vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +53 -0
- vllm/_custom_ops.py +1828 -0
- vllm/_ipex_ops.py +244 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +106 -0
- vllm/adapter_commons/request.py +26 -0
- vllm/adapter_commons/utils.py +93 -0
- vllm/adapter_commons/worker_manager.py +39 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +34 -0
- vllm/assets/video.py +115 -0
- vllm/attention/__init__.py +20 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +308 -0
- vllm/attention/backends/blocksparse_attn.py +461 -0
- vllm/attention/backends/cpu_mla.py +307 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
- vllm/attention/backends/flash_attn.py +1003 -0
- vllm/attention/backends/flashinfer.py +1104 -0
- vllm/attention/backends/flashmla.py +244 -0
- vllm/attention/backends/hpu_attn.py +313 -0
- vllm/attention/backends/ipex_attn.py +398 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1385 -0
- vllm/attention/backends/pallas.py +351 -0
- vllm/attention/backends/placeholder_attn.py +400 -0
- vllm/attention/backends/rocm_aiter_mla.py +435 -0
- vllm/attention/backends/rocm_flash_attn.py +975 -0
- vllm/attention/backends/torch_sdpa.py +703 -0
- vllm/attention/backends/triton_mla.py +115 -0
- vllm/attention/backends/utils.py +610 -0
- vllm/attention/backends/xformers.py +802 -0
- vllm/attention/layer.py +468 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
- vllm/attention/ops/blocksparse_attention/interface.py +239 -0
- vllm/attention/ops/blocksparse_attention/utils.py +246 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
- vllm/attention/ops/flashmla.py +116 -0
- vllm/attention/ops/hpu_paged_attn.py +88 -0
- vllm/attention/ops/ipex_attn.py +195 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/nki_flash_attn.py +906 -0
- vllm/attention/ops/paged_attn.py +256 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +100 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +674 -0
- vllm/attention/ops/triton_flash_attention.py +979 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_unified_attention.py +334 -0
- vllm/attention/selector.py +187 -0
- vllm/attention/utils/fa_utils.py +55 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +1185 -0
- vllm/benchmarks/endpoint_request_func.py +381 -0
- vllm/benchmarks/latency.py +168 -0
- vllm/benchmarks/serve.py +1135 -0
- vllm/benchmarks/throughput.py +609 -0
- vllm/benchmarks/utils.py +70 -0
- vllm/collect_env.py +820 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +89 -0
- vllm/compilation/backends.py +563 -0
- vllm/compilation/base_piecewise_backend.py +72 -0
- vllm/compilation/collective_fusion.py +127 -0
- vllm/compilation/compiler_interface.py +544 -0
- vllm/compilation/counter.py +38 -0
- vllm/compilation/cuda_piecewise_backend.py +214 -0
- vllm/compilation/decorators.py +250 -0
- vllm/compilation/fix_functionalization.py +191 -0
- vllm/compilation/fusion.py +618 -0
- vllm/compilation/fx_utils.py +62 -0
- vllm/compilation/inductor_pass.py +115 -0
- vllm/compilation/monitor.py +39 -0
- vllm/compilation/multi_output_match.py +109 -0
- vllm/compilation/noop_elimination.py +137 -0
- vllm/compilation/pass_manager.py +78 -0
- vllm/compilation/sequence_parallelism.py +268 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +67 -0
- vllm/compilation/wrapper.py +135 -0
- vllm/config.py +4746 -0
- vllm/connections.py +174 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +399 -0
- vllm/core/block/common.py +371 -0
- vllm/core/block/cpu_gpu_block_allocator.py +441 -0
- vllm/core/block/interfaces.py +319 -0
- vllm/core/block/naive_block.py +466 -0
- vllm/core/block/prefix_caching_block.py +1135 -0
- vllm/core/block/utils.py +28 -0
- vllm/core/block_manager.py +521 -0
- vllm/core/evictor.py +157 -0
- vllm/core/interfaces.py +135 -0
- vllm/core/placeholder_block_space_manager.py +100 -0
- vllm/core/scheduler.py +2093 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +281 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +264 -0
- vllm/distributed/device_communicators/base_device_communicator.py +260 -0
- vllm/distributed/device_communicators/cpu_communicator.py +145 -0
- vllm/distributed/device_communicators/cuda_communicator.py +176 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
- vllm/distributed/device_communicators/hpu_communicator.py +46 -0
- vllm/distributed/device_communicators/neuron_communicator.py +20 -0
- vllm/distributed/device_communicators/pynccl.py +218 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
- vllm/distributed/device_communicators/shm_broadcast.py +585 -0
- vllm/distributed/device_communicators/tpu_communicator.py +103 -0
- vllm/distributed/device_communicators/xpu_communicator.py +55 -0
- vllm/distributed/kv_events.py +356 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +12 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
- vllm/distributed/parallel_state.py +1296 -0
- vllm/distributed/tpu_distributed_utils.py +177 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1708 -0
- vllm/engine/async_llm_engine.py +1200 -0
- vllm/engine/async_timeout.py +173 -0
- vllm/engine/llm_engine.py +2097 -0
- vllm/engine/metrics.py +629 -0
- vllm/engine/metrics_types.py +94 -0
- vllm/engine/multiprocessing/__init__.py +148 -0
- vllm/engine/multiprocessing/client.py +681 -0
- vllm/engine/multiprocessing/engine.py +460 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +75 -0
- vllm/engine/output_processor/multi_step.py +216 -0
- vllm/engine/output_processor/single_step.py +145 -0
- vllm/engine/output_processor/stop_checker.py +131 -0
- vllm/engine/output_processor/util.py +28 -0
- vllm/engine/protocol.py +317 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1299 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +39 -0
- vllm/entrypoints/cli/benchmark/latency.py +30 -0
- vllm/entrypoints/cli/benchmark/main.py +54 -0
- vllm/entrypoints/cli/benchmark/serve.py +30 -0
- vllm/entrypoints/cli/benchmark/throughput.py +30 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +65 -0
- vllm/entrypoints/cli/openai.py +205 -0
- vllm/entrypoints/cli/run_batch.py +62 -0
- vllm/entrypoints/cli/serve.py +328 -0
- vllm/entrypoints/cli/types.py +25 -0
- vllm/entrypoints/launcher.py +147 -0
- vllm/entrypoints/llm.py +1544 -0
- vllm/entrypoints/logger.py +50 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1387 -0
- vllm/entrypoints/openai/cli_args.py +315 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +1913 -0
- vllm/entrypoints/openai/run_batch.py +463 -0
- vllm/entrypoints/openai/serving_chat.py +1221 -0
- vllm/entrypoints/openai/serving_classification.py +160 -0
- vllm/entrypoints/openai/serving_completion.py +592 -0
- vllm/entrypoints/openai/serving_embedding.py +201 -0
- vllm/entrypoints/openai/serving_engine.py +986 -0
- vllm/entrypoints/openai/serving_models.py +315 -0
- vllm/entrypoints/openai/serving_pooling.py +232 -0
- vllm/entrypoints/openai/serving_score.py +433 -0
- vllm/entrypoints/openai/serving_tokenization.py +157 -0
- vllm/entrypoints/openai/serving_transcription.py +424 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/score_utils.py +50 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/utils.py +233 -0
- vllm/env_override.py +41 -0
- vllm/envs.py +944 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +401 -0
- vllm/executor/mp_distributed_executor.py +244 -0
- vllm/executor/msgspec_utils.py +30 -0
- vllm/executor/multiproc_worker_utils.py +313 -0
- vllm/executor/ray_distributed_executor.py +701 -0
- vllm/executor/ray_utils.py +399 -0
- vllm/executor/uniproc_executor.py +139 -0
- vllm/forward_context.py +179 -0
- vllm/inputs/__init__.py +41 -0
- vllm/inputs/data.py +331 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +909 -0
- vllm/inputs/registry.py +237 -0
- vllm/jsontree.py +80 -0
- vllm/logger.py +212 -0
- vllm/logging_utils/__init__.py +8 -0
- vllm/logging_utils/dump_input.py +85 -0
- vllm/logging_utils/formatter.py +18 -0
- vllm/logits_process.py +119 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +355 -0
- vllm/lora/layers.py +1285 -0
- vllm/lora/lora.py +199 -0
- vllm/lora/models.py +818 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
- vllm/lora/ops/triton_ops/utils.py +120 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +145 -0
- vllm/lora/peft_helper.py +136 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +485 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +290 -0
- vllm/lora/punica_wrapper/punica_hpu.py +145 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +405 -0
- vllm/lora/punica_wrapper/utils.py +164 -0
- vllm/lora/request.py +99 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +240 -0
- vllm/lora/worker_manager.py +259 -0
- vllm/model_executor/__init__.py +16 -0
- vllm/model_executor/custom_op.py +152 -0
- vllm/model_executor/guided_decoding/__init__.py +181 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
- vllm/model_executor/guided_decoding/guided_fields.py +41 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
- vllm/model_executor/guided_decoding/utils.py +242 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +369 -0
- vllm/model_executor/layers/fused_moe/__init__.py +54 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
- vllm/model_executor/layers/fused_moe/layer.py +1535 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/utils.py +98 -0
- vllm/model_executor/layers/layernorm.py +288 -0
- vllm/model_executor/layers/lightning_attn.py +652 -0
- vllm/model_executor/layers/linear.py +1524 -0
- vllm/model_executor/layers/logits_processor.py +197 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
- vllm/model_executor/layers/pooler.py +350 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/auto_round.py +310 -0
- vllm/model_executor/layers/quantization/awq.py +194 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +151 -0
- vllm/model_executor/layers/quantization/bitblas.py +461 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
- vllm/model_executor/layers/quantization/experts_int8.py +196 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +906 -0
- vllm/model_executor/layers/quantization/gguf.py +565 -0
- vllm/model_executor/layers/quantization/gptq.py +278 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +139 -0
- vllm/model_executor/layers/quantization/marlin.py +261 -0
- vllm/model_executor/layers/quantization/modelopt.py +737 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
- vllm/model_executor/layers/quantization/qqq.py +275 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +441 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +161 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
- vllm/model_executor/layers/rejection_sampler.py +406 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding.py +1862 -0
- vllm/model_executor/layers/sampler.py +1204 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
- vllm/model_executor/layers/utils.py +95 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +76 -0
- vllm/model_executor/model_loader/base_loader.py +43 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
- vllm/model_executor/model_loader/default_loader.py +282 -0
- vllm/model_executor/model_loader/dummy_loader.py +27 -0
- vllm/model_executor/model_loader/gguf_loader.py +120 -0
- vllm/model_executor/model_loader/neuron.py +476 -0
- vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
- vllm/model_executor/model_loader/tensorizer.py +600 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
- vllm/model_executor/model_loader/tpu.py +112 -0
- vllm/model_executor/model_loader/utils.py +302 -0
- vllm/model_executor/model_loader/weight_utils.py +782 -0
- vllm/model_executor/models/__init__.py +28 -0
- vllm/model_executor/models/adapters.py +248 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +657 -0
- vllm/model_executor/models/aya_vision.py +466 -0
- vllm/model_executor/models/baichuan.py +474 -0
- vllm/model_executor/models/bamba.py +543 -0
- vllm/model_executor/models/bart.py +938 -0
- vllm/model_executor/models/bert.py +523 -0
- vllm/model_executor/models/bert_with_rope.py +769 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +718 -0
- vllm/model_executor/models/bloom.py +373 -0
- vllm/model_executor/models/chameleon.py +1136 -0
- vllm/model_executor/models/chatglm.py +478 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/commandr.py +472 -0
- vllm/model_executor/models/constant_size_cache.py +137 -0
- vllm/model_executor/models/dbrx.py +472 -0
- vllm/model_executor/models/deepseek.py +486 -0
- vllm/model_executor/models/deepseek_mtp.py +269 -0
- vllm/model_executor/models/deepseek_v2.py +843 -0
- vllm/model_executor/models/deepseek_vl2.py +648 -0
- vllm/model_executor/models/eagle.py +260 -0
- vllm/model_executor/models/exaone.py +551 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +510 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/florence2.py +1103 -0
- vllm/model_executor/models/fuyu.py +389 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +425 -0
- vllm/model_executor/models/gemma3.py +533 -0
- vllm/model_executor/models/gemma3_mm.py +709 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4v.py +648 -0
- vllm/model_executor/models/gpt2.py +328 -0
- vllm/model_executor/models/gpt_bigcode.py +335 -0
- vllm/model_executor/models/gpt_j.py +339 -0
- vllm/model_executor/models/gpt_neox.py +332 -0
- vllm/model_executor/models/granite.py +493 -0
- vllm/model_executor/models/granite_speech.py +779 -0
- vllm/model_executor/models/granitemoe.py +437 -0
- vllm/model_executor/models/granitemoehybrid.py +586 -0
- vllm/model_executor/models/granitemoeshared.py +341 -0
- vllm/model_executor/models/gritlm.py +224 -0
- vllm/model_executor/models/grok1.py +546 -0
- vllm/model_executor/models/h2ovl.py +546 -0
- vllm/model_executor/models/idefics2_vision_model.py +389 -0
- vllm/model_executor/models/idefics3.py +776 -0
- vllm/model_executor/models/interfaces.py +572 -0
- vllm/model_executor/models/interfaces_base.py +164 -0
- vllm/model_executor/models/intern_vit.py +480 -0
- vllm/model_executor/models/internlm2.py +455 -0
- vllm/model_executor/models/internlm2_ve.py +147 -0
- vllm/model_executor/models/internvl.py +1418 -0
- vllm/model_executor/models/jais.py +373 -0
- vllm/model_executor/models/jamba.py +592 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +644 -0
- vllm/model_executor/models/llama4.py +532 -0
- vllm/model_executor/models/llama_eagle.py +165 -0
- vllm/model_executor/models/llama_eagle3.py +263 -0
- vllm/model_executor/models/llava.py +866 -0
- vllm/model_executor/models/llava_next.py +586 -0
- vllm/model_executor/models/llava_next_video.py +471 -0
- vllm/model_executor/models/llava_onevision.py +956 -0
- vllm/model_executor/models/mamba.py +273 -0
- vllm/model_executor/models/mamba2.py +308 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +219 -0
- vllm/model_executor/models/mimo.py +192 -0
- vllm/model_executor/models/mimo_mtp.py +285 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +391 -0
- vllm/model_executor/models/minicpmo.py +759 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +36 -0
- vllm/model_executor/models/minimax_text_01.py +1301 -0
- vllm/model_executor/models/minimax_vl_01.py +364 -0
- vllm/model_executor/models/mistral3.py +604 -0
- vllm/model_executor/models/mixtral.py +488 -0
- vllm/model_executor/models/mixtral_quant.py +453 -0
- vllm/model_executor/models/mllama.py +1624 -0
- vllm/model_executor/models/mllama4.py +938 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +331 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1568 -0
- vllm/model_executor/models/moonvit.py +630 -0
- vllm/model_executor/models/mpt.py +331 -0
- vllm/model_executor/models/nemotron.py +508 -0
- vllm/model_executor/models/nemotron_h.py +573 -0
- vllm/model_executor/models/nemotron_nas.py +484 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +389 -0
- vllm/model_executor/models/olmo2.py +414 -0
- vllm/model_executor/models/olmoe.py +468 -0
- vllm/model_executor/models/opt.py +412 -0
- vllm/model_executor/models/orion.py +349 -0
- vllm/model_executor/models/ovis.py +567 -0
- vllm/model_executor/models/paligemma.py +398 -0
- vllm/model_executor/models/persimmon.py +344 -0
- vllm/model_executor/models/phi.py +356 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3_small.py +465 -0
- vllm/model_executor/models/phi3v.py +723 -0
- vllm/model_executor/models/phi4mm.py +1246 -0
- vllm/model_executor/models/phi4mm_audio.py +1233 -0
- vllm/model_executor/models/phi4mm_utils.py +1884 -0
- vllm/model_executor/models/phimoe.py +665 -0
- vllm/model_executor/models/pixtral.py +1316 -0
- vllm/model_executor/models/plamo2.py +738 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
- vllm/model_executor/models/qwen.py +362 -0
- vllm/model_executor/models/qwen2.py +497 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
- vllm/model_executor/models/qwen2_5_vl.py +1166 -0
- vllm/model_executor/models/qwen2_audio.py +410 -0
- vllm/model_executor/models/qwen2_moe.py +540 -0
- vllm/model_executor/models/qwen2_rm.py +132 -0
- vllm/model_executor/models/qwen2_vl.py +1405 -0
- vllm/model_executor/models/qwen3.py +321 -0
- vllm/model_executor/models/qwen3_moe.py +535 -0
- vllm/model_executor/models/qwen_vl.py +785 -0
- vllm/model_executor/models/registry.py +622 -0
- vllm/model_executor/models/roberta.py +276 -0
- vllm/model_executor/models/siglip.py +524 -0
- vllm/model_executor/models/skyworkr1v.py +951 -0
- vllm/model_executor/models/smolvlm.py +52 -0
- vllm/model_executor/models/solar.py +506 -0
- vllm/model_executor/models/stablelm.py +343 -0
- vllm/model_executor/models/starcoder2.py +356 -0
- vllm/model_executor/models/tarsier.py +643 -0
- vllm/model_executor/models/telechat2.py +140 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/transformers.py +508 -0
- vllm/model_executor/models/ultravox.py +656 -0
- vllm/model_executor/models/utils.py +731 -0
- vllm/model_executor/models/vision.py +147 -0
- vllm/model_executor/models/whisper.py +747 -0
- vllm/model_executor/models/zamba2.py +1009 -0
- vllm/model_executor/parameter.py +459 -0
- vllm/model_executor/pooling_metadata.py +72 -0
- vllm/model_executor/sampling_metadata.py +597 -0
- vllm/model_executor/utils.py +77 -0
- vllm/multimodal/__init__.py +33 -0
- vllm/multimodal/audio.py +106 -0
- vllm/multimodal/base.py +219 -0
- vllm/multimodal/hasher.py +118 -0
- vllm/multimodal/image.py +97 -0
- vllm/multimodal/inputs.py +876 -0
- vllm/multimodal/parse.py +461 -0
- vllm/multimodal/processing.py +1895 -0
- vllm/multimodal/profiling.py +258 -0
- vllm/multimodal/registry.py +331 -0
- vllm/multimodal/utils.py +436 -0
- vllm/multimodal/video.py +198 -0
- vllm/outputs.py +512 -0
- vllm/platforms/__init__.py +291 -0
- vllm/platforms/cpu.py +266 -0
- vllm/platforms/cuda.py +526 -0
- vllm/platforms/hpu.py +106 -0
- vllm/platforms/interface.py +538 -0
- vllm/platforms/neuron.py +150 -0
- vllm/platforms/rocm.py +435 -0
- vllm/platforms/tpu.py +216 -0
- vllm/platforms/xpu.py +156 -0
- vllm/plugins/__init__.py +94 -0
- vllm/plugins/lora_resolvers/README.md +15 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +54 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +83 -0
- vllm/prompt_adapter/models.py +358 -0
- vllm/prompt_adapter/request.py +37 -0
- vllm/prompt_adapter/utils.py +98 -0
- vllm/prompt_adapter/worker_manager.py +179 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +15 -0
- vllm/reasoning/abs_reasoning_parsers.py +192 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/qwen3_reasoning_parser.py +151 -0
- vllm/sampling_params.py +602 -0
- vllm/scalar_type.py +347 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +1568 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +506 -0
- vllm/spec_decode/draft_model_runner.py +349 -0
- vllm/spec_decode/interfaces.py +99 -0
- vllm/spec_decode/medusa_worker.py +138 -0
- vllm/spec_decode/metrics.py +213 -0
- vllm/spec_decode/mlp_speculator_worker.py +94 -0
- vllm/spec_decode/mqa_scorer.py +160 -0
- vllm/spec_decode/multi_step_worker.py +423 -0
- vllm/spec_decode/ngram_worker.py +196 -0
- vllm/spec_decode/proposer_worker_base.py +59 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
- vllm/spec_decode/spec_decode_worker.py +1326 -0
- vllm/spec_decode/target_model_runner.py +45 -0
- vllm/spec_decode/top1_proposer.py +275 -0
- vllm/spec_decode/util.py +277 -0
- vllm/test_utils.py +130 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +131 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +60 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/config.py +887 -0
- vllm/transformers_utils/configs/__init__.py +61 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/cohere2.py +195 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +85 -0
- vllm/transformers_utils/configs/exaone.py +190 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/h2ovl.py +16 -0
- vllm/transformers_utils/configs/internvl.py +54 -0
- vllm/transformers_utils/configs/jais.py +238 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/minimax_text_01.py +70 -0
- vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
- vllm/transformers_utils/configs/mllama.py +31 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/mpt.py +180 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +258 -0
- vllm/transformers_utils/configs/nvlm_d.py +15 -0
- vllm/transformers_utils/configs/ovis.py +184 -0
