vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +53 -0
- vllm/_custom_ops.py +1828 -0
- vllm/_ipex_ops.py +244 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +106 -0
- vllm/adapter_commons/request.py +26 -0
- vllm/adapter_commons/utils.py +93 -0
- vllm/adapter_commons/worker_manager.py +39 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +34 -0
- vllm/assets/video.py +115 -0
- vllm/attention/__init__.py +20 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +308 -0
- vllm/attention/backends/blocksparse_attn.py +461 -0
- vllm/attention/backends/cpu_mla.py +307 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
- vllm/attention/backends/flash_attn.py +1003 -0
- vllm/attention/backends/flashinfer.py +1104 -0
- vllm/attention/backends/flashmla.py +244 -0
- vllm/attention/backends/hpu_attn.py +313 -0
- vllm/attention/backends/ipex_attn.py +398 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1385 -0
- vllm/attention/backends/pallas.py +351 -0
- vllm/attention/backends/placeholder_attn.py +400 -0
- vllm/attention/backends/rocm_aiter_mla.py +435 -0
- vllm/attention/backends/rocm_flash_attn.py +975 -0
- vllm/attention/backends/torch_sdpa.py +703 -0
- vllm/attention/backends/triton_mla.py +115 -0
- vllm/attention/backends/utils.py +610 -0
- vllm/attention/backends/xformers.py +802 -0
- vllm/attention/layer.py +468 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
- vllm/attention/ops/blocksparse_attention/interface.py +239 -0
- vllm/attention/ops/blocksparse_attention/utils.py +246 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
- vllm/attention/ops/flashmla.py +116 -0
- vllm/attention/ops/hpu_paged_attn.py +88 -0
- vllm/attention/ops/ipex_attn.py +195 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/nki_flash_attn.py +906 -0
- vllm/attention/ops/paged_attn.py +256 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +100 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +674 -0
- vllm/attention/ops/triton_flash_attention.py +979 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_unified_attention.py +334 -0
- vllm/attention/selector.py +187 -0
- vllm/attention/utils/fa_utils.py +55 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +1185 -0
- vllm/benchmarks/endpoint_request_func.py +381 -0
- vllm/benchmarks/latency.py +168 -0
- vllm/benchmarks/serve.py +1135 -0
- vllm/benchmarks/throughput.py +609 -0
- vllm/benchmarks/utils.py +70 -0
- vllm/collect_env.py +820 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +89 -0
- vllm/compilation/backends.py +563 -0
- vllm/compilation/base_piecewise_backend.py +72 -0
- vllm/compilation/collective_fusion.py +127 -0
- vllm/compilation/compiler_interface.py +544 -0
- vllm/compilation/counter.py +38 -0
- vllm/compilation/cuda_piecewise_backend.py +214 -0
- vllm/compilation/decorators.py +250 -0
- vllm/compilation/fix_functionalization.py +191 -0
- vllm/compilation/fusion.py +618 -0
- vllm/compilation/fx_utils.py +62 -0
- vllm/compilation/inductor_pass.py +115 -0
- vllm/compilation/monitor.py +39 -0
- vllm/compilation/multi_output_match.py +109 -0
- vllm/compilation/noop_elimination.py +137 -0
- vllm/compilation/pass_manager.py +78 -0
- vllm/compilation/sequence_parallelism.py +268 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +67 -0
- vllm/compilation/wrapper.py +135 -0
- vllm/config.py +4746 -0
- vllm/connections.py +174 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +399 -0
- vllm/core/block/common.py +371 -0
- vllm/core/block/cpu_gpu_block_allocator.py +441 -0
- vllm/core/block/interfaces.py +319 -0
- vllm/core/block/naive_block.py +466 -0
- vllm/core/block/prefix_caching_block.py +1135 -0
- vllm/core/block/utils.py +28 -0
- vllm/core/block_manager.py +521 -0
- vllm/core/evictor.py +157 -0
- vllm/core/interfaces.py +135 -0
- vllm/core/placeholder_block_space_manager.py +100 -0
- vllm/core/scheduler.py +2093 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +281 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +264 -0
- vllm/distributed/device_communicators/base_device_communicator.py +260 -0
- vllm/distributed/device_communicators/cpu_communicator.py +145 -0
- vllm/distributed/device_communicators/cuda_communicator.py +176 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
- vllm/distributed/device_communicators/hpu_communicator.py +46 -0
- vllm/distributed/device_communicators/neuron_communicator.py +20 -0
- vllm/distributed/device_communicators/pynccl.py +218 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
- vllm/distributed/device_communicators/shm_broadcast.py +585 -0
- vllm/distributed/device_communicators/tpu_communicator.py +103 -0
- vllm/distributed/device_communicators/xpu_communicator.py +55 -0
- vllm/distributed/kv_events.py +356 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +12 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
- vllm/distributed/parallel_state.py +1296 -0
- vllm/distributed/tpu_distributed_utils.py +177 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1708 -0
- vllm/engine/async_llm_engine.py +1200 -0
- vllm/engine/async_timeout.py +173 -0
- vllm/engine/llm_engine.py +2097 -0
- vllm/engine/metrics.py +629 -0
- vllm/engine/metrics_types.py +94 -0
- vllm/engine/multiprocessing/__init__.py +148 -0
- vllm/engine/multiprocessing/client.py +681 -0
- vllm/engine/multiprocessing/engine.py +460 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +75 -0
- vllm/engine/output_processor/multi_step.py +216 -0
- vllm/engine/output_processor/single_step.py +145 -0
- vllm/engine/output_processor/stop_checker.py +131 -0
- vllm/engine/output_processor/util.py +28 -0
- vllm/engine/protocol.py +317 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1299 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +39 -0
- vllm/entrypoints/cli/benchmark/latency.py +30 -0
- vllm/entrypoints/cli/benchmark/main.py +54 -0
- vllm/entrypoints/cli/benchmark/serve.py +30 -0
- vllm/entrypoints/cli/benchmark/throughput.py +30 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +65 -0
- vllm/entrypoints/cli/openai.py +205 -0
- vllm/entrypoints/cli/run_batch.py +62 -0
- vllm/entrypoints/cli/serve.py +328 -0
- vllm/entrypoints/cli/types.py +25 -0
- vllm/entrypoints/launcher.py +147 -0
- vllm/entrypoints/llm.py +1544 -0
- vllm/entrypoints/logger.py +50 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1387 -0
- vllm/entrypoints/openai/cli_args.py +315 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +1913 -0
- vllm/entrypoints/openai/run_batch.py +463 -0
- vllm/entrypoints/openai/serving_chat.py +1221 -0
- vllm/entrypoints/openai/serving_classification.py +160 -0
- vllm/entrypoints/openai/serving_completion.py +592 -0
- vllm/entrypoints/openai/serving_embedding.py +201 -0
- vllm/entrypoints/openai/serving_engine.py +986 -0
- vllm/entrypoints/openai/serving_models.py +315 -0
- vllm/entrypoints/openai/serving_pooling.py +232 -0
