs_embeds.shape[0]].copy_(
2144
+ inputs_embeds, non_blocking=True)
2145
+
2146
+ if self.backend_name != "NO_ATTENTION":
2147
+ self.input_buffers["slot_mapping"].copy_(
2148
+ attn_metadata.slot_mapping, non_blocking=True)
2149
+
2150
+ self.attn_state.prepare_graph_input_buffers(
2151
+ self.input_buffers, attn_metadata, self._is_encoder_decoder_model)
2152
+
2153
+ if "seqlen_agnostic_capture_inputs" in self.input_buffers:
2154
+ self.model.copy_inputs_before_cuda_graphs(self.input_buffers,
2155
+ **kwargs)
2156
+
2157
+ if "previous_hidden_states" in self.input_buffers:
2158
+ self.input_buffers["previous_hidden_states"].copy_(
2159
+ kwargs["previous_hidden_states"], non_blocking=True)
2160
+
2161
+ if intermediate_tensors is not None:
2162
+ for key in intermediate_tensors.tensors:
2163
+ if key != "model_execute_time" and key != "model_forward_time":
2164
+ self.input_buffers[key].copy_(intermediate_tensors[key],
2165
+ non_blocking=True)
2166
+ if self._is_encoder_decoder_model:
2167
+ self.input_buffers["encoder_input_ids"].copy_(
2168
+ kwargs['encoder_input_ids'], non_blocking=True)
2169
+ self.input_buffers["encoder_positions"].copy_(
2170
+ kwargs['encoder_positions'], non_blocking=True)
2171
+
2172
+ # Run the graph.
2173
+ self.graph.replay()
2174
+ # Return the output tensor.
2175
+ if get_pp_group().is_last_rank:
2176
+ return self.output_buffers["hidden_states"]
2177
+
2178
+ return self.output_buffers