- vllm/transformers_utils/configs/skyworkr1v.py +54 -0
- vllm/transformers_utils/configs/solar.py +247 -0
- vllm/transformers_utils/configs/telechat2.py +64 -0
- vllm/transformers_utils/configs/ultravox.py +108 -0
- vllm/transformers_utils/detokenizer.py +168 -0
- vllm/transformers_utils/detokenizer_utils.py +189 -0
- vllm/transformers_utils/processor.py +221 -0
- vllm/transformers_utils/processors/__init__.py +8 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/s3_utils.py +162 -0
- vllm/transformers_utils/tokenizer.py +302 -0
- vllm/transformers_utils/tokenizer_base.py +149 -0
- vllm/transformers_utils/tokenizer_group.py +120 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +493 -0
- vllm/transformers_utils/utils.py +99 -0
- vllm/triton_utils/__init__.py +14 -0
- vllm/triton_utils/importing.py +50 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +256 -0
- vllm/utils.py +2910 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +163 -0
- vllm/v1/attention/backends/flash_attn.py +869 -0
- vllm/v1/attention/backends/flashinfer.py +651 -0
- vllm/v1/attention/backends/flex_attention.py +477 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +931 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
- vllm/v1/attention/backends/mla/flashmla.py +152 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
- vllm/v1/attention/backends/mla/triton_mla.py +120 -0
- vllm/v1/attention/backends/pallas.py +240 -0
- vllm/v1/attention/backends/triton_attn.py +285 -0
- vllm/v1/attention/backends/utils.py +52 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +349 -0
- vllm/v1/core/encoder_cache_manager.py +150 -0
- vllm/v1/core/kv_cache_coordinator.py +363 -0
- vllm/v1/core/kv_cache_manager.py +392 -0
- vllm/v1/core/kv_cache_utils.py +996 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +150 -0
- vllm/v1/core/sched/output.py +154 -0
- vllm/v1/core/sched/scheduler.py +1044 -0
- vllm/v1/core/sched/utils.py +23 -0
- vllm/v1/core/single_type_kv_cache_manager.py +403 -0
- vllm/v1/engine/__init__.py +173 -0
- vllm/v1/engine/async_llm.py +558 -0
- vllm/v1/engine/coordinator.py +253 -0
- vllm/v1/engine/core.py +961 -0
- vllm/v1/engine/core_client.py +1129 -0
- vllm/v1/engine/detokenizer.py +261 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +317 -0
- vllm/v1/engine/logprobs.py +199 -0
- vllm/v1/engine/mm_input_cache.py +91 -0
- vllm/v1/engine/output_processor.py +428 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +407 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +113 -0
- vllm/v1/executor/multiproc_executor.py +537 -0
- vllm/v1/executor/ray_distributed_executor.py +62 -0
- vllm/v1/kv_cache_interface.py +194 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +523 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +131 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +239 -0
- vllm/v1/outputs.py +116 -0
- vllm/v1/request.py +193 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/penalties.py +59 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +286 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +145 -0
- vllm/v1/serial_utils.py +315 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +432 -0
- vllm/v1/spec_decode/medusa.py +62 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +178 -0
- vllm/v1/spec_decode/ngram_proposer.py +132 -0
- vllm/v1/spec_decode/utils.py +46 -0
- vllm/v1/structured_output/__init__.py +222 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +318 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +175 -0
- vllm/v1/utils.py +743 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +142 -0
- vllm/v1/worker/cpu_model_runner.py +86 -0
- vllm/v1/worker/cpu_worker.py +152 -0
- vllm/v1/worker/gpu_input_batch.py +681 -0
- vllm/v1/worker/gpu_model_runner.py +2320 -0
- vllm/v1/worker/gpu_worker.py +393 -0
- vllm/v1/worker/lora_model_runner_mixin.py +173 -0
- vllm/v1/worker/tpu_model_runner.py +1673 -0
- vllm/v1/worker/tpu_worker.py +299 -0
- vllm/v1/worker/utils.py +111 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +145 -0
- vllm/worker/cpu_enc_dec_model_runner.py +326 -0
- vllm/worker/cpu_model_runner.py +671 -0
- vllm/worker/cpu_pooling_model_runner.py +125 -0
- vllm/worker/cpu_worker.py +450 -0
- vllm/worker/enc_dec_model_runner.py +555 -0
- vllm/worker/hpu_model_runner.py +2320 -0
- vllm/worker/hpu_worker.py +484 -0
- vllm/worker/model_runner.py +2178 -0
- vllm/worker/model_runner_base.py +282 -0
- vllm/worker/multi_step_hpu_worker.py +123 -0
- vllm/worker/multi_step_model_runner.py +911 -0
- vllm/worker/multi_step_neuron_model_runner.py +84 -0
- vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
- vllm/worker/multi_step_tpu_worker.py +108 -0
- vllm/worker/multi_step_worker.py +197 -0
- vllm/worker/neuron_model_runner.py +460 -0
- vllm/worker/neuron_worker.py +193 -0
- vllm/worker/neuronx_distributed_model_runner.py +294 -0
- vllm/worker/pooling_model_runner.py +211 -0
- vllm/worker/tpu_model_runner.py +909 -0
- vllm/worker/tpu_worker.py +337 -0
- vllm/worker/utils.py +53 -0
- vllm/worker/worker.py +577 -0
- vllm/worker/worker_base.py +646 -0
- vllm/worker/xpu_model_runner.py +606 -0
- vllm/worker/xpu_worker.py +186 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,2320 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
###############################################################################
|
|
5
|
+
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company
|
|
6
|
+
###############################################################################
|
|
7
|
+
|
|
8
|
+
import collections
|
|
9
|
+
import contextlib
|
|
10
|
+
import dataclasses
|
|
11
|
+
import functools
|
|
12
|
+
import gc
|
|
13
|
+
import itertools
|
|
14
|
+
import math
|
|
15
|
+
import os
|
|
16
|
+
import time
|
|
17
|
+
from array import array
|
|
18
|
+
from enum import Enum, IntEnum
|
|
19
|
+
from typing import (TYPE_CHECKING, Any, Callable, Dict, List, NamedTuple,
|
|
20
|
+
Optional, Set, Tuple, Type, TypeVar, Union)
|
|
21
|
+
|
|
22
|
+
import habana_frameworks.torch as htorch
|
|
23
|
+
import habana_frameworks.torch.internal.bridge_config as bc
|
|
24
|
+
import torch
|
|
25
|
+
import torch.nn as nn
|
|
26
|
+
import vllm_hpu_extension.environment as environment
|
|
27
|
+
from vllm_hpu_extension.bucketing.common import get_bucketing_context
|
|
28
|
+
from vllm_hpu_extension.ops import LoraMask as LoraMask
|
|
29
|
+
from vllm_hpu_extension.profiler import (HabanaHighLevelProfiler,
|
|
30
|
+
HabanaMemoryProfiler, format_bytes)
|
|
31
|
+
|
|
32
|
+
import vllm.envs as envs
|
|
33
|
+
from vllm.attention import AttentionMetadata, get_attn_backend
|
|
34
|
+
from vllm.config import DeviceConfig, VllmConfig
|
|
35
|
+
from vllm.distributed import broadcast_tensor_dict
|
|
36
|
+
from vllm.distributed.parallel_state import get_world_group
|
|
37
|
+
from vllm.forward_context import set_forward_context
|
|
38
|
+
from vllm.logger import init_logger
|
|
39
|
+
from vllm.lora.layers import LoRAMapping
|
|
40
|
+
from vllm.lora.request import LoRARequest
|
|
41
|
+
from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
|
|
42
|
+
from vllm.model_executor import SamplingMetadata
|
|
43
|
+
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
44
|
+
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
|
45
|
+
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
46
|
+
VocabParallelEmbedding)
|
|
47
|
+
from vllm.model_executor.model_loader import get_model
|
|
48
|
+
from vllm.model_executor.sampling_metadata import SequenceGroupToSample
|
|
49
|
+
from vllm.multimodal import BatchedTensorInputs, MultiModalKwargs
|
|
50
|
+
from vllm.sampling_params import SamplingParams
|
|
51
|
+
from vllm.sequence import (CompletionSequenceGroupOutput, IntermediateTensors,
|
|
52
|
+
Logprob, SequenceData, SequenceGroupMetadata,
|
|
53
|
+
SequenceOutput)
|
|
54
|
+
from vllm.utils import (bind_kv_cache, is_pin_memory_available,
|
|
55
|
+
make_tensor_with_pad)
|
|
56
|
+
from vllm.worker.model_runner_base import (
|
|
57
|
+
ModelRunnerBase, ModelRunnerInputBase,
|
|
58
|
+
_add_attn_metadata_broadcastable_dict,
|
|
59
|
+
_add_sampling_metadata_broadcastable_dict,
|
|
60
|
+
_init_attn_metadata_from_tensor_dict,
|
|
61
|
+
_init_sampling_metadata_from_tensor_dict)
|
|
62
|
+
|
|
63
|
+
if TYPE_CHECKING:
|
|
64
|
+
from vllm.attention.backends.abstract import AttentionBackend
|
|
65
|
+
|
|
66
|
+
logger = init_logger(__name__)
|
|
67
|
+
|
|
68
|
+
_TYPE_CACHE = {}
|
|
69
|
+
# These values are assumed to be zero in several places.
|
|
70
|
+
# Use caution when updating them!
|
|
71
|
+
_PAD_SLOT_ID = 0
|
|
72
|
+
_PAD_BLOCK_ID = 0
|
|
73
|
+
|
|
74
|
+
LORA_WARMUP_RANK = 8
|
|
75
|
+
|
|
76
|
+
DUMMY_TOKEN_ID = -1
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
class PhaseType(Enum):
|
|
80
|
+
PREFILL = 'prefill'
|
|
81
|
+
PREFIX_PREFILL = 'prefix_prefill'
|
|
82
|
+
DECODE = 'decode'
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
def subtuple(obj: object,
|
|
86
|
+
typename: str,
|
|
87
|
+
to_copy: List[str],
|
|
88
|
+
to_override: Optional[Dict[str, object]] = None):
|
|
89
|
+
if obj is None:
|
|
90
|
+
return None
|
|
91
|
+
if to_override is None:
|
|
92
|
+
to_override = {}
|
|
93
|
+
fields = set(to_copy) | set(to_override.keys())
|
|
94
|
+
if type(obj) is dict:
|
|
95
|
+
values = {key: obj[key] for key in fields if key in obj}
|
|
96
|
+
else:
|
|
97
|
+
values = {f: to_override.get(f, getattr(obj, f)) for f in fields}
|
|
98
|
+
if typename not in _TYPE_CACHE:
|
|
99
|
+
_TYPE_CACHE[typename] = collections.namedtuple(typename,
|
|
100
|
+
' '.join(fields))
|
|
101
|
+
return _TYPE_CACHE[typename](**values)
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
def round_up(value: int, k: int):
|
|
105
|
+
return (value + k - 1) // k * k
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
def align_workers(value, op):
|
|
109
|
+
group = get_world_group().cpu_group
|
|
110
|
+
world_size = torch.distributed.get_world_size()
|
|
111
|
+
if world_size <= 1:
|
|
112
|
+
return value
|
|
113
|
+
value_t = torch.tensor(value, device='cpu')
|
|
114
|
+
torch.distributed.all_reduce(value_t, op=op, group=group)
|
|
115
|
+
return value_t.item()
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
def setup_profiler():
|
|
119
|
+
schedule = torch.profiler.schedule(wait=0, warmup=2, active=1, repeat=1)
|
|
120
|
+
DEVICE = 'hpu'
|
|
121
|
+
activities = [torch.profiler.ProfilerActivity.CPU]
|
|
122
|
+
activities.extend([torch.profiler.ProfilerActivity.HPU] if DEVICE ==
|
|
123
|
+
'hpu' else [])
|
|
124
|
+
#from habana_frameworks.torch.activity_profiler import DebugActivity
|
|
125
|
+
#debug_activities=[DebugActivity.BRIDGE_FUNCTION_CALLS]
|
|
126
|
+
|
|
127
|
+
profiler = torch.profiler.profile(
|
|
128
|
+
schedule=schedule,
|
|
129
|
+
activities=activities,
|
|
130
|
+
#debug_activities=debug_activities,
|
|
131
|
+
on_trace_ready=torch.profiler.tensorboard_trace_handler('.',
|
|
132
|
+
use_gzip=True),
|
|
133
|
+
record_shapes=False,
|
|
134
|
+
with_stack=True)
|
|
135
|
+
return profiler
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def pad_list(input, k, v):
|
|
139
|
+
input_len = len(input)
|
|
140
|
+
target_len = round_up(input_len, k)
|
|
141
|
+
padding = target_len - input_len
|
|
142
|
+
return input + [v] * padding
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
def gather_list(input, indices, v):
|
|
146
|
+
return [input[i] if i is not None else v for i in indices]
|
|
147
|
+
|
|
148
|
+
|
|
149
|
+
def flatten(in_list):
|
|
150
|
+
return list(itertools.chain(*in_list))
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
def precompute_indices_and_offsets(block_size, slot_mapping, is_prompt):
|
|
154
|
+
slot_mapping = slot_mapping.flatten()
|
|
155
|
+
indices = torch.div(slot_mapping, block_size, rounding_mode="floor")
|
|
156
|
+
if is_prompt:
|
|
157
|
+
indices = indices.unflatten(0, (-1, block_size))[:, 0]
|
|
158
|
+
offsets = None
|
|
159
|
+
else:
|
|
160
|
+
offsets = torch.fmod(slot_mapping, block_size)
|
|
161
|
+
return indices, offsets
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
def modify_decoder_layer(module: torch.nn.Module, suffix="DecoderLayer"):
|
|
165
|
+
if module.__class__.__name__.endswith(suffix):
|
|
166
|
+
|
|
167
|
+
def forward_hook(module, args, output):
|
|
168
|
+
htorch.core.mark_step()
|
|
169
|
+
return output
|
|
170
|
+
|
|
171
|
+
module.register_forward_hook(forward_hook)
|
|
172
|
+
|
|
173
|
+
for child_name, child_module in module.named_children():
|
|
174
|
+
modify_decoder_layer(child_module)
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
class HpuModelAdapter:
|
|
178
|
+
|
|
179
|
+
def __init__(self, model, vllm_config):
|
|
180
|
+
self.model = model
|
|
181
|
+
self.sampler = get_sampler()
|
|
182
|
+
self.prefill_use_fusedsdpa = os.getenv('VLLM_PROMPT_USE_FUSEDSDPA',
|
|
183
|
+
'0').lower() in ['1', 'true']
|
|
184
|
+
self.vllm_config = vllm_config
|
|
185
|
+
self.block_size = vllm_config.cache_config.block_size
|
|
186
|
+
self.dtype = vllm_config.model_config.dtype
|
|
187
|
+
enforce_eager = vllm_config.model_config.enforce_eager
|
|
188
|
+
|
|
189
|
+
if not htorch.utils.internal.is_lazy() and not enforce_eager:
|
|
190
|
+
if os.getenv('VLLM_REGIONAL_COMPILATION',
|
|
191
|
+
'true').lower() == 'true':
|
|
192
|
+
self.regional_compilation_layers_list = [
|
|
193
|
+
RMSNorm, VocabParallelEmbedding
|
|
194
|
+
]
|
|
195
|
+
self._regional_compilation(self.model)
|
|
196
|
+
else:
|
|
197
|
+
self.model = torch.compile(self.model,
|
|
198
|
+
backend='hpu_backend',
|
|
199
|
+
dynamic=False)
|
|
200
|
+
|
|
201
|
+
def _regional_compilation(self,
|
|
202
|
+
module,
|
|
203
|
+
parent_module=None,
|
|
204
|
+
module_name=None):
|
|
205
|
+
if isinstance(module, torch.nn.ModuleList):
|
|
206
|
+
for children_name, children_module in module.named_children():
|
|
207
|
+
self._compile_region(module, children_name, children_module)
|
|
208
|
+
elif any(
|
|
209
|
+
isinstance(module, layer)
|
|
210
|
+
for layer in self.regional_compilation_layers_list):
|
|
211
|
+
self._compile_region(parent_module, module_name, module)
|
|
212
|
+
else:
|
|
213
|
+
for children_name, children_module in module.named_children():
|
|
214
|
+
self._regional_compilation(children_module, module,
|
|
215
|
+
children_name)
|
|
216
|
+
|
|
217
|
+
def _compile_region(self, model, name, module):
|
|
218
|
+
module = torch.compile(module, backend='hpu_backend', dynamic=False)
|
|
219
|
+
setattr(model, name, module)
|
|
220
|
+
|
|
221
|
+
def _set_attn_bias(self, attn_metadata, batch_size, seq_len, device,
|
|
222
|
+
dtype):
|
|
223
|
+
if (attn_metadata is None
|
|
224
|
+
or (self.prefill_use_fusedsdpa \
|
|
225
|
+
and attn_metadata.block_list is None)
|
|
226
|
+
or not attn_metadata.is_prompt):
|
|
227
|
+
return attn_metadata
|
|
228
|
+
|
|
229
|
+
prefill_metadata = attn_metadata
|
|
230
|
+
|
|
231
|
+
seq_lens_t = prefill_metadata.seq_lens_tensor
|
|
232
|
+
context_lens_t = prefill_metadata.context_lens_tensor
|
|
233
|
+
query_lens_t = seq_lens_t - context_lens_t
|
|
234
|
+
|
|
235
|
+
block_list = attn_metadata.block_list
|
|
236
|
+
max_context_len = (block_list.size(-1) //
|
|
237
|
+
batch_size if block_list is not None else 0)
|
|
238
|
+
max_context_len = max_context_len * self.block_size
|
|
239
|
+
past_mask = torch.arange(0,
|
|
240
|
+
max_context_len,
|
|
241
|
+
dtype=torch.int32,
|
|
242
|
+
device=device)
|
|
243
|
+
past_mask = (past_mask.view(1, -1).expand(batch_size, -1).ge(
|
|
244
|
+
context_lens_t.view(-1, 1)).view(batch_size, 1, -1).expand(
|
|
245
|
+
batch_size, seq_len, -1).view(batch_size, 1, seq_len, -1))
|
|
246
|
+
|
|
247
|
+
len_mask = (torch.arange(0, seq_len, device=device,
|
|
248
|
+
dtype=torch.int32).view(1, seq_len).ge(
|
|
249
|
+
query_lens_t.unsqueeze(-1)).view(
|
|
250
|
+
batch_size, 1, 1, seq_len))
|
|
251
|
+
causal_mask = torch.triu(torch.ones((batch_size, 1, seq_len, seq_len),
|
|
252
|
+
device=device,
|
|
253
|
+
dtype=torch.bool),
|
|
254
|
+
diagonal=1)
|
|
255
|
+
mask = causal_mask.logical_or(len_mask)
|
|
256
|
+
mask = torch.concat((past_mask, mask), dim=-1)
|
|
257
|
+
attn_bias = (torch.zeros_like(mask, dtype=dtype).masked_fill_(
|
|
258
|
+
mask, -math.inf))
|
|
259
|
+
attn_metadata = prefill_metadata._replace(attn_bias=attn_bias)
|
|
260
|
+
return attn_metadata
|
|
261
|
+
|
|
262
|
+
def _set_block_mapping(self, metadata, batch_size, device, dtype):
|
|
263
|
+
mask = torch.arange(0,
|
|
264
|
+
self.block_size,
|
|
265
|
+
device=device,
|
|
266
|
+
dtype=torch.int32).unsqueeze(0)
|
|
267
|
+
mask = mask >= metadata.block_usage.unsqueeze(-1)
|
|
268
|
+
attn_bias = (torch.zeros_like(mask, dtype=dtype).masked_fill_(
|
|
269
|
+
mask, -math.inf))
|
|
270
|
+
if os.environ.get('VLLM_USE_FAKE_HPU',
|
|
271
|
+
'0') == '0' and htorch.utils.internal.is_lazy():
|
|
272
|
+
block_mapping = torch.nn.functional.one_hot(metadata.block_groups,
|
|
273
|
+
num_classes=batch_size)
|
|
274
|
+
else:
|
|
275
|
+
# Unfortunately one_hot on CPU/torch.compile mode/eager mode
|
|
276
|
+
# doesn't handle out of bounds classes so we need to convert
|
|
277
|
+
# all negative values to 0 (block_mapping) or bs (block_groups)
|
|
278
|
+
block_groups = metadata.block_groups.to(torch.long)
|
|
279
|
+
block_mapping = torch.nn.functional.relu(block_groups)
|
|
280
|
+
block_mapping = torch.nn.functional.one_hot(block_mapping,
|
|
281
|
+
num_classes=batch_size)
|
|
282
|
+
oob_values = block_groups.lt(0)
|
|
283
|
+
block_mapping.masked_fill_(oob_values.unsqueeze(-1), 0)
|
|
284
|
+
block_groups.masked_fill_(oob_values, batch_size)
|
|
285
|
+
metadata = metadata._replace(block_groups=block_groups)
|
|
286
|
+
block_mapping = block_mapping.to(dtype)
|
|
287
|
+
metadata = metadata._replace(block_mapping=block_mapping,
|
|
288
|
+
attn_bias=attn_bias)
|
|
289
|
+
return metadata
|
|
290
|
+
|
|
291
|
+
def _update_metadata(self, attn_metadata, batch_size, seq_len, device,
|
|
292
|
+
dtype):
|
|
293
|
+
if attn_metadata.is_prompt:
|
|
294
|
+
meta = attn_metadata
|
|
295
|
+
attn_metadata = self._set_attn_bias(meta, batch_size, seq_len,
|
|
296
|
+
device, dtype)
|
|
297
|
+
else:
|
|
298
|
+
meta = attn_metadata
|
|
299
|
+
attn_metadata = self._set_block_mapping(meta, batch_size, device,
|
|
300
|
+
dtype)
|
|
301
|
+
return attn_metadata
|
|
302
|
+
|
|
303
|
+
def forward(self, *args, **kwargs):
|
|
304
|
+
kwargs = kwargs.copy()
|
|
305
|
+
selected_token_indices = kwargs.pop('selected_token_indices')
|
|
306
|
+
if 'warmup_mode' in kwargs:
|
|
307
|
+
kwargs.pop('warmup_mode')
|
|
308
|
+
virtual_engine = 0
|
|
309
|
+
if 'virtual_engine' in kwargs:
|
|
310
|
+
virtual_engine = kwargs.pop('virtual_engine')
|
|
311
|
+
input_ids = kwargs['input_ids']
|
|
312
|
+
attn_metadata = self._update_metadata(kwargs.pop('attn_metadata'),
|
|
313
|
+
input_ids.size(0),
|
|
314
|
+
input_ids.size(1),
|
|
315
|
+
input_ids.device, self.dtype)
|
|
316
|
+
LoraMask.setLoraMask(kwargs.pop('lora_mask'))
|
|
317
|
+
with set_forward_context(attn_metadata, self.vllm_config,
|
|
318
|
+
virtual_engine):
|
|
319
|
+
hidden_states = self.model(*args, **kwargs)
|
|
320
|
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
|
321
|
+
hidden_states = hidden_states.index_select(0,
|
|
322
|
+
selected_token_indices)
|
|
323
|
+
return hidden_states
|
|
324
|
+
|
|
325
|
+
def compute_logits(self, *args, **kwargs):
|
|
326
|
+
return self.model.compute_logits(*args, **kwargs)
|
|
327
|
+
|
|
328
|
+
def sample(self, *args, **kwargs):
|
|
329
|
+
return self.sampler(*args, **kwargs)
|
|
330
|
+
|
|
331
|
+
|
|
332
|
+
class PreparePromptMetadata(NamedTuple):
|
|
333
|
+
input_tokens: torch.Tensor
|
|
334
|
+
input_positions: List[List[int]]
|
|
335
|
+
attn_metadata: Optional[AttentionMetadata]
|
|
336
|
+
seq_lens: List[int]
|
|
337
|
+
query_lens: List[int]
|
|
338
|
+
lora_index_mapping: List[List[int]]
|
|
339
|
+
lora_prompt_mapping: List[List[int]]
|
|
340
|
+
lora_requests: Set[LoRARequest]
|
|
341
|
+
multi_modal_kwargs: Optional[Dict[str, BatchedTensorInputs]]
|
|
342
|
+
slot_mapping: List[List[int]]
|
|
343
|
+
lora_ids: List[int]
|
|
344
|
+
|
|
345
|
+
@classmethod
|
|
346
|
+
def empty(cls):
|
|
347
|
+
return PreparePromptMetadata(input_tokens=[],
|
|
348
|
+
input_positions=[],
|
|
349
|
+
attn_metadata=None,
|
|
350
|
+
seq_lens=[],
|
|
351
|
+
query_lens=[],
|
|
352
|
+
lora_index_mapping=[],
|
|
353
|
+
lora_prompt_mapping=[],
|
|
354
|
+
lora_requests=set(),
|
|
355
|
+
multi_modal_kwargs=None,
|
|
356
|
+
slot_mapping=[],
|
|
357
|
+
lora_ids=[])
|
|
358
|
+
|
|
359
|
+
|
|
360
|
+
class PrepareDecodeMetadata(NamedTuple):
|
|
361
|
+
input_tokens: torch.Tensor
|
|
362
|
+
input_positions: List[List[int]]
|
|
363
|
+
attn_metadata: Optional[AttentionMetadata]
|
|
364
|
+
lora_index_mapping: List[List[int]]
|
|
365
|
+
lora_prompt_mapping: List[List[int]]
|
|
366
|
+
lora_requests: Set[LoRARequest]
|
|
367
|
+
slot_mapping: List[List[int]]
|
|
368
|
+
lora_ids: List[int]
|
|
369
|
+
|
|
370
|
+
@classmethod
|
|
371
|
+
def empty(cls):
|
|
372
|
+
return PrepareDecodeMetadata(input_tokens=[],
|
|
373
|
+
input_positions=[],
|
|
374
|
+
attn_metadata=None,
|
|
375
|
+
lora_index_mapping=[],
|
|
376
|
+
lora_prompt_mapping=[],
|
|
377
|
+
lora_requests=set(),
|
|
378
|
+
slot_mapping=[],
|
|
379
|
+
lora_ids=[])