- vllm/entrypoints/openai/serving_score.py +433 -0
- vllm/entrypoints/openai/serving_tokenization.py +157 -0
- vllm/entrypoints/openai/serving_transcription.py +424 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/score_utils.py +50 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/utils.py +233 -0
- vllm/env_override.py +41 -0
- vllm/envs.py +944 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +401 -0
- vllm/executor/mp_distributed_executor.py +244 -0
- vllm/executor/msgspec_utils.py +30 -0
- vllm/executor/multiproc_worker_utils.py +313 -0
- vllm/executor/ray_distributed_executor.py +701 -0
- vllm/executor/ray_utils.py +399 -0
- vllm/executor/uniproc_executor.py +139 -0
- vllm/forward_context.py +179 -0
- vllm/inputs/__init__.py +41 -0
- vllm/inputs/data.py +331 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +909 -0
- vllm/inputs/registry.py +237 -0
- vllm/jsontree.py +80 -0
- vllm/logger.py +212 -0
- vllm/logging_utils/__init__.py +8 -0
- vllm/logging_utils/dump_input.py +85 -0
- vllm/logging_utils/formatter.py +18 -0
- vllm/logits_process.py +119 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +355 -0
- vllm/lora/layers.py +1285 -0
- vllm/lora/lora.py +199 -0
- vllm/lora/models.py +818 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
- vllm/lora/ops/triton_ops/utils.py +120 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +145 -0
- vllm/lora/peft_helper.py +136 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +485 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +290 -0
- vllm/lora/punica_wrapper/punica_hpu.py +145 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +405 -0
- vllm/lora/punica_wrapper/utils.py +164 -0
- vllm/lora/request.py +99 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +240 -0
- vllm/lora/worker_manager.py +259 -0
- vllm/model_executor/__init__.py +16 -0
- vllm/model_executor/custom_op.py +152 -0
- vllm/model_executor/guided_decoding/__init__.py +181 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
- vllm/model_executor/guided_decoding/guided_fields.py +41 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
- vllm/model_executor/guided_decoding/utils.py +242 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +369 -0
- vllm/model_executor/layers/fused_moe/__init__.py +54 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
- vllm/model_executor/layers/fused_moe/layer.py +1535 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/utils.py +98 -0
- vllm/model_executor/layers/layernorm.py +288 -0
- vllm/model_executor/layers/lightning_attn.py +652 -0
- vllm/model_executor/layers/linear.py +1524 -0
- vllm/model_executor/layers/logits_processor.py +197 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
- vllm/model_executor/layers/pooler.py +350 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/auto_round.py +310 -0
- vllm/model_executor/layers/quantization/awq.py +194 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +151 -0
- vllm/model_executor/layers/quantization/bitblas.py +461 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
- vllm/model_executor/layers/quantization/experts_int8.py +196 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +906 -0
- vllm/model_executor/layers/quantization/gguf.py +565 -0
- vllm/model_executor/layers/quantization/gptq.py +278 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +139 -0
- vllm/model_executor/layers/quantization/marlin.py +261 -0
- vllm/model_executor/layers/quantization/modelopt.py +737 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
- vllm/model_executor/layers/quantization/qqq.py +275 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +441 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +161 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
- vllm/model_executor/layers/rejection_sampler.py +406 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding.py +1862 -0
- vllm/model_executor/layers/sampler.py +1204 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
- vllm/model_executor/layers/utils.py +95 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +76 -0
- vllm/model_executor/model_loader/base_loader.py +43 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
- vllm/model_executor/model_loader/default_loader.py +282 -0
- vllm/model_executor/model_loader/dummy_loader.py +27 -0
- vllm/model_executor/model_loader/gguf_loader.py +120 -0
- vllm/model_executor/model_loader/neuron.py +476 -0
- vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
- vllm/model_executor/model_loader/tensorizer.py +600 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
- vllm/model_executor/model_loader/tpu.py +112 -0
- vllm/model_executor/model_loader/utils.py +302 -0
- vllm/model_executor/model_loader/weight_utils.py +782 -0
- vllm/model_executor/models/__init__.py +28 -0
- vllm/model_executor/models/adapters.py +248 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +657 -0
- vllm/model_executor/models/aya_vision.py +466 -0
- vllm/model_executor/models/baichuan.py +474 -0
- vllm/model_executor/models/bamba.py +543 -0
- vllm/model_executor/models/bart.py +938 -0
- vllm/model_executor/models/bert.py +523 -0
- vllm/model_executor/models/bert_with_rope.py +769 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +718 -0
- vllm/model_executor/models/bloom.py +373 -0
- vllm/model_executor/models/chameleon.py +1136 -0
- vllm/model_executor/models/chatglm.py +478 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/commandr.py +472 -0
- vllm/model_executor/models/constant_size_cache.py +137 -0
- vllm/model_executor/models/dbrx.py +472 -0
- vllm/model_executor/models/deepseek.py +486 -0
- vllm/model_executor/models/deepseek_mtp.py +269 -0
- vllm/model_executor/models/deepseek_v2.py +843 -0
- vllm/model_executor/models/deepseek_vl2.py +648 -0
- vllm/model_executor/models/eagle.py +260 -0
- vllm/model_executor/models/exaone.py +551 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +510 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/florence2.py +1103 -0
- vllm/model_executor/models/fuyu.py +389 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +425 -0
- vllm/model_executor/models/gemma3.py +533 -0
- vllm/model_executor/models/gemma3_mm.py +709 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4v.py +648 -0
- vllm/model_executor/models/gpt2.py +328 -0
- vllm/model_executor/models/gpt_bigcode.py +335 -0
- vllm/model_executor/models/gpt_j.py +339 -0
- vllm/model_executor/models/gpt_neox.py +332 -0
- vllm/model_executor/models/granite.py +493 -0
- vllm/model_executor/models/granite_speech.py +779 -0
- vllm/model_executor/models/granitemoe.py +437 -0
- vllm/model_executor/models/granitemoehybrid.py +586 -0
- vllm/model_executor/models/granitemoeshared.py +341 -0
- vllm/model_executor/models/gritlm.py +224 -0
- vllm/model_executor/models/grok1.py +546 -0
- vllm/model_executor/models/h2ovl.py +546 -0
- vllm/model_executor/models/idefics2_vision_model.py +389 -0
- vllm/model_executor/models/idefics3.py +776 -0
- vllm/model_executor/models/interfaces.py +572 -0
- vllm/model_executor/models/interfaces_base.py +164 -0
- vllm/model_executor/models/intern_vit.py +480 -0
- vllm/model_executor/models/internlm2.py +455 -0
- vllm/model_executor/models/internlm2_ve.py +147 -0
- vllm/model_executor/models/internvl.py +1418 -0
- vllm/model_executor/models/jais.py +373 -0
- vllm/model_executor/models/jamba.py +592 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +644 -0
- vllm/model_executor/models/llama4.py +532 -0
- vllm/model_executor/models/llama_eagle.py +165 -0
- vllm/model_executor/models/llama_eagle3.py +263 -0
- vllm/model_executor/models/llava.py +866 -0
- vllm/model_executor/models/llava_next.py +586 -0
- vllm/model_executor/models/llava_next_video.py +471 -0
- vllm/model_executor/models/llava_onevision.py +956 -0
- vllm/model_executor/models/mamba.py +273 -0
- vllm/model_executor/models/mamba2.py +308 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +219 -0
- vllm/model_executor/models/mimo.py +192 -0
- vllm/model_executor/models/mimo_mtp.py +285 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +391 -0
- vllm/model_executor/models/minicpmo.py +759 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +36 -0
- vllm/model_executor/models/minimax_text_01.py +1301 -0
- vllm/model_executor/models/minimax_vl_01.py +364 -0
- vllm/model_executor/models/mistral3.py +604 -0
- vllm/model_executor/models/mixtral.py +488 -0
- vllm/model_executor/models/mixtral_quant.py +453 -0
- vllm/model_executor/models/mllama.py +1624 -0
- vllm/model_executor/models/mllama4.py +938 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +331 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1568 -0
- vllm/model_executor/models/moonvit.py +630 -0
- vllm/model_executor/models/mpt.py +331 -0
- vllm/model_executor/models/nemotron.py +508 -0
- vllm/model_executor/models/nemotron_h.py +573 -0
- vllm/model_executor/models/nemotron_nas.py +484 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +389 -0
- vllm/model_executor/models/olmo2.py +414 -0
- vllm/model_executor/models/olmoe.py +468 -0
- vllm/model_executor/models/opt.py +412 -0
- vllm/model_executor/models/orion.py +349 -0
- vllm/model_executor/models/ovis.py +567 -0
- vllm/model_executor/models/paligemma.py +398 -0
- vllm/model_executor/models/persimmon.py +344 -0
- vllm/model_executor/models/phi.py +356 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3_small.py +465 -0
- vllm/model_executor/models/phi3v.py +723 -0
- vllm/model_executor/models/phi4mm.py +1246 -0
- vllm/model_executor/models/phi4mm_audio.py +1233 -0
- vllm/model_executor/models/phi4mm_utils.py +1884 -0
- vllm/model_executor/models/phimoe.py +665 -0
- vllm/model_executor/models/pixtral.py +1316 -0
- vllm/model_executor/models/plamo2.py +738 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
- vllm/model_executor/models/qwen.py +362 -0
- vllm/model_executor/models/qwen2.py +497 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
- vllm/model_executor/models/qwen2_5_vl.py +1166 -0
- vllm/model_executor/models/qwen2_audio.py +410 -0
- vllm/model_executor/models/qwen2_moe.py +540 -0
- vllm/model_executor/models/qwen2_rm.py +132 -0
- vllm/model_executor/models/qwen2_vl.py +1405 -0
- vllm/model_executor/models/qwen3.py +321 -0
- vllm/model_executor/models/qwen3_moe.py +535 -0
- vllm/model_executor/models/qwen_vl.py +785 -0
- vllm/model_executor/models/registry.py +622 -0
- vllm/model_executor/models/roberta.py +276 -0
- vllm/model_executor/models/siglip.py +524 -0
- vllm/model_executor/models/skyworkr1v.py +951 -0
- vllm/model_executor/models/smolvlm.py +52 -0
- vllm/model_executor/models/solar.py +506 -0
- vllm/model_executor/models/stablelm.py +343 -0
- vllm/model_executor/models/starcoder2.py +356 -0
- vllm/model_executor/models/tarsier.py +643 -0
- vllm/model_executor/models/telechat2.py +140 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/transformers.py +508 -0
- vllm/model_executor/models/ultravox.py +656 -0
- vllm/model_executor/models/utils.py +731 -0
- vllm/model_executor/models/vision.py +147 -0
- vllm/model_executor/models/whisper.py +747 -0
- vllm/model_executor/models/zamba2.py +1009 -0
- vllm/model_executor/parameter.py +459 -0
- vllm/model_executor/pooling_metadata.py +72 -0
- vllm/model_executor/sampling_metadata.py +597 -0
- vllm/model_executor/utils.py +77 -0
- vllm/multimodal/__init__.py +33 -0
- vllm/multimodal/audio.py +106 -0
- vllm/multimodal/base.py +219 -0
- vllm/multimodal/hasher.py +118 -0
- vllm/multimodal/image.py +97 -0
- vllm/multimodal/inputs.py +876 -0
- vllm/multimodal/parse.py +461 -0
- vllm/multimodal/processing.py +1895 -0
- vllm/multimodal/profiling.py +258 -0
- vllm/multimodal/registry.py +331 -0
- vllm/multimodal/utils.py +436 -0
- vllm/multimodal/video.py +198 -0
- vllm/outputs.py +512 -0
- vllm/platforms/__init__.py +291 -0
- vllm/platforms/cpu.py +266 -0
- vllm/platforms/cuda.py +526 -0
- vllm/platforms/hpu.py +106 -0
- vllm/platforms/interface.py +538 -0
- vllm/platforms/neuron.py +150 -0
- vllm/platforms/rocm.py +435 -0
- vllm/platforms/tpu.py +216 -0
- vllm/platforms/xpu.py +156 -0
- vllm/plugins/__init__.py +94 -0
- vllm/plugins/lora_resolvers/README.md +15 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +54 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +83 -0
- vllm/prompt_adapter/models.py +358 -0
- vllm/prompt_adapter/request.py +37 -0
- vllm/prompt_adapter/utils.py +98 -0
- vllm/prompt_adapter/worker_manager.py +179 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +15 -0
- vllm/reasoning/abs_reasoning_parsers.py +192 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/qwen3_reasoning_parser.py +151 -0
- vllm/sampling_params.py +602 -0
- vllm/scalar_type.py +347 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +1568 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +506 -0
- vllm/spec_decode/draft_model_runner.py +349 -0
- vllm/spec_decode/interfaces.py +99 -0
- vllm/spec_decode/medusa_worker.py +138 -0
- vllm/spec_decode/metrics.py +213 -0
- vllm/spec_decode/mlp_speculator_worker.py +94 -0
- vllm/spec_decode/mqa_scorer.py +160 -0
- vllm/spec_decode/multi_step_worker.py +423 -0
- vllm/spec_decode/ngram_worker.py +196 -0
- vllm/spec_decode/proposer_worker_base.py +59 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
- vllm/spec_decode/spec_decode_worker.py +1326 -0
- vllm/spec_decode/target_model_runner.py +45 -0
- vllm/spec_decode/top1_proposer.py +275 -0
- vllm/spec_decode/util.py +277 -0
- vllm/test_utils.py +130 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +131 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +60 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/config.py +887 -0