|
|
380
|
+
|
|
381
|
+
|
|
382
|
+
# How batches are constructed.
|
|
383
|
+
class BatchType(IntEnum):
|
|
384
|
+
# Every batch is prefill.
|
|
385
|
+
PREFILL = 0
|
|
386
|
+
# Every batch is decode.
|
|
387
|
+
DECODE = 1
|
|
388
|
+
# Batch is a mixture of prefill and decode.
|
|
389
|
+
MIXED = 2
|
|
390
|
+
|
|
391
|
+
|
|
392
|
+
TModelInputForHPU = TypeVar('TModelInputForHPU', bound="ModelInputForHPU")
|
|
393
|
+
|
|
394
|
+
|
|
395
|
+
@dataclasses.dataclass(frozen=True)
|
|
396
|
+
class ModelInputForHPU(ModelRunnerInputBase):
|
|
397
|
+
"""
|
|
398
|
+
This base class contains metadata needed for the base model forward pass
|
|
399
|
+
but not metadata for possible additional steps, e.g., sampling. Model
|
|
400
|
+
runners that run additional steps should subclass this method to add
|
|
401
|
+
additional fields.
|
|
402
|
+
"""
|
|
403
|
+
input_tokens: Optional[torch.Tensor] = None
|
|
404
|
+
input_positions: Optional[torch.Tensor] = None
|
|
405
|
+
seq_lens: Optional[List[int]] = None
|
|
406
|
+
query_lens: Optional[List[int]] = None
|
|
407
|
+
lora_mapping: Optional["LoRAMapping"] = None
|
|
408
|
+
lora_requests: Optional[Set[LoRARequest]] = None
|
|
409
|
+
attn_metadata: Optional["AttentionMetadata"] = None
|
|
410
|
+
multi_modal_kwargs: Optional[Dict[str, torch.Tensor]] = None
|
|
411
|
+
real_batch_size: Optional[int] = None
|
|
412
|
+
batch_size_padded: Optional[int] = None
|
|
413
|
+
virtual_engine: int = 0
|
|
414
|
+
lora_ids: Optional[List[int]] = None
|
|
415
|
+
async_callback: Optional[Callable] = None
|
|
416
|
+
is_first_multi_step: bool = True
|
|
417
|
+
is_last_step: bool = True
|
|
418
|
+
|
|
419
|
+
def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
|
|
420
|
+
tensor_dict = {
|
|
421
|
+
"input_tokens": self.input_tokens,
|
|
422
|
+
"input_positions": self.input_positions,
|
|
423
|
+
"lora_requests": self.lora_requests,
|
|
424
|
+
"lora_mapping": self.lora_mapping,
|
|
425
|
+
"multi_modal_kwargs": self.multi_modal_kwargs,
|
|
426
|
+
"real_batch_size": self.real_batch_size,
|
|
427
|
+
"batch_size_padded": self.batch_size_padded,
|
|
428
|
+
"virtual_engine": self.virtual_engine,
|
|
429
|
+
"lora_ids": self.lora_ids,
|
|
430
|
+
"is_first_multi_step": self.is_first_multi_step,
|
|
431
|
+
"is_last_step": self.is_last_step,
|
|
432
|
+
}
|
|
433
|
+
_add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
|
|
434
|
+
return tensor_dict
|
|
435
|
+
|
|
436
|
+
@classmethod
|
|
437
|
+
def from_broadcasted_tensor_dict(
|
|
438
|
+
cls: Type[TModelInputForHPU],
|
|
439
|
+
tensor_dict: Dict[str, Any],
|
|
440
|
+
attn_backend: Optional["AttentionBackend"] = None,
|
|
441
|
+
) -> TModelInputForHPU:
|
|
442
|
+
if attn_backend is not None:
|
|
443
|
+
tensor_dict = _init_attn_metadata_from_tensor_dict(
|
|
444
|
+
attn_backend, tensor_dict)
|
|
445
|
+
return cls(**tensor_dict)
|
|
446
|
+
|
|
447
|
+
|
|
448
|
+
@dataclasses.dataclass(frozen=True)
|
|
449
|
+
class ModelInputForHPUWithSamplingMetadata(ModelInputForHPU):
|
|
450
|
+
"""
|
|
451
|
+
Used by the ModelRunner.
|
|
452
|
+
"""
|
|
453
|
+
sampling_metadata: Optional["SamplingMetadata"] = None
|
|
454
|
+
# Used for speculative decoding. We do not broadcast it because it is only
|
|
455
|
+
# used by the driver worker.
|
|
456
|
+
is_prompt: Optional[bool] = None
|
|
457
|
+
|
|
458
|
+
def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
|
|
459
|
+
tensor_dict = {
|
|
460
|
+
"input_tokens": self.input_tokens,
|
|
461
|
+
"input_positions": self.input_positions,
|
|
462
|
+
"lora_requests": self.lora_requests,
|
|
463
|
+
"lora_mapping": self.lora_mapping,
|
|
464
|
+
"multi_modal_kwargs": self.multi_modal_kwargs,
|
|
465
|
+
"lora_ids": self.lora_ids,
|
|
466
|
+
}
|
|
467
|
+
_add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
|
|
468
|
+
_add_sampling_metadata_broadcastable_dict(tensor_dict,
|
|
469
|
+
self.sampling_metadata)
|
|
470
|
+
return tensor_dict
|
|
471
|
+
|
|
472
|
+
@classmethod
|
|
473
|
+
def from_broadcasted_tensor_dict(
|
|
474
|
+
cls,
|
|
475
|
+
tensor_dict: Dict[str, Any],
|
|
476
|
+
attn_backend: Optional["AttentionBackend"] = None,
|
|
477
|
+
) -> "ModelInputForHPUWithSamplingMetadata":
|
|
478
|
+
tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
|
|
479
|
+
# FIXME(kzawora): this fails for whatever reason - why?
|
|
480
|
+
if attn_backend is not None:
|
|
481
|
+
tensor_dict = _init_attn_metadata_from_tensor_dict(
|
|
482
|
+
attn_backend, tensor_dict)
|
|
483
|
+
return cls(**tensor_dict)
|
|
484
|
+
|
|
485
|
+
|
|
486
|
+
class HPUModelRunnerBase(ModelRunnerBase[TModelInputForHPU]):
|
|
487
|
+
"""
|
|
488
|
+
Helper class for shared methods between GPU model runners.
|
|
489
|
+
"""
|
|
490
|
+
_model_input_cls: Type[TModelInputForHPU]
|
|
491
|
+
|
|
492
|
+
def __init__(
|
|
493
|
+
self,
|
|
494
|
+
vllm_config: VllmConfig,
|
|
495
|
+
is_driver_worker: bool = False,
|
|
496
|
+
return_hidden_states: bool = False,
|
|
497
|
+
):
|
|
498
|
+
ModelRunnerBase.__init__(self, vllm_config=vllm_config)
|
|
499
|
+
environment.set_model_config(self.model_config)
|
|
500
|
+
self.is_driver_worker = is_driver_worker
|
|
501
|
+
self.return_hidden_states = return_hidden_states
|
|
502
|
+
|
|
503
|
+
self.sliding_window = (self.model_config.get_sliding_window()
|
|
504
|
+
if self.model_config is not None else None)
|
|
505
|
+
self.device_config = (self.device_config if self.device_config
|
|
506
|
+
is not None else DeviceConfig())
|
|
507
|
+
self.device = self.device_config.device
|
|
508
|
+
self.enforce_eager = self.model_config.enforce_eager
|
|
509
|
+
self.max_num_seqs = self.scheduler_config.max_num_seqs
|
|
510
|
+
# NOTE(kzawora): Change that to scheduler_config.max_num_prefill_seqs
|
|
511
|
+
# once padding-aware scheduling gets merged
|
|
512
|
+
self.max_num_prefill_seqs = 64
|
|
513
|
+
self.max_model_len = self.scheduler_config.max_model_len
|
|
514
|
+
self.max_num_batched_tokens = \
|
|
515
|
+
self.scheduler_config.max_num_batched_tokens
|
|
516
|
+
self.block_size = self.cache_config.block_size
|
|
517
|
+
|
|
518
|
+
self.pin_memory = is_pin_memory_available()
|
|
519
|
+
self.kv_cache_dtype = self.cache_config.cache_dtype
|
|
520
|
+
|
|
521
|
+
self.attn_backend = get_attn_backend(
|
|
522
|
+
self.model_config.get_head_size(),
|
|
523
|
+
self.model_config.dtype,
|
|
524
|
+
self.kv_cache_dtype,
|
|
525
|
+
self.block_size,
|
|
526
|
+
self.model_config.is_attention_free,
|
|
527
|
+
)
|
|
528
|
+
|
|
529
|
+
# Lazy initialization
|
|
530
|
+
self.lora_manager: LRUCacheWorkerLoRAManager = None
|
|
531
|
+
self.model: torch.nn.Module = None
|
|
532
|
+
self.inc_initialized_successfully = False
|
|
533
|
+
|
|
534
|
+
# Profiler stats
|
|
535
|
+
self.profiler = HabanaHighLevelProfiler()
|
|
536
|
+
self.profiler_counter_helper = HabanaProfilerCounterHelper()
|
|
537
|
+
self.seen_configs: set = set()
|
|
538
|
+
self._mem_margin: Optional[int] = None
|
|
539
|
+
HPUBucketingContext = get_bucketing_context()
|
|
540
|
+
self.bucketing_ctx = HPUBucketingContext(self.max_num_seqs,
|
|
541
|
+
self.max_num_prefill_seqs,
|
|
542
|
+
self.block_size,
|
|
543
|
+
self.max_num_batched_tokens,
|
|
544
|
+
False, self.max_model_len)
|
|
545
|
+
self.graphed_buckets: Set[Any] = set()
|
|
546
|
+
self._set_gc_threshold()
|
|
547
|
+
if self.vllm_config.cache_config.enable_prefix_caching:
|
|
548
|
+
os.environ.setdefault("VLLM_CONTIGUOUS_PA", "False")
|
|
549
|
+
assert os.environ.get(
|
|
550
|
+
"VLLM_CONTIGUOUS_PA",
|
|
551
|
+
"").lower() != "true", "Contiguous PA doesn't support APC"
|
|
552
|
+
self.use_contiguous_pa = envs.VLLM_USE_HPU_CONTIGUOUS_CACHE_FETCH
|
|
553
|
+
|
|
554
|
+
# For multi-step scheduling
|
|
555
|
+
self.cached_step_outputs: List[torch.Tensor] = []
|
|
556
|
+
# For delayed sampling
|
|
557
|
+
self.cached_step_inputs: List[
|
|
558
|
+
ModelInputForHPUWithSamplingMetadata] = []
|
|
559
|
+
|
|
560
|
+
def _set_gc_threshold(self) -> None:
|
|
561
|
+
# Read https://docs.python.org/3/library/gc.html#gc.set_threshold
|
|
562
|
+
# for comprehensive description of gc generations.
|
|
563
|
+
# We can either use VLLM_GC_THR_GEN[0-2] (this has higher priority)
|
|
564
|
+
# to set particular generation threshold or use simpler
|
|
565
|
+
# VLLM_GC_THR_MULTIPLIER to multiply default values.
|
|
566
|
+
default_gc_thrs = list(gc.get_threshold())
|
|
567
|
+
requested_gc_thrs = [0] * len(default_gc_thrs)
|
|
568
|
+
for i in range(len(default_gc_thrs)):
|
|
569
|
+
requested_gc_thrs[i] = int(
|
|
570
|
+
os.environ.get(f'VLLM_GC_THR_GEN{i}', default_gc_thrs[i]))
|
|
571
|
+
if requested_gc_thrs == default_gc_thrs:
|
|
572
|
+
gc_thr_multiplier = int(os.environ.get('VLLM_GC_THR_MULTIPLIER',
|
|
573
|
+
2))
|
|
574
|
+
requested_gc_thrs = [
|
|
575
|
+
t * gc_thr_multiplier for t in default_gc_thrs
|
|
576
|
+
]
|
|
577
|
+
gc.set_threshold(*requested_gc_thrs)
|
|
578
|
+
|
|
579
|
+
self.skip_warmup = os.environ.get('VLLM_SKIP_WARMUP',
|
|
580
|
+
'false').lower() == 'true'
|
|
581
|
+
|
|
582
|
+
def load_model(self) -> None:
|
|
583
|
+
import habana_frameworks.torch.core as htcore
|
|
584
|
+
if self.model_config.quantization == 'inc' or \
|
|
585
|
+
self.model_config.quantization == 'fp8':
|
|
586
|
+
htcore.hpu_set_env()
|
|
587
|
+
with HabanaMemoryProfiler() as m:
|
|
588
|
+
with HabanaMemoryProfiler() as m_getmodel:
|
|
589
|
+
self.model = get_model(vllm_config=self.vllm_config)
|
|
590
|
+
msg = ("Pre-loading model weights on "
|
|
591
|
+
f"{next(self.model.parameters()).device} "
|
|
592
|
+
f"took {m_getmodel.get_summary_string()}")
|
|
593
|
+
logger.info(msg)
|
|
594
|
+
|
|
595
|
+
if self.lora_config:
|
|
596
|
+
assert hasattr(self.model, "embedding_modules"
|
|
597
|
+
), "Model does not have embedding_modules"
|
|
598
|
+
assert hasattr(
|
|
599
|
+
self.model, "embedding_padding_modules"
|
|
600
|
+
), "Model does not have embedding_padding_modules"
|
|
601
|
+
assert not self.lora_config.bias_enabled, \
|
|
602
|
+
"Bias support in LoRA is not enabled in HPU yet."
|
|
603
|
+
assert not self.lora_config.fully_sharded_loras, \
|
|
604
|
+
"Fully sharded LoRAs is not enabled in HPU yet."
|
|
605
|
+
|
|
606
|
+
# Use get_text_config() in case of multimodal models
|
|
607
|
+
text_config = self.model_config.hf_config.get_text_config()
|
|
608
|
+
|
|
609
|
+
self.lora_manager = LRUCacheWorkerLoRAManager(
|
|
610
|
+
self.scheduler_config.max_num_seqs,
|
|
611
|
+
self.scheduler_config.max_num_batched_tokens,
|
|
612
|
+
self.vocab_size,
|
|
613
|
+
self.lora_config,
|
|
614
|
+
self.device,
|
|
615
|
+
self.model.embedding_modules,
|
|
616
|
+
self.model.embedding_padding_modules,
|
|
617
|
+
max_position_embeddings=text_config.
|
|
618
|
+
max_position_embeddings,
|
|
619
|
+
)
|
|
620
|
+
self.model = self.lora_manager.create_lora_manager(self.model)
|
|
621
|
+
|
|
622
|
+
if self.model_config.quantization == 'inc':
|
|
623
|
+
logger.info("Preparing model with INC..")