- vllm/transformers_utils/configs/__init__.py +61 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/cohere2.py +195 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +85 -0
- vllm/transformers_utils/configs/exaone.py +190 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/h2ovl.py +16 -0
- vllm/transformers_utils/configs/internvl.py +54 -0
- vllm/transformers_utils/configs/jais.py +238 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/minimax_text_01.py +70 -0
- vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
- vllm/transformers_utils/configs/mllama.py +31 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/mpt.py +180 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +258 -0
- vllm/transformers_utils/configs/nvlm_d.py +15 -0
- vllm/transformers_utils/configs/ovis.py +184 -0
- vllm/transformers_utils/configs/skyworkr1v.py +54 -0
- vllm/transformers_utils/configs/solar.py +247 -0
- vllm/transformers_utils/configs/telechat2.py +64 -0
- vllm/transformers_utils/configs/ultravox.py +108 -0
- vllm/transformers_utils/detokenizer.py +168 -0
- vllm/transformers_utils/detokenizer_utils.py +189 -0
- vllm/transformers_utils/processor.py +221 -0
- vllm/transformers_utils/processors/__init__.py +8 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/s3_utils.py +162 -0
- vllm/transformers_utils/tokenizer.py +302 -0
- vllm/transformers_utils/tokenizer_base.py +149 -0
- vllm/transformers_utils/tokenizer_group.py +120 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +493 -0
- vllm/transformers_utils/utils.py +99 -0
- vllm/triton_utils/__init__.py +14 -0
- vllm/triton_utils/importing.py +50 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +256 -0
- vllm/utils.py +2910 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +163 -0
- vllm/v1/attention/backends/flash_attn.py +869 -0
- vllm/v1/attention/backends/flashinfer.py +651 -0
- vllm/v1/attention/backends/flex_attention.py +477 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +931 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
- vllm/v1/attention/backends/mla/flashmla.py +152 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
- vllm/v1/attention/backends/mla/triton_mla.py +120 -0
- vllm/v1/attention/backends/pallas.py +240 -0
- vllm/v1/attention/backends/triton_attn.py +285 -0
- vllm/v1/attention/backends/utils.py +52 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +349 -0
- vllm/v1/core/encoder_cache_manager.py +150 -0
- vllm/v1/core/kv_cache_coordinator.py +363 -0
- vllm/v1/core/kv_cache_manager.py +392 -0
- vllm/v1/core/kv_cache_utils.py +996 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +150 -0
- vllm/v1/core/sched/output.py +154 -0
- vllm/v1/core/sched/scheduler.py +1044 -0
- vllm/v1/core/sched/utils.py +23 -0
- vllm/v1/core/single_type_kv_cache_manager.py +403 -0
- vllm/v1/engine/__init__.py +173 -0
- vllm/v1/engine/async_llm.py +558 -0
- vllm/v1/engine/coordinator.py +253 -0
- vllm/v1/engine/core.py +961 -0
- vllm/v1/engine/core_client.py +1129 -0
- vllm/v1/engine/detokenizer.py +261 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +317 -0
- vllm/v1/engine/logprobs.py +199 -0
- vllm/v1/engine/mm_input_cache.py +91 -0
- vllm/v1/engine/output_processor.py +428 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +407 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +113 -0
- vllm/v1/executor/multiproc_executor.py +537 -0
- vllm/v1/executor/ray_distributed_executor.py +62 -0
- vllm/v1/kv_cache_interface.py +194 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +523 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +131 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +239 -0
- vllm/v1/outputs.py +116 -0
- vllm/v1/request.py +193 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/penalties.py +59 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +286 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +145 -0
- vllm/v1/serial_utils.py +315 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +432 -0
- vllm/v1/spec_decode/medusa.py +62 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +178 -0
- vllm/v1/spec_decode/ngram_proposer.py +132 -0
- vllm/v1/spec_decode/utils.py +46 -0
- vllm/v1/structured_output/__init__.py +222 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +318 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +175 -0
- vllm/v1/utils.py +743 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +142 -0
- vllm/v1/worker/cpu_model_runner.py +86 -0
- vllm/v1/worker/cpu_worker.py +152 -0
- vllm/v1/worker/gpu_input_batch.py +681 -0
- vllm/v1/worker/gpu_model_runner.py +2320 -0
- vllm/v1/worker/gpu_worker.py +393 -0
- vllm/v1/worker/lora_model_runner_mixin.py +173 -0
- vllm/v1/worker/tpu_model_runner.py +1673 -0
- vllm/v1/worker/tpu_worker.py +299 -0
- vllm/v1/worker/utils.py +111 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +145 -0
- vllm/worker/cpu_enc_dec_model_runner.py +326 -0
- vllm/worker/cpu_model_runner.py +671 -0
- vllm/worker/cpu_pooling_model_runner.py +125 -0
- vllm/worker/cpu_worker.py +450 -0
- vllm/worker/enc_dec_model_runner.py +555 -0
- vllm/worker/hpu_model_runner.py +2320 -0
- vllm/worker/hpu_worker.py +484 -0
- vllm/worker/model_runner.py +2178 -0
- vllm/worker/model_runner_base.py +282 -0
- vllm/worker/multi_step_hpu_worker.py +123 -0
- vllm/worker/multi_step_model_runner.py +911 -0
- vllm/worker/multi_step_neuron_model_runner.py +84 -0
- vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
- vllm/worker/multi_step_tpu_worker.py +108 -0
- vllm/worker/multi_step_worker.py +197 -0
- vllm/worker/neuron_model_runner.py +460 -0
- vllm/worker/neuron_worker.py +193 -0
- vllm/worker/neuronx_distributed_model_runner.py +294 -0
- vllm/worker/pooling_model_runner.py +211 -0
- vllm/worker/tpu_model_runner.py +909 -0
- vllm/worker/tpu_worker.py +337 -0
- vllm/worker/utils.py +53 -0
- vllm/worker/worker.py +577 -0
- vllm/worker/worker_base.py +646 -0
- vllm/worker/xpu_model_runner.py +606 -0
- vllm/worker/xpu_worker.py +186 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,906 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
import neuronxcc.nki.isa as nisa
|
|
5
|
+
import neuronxcc.nki.language as nl
|
|
6
|
+
import numpy as np
|
|
7
|
+
import torch
|
|
8
|
+
from neuronxcc import nki
|
|
9
|
+
from neuronxcc.nki.language import par_dim
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def ceil_div(a, b):
|
|
13
|
+
return (a + b - 1) // b
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def is_power_of_2(x):
|
|
17
|
+
return x > 0 and (x & (x - 1)) == 0
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@nki.jit
|
|
21
|
+
def load_block_tables(block_tables_hbm, num_tiles, num_blocks_per_tile):
|
|
22
|
+
"""
|
|
23
|
+
Load block tables from HBM into SRAM
|
|
24
|
+
|
|
25
|
+
`block_tables_hbm` has shape `(num_tiles * num_blocks_per_tile, )`.