|
|
624
|
+
with HabanaMemoryProfiler() as m_inc:
|
|
625
|
+
from neural_compressor.torch.quantization import (
|
|
626
|
+
FP8Config, convert, prepare)
|
|
627
|
+
config = FP8Config.from_json_file(
|
|
628
|
+
os.getenv("QUANT_CONFIG", ""))
|
|
629
|
+
if config.measure:
|
|
630
|
+
self.model = prepare(self.model, config)
|
|
631
|
+
elif config.quantize:
|
|
632
|
+
self.model = convert(self.model, config)
|
|
633
|
+
htcore.hpu_initialize(self.model,
|
|
634
|
+
mark_only_scales_as_const=True)
|
|
635
|
+
self.inc_initialized_successfully = True
|
|
636
|
+
logger.info("Preparing model with INC took %s",
|
|
637
|
+
m_inc.get_summary_string())
|
|
638
|
+
else:
|
|
639
|
+
self.model = self.model.to("hpu")
|
|
640
|
+
htcore.mark_step()
|
|
641
|
+
modify_decoder_layer(self.model)
|
|
642
|
+
torch.hpu.synchronize()
|
|
643
|
+
|
|
644
|
+
with HabanaMemoryProfiler() as m_wrap:
|
|
645
|
+
self.model = _maybe_wrap_in_hpu_graph(
|
|
646
|
+
self.model, vllm_config=self.vllm_config)
|
|
647
|
+
msg = f"Wrapping in HPU Graph took {m_wrap.get_summary_string()}"
|
|
648
|
+
logger.info(msg)
|
|
649
|
+
|
|
650
|
+
self.model_memory_usage = m.consumed_device_memory
|
|
651
|
+
msg = f"Loading model weights took in total {m.get_summary_string()}"
|
|
652
|
+
logger.info(msg)
|
|
653
|
+
|
|
654
|
+
def _add_dummy_seq(self, seq_group_metadata_list, is_prompt):
|
|
655
|
+
real_batch_size = len(seq_group_metadata_list)
|
|
656
|
+
batch_size_padded = self.bucketing_ctx.get_padded_batch_size(
|
|
657
|
+
real_batch_size, is_prompt)
|
|
658
|
+
batch_size_padding = batch_size_padded - real_batch_size
|
|
659
|
+
|
|
660
|
+
seq_group_metadata_list = seq_group_metadata_list.copy()
|
|
661
|
+
|
|
662
|
+
if batch_size_padding > 0:
|
|
663
|
+
dummy_seq_group_metadata = self.create_dummy_seq_group_metadata(
|
|
664
|
+
0, 0, is_prompt)
|
|
665
|
+
seq_group_metadata_list.extend(dummy_seq_group_metadata
|
|
666
|
+
for _ in range(batch_size_padding))
|
|
667
|
+
return seq_group_metadata_list, real_batch_size, batch_size_padded
|
|
668
|
+
|
|
669
|
+
def _maybe_wrap_in_hpu_graph(self, *args, **kwargs):
|
|
670
|
+
return htorch.hpu.wrap_in_hpu_graph(
|
|
671
|
+
HpuModelAdapter(*args, **kwargs), disable_tensor_cache=True
|
|
672
|
+
) if htorch.utils.internal.is_lazy() else HpuModelAdapter(
|
|
673
|
+
*args, **kwargs)
|
|
674
|
+
|
|
675
|
+
def get_model(self) -> nn.Module:
|
|
676
|
+
return self.model
|
|
677
|
+
|
|
678
|
+
def _use_graphs(self, batch_size, seq_len, is_prompt):
|
|
679
|
+
if self.enforce_eager:
|
|
680
|
+
return False
|
|
681
|
+
if self.skip_warmup:
|
|
682
|
+
return True
|
|
683
|
+
return (batch_size, seq_len, is_prompt) in self.graphed_buckets
|
|
684
|
+
|
|
685
|
+
def _is_valid_bucket(self, bucket):
|
|
686
|
+
return bucket[0] * bucket[1] <= self.max_num_batched_tokens
|
|
687
|
+
|
|
688
|
+
def _prepare_prompt(
|
|
689
|
+
self,
|
|
690
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
691
|
+
) -> PreparePromptMetadata:
|
|
692
|
+
input_tokens: List[List[int]] = []
|
|
693
|
+
input_positions: List[List[int]] = []
|
|
694
|
+
slot_mapping: List[List[int]] = []
|
|
695
|
+
lora_index_mapping: List[List[int]] = []
|
|
696
|
+
lora_prompt_mapping: List[List[int]] = []
|
|
697
|
+
lora_requests: Set[LoRARequest] = set()
|
|
698
|
+
|
|
699
|
+
seq_lens: List[int] = []
|
|
700
|
+
context_lens: List[int] = []
|
|
701
|
+
query_lens: List[int] = []
|
|
702
|
+
prefix_block_tables: List[List[int]] = []
|
|
703
|
+
multi_modal_kwargs_list: List[MultiModalKwargs] = []
|
|
704
|
+
|
|
705
|
+
if len(seq_group_metadata_list) == 0:
|
|
706
|
+
return PreparePromptMetadata.empty()
|
|
707
|
+
|
|
708
|
+
for seq_group_metadata in seq_group_metadata_list:
|
|
709
|
+
assert seq_group_metadata.is_prompt
|
|
710
|
+
seq_ids = list(seq_group_metadata.seq_data.keys())
|
|
711
|
+
assert len(seq_ids) == 1
|
|
712
|
+
seq_id = seq_ids[0]
|
|
713
|
+
|
|
714
|
+
computed_block_nums = seq_group_metadata.computed_block_nums
|
|
715
|
+
if (self.scheduler_config is not None
|
|
716
|
+
and self.scheduler_config.chunked_prefill_enabled
|
|
717
|
+
and not (computed_block_nums is None
|
|
718
|
+
or computed_block_nums == [])):
|
|
719
|
+
raise RuntimeError(
|
|
720
|
+
"chunked prefill cannot be used with prefix caching "
|
|
721
|
+
"now.")
|
|
722
|
+
|
|
723
|
+
token_chunk_size = seq_group_metadata.token_chunk_size
|
|
724
|
+
seq_data = seq_group_metadata.seq_data[seq_id]
|
|
725
|
+
context_len = seq_data.get_num_computed_tokens()
|
|
726
|
+
# We should use get_len here because in case of preemption
|
|
727
|
+
# it contains output tokens.
|
|
728
|
+
seq_len = min(seq_data.get_len(), context_len + token_chunk_size)
|
|
729
|
+
prompt_tokens = seq_data.get_token_ids()[context_len:seq_len]
|
|
730
|
+
seq_lens.append(seq_len)
|
|
731
|
+
|
|
732
|
+
# NOTE: This only works for oooooooxxx style attention.
|
|
733
|
+
if computed_block_nums is not None and len(
|
|
734
|
+
computed_block_nums) > 0 and self.sliding_window is None:
|
|
735
|
+
# Prefix is not supported with sliding_window
|
|
736
|
+
context_len = len(computed_block_nums) * self.block_size
|
|
737
|
+
if context_len == seq_len \
|
|
738
|
+
and self.vllm_config.cache_config.enable_prefix_caching:
|
|
739
|
+
# Fully cached prompt - compute only last token
|
|
740
|
+
context_len = context_len - 1
|
|
741
|
+
prompt_tokens = prompt_tokens[context_len:]
|
|
742
|
+
prefix_block_tables.append(computed_block_nums)
|
|
743
|
+
elif self.scheduler_config.chunked_prefill_enabled:
|
|
744
|
+
if seq_group_metadata.block_tables is not None:
|
|
745
|
+
# Prefill has chunked before.
|
|
746
|
+
block_table = seq_group_metadata.block_tables[seq_id]
|
|
747
|
+
prefix_block_tables.append(block_table)
|
|
748
|
+
else:
|
|
749
|
+
# The first prefill.
|
|
750
|
+
prefix_block_tables.append([])
|
|
751
|
+
else:
|
|
752
|
+
prefix_block_tables.append([])
|
|
753
|
+
# Right now, prefill start is always 0. However, this
|
|
754
|
+
# assumption can be changed once chunked prefill is introduced.
|
|
755
|
+
assert context_len == 0
|
|
756
|
+
|
|
757
|
+
# actual prompt lens
|
|
758
|
+
context_lens.append(context_len)
|
|
759
|
+
query_lens.append(seq_len - context_len)
|
|
760
|
+
input_tokens.append(prompt_tokens)
|
|
761
|
+
# NOTE(woosuk): Here we assume that the first token in the prompt
|
|
762
|
+
# is always the first token in the sequence.
|
|
763
|
+
input_positions.append(list(range(context_len, seq_len)))
|
|
764
|
+
|
|
765
|
+
mm_kwargs = seq_group_metadata.multi_modal_data
|
|
766
|
+
if mm_kwargs:
|
|
767
|
+
multi_modal_kwargs_list.append(mm_kwargs)
|
|
768
|
+
|
|
769
|
+
if seq_group_metadata.block_tables is None:
|
|
770
|
+
# During memory profiling, the block tables are not initialized
|
|
771
|
+
# yet. In this case, we just use a dummy slot mapping.
|
|
772
|
+
slot_mapping.append([_PAD_SLOT_ID] * seq_len)
|
|
773
|
+
continue
|
|
774
|
+
|
|
775
|
+
# Compute the slot mapping.
|
|
776
|
+
slot_mapping.append([])
|
|
777
|
+
block_table = seq_group_metadata.block_tables[seq_id]
|
|
778
|
+
|
|
779
|
+
# Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
|
|
780
|
+
# where start_idx is max(0, seq_len - sliding_window).
|
|
781
|
+
# For example, if the prompt len is 10, sliding window is 8, and
|
|
782
|
+
# block size is 4, the first two tokens are masked and the slot
|
|
783
|
+
# mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
|
|
784
|
+
start_idx = 0
|
|
785
|
+
if self.sliding_window is not None:
|
|
786
|
+
assert context_len == 0, (
|
|
787
|
+
"Prefix caching is currently not supported with "
|
|
788
|
+
"sliding window attention")
|
|
789
|
+
start_idx = max(0, seq_len - self.sliding_window)
|
|
790
|
+
for i in range(context_len, seq_len):
|
|
791
|
+
if i < start_idx:
|
|
792
|
+
slot_mapping[-1].append(_PAD_SLOT_ID)
|
|
793
|
+
continue
|
|
794
|
+
|
|
795
|
+
block_number = block_table[i // self.block_size]
|
|
796
|
+
block_offset = i % self.block_size
|
|
797
|
+
slot = block_number * self.block_size + block_offset
|
|
798
|
+
slot_mapping[-1].append(slot)
|
|
799
|
+
|
|
800
|
+
max_query_len = max(query_lens)
|
|
801
|
+
sum_query_len = sum(query_lens)
|
|
802
|
+
real_num_seqs = len(query_lens)
|
|
803
|
+
assert max_query_len > 0
|
|
804
|
+
|
|
805
|
+
max_prompt_len = max(
|
|
806
|
+
self.bucketing_ctx.get_padded_prompt_seq_len(max_query_len),
|
|
807
|
+
self.block_size)
|
|
808
|
+
|
|
809
|
+
lora_ids: List[int] = []
|
|
810
|
+
for seq_group_metadata, context_len in zip(seq_group_metadata_list,
|
|
811
|
+
context_lens):
|
|
812
|
+
lora_id = seq_group_metadata.lora_int_id
|
|
813
|
+
lora_ids.append(lora_id)
|
|
814
|
+
|
|
815
|
+
if lora_id > 0:
|
|
816
|
+
lora_requests.add(seq_group_metadata.lora_request)
|
|
817
|
+
|
|
818
|
+
lora_index_mapping += [lora_id] * max_prompt_len
|
|
819
|
+
lora_prompt_mapping.extend(
|
|
820
|
+
[lora_id] *
|
|
821
|
+
(max_prompt_len
|
|
822
|
+
if seq_group_metadata.sampling_params.prompt_logprobs else 1))
|
|
823
|
+
|
|
824
|
+
if any(context_lens):
|
|
825
|
+
assert not self.scheduler_config.chunked_prefill_enabled
|
|
826
|
+
# prefix caching
|
|
827
|
+
|
|
828
|
+
max_num_block = max(len(bt) for bt in prefix_block_tables)
|
|
829
|
+
prefix_block_list = list(
|
|
830
|
+
itertools.chain.from_iterable(
|
|
831
|
+
bt if len(bt) == max_num_block else bt +
|
|
832
|
+
([_PAD_BLOCK_ID] * (max_num_block - len(bt)))
|
|
833
|
+
for bt in prefix_block_tables))
|
|
834
|
+
|
|
835
|
+
pad_len = len(prefix_block_list)
|
|
836
|
+
prefix_block_list = pad_list(prefix_block_list, pad_len,
|
|
837
|
+
_PAD_BLOCK_ID)
|
|
838
|
+
|
|
839
|
+
prefix_block_list_tensor = torch.tensor(prefix_block_list,
|
|
840
|
+
dtype=torch.long,
|
|
841
|
+
device=self.device)
|
|
842
|
+
else:
|
|
843
|
+
prefix_block_list_tensor = None
|
|
844
|
+
|
|
845
|
+
input_tokens = make_tensor_with_pad(input_tokens,
|
|
846
|
+
max_len=max_prompt_len,
|
|
847
|
+
pad=0,
|
|
848
|
+
dtype=torch.long,
|
|
849
|
+
device=self.device)
|
|
850
|
+
|
|
851
|
+
input_positions = make_tensor_with_pad(input_positions,
|
|
852
|
+
max_len=max_prompt_len,
|
|
853
|
+
pad=0,
|
|
854
|
+
dtype=torch.long,
|
|
855
|
+
device=self.device)
|
|
856
|
+
|
|
857
|
+
slot_mapping = make_tensor_with_pad(slot_mapping,
|
|
858
|
+
max_len=max_prompt_len,
|
|
859
|
+
pad=_PAD_SLOT_ID,
|
|
860
|
+
dtype=torch.long,
|
|
861
|
+
device=self.device)
|
|
862
|
+
|
|
863
|
+
seq_lens_tensor = torch.tensor(seq_lens,
|
|
864
|
+
dtype=torch.long,
|
|
865
|
+
device=self.device)
|
|
866
|
+
|
|
867
|
+
context_lens_tensor = torch.tensor(context_lens,
|
|
868
|
+
dtype=torch.long,
|
|
869
|
+
device=self.device)
|
|
870
|
+
|
|
871
|
+
block_indices, block_offsets = precompute_indices_and_offsets(
|
|
872
|
+
self.block_size, slot_mapping, True)
|
|
873
|
+
attn_metadata = self.attn_backend.make_metadata(
|
|
874
|
+
is_prompt=True,
|
|
875
|
+
block_list=prefix_block_list_tensor,
|
|
876
|
+
block_mapping=None,
|
|
877
|
+
block_usage=None,
|
|
878
|
+
block_indices=block_indices,
|
|
879
|
+
block_offsets=block_offsets,
|
|
880
|
+
block_groups=None,
|
|
881
|
+
attn_bias=None,
|
|
882
|
+
seq_lens_tensor=seq_lens_tensor,
|
|
883
|
+
context_lens_tensor=context_lens_tensor,
|
|
884
|
+
num_prefills=real_num_seqs,
|
|
885
|
+
num_prefill_tokens=sum_query_len,
|
|
886
|
+
num_decode_tokens=0,
|
|
887
|
+
slot_mapping=slot_mapping,
|
|
888
|
+
multi_modal_placeholder_index_maps=
|
|
889
|
+
None, # FIXME(kzawora): mutli-modality will not work here
|
|
890
|
+
enable_kv_scales_calculation=False,
|
|
891
|
+
)
|
|
892
|
+
multi_modal_kwargs = MultiModalKwargs.batch(multi_modal_kwargs_list)
|
|
893
|
+
|
|
894
|
+
return PreparePromptMetadata(input_tokens=input_tokens,
|
|
895
|
+
input_positions=input_positions,
|
|
896
|
+
attn_metadata=attn_metadata,
|
|
897
|
+
seq_lens=seq_lens,
|
|
898
|
+
query_lens=query_lens,
|
|
899
|
+
lora_index_mapping=lora_index_mapping,
|
|
900
|
+
lora_prompt_mapping=lora_prompt_mapping,
|
|
901
|
+
lora_requests=lora_requests,
|
|
902
|
+
multi_modal_kwargs=multi_modal_kwargs,
|
|
903
|
+
slot_mapping=slot_mapping,
|
|
904
|
+
lora_ids=lora_ids)
|
|
905
|
+
|
|
906
|
+
def _prepare_decode(
|
|
907
|
+
self,
|
|
908
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
909
|
+
output=None,
|
|
910
|
+
) -> PrepareDecodeMetadata:
|
|
911
|
+
input_tokens: List[List[int]] = []
|
|
912
|
+
input_positions: List[List[int]] = []
|
|
913
|
+
slot_mapping: List[List[int]] = []
|
|
914
|
+
seq_lens: List[int] = []
|
|
915
|
+
block_tables: List[List[int]] = []
|
|
916
|
+
lora_index_mapping: List[List[int]] = []
|
|
917
|
+
lora_prompt_mapping: List[List[int]] = []
|
|
918
|
+
lora_requests: Set[LoRARequest] = set()
|
|
919
|
+
|
|
920
|
+
if len(seq_group_metadata_list) == 0:
|
|
921
|
+
return PrepareDecodeMetadata.empty()
|
|
922
|
+
lora_ids: List[int] = []
|
|
923
|
+
|
|
924
|
+
dummy_slots = itertools.cycle(
|
|
925
|
+
range(_PAD_SLOT_ID, _PAD_SLOT_ID + self.block_size))
|
|
926
|
+
|
|
927
|
+
for seq_group_metadata in seq_group_metadata_list:
|
|
928
|
+
assert not seq_group_metadata.is_prompt
|
|
929
|
+
assert seq_group_metadata.token_chunk_size == 1
|
|
930
|
+
|
|
931
|
+
seq_ids = list(seq_group_metadata.seq_data.keys())
|
|
932
|
+
lora_id = seq_group_metadata.lora_int_id
|
|
933
|
+
lora_ids.append(lora_id)
|
|
934
|
+
|
|
935
|
+
if lora_id > 0:
|
|
936
|
+
lora_requests.add(seq_group_metadata.lora_request)
|
|
937
|
+
|
|
938
|
+
for seq_id in seq_ids:
|
|
939
|
+
seq_data = seq_group_metadata.seq_data[seq_id]
|
|
940
|
+
if output is None:
|
|
941
|
+
generation_token = seq_data.get_last_token_id()
|
|
942
|
+
input_tokens.append([generation_token])
|
|
943
|
+
|
|
944
|
+
seq_len = seq_data.get_len()
|
|
945
|
+
position = seq_len - 1
|
|
946
|
+
input_positions.append([position])
|
|
947
|
+
|
|
948
|
+
seq_len = seq_len if self.sliding_window is None else min(
|
|
949
|
+
seq_len, self.sliding_window)
|
|
950
|
+
seq_lens.append(seq_len)
|
|
951
|
+
|
|
952
|
+
block_table = seq_group_metadata.block_tables[seq_id]
|
|
953
|
+
num_fully_occupied_blocks = position // self.block_size
|
|
954
|
+
block_table = block_table[:num_fully_occupied_blocks + 1]
|
|
955
|
+
|
|
956
|
+
if len(block_table) == 0:
|
|
957
|
+
block_number = _PAD_BLOCK_ID
|
|
958
|
+
else:
|
|
959
|
+
block_number = block_table[position // self.block_size]
|
|
960
|
+
if block_number == _PAD_BLOCK_ID:
|
|
961
|
+
slot = next(dummy_slots)
|
|
962
|
+
else:
|
|
963
|
+
block_offset = position % self.block_size
|
|
964
|
+
slot = block_number * self.block_size + block_offset
|
|
965
|
+
slot_mapping.append([slot])
|
|
966
|
+
lora_index_mapping.append(lora_id)
|
|
967
|
+
lora_prompt_mapping.append(lora_id)
|
|
968
|
+
|
|
969
|
+
if self.sliding_window is not None:
|
|
970
|
+
sliding_window_blocks = (self.sliding_window //
|
|
971
|
+
self.block_size)
|
|
972
|
+
block_table = block_table[-sliding_window_blocks:]
|
|
973
|
+
block_tables.append(block_table)
|
|
974
|
+
|
|
975
|
+
if output is None:
|
|
976
|
+
input_tokens = torch.tensor(input_tokens,
|
|
977
|
+
dtype=torch.long,
|
|
978
|
+
device=self.device)
|
|
979
|
+
else:
|
|
980
|
+
real_batch_size = len(seq_group_metadata_list)
|
|
981
|
+
input_tokens = output[:real_batch_size]
|
|
982
|
+
|
|
983
|
+
input_positions = torch.tensor(input_positions,
|
|
984
|
+
dtype=torch.long,
|
|
985
|
+
device=self.device)
|
|
986
|
+
|
|
987
|
+
num_decode_tokens = sum(seq_lens)
|
|
988
|
+
|
|
989
|
+
last_block_usage = [
|
|
990
|
+
slot[0] % self.block_size + 1 for slot in slot_mapping
|
|
991
|
+
]
|
|
992
|
+
block_groups = [[i] * len(bt) for i, bt in enumerate(block_tables)]
|
|
993
|
+
block_usage = [[self.block_size] * (len(bt) - 1) + [lbu]
|
|
994
|
+
for bt, lbu in zip(block_tables, last_block_usage)
|
|
995
|
+
if bt]
|
|
996
|
+
|
|
997
|
+
block_list = flatten(block_tables)
|
|
998
|
+
block_groups = flatten(block_groups)
|
|
999
|
+
block_usage = flatten(block_usage)
|
|
1000
|
+
|
|
1001
|
+
assert len(block_list) == len(block_groups)
|
|
1002
|
+
assert len(block_list) == len(block_usage)
|
|
1003
|
+
|
|
1004
|
+
padding_fn = None
|
|
1005
|
+
if self.use_contiguous_pa:
|
|
1006
|
+
block_bucket_size = max(max(block_list) + 1, len(block_list))
|
|
1007
|
+
block_bucket_size = self.bucketing_ctx.get_padded_decode_num_blocks(
|
|
1008
|
+
block_bucket_size)
|
|
1009
|
+
indices: List[Any]
|
|
1010
|
+
indices = [None] * block_bucket_size
|
|
1011
|
+
for i, bid in enumerate(block_list):
|
|
1012
|
+
indices[bid] = i
|
|
1013
|
+
padding_fn = lambda tensor, pad_value: gather_list(
|
|
1014
|
+
tensor, indices, pad_value)
|
|
1015
|
+
else:
|
|
1016
|
+
block_bucket_size = \
|
|
1017
|
+
self.bucketing_ctx.get_padded_decode_num_blocks(
|
|
1018
|
+
len(block_list))
|
|
1019
|
+
padding_fn = lambda tensor, pad_value: pad_list(
|
|
1020
|
+
tensor, block_bucket_size, pad_value)
|
|
1021
|
+
|
|
1022
|
+
block_list = padding_fn(block_list, _PAD_BLOCK_ID)
|
|
1023
|
+
block_groups = padding_fn(block_groups, -1)
|
|
1024
|
+
block_usage = padding_fn(block_usage, 1)
|
|
1025
|
+
|
|
1026
|
+
block_list = torch.tensor(block_list,
|
|
1027
|
+
dtype=torch.int,
|
|
1028
|
+
device=self.device)
|
|
1029
|
+
block_groups = torch.tensor(block_groups,
|
|
1030
|
+
dtype=torch.int,
|
|
1031
|
+
device=self.device)
|
|
1032
|
+
block_usage = torch.tensor(block_usage,
|
|
1033
|
+
dtype=self.model_config.dtype,
|
|
1034
|
+
device=self.device)
|
|
1035
|
+
slot_mapping = torch.tensor(slot_mapping,
|
|
1036
|
+
dtype=torch.long,
|
|
1037
|
+
device=self.device)
|
|
1038
|
+
|
|
1039
|
+
block_indices, block_offsets = precompute_indices_and_offsets(
|
|
1040
|
+
self.block_size, slot_mapping, False)
|
|
1041
|
+
|
|
1042
|
+
attn_metadata = self.attn_backend.make_metadata(
|
|
1043
|
+
is_prompt=False,
|
|
1044
|
+
block_list=block_list,
|
|
1045
|
+
block_mapping=None,
|
|
1046
|
+
block_usage=block_usage,
|
|
1047
|
+
block_indices=block_indices,
|
|
1048
|
+
block_offsets=block_offsets,
|
|
1049
|
+
block_groups=block_groups,
|
|
1050
|
+
attn_bias=None,
|
|
1051
|
+
seq_lens_tensor=None,
|
|
1052
|
+
context_lens_tensor=None,
|
|
1053
|
+
num_prefills=0,
|
|
1054
|
+
num_prefill_tokens=0,
|
|
1055
|
+
num_decode_tokens=num_decode_tokens,
|
|
1056
|
+
slot_mapping=slot_mapping,
|
|
1057
|
+
multi_modal_placeholder_index_maps=None,
|
|
1058
|
+
enable_kv_scales_calculation=False,
|
|
1059
|
+
)
|
|
1060
|
+
return PrepareDecodeMetadata(input_tokens=input_tokens,
|
|
1061
|
+
input_positions=input_positions,
|
|
1062
|
+
attn_metadata=attn_metadata,
|
|
1063
|
+
lora_index_mapping=lora_index_mapping,
|
|
1064
|
+
lora_prompt_mapping=lora_prompt_mapping,
|
|
1065
|
+
lora_requests=lora_requests,
|
|
1066
|
+
slot_mapping=slot_mapping,
|
|
1067
|
+
lora_ids=lora_ids)
|
|
1068
|
+
|
|
1069
|
+
def prepare_input_tensors(
|
|
1070
|
+
self,
|
|
1071
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
1072
|
+
) -> Tuple[TModelInputForHPU, SamplingMetadata]:
|
|
1073
|
+
if len(seq_group_metadata_list) == 0:
|
|
1074
|
+
return self._model_input_cls(), None
|
|
1075
|
+
|
|
1076
|
+
input_tokens = None
|
|
1077
|
+
input_positions = None
|
|
1078
|
+
lora_mapping = None
|
|
1079
|
+
lora_requests = None
|
|
1080
|
+
multi_modal_kwargs = None
|
|
1081
|
+
batch_type = None
|
|
1082
|
+
seq_lens = None
|
|
1083
|
+
query_lens = None
|
|
1084
|
+
real_batch_size = None
|
|
1085
|
+
batch_size_padded = None
|
|
1086
|
+
|
|
1087
|
+
self.event_start = self.profiler.get_timestamp_us()
|
|
1088
|
+
is_prompt = seq_group_metadata_list[0].is_prompt
|
|
1089
|
+
base_event_name = 'prompt' if is_prompt else 'decode'
|
|
1090
|
+
self.profiler.start('internal', base_event_name)
|
|
1091
|
+
|
|
1092
|
+
seq_group_metadata_list, real_batch_size, batch_size_padded = (
|
|
1093
|
+
self._add_dummy_seq(seq_group_metadata_list, is_prompt))
|
|
1094
|
+
|
|
1095
|
+
prefill_reqs = []
|
|
1096
|
+
decode_reqs = []
|
|
1097
|
+
for seq_group_meta in seq_group_metadata_list:
|
|
1098
|
+
if seq_group_meta.is_prompt:
|
|
1099
|
+
prefill_reqs.append(seq_group_meta)
|
|
1100
|
+
else:
|
|
1101
|
+
decode_reqs.append(seq_group_meta)
|
|
1102
|
+
|
|
1103
|
+
# Prepare input tensors.
|
|
1104
|
+
(
|
|
1105
|
+
input_tokens,
|
|
1106
|
+
input_positions,
|
|
1107
|
+
prefill_attn_metadata,
|
|
1108
|
+
seq_lens,
|
|
1109
|
+
query_lens,
|
|
1110
|
+
lora_index_mapping,
|
|
1111
|
+
lora_prompt_mapping,
|
|
1112
|
+
lora_requests,
|
|
1113
|
+
multi_modal_kwargs,
|
|
1114
|
+
slot_mapping,
|
|
1115
|
+
lora_ids,
|
|
1116
|
+
) = self._prepare_prompt(prefill_reqs)
|
|
1117
|
+
(
|
|
1118
|
+
decode_input_tokens,
|
|
1119
|
+
decode_input_positions,
|
|
1120
|
+
decode_attn_metadata,
|
|
1121
|
+
decode_lora_index_mapping,
|
|
1122
|
+
decode_lora_prompt_mapping,
|
|
1123
|
+
decode_lora_requests,
|
|
1124
|
+
decode_slot_mapping,
|
|
1125
|
+
decode_lora_ids,
|
|
1126
|
+
) = self._prepare_decode(decode_reqs)
|
|
1127
|
+
sampling_metadata = SamplingMetadata.prepare(seq_group_metadata_list,
|
|
1128
|
+
seq_lens, query_lens,
|
|
1129
|
+
self.device,
|
|
1130
|
+
self.pin_memory)
|
|
1131
|
+
|
|
1132
|
+
if not self.scheduler_config.chunked_prefill_enabled:
|
|
1133
|
+
assert (len(prefill_reqs) and len(decode_reqs)) == 0
|
|
1134
|
+
|
|
1135
|
+
num_prefills = len(seq_lens)
|
|
1136
|
+
num_prefill_tokens = len(input_tokens)
|
|
1137
|
+
num_decode_tokens = len(decode_input_tokens)
|
|
1138
|
+
|
|
1139
|
+
# NOTE(kzawora): Here we diverge from GPU code - we don't
|
|
1140
|
+
# support mixed batches, so we either use decode or prefill
|
|
1141
|
+
# inputs, without coalescing.
|
|
1142
|
+
assert (num_prefills == 0 and num_decode_tokens > 0) or (
|
|
1143
|
+
num_prefills > 0
|
|
1144
|
+
and num_decode_tokens == 0), "HPU does not support mixed batches!"
|
|
1145
|
+
if num_decode_tokens > 0:
|
|
1146
|
+
input_tokens = decode_input_tokens
|
|
1147
|
+
input_positions = decode_input_positions
|
|
1148
|
+
slot_mapping = decode_slot_mapping
|
|
1149
|
+
lora_index_mapping = decode_lora_index_mapping
|
|
1150
|
+
lora_prompt_mapping = decode_lora_prompt_mapping
|
|
1151
|
+
lora_requests = decode_lora_requests
|
|
1152
|
+
lora_ids = decode_lora_ids
|
|
1153
|
+
|
|
1154
|
+
# FIXME: We need to adjust selected_token_indices to accommodate
|
|
1155
|
+
# for padding
|
|
1156
|
+
max_len = input_tokens.size(1)
|
|
1157
|
+
paddings = [max_len - q for q in query_lens]
|
|
1158
|
+
paddings = [0] + paddings[:-1]
|
|
1159
|
+
paddings = list(itertools.accumulate(paddings))
|
|
1160
|
+
paddings_prompt_logprobs = []
|
|
1161
|
+
for i, seq_group_metadata in enumerate(seq_group_metadata_list):
|
|
1162
|
+
if seq_group_metadata.sampling_params.prompt_logprobs is not None \
|
|
1163
|
+
and seq_group_metadata.is_prompt:
|
|
1164
|
+
paddings_prompt_logprobs += ([paddings[i]] * seq_lens[i])
|
|
1165
|
+
paddings = torch.tensor(
|
|
1166
|
+
paddings_prompt_logprobs if paddings_prompt_logprobs else paddings,
|
|
1167
|
+
dtype=sampling_metadata.selected_token_indices.dtype,
|
|
1168
|
+
device=sampling_metadata.selected_token_indices.device)
|
|
1169
|
+
sampling_metadata.selected_token_indices.add_(paddings)
|
|
1170
|
+
|
|
1171
|
+
if self.lora_config:
|
|
1172
|
+
lora_mapping = LoRAMapping(
|
|
1173
|
+
**dict(index_mapping=lora_index_mapping,
|
|
1174
|
+
prompt_mapping=lora_prompt_mapping,
|
|
1175
|
+
is_prefill=(num_prefills > 0)))
|
|
1176
|
+
else:
|
|
1177
|
+
lora_mapping = None
|
|
1178
|
+
|
|
1179
|
+
if (prefill_attn_metadata is not None
|
|
1180
|
+
and decode_attn_metadata is not None):
|
|
1181
|
+
batch_type = BatchType.MIXED
|
|
1182
|
+
raise NotImplementedError("Mixed batch is not supported on HPU")
|
|
1183
|
+
elif prefill_attn_metadata is not None:
|
|
1184
|
+
batch_type = BatchType.PREFILL
|
|
1185
|
+
else:
|
|
1186
|
+
batch_type = BatchType.DECODE
|
|
1187
|
+
|
|
1188
|
+
metadata_dict = {
|
|
1189
|
+
"input_tokens": input_tokens,
|
|
1190
|
+
"input_positions": input_positions,
|
|
1191
|
+
"selected_token_indices": sampling_metadata.selected_token_indices,
|
|
1192
|
+
"lora_requests": lora_requests,
|
|
1193
|
+
"lora_mapping": lora_mapping,
|
|
1194
|
+
"multi_modal_kwargs": multi_modal_kwargs,
|
|
1195
|
+
"num_prefill_tokens": num_prefill_tokens,
|
|
1196
|
+
"num_decode_tokens": num_decode_tokens,
|
|
1197
|
+
"slot_mapping": slot_mapping,
|
|
1198
|
+
"num_prefills": num_prefills,
|
|
1199
|
+
"batch_type": batch_type,
|
|
1200
|
+
"seq_lens": seq_lens,
|
|
1201
|
+
"query_lens": query_lens
|
|
1202
|
+
}
|
|
1203
|
+
if prefill_attn_metadata is not None:
|
|
1204
|
+
metadata_dict.update(prefill_attn_metadata.asdict_zerocopy())
|
|
1205
|
+
else:
|
|
1206
|
+
assert decode_attn_metadata is not None
|
|
1207
|
+
metadata_dict.update(decode_attn_metadata.asdict_zerocopy())
|
|
1208
|
+
|
|
1209
|
+
attn_metadata = prefill_attn_metadata if \
|
|
1210
|
+
prefill_attn_metadata is not None else decode_attn_metadata
|
|
1211
|
+
|
|
1212
|
+
return self._model_input_cls(input_tokens=input_tokens,
|
|
1213
|
+
seq_lens=seq_lens,
|
|
1214
|
+
query_lens=query_lens,
|
|
1215
|
+
input_positions=input_positions,
|
|
1216
|
+
attn_metadata=attn_metadata,
|
|
1217
|
+
lora_requests=lora_requests,
|
|
1218
|
+
lora_mapping=lora_mapping,
|
|
1219
|
+
multi_modal_kwargs=multi_modal_kwargs,
|
|
1220
|
+
real_batch_size=real_batch_size,
|
|
1221
|
+
batch_size_padded=batch_size_padded,
|
|
1222
|
+
lora_ids=lora_ids), \
|
|
1223
|
+
sampling_metadata
|
|
1224
|
+
|
|
1225
|
+
def _seq_len(self, attn_metadata):
|
|
1226
|
+
if attn_metadata.num_prefills != 0:
|
|
1227
|
+
return attn_metadata.slot_mapping.size(1)
|
|
1228
|
+
else:
|
|
1229
|
+
return attn_metadata.block_list.numel()
|
|
1230
|
+
|
|
1231
|
+
def trim_attn_metadata(self, metadata: AttentionMetadata) -> object:
|
|
1232
|
+
# NOTE(kzawora): To anyone working on this in the future:
|
|
1233
|
+
# Trimming metadata is required when using HPUGraphs.
|
|
1234
|
+
# Attention metadata is going to be hashed by PT bridge, and
|
|
1235
|
+
# appropriate HPUGraphs will be matched based on all inputs' hash.
|
|
1236
|
+
|
|
1237
|
+
# Before you put more keys in here, make sure you know their
|
|
1238
|
+
# value type and make sure you know how it's going to be hashed.
|
|
1239
|
+
# You can find that information in input_hash function
|
|
1240
|
+
# in habana_frameworks/torch/hpu/graphs.py. You can also hash
|
|
1241
|
+
# it manually with torch.hpu.graphs.input_hash(attention_metadata)
|
|
1242
|
+
|
|
1243
|
+
# If you use primitive types here - they will get hashed based
|
|
1244
|
+
# on their value. You *will* get lots of excessive graph captures
|
|
1245
|
+
# (and an OOM eventually) if you decide to put something like
|
|
1246
|
+
# seq_len int here.
|
|
1247
|
+
# If you absolutely need a scalar, put it in a tensor. Tensors
|
|
1248
|
+
# get hashed using their metadata, not their values:
|
|
1249
|
+
# input_hash(torch.tensor(123)) == input_hash(torch.tensor(321))
|
|
1250
|
+
# input_hash(123) != input_hash(321)
|
|
1251
|
+
# input_hash("abc") != input_hash("cba")
|
|
1252
|
+
attention_metadata = subtuple(metadata, 'TrimmedAttentionMetadata', [
|
|
1253
|
+
'attn_bias',
|
|
1254
|
+
'seq_lens_tensor',
|
|
1255
|
+
'context_lens_tensor',
|
|
1256
|
+
'block_list',
|
|
1257
|
+
'block_mapping',
|
|
1258
|
+
'block_usage',
|
|
1259
|
+
'slot_mapping',
|
|
1260
|
+
'is_prompt',
|
|
1261
|
+
'block_indices',
|
|
1262
|
+
'block_offsets',
|
|
1263
|
+
'block_groups',
|
|
1264
|
+
])
|
|
1265
|
+
return attention_metadata
|
|
1266
|
+
|
|
1267
|
+
def create_dummy_seq_group_metadata(self,
|
|
1268
|
+
group_id,
|
|
1269
|
+
seq_len,
|
|
1270
|
+
is_prompt,
|
|
1271
|
+
lora_request=None):
|
|
1272
|
+
sampling_params = SamplingParams(temperature=0)
|
|
1273
|
+
num_blocks = math.ceil(seq_len / self.block_size)
|
|
1274
|
+
seq_len = max(seq_len, 1)
|
|
1275
|
+
if is_prompt:
|
|
1276
|
+
input_len = seq_len
|
|
1277
|
+
output_len = 0
|
|
1278
|
+
block_tables = None
|
|
1279
|
+
else:
|
|
1280
|
+
input_len = seq_len - 1
|
|
1281
|
+
output_len = 1
|
|
1282
|
+
block_tables = {group_id: [_PAD_BLOCK_ID] * num_blocks}
|
|
1283
|
+
prompt_token_ids = [0] * input_len
|
|
1284
|
+
output_token_ids = [1] * output_len
|
|
1285
|
+
prompt_token_ids_array = array('l', prompt_token_ids) # noqa: F821
|
|
1286
|
+
seq_data = SequenceData(prompt_token_ids_array)
|
|
1287
|
+
seq_data.output_token_ids = output_token_ids
|
|
1288
|
+
return SequenceGroupMetadata(request_id=str(group_id),
|
|
1289
|
+
is_prompt=(output_len == 0),
|
|
1290
|
+
seq_data={group_id: seq_data},
|
|
1291
|
+
sampling_params=sampling_params,
|
|
1292
|
+
block_tables=block_tables,
|
|
1293
|
+
lora_request=lora_request)
|
|
1294
|
+
|
|
1295
|
+
def profile_run(self) -> None:
|
|
1296
|
+
num_layers = self.model_config.get_num_layers(self.parallel_config)
|
|
1297
|
+
kv_caches = [None] * num_layers
|
|
1298
|
+
bind_kv_cache(
|
|
1299
|
+
self.vllm_config.compilation_config.static_forward_context,
|
|
1300
|
+
[kv_caches])
|
|
1301
|
+
_, max_seq_len = self.bucketing_ctx.get_max_prompt_shape()
|
|
1302
|
+
max_batch_size = min(self.max_num_seqs,
|
|
1303
|
+
self.max_num_batched_tokens // max_seq_len)
|
|
1304
|
+
self.warmup_scenario(max_batch_size, max_seq_len, True, kv_caches,
|
|
1305
|
+
False, True)
|
|
1306
|
+
return
|
|
1307
|
+
|
|
1308
|
+
def warmup_scenario(self,
|
|
1309
|
+
batch_size,
|
|
1310
|
+
seq_len,
|
|
1311
|
+
is_prompt,
|
|
1312
|
+
kv_caches,
|
|
1313
|
+
is_pt_profiler_run=False,
|
|
1314
|
+
is_lora_profile_run=False) -> None:
|
|
1315
|
+
use_graphs = self._use_graphs(batch_size, seq_len, is_prompt)
|
|
1316
|
+
scenario_name = ("warmup_"
|
|
1317
|
+
f"{'prompt' if is_prompt else 'decode'}_"
|
|
1318
|
+
f"bs{batch_size}_"
|
|
1319
|
+
f"seq{seq_len}_"
|
|
1320
|
+
f"graphs{'T' if use_graphs else 'F'}")