|
|
26
|
+
In case `num_tiles > B_P_SIZE`, we need further tile `num_tile` dimension.
|
|
27
|
+
"""
|
|
28
|
+
B_P_SIZE = 128
|
|
29
|
+
|
|
30
|
+
# reshape as `(num_tiles, num_blocks_per_tile)`
|
|
31
|
+
assert len(block_tables_hbm.shape) == 1
|
|
32
|
+
(num_total_blocks, ) = block_tables_hbm.shape
|
|
33
|
+
assert num_blocks_per_tile * num_tiles == num_total_blocks
|
|
34
|
+
block_tables_hbm = block_tables_hbm.reshape(
|
|
35
|
+
(num_tiles, num_blocks_per_tile))
|
|
36
|
+
|
|
37
|
+
block_tables_sbuf = nl.zeros(
|
|
38
|
+
(ceil_div(num_tiles,
|
|
39
|
+
B_P_SIZE), par_dim(B_P_SIZE), num_blocks_per_tile),
|
|
40
|
+
dtype=nl.int32,
|
|
41
|
+
)
|
|
42
|
+
for i in nl.affine_range(ceil_div(num_tiles, B_P_SIZE)):
|
|
43
|
+
i_p = nl.arange(B_P_SIZE)[:, None]
|
|
44
|
+
i_f = nl.arange(num_blocks_per_tile)[None, :]
|
|
45
|
+
block_tables_sbuf[i, i_p, i_f] = nl.load(
|
|
46
|
+
block_tables_hbm[i_p + i * B_P_SIZE, i_f],
|
|
47
|
+
dtype=nl.int32,
|
|
48
|
+
mask=(i_p + i * B_P_SIZE < num_tiles),
|
|
49
|
+
)
|
|
50
|
+
return block_tables_sbuf
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
@nki.jit
|
|
54
|
+
def transform_block_tables_for_indirect_load(
|
|
55
|
+
block_tables,
|
|
56
|
+
block_size_tiling_factor,
|
|
57
|
+
num_head,
|
|
58
|
+
head_id,
|
|
59
|
+
):
|
|
60
|
+
"""
|
|
61
|
+
This function does two things:
|
|
62
|
+
1. calculate new `block_tables` for a `head_id` after flattening
|
|
63
|
+
`num_block`, `num_head`, and `block_size_tiling_factor` dimensions
|
|
64
|
+
2. transpose the result so that `block_table` for each tile is mapped to
|
|
65
|
+
SBUF Partition dimension for vectorized DMA
|
|
66
|
+
|
|
67
|
+
Tiling trick to further improve DMA performance:
|
|
68
|
+
Given KV cache shape `(num_block, num_head, block_size, D)`, when loading M
|
|
69
|
+
blocks of a given `head_id` from HBM, the load `cache[block_tables,
|
|
70
|
+
head_id]` has shape `(M, block_size, D)`. If M < B_P_SIZE = 128, DMA may not
|
|
71
|
+
fully utilize hardware parallelization. The solution is to tile `block_size`
|
|
72
|
+
into `(block_size_tiling_factor, tiled_block_size)` s.t. `M *
|
|
73
|
+
block_size_tiling_factor = B_P_SIZE`. After tiling, KV cache has shape
|
|
74
|
+
`(num_block, num_head, block_size_tiling_factor, tiled_block_size, D)`.
|
|
75
|
+
|
|
76
|
+
Note:
|
|
77
|
+
We don't further tile D dimension as small DMA size also hurts performance.