|
|
1321
|
+
# This represents the maximum number of different requests
|
|
1322
|
+
# that will have unique loras, an therefore the max amount of memory
|
|
1323
|
+
# consumption create dummy lora request copies from the lora request
|
|
1324
|
+
# passed in, which contains a lora from the lora warmup path.
|
|
1325
|
+
dummy_lora_requests: List[LoRARequest] = []
|
|
1326
|
+
dummy_lora_requests_per_seq: List[LoRARequest] = []
|
|
1327
|
+
if self.lora_config and is_lora_profile_run:
|
|
1328
|
+
assert self.lora_manager is not None
|
|
1329
|
+
with self.lora_manager.dummy_lora_cache():
|
|
1330
|
+
for idx in range(self.lora_config.max_loras):
|
|
1331
|
+
lora_id = idx + 1
|
|
1332
|
+
dummy_lora_request = LoRARequest(
|
|
1333
|
+
lora_name=f"warmup_{lora_id}",
|
|
1334
|
+
lora_int_id=lora_id,
|
|
1335
|
+
lora_local_path="/not/a/real/path",
|
|
1336
|
+
)
|
|
1337
|
+
self.lora_manager.add_dummy_lora(dummy_lora_request,
|
|
1338
|
+
rank=LORA_WARMUP_RANK)
|
|
1339
|
+
dummy_lora_requests.append(dummy_lora_request)
|
|
1340
|
+
dummy_lora_requests_per_seq = [
|
|
1341
|
+
dummy_lora_requests[idx % len(dummy_lora_requests)]
|
|
1342
|
+
for idx in range(batch_size)
|
|
1343
|
+
]
|
|
1344
|
+
self.profiler.start('internal', scenario_name)
|
|
1345
|
+
times = 3 if use_graphs or is_pt_profiler_run else 1
|
|
1346
|
+
if is_prompt:
|
|
1347
|
+
seqs = [
|
|
1348
|
+
self.create_dummy_seq_group_metadata(
|
|
1349
|
+
i,
|
|
1350
|
+
seq_len,
|
|
1351
|
+
is_prompt,
|
|
1352
|
+
lora_request=dummy_lora_requests_per_seq[i]
|
|
1353
|
+
if dummy_lora_requests_per_seq else None)
|
|
1354
|
+
for i in range(batch_size)
|
|
1355
|
+
]
|
|
1356
|
+
else:
|
|
1357
|
+
# FIXME: seq_len is actually number of blocks
|
|
1358
|
+
blocks = [seq_len // batch_size for _ in range(batch_size)]
|
|
1359
|
+
blocks[0] += seq_len % batch_size
|
|
1360
|
+
seqs = [
|
|
1361
|
+
self.create_dummy_seq_group_metadata(
|
|
1362
|
+
i,
|
|
1363
|
+
b * self.block_size - 1,
|
|
1364
|
+
is_prompt,
|
|
1365
|
+
lora_request=dummy_lora_requests_per_seq[i]
|
|
1366
|
+
if dummy_lora_requests_per_seq else None)
|
|
1367
|
+
for i, b in enumerate(blocks)
|
|
1368
|
+
]
|
|
1369
|
+
torch.hpu.synchronize()
|
|
1370
|
+
profiler = None
|
|
1371
|
+
if is_pt_profiler_run and self.is_driver_worker:
|
|
1372
|
+
profiler = setup_profiler()
|
|
1373
|
+
profiler.start()
|
|
1374
|
+
for _ in range(times):
|
|
1375
|
+
inputs = self.prepare_model_input(seqs)
|
|
1376
|
+
is_single_step = \
|
|
1377
|
+
self.vllm_config.scheduler_config.num_scheduler_steps == 1
|
|
1378
|
+
if is_prompt or is_single_step:
|
|
1379
|
+
self.execute_model(inputs, None, warmup_mode=True)
|
|
1380
|
+
else: # decode with multi-step
|
|
1381
|
+
inputs = dataclasses.replace(inputs,
|
|
1382
|
+
is_first_multi_step=True,
|
|
1383
|
+
is_last_step=False)
|
|
1384
|
+
self.execute_model(inputs,
|
|
1385
|
+
None,
|
|
1386
|
+
warmup_mode=True,
|
|
1387
|
+
num_steps=2,
|
|
1388
|
+
seqs=seqs)
|
|
1389
|
+
inputs = dataclasses.replace(inputs,
|
|
1390
|
+
is_first_multi_step=False,
|
|
1391
|
+
is_last_step=True)
|
|
1392
|
+
self.execute_model(inputs,
|
|
1393
|
+
None,
|
|
1394
|
+
warmup_mode=True,
|
|
1395
|
+
num_steps=2,
|
|
1396
|
+
seqs=seqs)
|
|
1397
|
+
torch.hpu.synchronize()
|
|
1398
|
+
if profiler:
|
|
1399
|
+
profiler.step()
|
|
1400
|
+
if profiler:
|
|
1401
|
+
profiler.stop()
|
|
1402
|
+
self.profiler.end()
|
|
1403
|
+
gc.collect()
|
|
1404
|
+
|
|
1405
|
+
def remove_all_loras(self):
|
|
1406
|
+
if not self.lora_manager:
|
|
1407
|
+
raise RuntimeError("LoRA is not enabled.")
|
|
1408
|
+
self.lora_manager.remove_all_adapters()
|
|
1409
|
+
|
|
1410
|
+
def set_active_loras(self, lora_requests: Set[LoRARequest],
|
|
1411
|
+
lora_mapping: LoRAMapping) -> None:
|
|
1412
|
+
if not self.lora_manager:
|
|
1413
|
+
raise RuntimeError("LoRA is not enabled.")
|
|
1414
|
+
self.lora_manager.set_active_adapters(lora_requests, lora_mapping)
|
|
1415
|
+
|
|
1416
|
+
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
1417
|
+
if not self.lora_manager:
|
|
1418
|
+
raise RuntimeError("LoRA is not enabled.")
|
|
1419
|
+
return self.lora_manager.add_adapter(lora_request)
|
|
1420
|
+
|
|
1421
|
+
def remove_lora(self, lora_id: int) -> bool:
|
|
1422
|
+
if not self.lora_manager:
|
|
1423
|
+
raise RuntimeError("LoRA is not enabled.")
|
|
1424
|
+
return self.lora_manager.remove_adapter(lora_id)
|
|
1425
|
+
|
|
1426
|
+
def pin_lora(self, lora_id: int) -> bool:
|
|
1427
|
+
if not self.lora_manager:
|
|
1428
|
+
raise RuntimeError("LoRA is not enabled.")
|
|
1429
|
+
return self.lora_manager.pin_adapter(lora_id)
|
|
1430
|
+
|
|
1431
|
+
def list_loras(self) -> Set[int]:
|
|
1432
|
+
if not self.lora_manager:
|
|
1433
|
+
raise RuntimeError("LoRA is not enabled.")
|
|
1434
|
+
return self.lora_manager.list_adapters()
|
|
1435
|
+
|
|
1436
|
+
def log_warmup(self, phase, i, max_i, batch_size, seq_len):
|
|
1437
|
+
free_mem = format_bytes(
|
|
1438
|
+
HabanaMemoryProfiler.current_free_device_memory())
|
|
1439
|
+
dim = "num_blocks"
|
|
1440
|
+
if phase == "Prompt":
|
|
1441
|
+
dim = "seq_len"
|
|
1442
|
+
msg = (f"[Warmup][{phase}][{i+1}/{max_i}] "
|
|
1443
|
+
f"batch_size:{batch_size} "
|
|
1444
|
+
f"{dim}:{seq_len} "
|
|
1445
|
+
f"free_mem:{free_mem}")
|
|
1446
|
+
logger.info(msg)
|
|
1447
|
+
|
|
1448
|
+
def warmup_all_buckets(self, buckets, is_prompt, kv_caches):
|
|
1449
|
+
for i, (batch_size, seq_len) in enumerate(reversed(buckets)):
|
|
1450
|
+
self.log_warmup('Prompt' if is_prompt else 'Decode', i,
|
|
1451
|
+
len(buckets), batch_size, seq_len)
|
|
1452
|
+
self.warmup_scenario(batch_size, seq_len, is_prompt, kv_caches)
|
|
1453
|
+
|
|
1454
|
+
def warmup_graphs(self,
|
|
1455
|
+
strategy,
|
|
1456
|
+
buckets,
|
|
1457
|
+
is_prompt,
|
|
1458
|
+
kv_caches,
|
|
1459
|
+
available_mem,
|
|
1460
|
+
starting_mem=0,
|
|
1461
|
+
total_batch_seq=0.001):
|
|
1462
|
+
total_mem = starting_mem
|
|
1463
|
+
idx = 0
|
|
1464
|
+
phase = f'Graph/{"Prompt" if is_prompt else "Decode"}'
|
|
1465
|
+
num_candidates = len(buckets)
|
|
1466
|
+
ordering : Union[Callable[[Any], Tuple[Any, Any]], \
|
|
1467
|
+
Callable[[Any], Tuple[Any, Any, Any]]]
|
|
1468
|
+
if strategy == 'min_tokens':
|
|
1469
|
+
ordering = lambda b: (b[0] * b[1], b[1], b[0])
|
|
1470
|
+
elif strategy == 'max_bs':
|
|
1471
|
+
ordering = lambda b: (-b[0], b[1])
|
|
1472
|
+
else:
|
|
1473
|
+
raise NotImplementedError(
|
|
1474
|
+
f'Unsupported graph allocation strategy: {strategy}')
|
|
1475
|
+
buckets = list(sorted(buckets, key=ordering))
|
|
1476
|
+
captured_all = True
|
|
1477
|
+
for idx, (batch_size, seq_len) in enumerate(buckets):
|
|
1478
|
+
# Graph memory usage is proportional to seq dimension in a batch
|
|
1479
|
+
batch_seq = batch_size * seq_len if is_prompt else batch_size
|
|
1480
|
+
mem_estimate = batch_seq / total_batch_seq * total_mem
|
|
1481
|
+
if mem_estimate >= available_mem:
|
|
1482
|
+
captured_all = False
|
|
1483
|
+
continue
|
|
1484
|
+
graphed_bucket = (batch_size, seq_len, is_prompt)
|
|
1485
|
+
if graphed_bucket in self.graphed_buckets:
|
|
1486
|
+
continue
|
|
1487
|
+
self.graphed_buckets.add(graphed_bucket)
|
|
1488
|
+
self.log_warmup(phase, idx, num_candidates, batch_size, seq_len)
|
|
1489
|
+
with HabanaMemoryProfiler() as mem_prof:
|
|
1490
|
+
self.warmup_scenario(batch_size, seq_len, is_prompt, kv_caches)
|
|
1491
|
+
used_mem = align_workers(mem_prof.consumed_device_memory,
|
|
1492
|
+
torch.distributed.ReduceOp.MAX)
|
|
1493
|
+
available_mem -= used_mem
|
|
1494
|
+
total_mem += used_mem
|
|
1495
|
+
total_batch_seq += batch_seq
|
|
1496
|
+
|
|
1497
|
+
return total_mem, total_batch_seq, captured_all
|
|
1498
|
+
|
|
1499
|
+
def log_graph_warmup_summary(self, buckets, is_prompt, total_mem):
|
|
1500
|
+
num_candidates = len(buckets)
|
|
1501
|
+
phase = f'Graph/{"Prompt" if is_prompt else "Decode"}'
|
|
1502
|
+
graphed = list(c[:2] for c in self.graphed_buckets
|
|
1503
|
+
if c[2] == is_prompt)
|
|
1504
|
+
if num_candidates == 0:
|
|
1505
|
+
num_candidates = 1
|
|
1506
|
+
msg = (f'{phase} captured:{len(graphed)} '
|
|
1507
|
+
f'({100 * len(graphed) / num_candidates:.1f}%) '
|
|
1508
|
+
f'used_mem:{format_bytes(total_mem)} '
|
|
1509
|
+
f'buckets:{sorted(list(graphed))}')
|
|
1510
|
+
logger.info(msg)
|
|
1511
|
+
|
|
1512
|
+
@torch.inference_mode()
|
|
1513
|
+
def warmup_model(self, kv_caches: List[torch.Tensor]) -> None:
|
|
1514
|
+
max_blocks = kv_caches[0][0].size(0)
|
|
1515
|
+
self.bucketing_ctx.generate_decode_buckets(max_blocks)
|
|
1516
|
+
if profile := os.environ.get('VLLM_PT_PROFILE', None):
|
|
1517
|
+
phase, bs, seq_len, graph = profile.split('_')
|
|
1518
|
+
is_prompt = phase == 'prompt'
|
|
1519
|
+
graphs = graph == 't'
|
|
1520
|
+
if graphs:
|
|
1521
|
+
self.graphed_buckets.add((int(bs), int(seq_len), is_prompt))
|
|
1522
|
+
self.warmup_scenario(int(bs), int(seq_len), is_prompt, kv_caches,
|
|
1523
|
+
True)
|
|
1524
|
+
raise AssertionError("Finished profiling")
|
|
1525
|
+
if not htorch.utils.internal.is_lazy() and not self.enforce_eager:
|
|
1526
|
+
cache_size_limit = 1 + 3 * (
|
|
1527
|
+
len(self.bucketing_ctx.prompt_buckets) +
|
|
1528
|
+
len(self.bucketing_ctx.decode_buckets))
|
|
1529
|
+
torch._dynamo.config.cache_size_limit = max(
|
|
1530
|
+
cache_size_limit, torch._dynamo.config.cache_size_limit)
|
|
1531
|
+
# Multiply by 8 to follow the original default ratio between
|
|
1532
|
+
# the cache_size_limit and accumulated_cache_size_limit
|
|
1533
|
+
torch._dynamo.config.accumulated_cache_size_limit = max(
|
|
1534
|
+
cache_size_limit * 8,
|
|
1535
|
+
torch._dynamo.config.accumulated_cache_size_limit)
|
|
1536
|
+
if self.skip_warmup:
|
|
1537
|
+
logger.info("Skipping warmup...")
|
|
1538
|
+
return
|
|
1539
|
+
self.profiler.start('internal', 'warmup')
|
|
1540
|
+
start_mem = HabanaMemoryProfiler.current_device_memory_usage()
|
|
1541
|
+
start_time = time.perf_counter()
|
|
1542
|
+
|
|
1543
|
+
compile_only_mode_context = functools.partial(bc.env_setting,
|
|
1544
|
+
"PT_COMPILE_ONLY_MODE",
|
|
1545
|
+
True)
|
|
1546
|
+
can_use_compile_only_mode = True
|
|
1547
|
+
try:
|
|
1548
|
+
with compile_only_mode_context():
|
|
1549
|
+
pass
|
|
1550
|
+
logger.debug("Using PT_COMPILE_ONLY_MODE.")
|
|
1551
|
+
except KeyError:
|
|
1552
|
+
can_use_compile_only_mode = False
|
|
1553
|
+
logger.warning('Cannot use PT_COMPILE_ONLY_MODE. '
|
|
1554
|
+
'Warmup time will be negatively impacted. '
|
|
1555
|
+
'Please update Gaudi Software Suite.')
|
|
1556
|
+
with compile_only_mode_context(
|
|
1557
|
+
) if can_use_compile_only_mode else contextlib.nullcontext():
|
|
1558
|
+
self.warmup_all_buckets(self.bucketing_ctx.prompt_buckets, True,
|
|
1559
|
+
kv_caches)
|
|
1560
|
+
self.warmup_all_buckets(self.bucketing_ctx.decode_buckets, False,
|
|
1561
|
+
kv_caches)
|
|
1562
|
+
|
|
1563
|
+
if not self.enforce_eager and htorch.utils.internal.is_lazy():
|
|
1564
|
+
assert self.mem_margin is not None, \
|
|
1565
|
+
("HabanaWorker.determine_num_available_blocks needs "
|
|
1566
|
+
"to be called before warming up the model.")
|
|
1567
|
+
free_mem = HabanaMemoryProfiler.current_free_device_memory()
|
|
1568
|
+
graph_free_mem = free_mem - self.mem_margin
|
|
1569
|
+
graph_free_mem = align_workers(graph_free_mem,
|
|
1570
|
+
torch.distributed.ReduceOp.MIN)
|
|
1571
|
+
prompt_graph_mem_ratio = float(
|
|
1572
|
+
os.environ.get('VLLM_GRAPH_PROMPT_RATIO', '0.3'))
|
|
1573
|
+
prompt_available_memory = (prompt_graph_mem_ratio *
|
|
1574
|
+
graph_free_mem)
|
|
1575
|
+
decode_available_memory = (graph_free_mem -
|
|
1576
|
+
prompt_available_memory)
|
|
1577
|
+
msg = (
|
|
1578
|
+
f"Using {format_bytes(graph_free_mem)}"
|
|
1579
|
+
f"/{format_bytes(free_mem)} "
|
|
1580
|
+
"of free device memory for HPUGraphs, "
|
|
1581
|
+
f"{format_bytes(prompt_available_memory)} for prompt and "
|
|
1582
|
+
f"{format_bytes(decode_available_memory)} for decode "
|
|
1583
|
+
f"(VLLM_GRAPH_PROMPT_RATIO={prompt_graph_mem_ratio})")
|
|
1584
|
+
logger.info(msg)
|
|
1585
|
+
prompt_strategy = os.environ.get('VLLM_GRAPH_PROMPT_STRATEGY',
|
|
1586
|
+
'min_tokens')
|
|
1587
|
+
decode_strategy = os.environ.get('VLLM_GRAPH_DECODE_STRATEGY',
|
|
1588
|
+
'max_bs')
|
|
1589
|
+
mem_post_prompt, prompt_batch_seq, prompt_captured_all = \
|
|
1590
|
+
self.warmup_graphs(
|
|
1591
|
+
prompt_strategy, self.bucketing_ctx.prompt_buckets,
|
|
1592
|
+
True, kv_caches, prompt_available_memory)
|
|
1593
|
+
mem_post_decode, decode_batch_seq, decode_captured_all = \
|
|
1594
|
+
self.warmup_graphs(
|
|
1595
|
+
decode_strategy, self.bucketing_ctx.decode_buckets,
|
|
1596
|
+
False, kv_caches, decode_available_memory)
|
|
1597
|
+
|
|
1598
|
+
# Not all prompt buckets were captured, but all decode buckets
|
|
1599
|
+
# were captured and we have some free graph-allocated space
|
|
1600
|
+
# left. Let's try to use it for capturing more prompt buckets.
|
|
1601
|
+
if (mem_post_decode + mem_post_prompt < graph_free_mem
|
|
1602
|
+
and not prompt_captured_all and decode_captured_all):
|
|
1603
|
+
mem_post_prompt, _, prompt_captured_all = (
|
|
1604
|
+
self.warmup_graphs(
|
|
1605
|
+
prompt_strategy, self.bucketing_ctx.prompt_buckets,
|
|
1606
|
+
True, kv_caches,
|
|
1607
|
+
graph_free_mem - mem_post_prompt - mem_post_decode,
|
|
1608
|
+
mem_post_prompt, prompt_batch_seq))
|
|
1609
|
+
|
|
1610
|
+
# Not all decode buckets were captured, but all prompt buckets
|
|
1611
|
+
# were captured and we have some free graph-allocated space
|
|
1612
|
+
# left. Let's try to use it for capturing more decode buckets.
|
|
1613
|
+
if mem_post_decode + mem_post_prompt < graph_free_mem \
|
|
1614
|
+
and not decode_captured_all \
|
|
1615
|
+
and prompt_captured_all:
|
|
1616
|
+
mem_post_decode, _, _ = self.warmup_graphs(
|
|
1617
|
+
decode_strategy, self.bucketing_ctx.decode_buckets,
|
|
1618
|
+
False, kv_caches,
|
|
1619
|
+
graph_free_mem - mem_post_prompt - mem_post_decode,
|
|
1620
|
+
mem_post_decode, decode_batch_seq)
|
|
1621
|
+
|
|
1622
|
+
self.log_graph_warmup_summary(
|
|
1623
|
+
self.bucketing_ctx.prompt_buckets, True, mem_post_prompt)
|
|
1624
|
+
self.log_graph_warmup_summary(
|
|
1625
|
+
self.bucketing_ctx.decode_buckets, False, mem_post_decode)
|
|
1626
|
+
|
|
1627
|
+
end_time = time.perf_counter()
|
|
1628
|
+
end_mem = HabanaMemoryProfiler.current_device_memory_usage()
|
|
1629
|
+
elapsed_time = end_time - start_time
|
|
1630
|
+
msg = (
|
|
1631
|
+
f"Warmup finished in {elapsed_time:.0f} secs, "
|
|
1632
|
+
f"allocated {format_bytes(end_mem - start_mem)} of device memory")
|
|
1633
|
+
logger.info(msg)
|
|
1634
|
+
self.profiler.end()
|
|
1635
|
+
|
|
1636
|
+
@property
|
|
1637
|
+
def vocab_size(self) -> int:
|
|
1638
|
+
return self.model_config.get_vocab_size()
|
|
1639
|
+
|
|
1640
|
+
@property
|
|
1641
|
+
def mem_margin(self) -> Optional[int]:
|
|
1642
|
+
return self._mem_margin
|
|
1643
|
+
|
|
1644
|
+
@mem_margin.setter
|
|
1645
|
+
def mem_margin(self, value):
|
|
1646
|
+
self._mem_margin = value
|
|
1647
|
+
|
|
1648
|
+
|
|
1649
|
+
def _maybe_wrap_in_hpu_graph(*args, **kwargs):
|
|
1650
|
+
return htorch.hpu.wrap_in_hpu_graph(
|
|
1651
|
+
HpuModelAdapter(*args, **kwargs), disable_tensor_cache=True
|
|
1652
|
+
) if htorch.utils.internal.is_lazy() else HpuModelAdapter(*args, **kwargs)
|
|
1653
|
+
|
|
1654
|
+
|
|
1655
|
+
class HabanaProfilerCounterHelper:
|
|
1656
|
+
|
|
1657
|
+
def __init__(self):
|
|
1658
|
+
self.niter = 0
|
|
1659
|
+
self.average_real_throughput = None
|
|
1660
|
+
self.logged_once = False
|
|
1661
|
+
self.real_seq_lens = []
|
|
1662
|
+
self.prompt_seq_lens = []
|
|
1663
|
+
|
|
1664
|
+
def capture_seq_group_metadata_stats(self, seq_group_metadata_list):
|
|
1665
|
+
self.real_seq_lens = [
|
|
1666
|
+
len(seq_data.prompt_token_ids) + len(seq_data.output_token_ids)
|
|
1667
|
+
for seq_group_metadata in seq_group_metadata_list
|
|
1668
|
+
for seq_data in seq_group_metadata.seq_data.values()
|
|
1669
|
+
]
|
|
1670
|
+
self.prompt_seq_lens = [
|
|
1671
|
+
len(seq_data.prompt_token_ids)
|
|
1672
|
+
for seq_group_metadata in seq_group_metadata_list
|
|
1673
|
+
for seq_data in seq_group_metadata.seq_data.values()
|
|
1674
|
+
]
|
|
1675
|
+
|
|
1676
|
+
def get_counter_dict(self, cache_config, duration, seq_len,
|
|
1677
|
+
batch_size_padded, real_batch_size, is_prompt):
|
|
1678
|
+
throughput = batch_size_padded / (duration / 1e6)
|
|
1679
|
+
throughput_effective = real_batch_size / (duration / 1e6)
|
|
1680
|
+
|
|
1681
|
+
real_max_seq_len = max(self.real_seq_lens)
|
|
1682
|
+
real_num_tokens = sum(self.real_seq_lens)
|
|
1683
|
+
padded_num_tokens = batch_size_padded * seq_len
|
|
1684
|
+
batch_token_utilization = real_num_tokens / padded_num_tokens
|
|
1685
|
+
if self.average_real_throughput is None:
|
|
1686
|
+
self.average_real_throughput = throughput_effective
|
|
1687
|
+
else: # https://www.heikohoffmann.de/htmlthesis/node134.html
|
|
1688
|
+
self.average_real_throughput = self.average_real_throughput + 1 / (
|
|
1689
|
+
self.niter + 1) * (throughput_effective -
|
|
1690
|
+
self.average_real_throughput)
|
|
1691
|
+
phase = "prompt" if is_prompt else "decode"
|
|
1692
|
+
counters = {
|
|
1693
|
+
f'{phase}_bucket_batch_size': batch_size_padded,
|
|
1694
|
+
f'{phase}_batch_size': real_batch_size,
|
|
1695
|
+
f'{phase}_bucket_seq_len': seq_len,
|
|
1696
|
+
f'{phase}_seq_len': real_max_seq_len,
|
|
1697
|
+
f'{phase}_bucket_gen_throughput': throughput,
|
|
1698
|
+
f'{phase}_real_gen_throughput': throughput_effective,
|
|
1699
|
+
f'{phase}_batch_token_utilization': batch_token_utilization,
|
|
1700
|
+
'average_real_throughput': self.average_real_throughput,
|
|
1701
|
+
'engine_iteration': self.niter,
|
|
1702
|
+
}
|
|
1703
|
+
self.niter += 1
|
|
1704
|
+
if is_prompt:
|
|
1705
|
+
prompt_bucket_in_throughput = (seq_len * batch_size_padded) / (
|
|
1706
|
+
duration / 1e6)
|
|
1707
|
+
prompt_real_in_throughput = sum(
|
|
1708
|
+
self.prompt_seq_lens) / (duration / 1e6)
|
|
1709
|
+
counters[
|
|
1710
|
+
f'{phase}_bucket_in_throughput'] = prompt_bucket_in_throughput
|
|
1711
|
+
counters[f'{phase}_real_in_throughput'] = prompt_real_in_throughput
|
|
1712
|
+
|
|
1713
|
+
# KV cache might not be created yet (e.g. for profiling run)
|
|
1714
|
+
if cache_config.num_gpu_blocks is not None and \
|
|
1715
|
+
cache_config.num_gpu_blocks != 0:
|
|
1716
|
+
cache_num_blocks_used = [
|
|
1717
|
+
math.ceil(sl / cache_config.block_size)
|
|
1718
|
+
for sl in self.real_seq_lens
|
|
1719
|
+
]
|
|
1720
|
+
cache_total_num_blocks_used = sum(cache_num_blocks_used)
|
|
1721
|
+
num_cache_blocks = cache_config.num_gpu_blocks
|
|
1722
|
+
cache_total_num_free_blocks = \
|
|
1723
|
+
num_cache_blocks - cache_total_num_blocks_used
|
|
1724
|
+
cache_computed_utilization = \
|
|
1725
|
+
cache_total_num_blocks_used / num_cache_blocks
|
|
1726
|
+
max_blocks_per_seq = math.ceil(seq_len / cache_config.block_size)
|
|
1727
|
+
batch_block_utilization = cache_total_num_blocks_used / (
|
|
1728
|
+
batch_size_padded * max_blocks_per_seq)
|
|
1729
|
+
counters['cache_num_blocks_used'] = cache_total_num_blocks_used
|
|
1730
|
+
counters['cache_num_free_blocks'] = cache_total_num_free_blocks
|
|
1731
|
+
counters['cache_computed_utilization'] = cache_computed_utilization
|
|
1732
|
+
counters[
|
|
1733
|
+
f'{phase}_batch_block_utilization'] = batch_block_utilization
|
|
1734
|
+
if not self.logged_once:
|
|
1735
|
+
counters['const_cache_num_blocks'] = cache_config.num_gpu_blocks
|
|
1736
|
+
counters[
|
|
1737
|
+
'const_gpu_memory_utilization'] = \
|
|
1738
|
+
cache_config.gpu_memory_utilization
|
|
1739
|
+
counters['const_block_size'] = cache_config.block_size
|
|
1740
|
+
self.logged_once = True
|
|
1741
|
+
return counters
|
|
1742
|
+
|
|
1743
|
+
|
|
1744
|
+
def unwrap_model(model):
|
|
1745
|
+
if isinstance(model, torch._dynamo.eval_frame.OptimizedModule):
|
|
1746
|
+
return unwrap_model(model._orig_mod)
|
|
1747
|
+
else:
|
|
1748
|
+
model = list(vars(model)['_modules'].values())[0]
|
|
1749
|
+
modules = list(vars(model)['_modules'].values())
|
|
1750
|
+
return modules
|
|
1751
|
+
|
|
1752
|
+
|
|
1753
|
+
class HPUModelRunner(HPUModelRunnerBase[ModelInputForHPUWithSamplingMetadata]):
|
|
1754
|
+
"""
|
|
1755
|
+
GPU model runner with sampling step.
|
|
1756
|
+
"""
|
|
1757
|
+
_model_input_cls: Type[ModelInputForHPUWithSamplingMetadata] = (
|
|
1758
|
+
ModelInputForHPUWithSamplingMetadata)
|
|
1759
|
+
|
|
1760
|
+
def make_model_input_from_broadcasted_tensor_dict(
|
|
1761
|
+
self,
|
|
1762
|
+
tensor_dict: Dict[str, Any],
|
|
1763
|
+
) -> ModelInputForHPUWithSamplingMetadata:
|
|
1764
|
+
return (
|
|
1765
|
+
ModelInputForHPUWithSamplingMetadata.from_broadcasted_tensor_dict(
|
|
1766
|
+
tensor_dict,
|
|
1767
|
+
attn_backend=self.attn_backend,
|
|
1768
|
+
))
|
|
1769
|
+
|
|
1770
|
+
@torch.inference_mode()
|
|
1771
|
+
def prepare_model_input(
|
|
1772
|
+
self,
|
|
1773
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
1774
|
+
virtual_engine: int = 0,
|
|
1775
|
+
finished_requests_ids: Optional[List[str]] = None
|
|
1776
|
+
) -> ModelInputForHPUWithSamplingMetadata:
|
|
1777
|
+
"""Prepare the model input based on a given sequence group, including
|
|
1778
|
+
metadata for the sampling step.
|
|
1779
|
+
The API assumes seq_group_metadata_list is sorted by prefill -> decode.
|
|
1780
|
+
The result tensors and data structure also batches input in prefill
|
|
1781
|
+
-> decode order. For example,
|
|
1782
|
+
- input_tokens[:num_prefill_tokens] contains prefill tokens.
|
|
1783
|
+
- input_tokens[num_prefill_tokens:] contains decode tokens.
|
|
1784
|
+
If cuda graph is required, this API automatically pads inputs.
|
|
1785
|
+
"""
|
|
1786
|
+
with self.profiler.record_event('internal', 'prepare_input_tensors'):
|
|
1787
|
+
assert seq_group_metadata_list is not None
|
|
1788
|
+
if self.profiler.enabled:
|
|
1789
|
+
self.profiler_counter_helper.capture_seq_group_metadata_stats(
|
|
1790
|
+
seq_group_metadata_list=seq_group_metadata_list)
|
|
1791
|
+
model_input, sampling_metadata = self.prepare_input_tensors(
|
|
1792
|
+
seq_group_metadata_list)
|
|
1793
|
+
assert model_input.attn_metadata is not None
|
|
1794
|
+
is_prompt = model_input.attn_metadata.is_prompt
|
|
1795
|
+
|
|
1796
|
+
return dataclasses.replace(model_input,
|
|
1797
|
+
sampling_metadata=sampling_metadata,
|
|
1798
|
+
is_prompt=is_prompt,
|
|
1799
|
+
virtual_engine=virtual_engine)
|
|
1800
|
+
|
|
1801
|
+
def finish_measurements(self):
|
|
1802
|
+
from neural_compressor.torch.quantization import finalize_calibration
|
|
1803
|
+
finalize_calibration(self.model.model)
|
|
1804
|
+
|
|
1805
|
+
def _num_blocks(self, attn_metadata):
|
|
1806
|
+
if attn_metadata.block_list is None:
|
|
1807
|
+
return 0
|
|
1808
|
+
return attn_metadata.block_list.numel()
|
|
1809
|
+
|
|
1810
|
+
def _phase(self, attn_metadata):
|
|
1811
|
+
phase_type: PhaseType
|
|
1812
|
+
is_prompt = attn_metadata.is_prompt
|
|
1813
|
+
is_prefix_prefill = is_prompt and attn_metadata.block_list is not None
|
|
1814
|
+
if is_prompt and is_prefix_prefill:
|
|
1815
|
+
phase_type = PhaseType.PREFIX_PREFILL
|
|
1816
|
+
elif is_prompt and not is_prefix_prefill:
|
|
1817
|
+
phase_type = PhaseType.PREFILL
|
|
1818
|
+
elif not is_prompt:
|
|
1819
|
+
phase_type = PhaseType.DECODE
|
|
1820
|
+
else:
|
|
1821
|
+
raise ValueError("Unrecognized pass type, likely due to malformed "
|
|
1822
|
+
"attention metadata")
|
|
1823
|
+
return phase_type
|
|
1824
|
+
|
|
1825
|
+
def _check_config(self, batch_size, seq_len, attn_metadata, warmup_mode):
|
|
1826
|
+
is_prefix_caching = self.vllm_config.cache_config.enable_prefix_caching
|
|
1827
|
+
cfg: Optional[tuple] = None
|
|
1828
|
+
assert cfg is None, "Configs changed between 2D and 3D"
|
|
1829
|
+
if is_prefix_caching:
|
|
1830
|
+
phase = self._phase(attn_metadata)
|
|
1831
|
+
num_blocks = self._num_blocks(attn_metadata)
|
|
1832
|
+
cfg = (batch_size, seq_len, num_blocks, phase)
|
|
1833
|
+
else:
|
|
1834
|
+
phase = 'prompt' if attn_metadata.is_prompt else 'decode'
|
|
1835
|
+
cfg = (batch_size, seq_len, phase)
|
|
1836
|
+
seen = cfg in self.seen_configs
|
|
1837
|
+
self.seen_configs.add(cfg)
|
|
1838
|
+
if not seen and not warmup_mode:
|
|
1839
|
+
logger.warning("Configuration: %s was not warmed-up!",
|
|
1840
|
+
(phase.value, batch_size, seq_len,
|
|
1841
|
+
num_blocks) if is_prefix_caching else
|
|
1842
|
+
(phase, batch_size, seq_len))
|
|
1843
|
+
|
|
1844
|
+
def create_lora_mask(self, input_tokens: torch.Tensor, lora_ids: List[int],
|
|
1845
|
+
is_prompt: bool):
|
|
1846
|
+
'''
|
|
1847
|
+
This is a helper function to create the mask for lora computations.
|
|
1848
|
+
Lora Mask is needed to ensure we match the correct lora weights for the
|
|
1849
|
+
for the request.
|
|
1850
|
+
For Prompt phase we have
|
|
1851
|
+
lora_mask with shape (batch_size * seq_len, max_loras * max_rank)
|
|
1852
|
+
lora_logits_mask with shape (batch_size, max_loras * max_rank)
|
|
1853
|
+
For Decode phase we have both
|
|
1854
|
+
lora_mask and lora_logits_mask with shape
|
|
1855
|
+
(batch_size, max_loras * max_rank)
|
|
1856
|
+
'''
|
|
1857
|
+
lora_mask: torch.Tensor = None
|
|
1858
|
+
lora_logits_mask: torch.Tensor = None
|
|
1859
|
+
lora_index = 0
|
|
1860
|
+
|
|
1861
|
+
if self.lora_config:
|
|
1862
|
+
if is_prompt:
|
|
1863
|
+
lora_mask = torch.zeros(
|
|
1864
|
+
input_tokens.shape[0] * input_tokens.shape[1],
|
|
1865
|
+
(self.lora_config.max_loras) *\
|
|
1866
|
+
self.lora_config.max_lora_rank,
|
|
1867
|
+
dtype=self.lora_config.lora_dtype)
|
|
1868
|
+
lora_logits_mask = torch.zeros(
|
|
1869
|
+
input_tokens.shape[0], (self.lora_config.max_loras) *
|
|
1870
|
+
self.lora_config.max_lora_rank,
|
|
1871
|
+
dtype=self.lora_config.lora_dtype)
|
|
1872
|
+
|
|
1873
|
+
ones = torch.ones(input_tokens.shape[1],
|
|
1874
|
+
self.lora_config.max_lora_rank,
|
|
1875
|
+
dtype=self.lora_config.lora_dtype)
|
|
1876
|
+
logit_ones = torch.ones(1,
|
|
1877
|
+
self.lora_config.max_lora_rank,
|
|
1878
|
+
dtype=self.lora_config.lora_dtype)
|
|
1879
|
+
|
|
1880
|
+
for i in range(len(lora_ids)):
|
|
1881
|
+
if lora_ids[i] == 0:
|
|
1882
|
+
continue
|
|
1883
|
+
lora_index = self.lora_manager._adapter_manager.\
|
|
1884
|
+
lora_index_to_id.index(lora_ids[i])
|
|
1885
|
+
start_row = i * input_tokens.shape[1]
|
|
1886
|
+
end_row = start_row + input_tokens.shape[1]
|
|
1887
|
+
start_col = lora_index * self.lora_config.max_lora_rank
|
|
1888
|
+
end_col = start_col + self.lora_config.max_lora_rank
|
|
1889
|
+
lora_mask[start_row:end_row, start_col:end_col] = ones
|
|
1890
|
+
lora_logits_mask[i, start_col:end_col] = logit_ones
|
|
1891
|
+
lora_mask = lora_mask.to('hpu')
|
|
1892
|
+
lora_logits_mask = lora_logits_mask.to('hpu')
|
|
1893
|
+
else:
|
|
1894
|
+
lora_mask = torch.zeros(input_tokens.shape[0],
|
|
1895
|
+
(self.lora_config.max_loras) *
|
|
1896
|
+
self.lora_config.max_lora_rank,
|
|
1897
|
+
dtype=self.lora_config.lora_dtype)
|
|
1898
|
+
ones = torch.ones(1,
|
|
1899
|
+
self.lora_config.max_lora_rank,
|
|
1900
|
+
dtype=self.lora_config.lora_dtype)
|
|
1901
|
+
for i in range(len(lora_ids)):
|
|
1902
|
+
if lora_ids[i] == 0:
|
|
1903
|
+
continue
|
|
1904
|
+
lora_index = self.lora_manager._adapter_manager.\
|
|
1905
|
+
lora_index_to_id.index(lora_ids[i])
|
|
1906
|
+
start_pos = lora_index * self.lora_config.max_lora_rank
|
|
1907
|
+
end_pos = start_pos + self.lora_config.max_lora_rank
|
|
1908
|
+
lora_mask[i, start_pos:end_pos] = ones
|
|
1909
|
+
lora_mask = lora_mask.to('hpu')
|
|
1910
|
+
lora_logits_mask = lora_mask
|
|
1911
|
+
|
|
1912
|
+
return lora_mask, lora_logits_mask
|
|
1913
|
+
|
|
1914
|
+
def _get_seq_ids(self, model_input):
|
|
1915
|
+
return ([
|
|
1916
|
+
sg.seq_ids[0] for sg in model_input.sampling_metadata.seq_groups
|
|
1917
|
+
])
|
|
1918
|
+
|
|
1919
|
+
def _pad_to_max_num_seqs(self, tensor, value):
|
|
1920
|
+
padding_needed = self.max_num_seqs - tensor.size(0)
|
|
1921
|
+
if padding_needed:
|
|
1922
|
+
padding = torch.full((padding_needed, *tensor.shape[1:]),
|
|
1923
|
+
value,
|
|
1924
|
+
device=tensor.device,
|
|
1925
|
+
dtype=tensor.dtype)
|
|
1926
|
+
tensor = torch.cat([tensor, padding])
|
|
1927
|
+
return tensor
|
|
1928
|
+
|
|
1929
|
+
@torch.inference_mode()
|
|
1930
|
+
def execute_model(
|
|
1931
|
+
self,
|
|
1932
|
+
model_input: ModelInputForHPUWithSamplingMetadata,
|
|
1933
|
+
kv_caches: List[torch.Tensor],
|
|
1934
|
+
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
1935
|
+
num_steps: int = 1,
|
|
1936
|
+
warmup_mode=False,
|
|
1937
|
+
seqs=None,
|
|
1938
|
+
) -> Optional[Union[List[SamplerOutput], IntermediateTensors]]:
|
|
1939
|
+
VLLM_DELAYED_SAMPLING = envs.VLLM_HPU_USE_DELAYED_SAMPLING
|
|
1940
|
+
use_delayed_sampling = VLLM_DELAYED_SAMPLING and not warmup_mode
|
|
1941
|
+
assert not (use_delayed_sampling and num_steps != 1), \
|
|
1942
|
+
'Delayed sampling is not compatible with MSS!'