|
|
78
|
+
"""
|
|
79
|
+
B_P_SIZE = 128
|
|
80
|
+
num_partitions, num_tiles_per_partition, num_blocks_per_tile = (
|
|
81
|
+
block_tables.shape)
|
|
82
|
+
assert num_tiles_per_partition == B_P_SIZE
|
|
83
|
+
assert is_power_of_2(
|
|
84
|
+
num_blocks_per_tile), f"{num_blocks_per_tile=} is not power of 2"
|
|
85
|
+
|
|
86
|
+
num_loads = ceil_div(num_blocks_per_tile, B_P_SIZE)
|
|
87
|
+
block_tables_transposed = nl.ndarray(
|
|
88
|
+
(
|
|
89
|
+
num_loads,
|
|
90
|
+
par_dim(B_P_SIZE),
|
|
91
|
+
num_partitions * num_tiles_per_partition,
|
|
92
|
+
),
|
|
93
|
+
dtype=nl.int32,
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
# prepare iota ahead of time to avoid repeatedly using Gpsimd
|
|
97
|
+
if num_head > 1:
|
|
98
|
+
head_id = nisa.iota(head_id, dtype=nl.int32).reshape((1, 1))
|
|
99
|
+
head_id = nl.transpose(
|
|
100
|
+
head_id.broadcast_to((1, num_tiles_per_partition)))
|
|
101
|
+
if num_blocks_per_tile > 1:
|
|
102
|
+
head_id = head_id.broadcast_to(
|
|
103
|
+
(num_tiles_per_partition, num_blocks_per_tile))
|
|
104
|
+
|
|
105
|
+
if block_size_tiling_factor > 1:
|
|
106
|
+
broadcast_shape = (
|
|
107
|
+
num_tiles_per_partition,
|
|
108
|
+
num_blocks_per_tile,
|
|
109
|
+
block_size_tiling_factor,
|
|
110
|
+
)
|
|
111
|
+
offset = nisa.iota(nl.arange(block_size_tiling_factor)[None, None, :],
|
|
112
|
+
dtype=nl.int32).broadcast_to(broadcast_shape)
|
|
113
|
+
|
|
114
|
+
for partition_id in nl.affine_range(num_partitions):
|
|
115
|
+
block_tables_partition = block_tables[partition_id]
|
|
116
|
+
if num_head > 1:
|
|
117
|
+
# fuse num_block and num_head dimension
|
|
118
|
+
block_tables_partition = block_tables_partition * num_head + head_id
|
|
119
|
+
|
|
120
|
+
if block_size_tiling_factor > 1:
|
|
121
|
+
# need to apply block size tiling trick
|
|
122
|
+
assert num_blocks_per_tile * block_size_tiling_factor == B_P_SIZE
|
|
123
|
+
block_tables_partition = ((block_tables_partition *
|
|
124
|
+
block_size_tiling_factor).reshape(
|
|
125
|
+
(num_tiles_per_partition,
|
|
126
|
+
num_blocks_per_tile,
|
|
127
|
+
1)).broadcast_to(broadcast_shape))
|
|
128
|
+
new_block_tables = block_tables_partition + offset
|
|
129
|
+
new_block_tables = new_block_tables.reshape(
|
|
130
|
+
(num_tiles_per_partition, B_P_SIZE))
|
|
131
|
+
else:
|
|
132
|
+
new_block_tables = block_tables_partition
|
|
133
|
+
|
|
134
|
+
# transpose the block table so that it can be used by vector DGE
|
|
135
|
+
for i in nl.affine_range(num_loads):
|
|
136
|
+
i_p = nl.arange(B_P_SIZE)[:, None]
|
|
137
|
+
i_f = (partition_id * num_tiles_per_partition +
|
|
138
|
+
nl.arange(num_tiles_per_partition)[None, :])
|
|
139
|
+
block_tables_transposed[i, i_p, i_f] = nl.transpose(
|
|
140
|
+
new_block_tables[:, nl.ds(i * B_P_SIZE, B_P_SIZE)])
|
|
141
|
+
return block_tables_transposed
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
@nki.jit
|
|
145
|
+
def load_kv_tile_from_cache(
|
|
146
|
+
cur_k_tile,
|
|
147
|
+
cur_v_tile,
|
|
148
|
+
kv_cache,
|
|
149
|
+
block_tables,
|
|
150
|
+
large_k_tile_idx,
|
|
151
|
+
num_blocks_per_large_tile,
|
|
152
|
+
tiled_block_size,
|
|
153
|
+
B_P_SIZE,
|
|
154
|
+
B_D_SIZE,
|
|
155
|
+
):
|
|
156
|
+
"""
|
|
157
|
+
Load KV cache and transform Key and Value into layout required by Matmul
|
|
158
|
+
|
|
159
|
+
Vectorized DMA Load layout:
|
|
160
|
+
Key and Value: (par_dim(B_P_SIZE), seqlen_kv // B_P_SIZE * B_D_SIZE)
|
|
161
|
+
|
|
162
|
+
Layout used by attention matmuls:
|
|
163
|
+
Key: (par_dim(B_D_SIZE), seqlen_kv)
|
|
164
|
+
Value: (seqlen_kv // B_P_SIZE, par_dim(B_P_SIZE), B_D_SIZE)
|
|
165
|
+
equivalent to (par_dim(B_P_SIZE), seqlen_kv // B_P_SIZE * B_D_SIZE)
|
|
166
|
+
"""
|
|
167
|
+
# load key cache
|
|
168
|
+
num_loads = ceil_div(num_blocks_per_large_tile, B_P_SIZE)
|
|
169
|
+
for load_idx in nl.affine_range(num_loads):
|
|
170
|
+
i_p = nl.arange(B_P_SIZE)[:, None]
|
|
171
|
+
i_f = nl.arange(tiled_block_size * B_D_SIZE)[None, :]
|
|
172
|
+
loaded = nl.load(kv_cache[0, block_tables[load_idx, i_p,
|
|
173
|
+
large_k_tile_idx], i_f])
|
|
174
|
+
if cur_k_tile.dtype != loaded.dtype:
|
|
175
|
+
loaded = nl.copy(loaded, dtype=cur_k_tile.dtype)
|
|
176
|
+
# Transpose SBUF tensor using PE
|
|
177
|
+
for tb_i in nl.affine_range(tiled_block_size):