|
|
1943
|
+
assert model_input.input_tokens is not None
|
|
1944
|
+
if use_delayed_sampling and not model_input.is_prompt and \
|
|
1945
|
+
self.is_driver_worker:
|
|
1946
|
+
num_cached = len(self.cached_step_outputs)
|
|
1947
|
+
assert num_cached > 0
|
|
1948
|
+
cur_seq_ids = self._get_seq_ids(model_input)
|
|
1949
|
+
cur_seq_id_pos = {
|
|
1950
|
+
sid: idx
|
|
1951
|
+
for idx, sid in enumerate(cur_seq_ids) if sid >= 0
|
|
1952
|
+
}
|
|
1953
|
+
htorch.core.mark_step()
|
|
1954
|
+
for i in range(num_cached):
|
|
1955
|
+
prev_seq_ids = self._get_seq_ids(self.cached_step_inputs[i])
|
|
1956
|
+
target_indices = [
|
|
1957
|
+
cur_seq_id_pos.get(psi, -1) for psi in prev_seq_ids
|
|
1958
|
+
]
|
|
1959
|
+
padding = self.cached_step_outputs[i].size(0) - len(
|
|
1960
|
+
target_indices)
|
|
1961
|
+
target_indices.extend([-1] * padding)
|
|
1962
|
+
target_indices = torch.tensor(
|
|
1963
|
+
target_indices,
|
|
1964
|
+
device=model_input.input_tokens.device,
|
|
1965
|
+
dtype=model_input.input_tokens.dtype)
|
|
1966
|
+
model_input.input_tokens.index_copy_(
|
|
1967
|
+
0, target_indices, self.cached_step_outputs[i])
|
|
1968
|
+
htorch.core.mark_step()
|
|
1969
|
+
|
|
1970
|
+
if not model_input.is_first_multi_step:
|
|
1971
|
+
if not model_input.is_last_step:
|
|
1972
|
+
# not first or last multi-step
|
|
1973
|
+
return []
|
|
1974
|
+
# last multi-step
|
|
1975
|
+
output = self._decode_sampler_outputs(
|
|
1976
|
+
model_input) if self.is_driver_worker else []
|
|
1977
|
+
torch.hpu.synchronize()
|
|
1978
|
+
if model_input.is_first_multi_step:
|
|
1979
|
+
# first multi-step
|
|
1980
|
+
if self.lora_config:
|
|
1981
|
+
assert model_input.lora_requests is not None
|
|
1982
|
+
assert model_input.lora_mapping is not None
|
|
1983
|
+
self.set_active_loras(model_input.lora_requests,
|
|
1984
|
+
model_input.lora_mapping)
|
|
1985
|
+
# Rank!=0 workers has is_prompt==None
|
|
1986
|
+
if use_delayed_sampling and not model_input.is_prompt and \
|
|
1987
|
+
model_input.input_tokens.size(1) == 1:
|
|
1988
|
+
if self.is_driver_worker:
|
|
1989
|
+
model_kwargs_broadcast_data = {
|
|
1990
|
+
"input_tokens": model_input.input_tokens
|
|
1991
|
+
}
|
|
1992
|
+
broadcast_tensor_dict(model_kwargs_broadcast_data, src=0)
|
|
1993
|
+
input_tokens = model_input.input_tokens
|
|
1994
|
+
|
|
1995
|
+
else:
|
|
1996
|
+
model_kwargs_broadcast_data = broadcast_tensor_dict(src=0)
|
|
1997
|
+
input_tokens = model_kwargs_broadcast_data["input_tokens"]
|
|
1998
|
+
else:
|
|
1999
|
+
input_tokens = model_input.input_tokens
|
|
2000
|
+
input_positions = model_input.input_positions
|
|
2001
|
+
attn_metadata = model_input.attn_metadata
|
|
2002
|
+
sampling_metadata = model_input.sampling_metadata
|
|
2003
|
+
real_batch_size = model_input.real_batch_size
|
|
2004
|
+
batch_size_padded = model_input.batch_size_padded
|
|
2005
|
+
assert input_tokens is not None
|
|
2006
|
+
assert input_positions is not None
|
|
2007
|
+
assert sampling_metadata is not None
|
|
2008
|
+
assert attn_metadata is not None
|
|
2009
|
+
is_prompt = attn_metadata.is_prompt
|
|
2010
|
+
assert is_prompt is not None
|
|
2011
|
+
batch_size = input_tokens.size(0)
|
|
2012
|
+
seq_len = self._seq_len(attn_metadata)
|
|
2013
|
+
use_graphs = self._use_graphs(batch_size, seq_len, is_prompt)
|
|
2014
|
+
self._check_config(batch_size, seq_len, attn_metadata, warmup_mode)
|
|
2015
|
+
|
|
2016
|
+
lora_mask: torch.Tensor = None
|
|
2017
|
+
lora_logits_mask: torch.Tensor = None
|
|
2018
|
+
if self.lora_config:
|
|
2019
|
+
assert model_input.lora_ids is not None
|
|
2020
|
+
lora_mask, lora_logits_mask = self.create_lora_mask(
|
|
2021
|
+
input_tokens, model_input.lora_ids,
|
|
2022
|
+
attn_metadata.is_prompt)
|
|
2023
|
+
|
|
2024
|
+
execute_model_kwargs = {
|
|
2025
|
+
"input_ids": input_tokens,
|
|
2026
|
+
"positions": input_positions,
|
|
2027
|
+
"attn_metadata": self.trim_attn_metadata(attn_metadata),
|
|
2028
|
+
"intermediate_tensors": intermediate_tensors,
|
|
2029
|
+
"lora_mask": lora_mask,
|
|
2030
|
+
"virtual_engine": model_input.virtual_engine,
|
|
2031
|
+
**(model_input.multi_modal_kwargs or {}),
|
|
2032
|
+
}
|
|
2033
|
+
if htorch.utils.internal.is_lazy():
|
|
2034
|
+
execute_model_kwargs.update(
|
|
2035
|
+
{"bypass_hpu_graphs": not use_graphs})
|
|
2036
|
+
|
|
2037
|
+
htorch.core.mark_step()
|
|
2038
|
+
if self.is_driver_worker:
|
|
2039
|
+
model_event_name = ("model_"
|
|
2040
|
+
f"{'prompt' if is_prompt else 'decode'}_"
|
|
2041
|
+
f"bs{batch_size}_"
|
|
2042
|
+
f"seq{seq_len}_"
|
|
2043
|
+
f"graphs{'T' if use_graphs else 'F'}")
|
|
2044
|
+
else:
|
|
2045
|
+
model_event_name = 'model_executable'
|
|
2046
|
+
if num_steps > 1 or use_delayed_sampling:
|
|
2047
|
+
# in case of multi-step scheduling
|
|
2048
|
+
# we only want to pythonize in the last step
|
|
2049
|
+
sampling_metadata.skip_sampler_cpu_output = True
|
|
2050
|
+
self.model.sampler.include_gpu_probs_tensor = True
|
|
2051
|
+
cache_orig_output_tokens_len: List[Dict] = []
|
|
2052
|
+
|
|
2053
|
+
def try_revert_dummy_output_tokens():
|
|
2054
|
+
if len(cache_orig_output_tokens_len) > 0:
|
|
2055
|
+
# Reuse the original output token ids length
|
|
2056
|
+
for i, seq_group_metadata in enumerate(
|
|
2057
|
+
seq_group_metadata_list):
|
|
2058
|
+
for j, data in seq_group_metadata.seq_data.items():
|
|
2059
|
+
orig_output_tokens_len = \
|
|
2060
|
+
cache_orig_output_tokens_len[i][j]
|
|
2061
|
+
data.output_token_ids = \
|
|
2062
|
+
data.output_token_ids[:orig_output_tokens_len]
|
|
2063
|
+
|
|
2064
|
+
for i in range(num_steps):
|
|
2065
|
+
if i != 0 and not self.is_driver_worker:
|
|
2066
|
+
broadcast_data = broadcast_tensor_dict(src=0)
|
|
2067
|
+
if 'early_exit' in broadcast_data and broadcast_data[
|
|
2068
|
+
'early_exit']:
|
|
2069
|
+
return [output] if num_steps == 1 else []
|
|
2070
|
+
execute_model_kwargs.update({
|
|
2071
|
+
"input_ids":
|
|
2072
|
+
broadcast_data["input_ids"],
|
|
2073
|
+
"positions":
|
|
2074
|
+
broadcast_data["positions"],
|
|
2075
|
+
"attn_metadata":
|
|
2076
|
+
self.trim_attn_metadata(
|
|
2077
|
+
broadcast_data["attn_metadata"])
|
|
2078
|
+
})
|
|
2079
|
+
with self.profiler.record_event('internal', model_event_name):
|
|
2080
|
+
hidden_states = self.model.forward(
|
|
2081
|
+
**execute_model_kwargs,
|
|
2082
|
+
selected_token_indices=sampling_metadata.
|
|
2083
|
+
selected_token_indices)
|
|
2084
|
+
|
|
2085
|
+
if self.lora_config:
|
|
2086
|
+
LoraMask.setLoraMask(
|
|
2087
|
+
lora_logits_mask.index_select(
|
|
2088
|
+
0, sampling_metadata.selected_token_indices))
|
|
2089
|
+
|
|
2090
|
+
# Compute the logits.
|
|
2091
|
+
with self.profiler.record_event(
|
|
2092
|
+
'internal',
|
|
2093
|
+
('compute_logits_'
|
|
2094
|
+
f'{"prompt" if is_prompt else "decode"}_bs'
|
|
2095
|
+
f'{batch_size}_'
|
|
2096
|
+
f'seq{seq_len}')):
|
|
2097
|
+
if num_steps == 1:
|
|
2098
|
+
sampling_metadata.selected_token_indices = None
|
|
2099
|
+
logits = self.model.compute_logits(hidden_states,
|
|
2100
|
+
sampling_metadata)
|
|
2101
|
+
htorch.core.mark_step()
|
|
2102
|
+
# Only perform sampling in the driver worker.
|
|
2103
|
+
if not self.is_driver_worker:
|
|
2104
|
+
continue
|
|
2105
|
+
|
|
2106
|
+
if use_delayed_sampling:
|
|
2107
|
+
fake_output = self._delayed_sampler_outputs(model_input)
|
|
2108
|
+
|
|
2109
|
+
with self.profiler.record_event(
|
|
2110
|
+
'internal', ('sample_'
|
|
2111
|
+
f'{"prompt" if is_prompt else "decode"}_'
|
|
2112
|
+
f'bs{batch_size}_'
|
|
2113
|
+
f'seq{seq_len}')):
|
|
2114
|
+
output = self.model.sample(
|
|
2115
|
+
logits=logits,
|
|
2116
|
+
sampling_metadata=sampling_metadata,
|
|
2117
|
+
)
|
|
2118
|
+
if num_steps > 1:
|
|
2119
|
+
output = output.sampled_token_ids
|
|
2120
|
+
self.cached_step_outputs.append(output)
|
|
2121
|
+
if use_delayed_sampling and self.is_driver_worker:
|
|
2122
|
+
self._patch_prev_output()
|
|
2123
|
+
output = self._pad_to_max_num_seqs(
|
|
2124
|
+
output.sampled_token_ids, DUMMY_TOKEN_ID)
|
|
2125
|
+
self.cached_step_outputs.append(output)
|
|
2126
|
+
self.cached_step_inputs.append(model_input)
|
|
2127
|
+
htorch.core.mark_step()
|
|
2128
|
+
if model_input.async_callback is not None:
|
|
2129
|
+
model_input.async_callback()
|
|
2130
|
+
if i < num_steps - 1:
|
|
2131
|
+
if i == 0:
|
|
2132
|
+
if model_input.async_callback is not None:
|
|
2133
|
+
ctx = model_input.async_callback.keywords[ # type: ignore
|
|
2134
|
+
"ctx"]
|
|
2135
|
+
seq_group_metadata_list = \
|
|
2136
|
+
ctx.seq_group_metadata_list
|
|
2137
|
+
elif seqs is not None:
|
|
2138
|
+
seq_group_metadata_list = seqs
|
|
2139
|
+
else:
|
|
2140
|
+
raise RuntimeError(
|
|
2141
|
+
"seq_group_metadata_list is uninitialized")
|
|
2142
|
+
for i, seq_group_metadata in enumerate(
|
|
2143
|
+
seq_group_metadata_list):
|
|
2144
|
+
# Skip empty steps
|
|
2145
|
+
seq_group_metadata.state.current_step += (
|
|
2146
|
+
num_steps - 2)
|
|
2147
|
+
# Cache the original output token ids
|
|
2148
|
+
cache_orig_output_tokens_len.append({})
|
|
2149
|
+
for j, data in seq_group_metadata.seq_data.items():
|
|
2150
|
+
cache_orig_output_tokens_len[i][j] = \
|
|
2151
|
+
len(data.output_token_ids)
|
|
2152
|
+
for seq_group_metadata in seq_group_metadata_list:
|
|
2153
|
+
for data in seq_group_metadata.seq_data.values():
|
|
2154
|
+
max_output_len = sampling_metadata.seq_groups[
|
|
2155
|
+
0].sampling_params.max_tokens
|
|
2156
|
+
if len(data.output_token_ids) < max_output_len - 1:
|
|
2157
|
+
# add a place holder for prepare_decode
|
|
2158
|
+
# arbitrary value, this could be any token
|
|
2159
|
+
dummy_token = (540, )
|
|
2160
|
+
data.output_token_ids += (dummy_token)
|
|
2161
|
+
else:
|
|
2162
|
+
broadcast_tensor_dict({'early_exit': True},
|
|
2163
|
+
src=0)
|
|
2164
|
+
if num_steps == 1:
|
|
2165
|
+
return [output]
|
|
2166
|
+
else:
|
|
2167
|
+
try_revert_dummy_output_tokens()
|
|
2168
|
+
return []
|
|
2169
|
+
|
|
2170
|
+
result = self._prepare_decode(seq_group_metadata_list,
|
|
2171
|
+
output=output)
|
|
2172
|
+
execute_model_kwargs.update({
|
|
2173
|
+
"input_ids":
|
|
2174
|
+
result.input_tokens,
|
|
2175
|
+
"positions":
|
|
2176
|
+
result.input_positions,
|
|
2177
|
+
"attn_metadata":
|
|
2178
|
+
self.trim_attn_metadata(result.attn_metadata)
|
|
2179
|
+
})
|
|
2180
|
+
model_kwargs_broadcast_data = {
|
|
2181
|
+
"input_ids": result.input_tokens,
|
|
2182
|
+
"positions": result.input_positions,
|
|
2183
|
+
"attn_metadata": vars(result.attn_metadata)
|
|
2184
|
+
}
|
|
2185
|
+
broadcast_tensor_dict(model_kwargs_broadcast_data, src=0)
|
|
2186
|
+
else:
|
|
2187
|
+
try_revert_dummy_output_tokens()
|
|
2188
|
+
|
|
2189
|
+
if self.is_driver_worker and self.profiler.enabled:
|
|
2190
|
+
# Stop recording 'execute_model' event
|
|
2191
|
+
self.profiler.end()
|
|
2192
|
+
event_end = self.profiler.get_timestamp_us()
|
|
2193
|
+
counters = self.profiler_counter_helper.get_counter_dict(
|
|
2194
|
+
cache_config=self.cache_config,
|
|
2195
|
+
duration=event_end - self.event_start,
|
|
2196
|
+
seq_len=seq_len,
|
|
2197
|
+
batch_size_padded=batch_size_padded,
|
|
2198
|
+
real_batch_size=real_batch_size,
|
|
2199
|
+
is_prompt=is_prompt)
|
|
2200
|
+
self.profiler.record_counter(self.event_start, counters)
|
|
2201
|
+
if num_steps == 1:
|
|
2202
|
+
if self.return_hidden_states:
|
|
2203
|
+
# we only need to pass hidden states of most recent token
|
|
2204
|
+
assert model_input.sampling_metadata is not None
|
|
2205
|
+
if model_input.is_prompt:
|
|
2206
|
+
output.prefill_hidden_states = hidden_states
|
|
2207
|
+
output.hidden_states = hidden_states
|
|
2208
|
+
if use_delayed_sampling:
|
|
2209
|
+
if self.is_driver_worker:
|
|
2210
|
+
return [fake_output]
|
|
2211
|
+
else:
|
|
2212
|
+
return []
|
|
2213
|
+
|
|
2214
|
+
return [output] if self.is_driver_worker else []
|
|
2215
|
+
else:
|
|
2216
|
+
return []
|
|
2217
|
+
return output if type(output) is list else [output]
|
|
2218
|
+
|
|
2219
|
+
def _delayed_sampler_outputs(self, model_input):
|
|
2220
|
+
next_token_ids = [[DUMMY_TOKEN_ID]] * len(
|
|
2221
|
+
model_input.sampling_metadata.seq_groups)
|
|
2222
|
+
sampler_output = self._make_decode_output(
|
|
2223
|
+
next_token_ids, model_input.sampling_metadata.seq_groups)
|
|
2224
|
+
return sampler_output
|
|
2225
|
+
|
|
2226
|
+
def _decode_sampler_outputs(self, model_input):
|
|
2227
|
+
use_async_out_proc = model_input.async_callback is not None
|
|
2228
|
+
sampler_outputs = []
|
|
2229
|
+
num_outputs = len(self.cached_step_outputs)
|
|
2230
|
+
for i in range(num_outputs):
|
|
2231
|
+
next_token_ids = self.cached_step_outputs.pop(0)
|
|
2232
|
+
next_token_ids = next_token_ids.cpu().tolist()
|
|
2233
|
+
sampler_output = self._make_decode_output(
|
|
2234
|
+
next_token_ids, model_input.sampling_metadata.seq_groups)
|
|
2235
|
+
sampler_outputs.append(sampler_output)
|
|
2236
|
+
|
|
2237
|
+
if i < num_outputs - 1 and use_async_out_proc:
|
|
2238
|
+
assert model_input.async_callback is not None
|
|
2239
|
+
ctx = model_input.async_callback.keywords[ # type: ignore
|
|
2240
|
+
"ctx"]
|
|
2241
|
+
ctx.append_output(
|
|
2242
|
+
outputs=[sampler_output],
|
|
2243
|
+
seq_group_metadata_list=ctx.seq_group_metadata_list,
|
|
2244
|
+
scheduler_outputs=ctx.scheduler_outputs,
|
|
2245
|
+
is_async=False,
|
|
2246
|
+
is_last_step=False,
|
|
2247
|
+
is_first_step_output=False)
|
|
2248
|
+
model_input.async_callback()
|
|
2249
|
+
|
|
2250
|
+
if use_async_out_proc:
|
|
2251
|
+
return [sampler_outputs[-1]]
|
|
2252
|
+
else:
|
|
2253
|
+
return sampler_outputs
|
|
2254
|
+
|
|
2255
|
+
def _make_decode_output(
|
|
2256
|
+
self,
|
|
2257
|
+
next_token_ids: List[List[int]],
|
|
2258
|
+
seq_groups: List[SequenceGroupToSample],
|
|
2259
|
+
) -> SamplerOutput:
|
|
2260
|
+
zero_logprob = Logprob(0.0)
|
|
2261
|
+
sampler_outputs = []
|
|
2262
|
+
batch_idx = 0
|
|
2263
|
+
for seq_group in seq_groups:
|
|
2264
|
+
seq_ids = seq_group.seq_ids
|
|
2265
|
+
seq_outputs = []
|
|
2266
|
+
for seq_id in seq_ids:
|
|
2267
|
+
next_token_id = next_token_ids[batch_idx][0]
|
|
2268
|
+
seq_outputs.append(
|
|
2269
|
+
SequenceOutput(seq_id, next_token_id,
|
|
2270
|
+
{next_token_id: zero_logprob}))
|
|
2271
|
+
batch_idx += 1
|
|
2272
|
+
sampler_outputs.append(
|
|
2273
|
+
CompletionSequenceGroupOutput(seq_outputs, None))
|
|
2274
|
+
return SamplerOutput(sampler_outputs)
|
|
2275
|
+
|
|
2276
|
+
def shutdown_inc(self):
|
|
2277
|
+
can_finalize_inc = False
|
|
2278
|
+
from contextlib import suppress
|
|
2279
|
+
with suppress(AttributeError):
|
|
2280
|
+
can_finalize_inc = (self.model_config.quantization == 'inc') and \
|
|
2281
|
+
(self.model.model is not None) and \
|
|
2282
|
+
self.inc_initialized_successfully and \
|
|
2283
|
+
not getattr(self, "_is_inc_finalized", False)
|
|
2284
|
+
if can_finalize_inc:
|
|
2285
|
+
from neural_compressor.torch.quantization import (
|
|
2286
|
+
finalize_calibration)
|
|
2287
|
+
finalize_calibration(self.model.model)
|
|
2288
|
+
self._is_inc_finalized = True
|
|
2289
|
+
|
|
2290
|
+
def __del__(self):
|
|
2291
|
+
self.shutdown_inc()
|
|
2292
|
+
|
|
2293
|
+
def _patch_prev_output(self):
|
|
2294
|
+
assert len(self.cached_step_inputs) == len(self.cached_step_outputs), \
|
|
2295
|
+
f'''Inputs and outputs are out of sync!
|
|
2296
|
+
{len(self.cached_step_inputs)} vs {len(self.cached_step_outputs)}'''
|
|
2297
|
+
if len(self.cached_step_inputs) == 0:
|
|
2298
|
+
return
|
|
2299
|
+
model_input = self.cached_step_inputs.pop(0)
|
|
2300
|
+
delayed_output = self.cached_step_outputs.pop(0).cpu().squeeze(
|
|
2301
|
+
-1).tolist()
|
|
2302
|
+
ctx = model_input.async_callback.keywords["ctx"] # type: ignore
|
|
2303
|
+
# If there's no output to patch with, which is usually the case when
|
|
2304
|
+
# we're starting a new request after all requests are completed.
|
|
2305
|
+
if len(ctx.output_queue) == 0:
|
|
2306
|
+
return
|
|
2307
|
+
assert len(
|
|
2308
|
+
ctx.output_queue) == 1, 'There should be exactly 1 output waiting!'
|
|
2309
|
+
output_data = ctx.output_queue[0]
|
|
2310
|
+
assert len(output_data.outputs) == 1
|
|
2311
|
+
for fake_out, real_out in zip(output_data.outputs[0], delayed_output):
|
|
2312
|
+
fake_out.samples[0].output_token = real_out
|
|
2313
|
+
for sg, real_out in zip(output_data.seq_group_metadata_list,
|
|
2314
|
+
delayed_output):
|
|
2315
|
+
assert len(sg.seq_data) == 1
|
|
2316
|
+
seq_data = list(sg.seq_data.values())[0]
|
|
2317
|
+
# This is a hack. Assigning output_token_ids triggers
|
|
2318
|
+
# a cache recomputation and we only need to update the last token
|
|
2319
|
+
seq_data.output_token_ids_array[-1] = real_out
|
|
2320
|
+
seq_data._cached_all_token_ids[-1] = real_out
|