|
|
178
|
+
cur_k_tile[
|
|
179
|
+
:,
|
|
180
|
+
nl.ds(
|
|
181
|
+
load_idx * B_P_SIZE * tiled_block_size + tb_i * B_P_SIZE,
|
|
182
|
+
B_P_SIZE,
|
|
183
|
+
),
|
|
184
|
+
] = nl.transpose(loaded[:, nl.ds(tb_i * B_D_SIZE, B_D_SIZE)])
|
|
185
|
+
|
|
186
|
+
# load value cache
|
|
187
|
+
for load_idx in nl.affine_range(num_loads):
|
|
188
|
+
loaded = nl.load(kv_cache[1, block_tables[load_idx, i_p,
|
|
189
|
+
large_k_tile_idx], i_f])
|
|
190
|
+
if cur_v_tile.dtype != loaded.dtype:
|
|
191
|
+
loaded = nl.copy(loaded, dtype=cur_v_tile.dtype)
|
|
192
|
+
i_p = nl.arange(B_P_SIZE)[:, None]
|
|
193
|
+
i_f = nl.arange(tiled_block_size * B_D_SIZE)[None, :]
|
|
194
|
+
cur_v_tile[
|
|
195
|
+
:,
|
|
196
|
+
nl.ds(
|
|
197
|
+
load_idx * tiled_block_size * B_D_SIZE,
|
|
198
|
+
tiled_block_size * B_D_SIZE,
|
|
199
|
+
),
|
|
200
|
+
] = loaded
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
@nki.jit
|
|
204
|
+
def transpose_p_local(p_local_transposed,
|
|
205
|
+
p_local,
|
|
206
|
+
LARGE_TILE_SZ,
|
|
207
|
+
B_F_SIZE=512):
|
|
208
|
+
for i in nl.affine_range(LARGE_TILE_SZ // B_F_SIZE):
|
|
209
|
+
if nisa.get_nc_version() == nisa.nc_version.gen3:
|
|
210
|
+
p_local_t_tmp = nl.ndarray((par_dim(128), B_F_SIZE),
|
|
211
|
+
buffer=nl.sbuf,
|
|
212
|
+
dtype=p_local.dtype)
|
|
213
|
+
else:
|
|
214
|
+
p_local_t_tmp = nl.ndarray((par_dim(128), B_F_SIZE),
|
|
215
|
+
buffer=nl.psum,
|
|
216
|
+
dtype=np.float32)
|
|
217
|
+
|
|
218
|
+
for j in nl.affine_range(B_F_SIZE // 128):
|
|
219
|
+
j_128_slice = nl.ds(j * 128, 128)
|
|
220
|
+
i_j_128_slice = nl.ds(i * B_F_SIZE + j * 128, 128)
|
|
221
|
+
|
|
222
|
+
if nisa.get_nc_version() == nisa.nc_version.gen3:
|
|
223
|
+
p_local_t_tmp[:, j_128_slice] = nisa.dma_transpose(
|
|
224
|
+
p_local[:, i_j_128_slice])
|
|
225
|
+
else:
|
|
226
|
+
p_local_t_tmp[:, j_128_slice] = nisa.nc_transpose(
|
|
227
|
+
p_local[:, i_j_128_slice])
|
|
228
|
+
|
|
229
|
+
p_local_transposed[:, nl.ds(i * B_F_SIZE, B_F_SIZE)] = nl.copy(
|
|
230
|
+
p_local_t_tmp, dtype=p_local_transposed.dtype)
|
|
231
|
+
|
|
232
|
+
|
|
233
|
+
@nki.jit
|
|
234
|
+
def _flash_attention_core(
|
|
235
|
+
q_local_tile,
|
|
236
|
+
k,
|
|
237
|
+
v,
|
|
238
|
+
o_buffer,
|
|
239
|
+
l_buffer,
|
|
240
|
+
m_buffer,
|
|
241
|
+
kernel_dtype,
|
|
242
|
+
acc_type,
|
|
243
|
+
tile_mask,
|
|
244
|
+
use_causal_mask,
|
|
245
|
+
q_tile_idx=None,
|
|
246
|
+
initialize=False,
|
|
247
|
+
LARGE_TILE_SZ=2048,
|
|
248
|
+
B_P_SIZE=128,
|
|
249
|
+
B_F_SIZE=512,
|
|
250
|
+
B_D_SIZE=128,
|
|
251
|
+
qk_res_buffer=None,
|
|
252
|
+
):
|
|
253
|
+
"""
|
|
254
|
+
The flash attention core function to calculate self attention between a tile
|
|
255
|
+
of q and a block of K and V.
|
|
256
|
+
The q_local_tile has (B_P_SIZE, B_D_SIZE)
|
|
257
|
+
The K and V have shape (B_D_SIZE, LARGE_TILE_SZ), whose free dimension will
|
|
258
|
+
be split into size B_F_SIZE tiles
|
|
259
|
+
|
|
260
|
+
The results are stored in the following three buffers
|
|
261
|
+
o_buffer: (B_P_SIZE, d)
|
|
262
|
+
l_buffer: (B_P_SIZE, 1)
|
|
263
|
+
m_buffer: (B_P_SIZE, 1)
|
|
264
|
+
|
|
265
|
+
All IO buffers are in SBUF.
|
|
266
|
+
"""
|
|
267
|
+
num_k_tile_per_large_tile = LARGE_TILE_SZ // B_F_SIZE
|
|
268
|
+
|
|
269
|
+
qk_res_buf = nl.ndarray((par_dim(B_P_SIZE), LARGE_TILE_SZ),
|
|
270
|
+
buffer=nl.sbuf,
|
|
271
|
+
dtype=acc_type)
|
|
272
|
+
max_local = nl.ndarray((par_dim(B_P_SIZE), num_k_tile_per_large_tile),
|
|
273
|
+
dtype=acc_type)
|
|
274
|
+
for k_i in nl.affine_range(num_k_tile_per_large_tile):
|
|
275
|
+
k_i_b_f_slice = nl.ds(k_i * B_F_SIZE, B_F_SIZE)
|
|
276
|
+
|
|
277
|
+
if use_causal_mask:
|
|
278
|
+
# mask are used to only apply computation to the lower half of the
|
|
279
|
+
# matrix, which reduce the arithmetic intensity by up to 50%
|
|
280
|
+
multiplication_required_selection = (q_tile_idx * B_P_SIZE
|
|
281
|
+
>= k_i * B_F_SIZE)
|
|
282
|
+
else:
|
|
283
|
+
multiplication_required_selection = True
|
|
284
|
+
|
|
285
|
+
if multiplication_required_selection:
|
|
286
|
+
qk_psum = nl.ndarray((par_dim(B_P_SIZE), B_F_SIZE),
|
|
287
|
+
dtype=np.float32,
|
|
288
|
+
buffer=nl.psum) # (128, 512)
|
|
289
|
+
qk_psum[:, :] = nl.matmul(q_local_tile,
|
|
290
|
+
k[:, k_i_b_f_slice],
|
|
291
|
+
transpose_x=True) # (p(128), 512)
|
|
292
|
+
qk_res_buf[:, k_i_b_f_slice] = nl.where(
|
|
293
|
+
tile_mask[:, k_i_b_f_slice],
|
|
294
|
+
qk_psum[:, nl.ds(0, B_F_SIZE)],
|
|
295
|
+
-9984.0,
|
|
296
|
+
dtype=acc_type,
|
|
297
|
+
)
|
|
298
|
+
else:
|
|
299
|
+
qk_res_buf[:, k_i_b_f_slice] = -9984.0
|
|
300
|
+
|
|
301
|
+
# Calculate max of the current tile
|
|
302
|
+
max_local[:, k_i] = nisa.tensor_reduce(
|
|
303
|
+
np.max,
|
|
304
|
+
qk_res_buf[:, k_i_b_f_slice],
|
|
305
|
+
axis=(1, ),
|
|
306
|
+
dtype=acc_type,
|
|
307
|
+
negate=False,
|
|
308
|
+
)
|
|
309
|
+
|
|
310
|
+
if qk_res_buffer is not None:
|
|
311
|
+
qk_res_buffer[:, :] = nl.copy(qk_res_buf[:, :])
|
|
312
|
+
|
|
313
|
+
max_ = nisa.tensor_reduce(
|
|
314
|
+
np.max,
|
|
315
|
+
max_local[:, :],
|
|
316
|
+
axis=(1, ),
|
|
317
|
+
dtype=acc_type,
|
|
318
|
+
negate=False,
|
|
319
|
+
)
|
|
320
|
+
|
|
321
|
+
o_previous_scaled = nl.ndarray((par_dim(B_P_SIZE), B_D_SIZE),
|
|
322
|
+
dtype=o_buffer.dtype)
|
|
323
|
+
|
|
324
|
+
if initialize:
|
|
325
|
+
m_buffer[:, 0] = nl.copy(max_)
|
|
326
|
+
m_current = max_
|
|
327
|
+
else:
|
|
328
|
+
m_previous = nl.copy(m_buffer[:, 0])
|
|
329
|
+
m_buffer[:, 0] = nl.maximum(m_previous, max_) # (128,1)
|
|
330
|
+
|
|
331
|
+
m_current = m_buffer[:, 0]
|
|
332
|
+
# Compute scaling factor
|
|
333
|
+
alpha = nisa.activation(
|
|
334
|
+
np.exp,
|
|
335
|
+
m_previous,
|
|
336
|
+
bias=-1 * m_current,
|
|
337
|
+
scale=1.0,
|
|
338
|
+
)
|
|
339
|
+
o_previous_scaled[...] = nl.multiply(o_buffer[:, :], alpha)
|
|
340
|
+
|
|
341
|
+
p_local = nl.ndarray((par_dim(B_P_SIZE), LARGE_TILE_SZ),
|
|
342
|
+
dtype=kernel_dtype)
|
|
343
|
+
REDUCTION_TILE = min(2048, LARGE_TILE_SZ // 2)
|
|
344
|
+
|
|
345
|
+
p_partial_sum = nl.ndarray(
|
|
346
|
+
(par_dim(B_P_SIZE), LARGE_TILE_SZ // REDUCTION_TILE),
|
|
347
|
+
dtype=acc_type,
|
|
348
|
+
)
|
|
349
|
+
|
|
350
|
+
for k_r_i in nl.affine_range(LARGE_TILE_SZ // REDUCTION_TILE):
|
|
351
|
+
k_r_i_reduce_slice = nl.ds(k_r_i * REDUCTION_TILE, REDUCTION_TILE)
|
|
352
|
+
|
|
353
|
+
# compute exp(qk - max)
|
|
354
|
+
# Compute partial row - tile sum of exp(qk - max))
|
|
355
|
+
# FIXME : Use activation accumulate to accumulate over k_r_i loop ?
|
|
356
|
+
p_local[:, k_r_i_reduce_slice] = nisa.activation_reduce(
|
|
357
|
+
np.exp,
|
|
358
|
+
qk_res_buf[:, k_r_i_reduce_slice],
|
|
359
|
+
bias=-1 * m_current,
|
|
360
|
+
scale=1.0,
|
|
361
|
+
reduce_op=nl.add,
|
|
362
|
+
reduce_res=p_partial_sum[:, k_r_i],
|
|
363
|
+
dtype=kernel_dtype,
|
|
364
|
+
)
|
|
365
|
+
|
|
366
|
+
ps = nl.sum(p_partial_sum, axis=1, dtype=acc_type)
|
|
367
|
+
|
|
368
|
+
p_local_transposed = nl.ndarray((par_dim(B_P_SIZE), LARGE_TILE_SZ),
|
|
369
|
+
dtype=kernel_dtype)
|
|
370
|
+
transpose_p_local(
|
|
371
|
+
p_local_transposed=p_local_transposed,
|
|
372
|
+
p_local=p_local,
|
|
373
|
+
LARGE_TILE_SZ=LARGE_TILE_SZ,
|
|
374
|
+
B_F_SIZE=B_F_SIZE,
|
|
375
|
+
)
|
|
376
|
+
|
|
377
|
+
pv_psum = nl.zeros(
|
|
378
|
+
(par_dim(B_P_SIZE), B_D_SIZE),
|
|
379
|
+
dtype=np.float32,
|
|
380
|
+
buffer=nl.psum,
|
|
381
|
+
)
|
|
382
|
+
for k_i in nl.affine_range(LARGE_TILE_SZ // B_P_SIZE):
|
|
383
|
+
pv_psum[:, :] += nl.matmul(
|
|
384
|
+
p_local_transposed[:, nl.ds(k_i * B_P_SIZE, B_P_SIZE)],
|
|
385
|
+
v[:, nl.ds(k_i * B_D_SIZE, B_D_SIZE)],
|
|
386
|
+
transpose_x=True,
|
|
387
|
+
) # (128, 128) (p(Br), d)
|
|
388
|
+
|
|
389
|
+
if initialize:
|
|
390
|
+
o_buffer[:, :] = nl.copy(pv_psum[:, :])
|
|
391
|
+
l_buffer[:, 0] = nl.add(nl.log(ps), max_)
|
|
392
|
+
else:
|
|
393
|
+
o_buffer[:, :] = nl.add(o_previous_scaled, pv_psum)
|
|
394
|
+
|
|
395
|
+
l_prev = l_buffer[:, 0]
|
|
396
|
+
l_exp = nl.add(
|
|
397
|
+
nl.exp(nl.subtract(l_prev, m_current)),
|
|
398
|
+
ps,
|
|
399
|
+
)
|
|
400
|
+
l_buffer[:, 0] = nl.add(m_current, nl.log(l_exp))
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
@nki.jit
|
|
404
|
+
def load_v_tile(v_hbm_tile, cur_v_tile, large_tile_idx, v_i, LARGE_TILE_SZ):
|
|
405
|
+
B_P_SIZE = 128
|
|
406
|
+
B_D_SIZE = v_hbm_tile.shape[-1]
|
|
407
|
+
loaded = nl.load(v_hbm_tile[
|
|
408
|
+
nl.ds(large_tile_idx * LARGE_TILE_SZ + B_P_SIZE * v_i, B_P_SIZE),
|
|
409
|
+
:,
|
|
410
|
+
])
|
|
411
|
+
if cur_v_tile.dtype != loaded.dtype:
|
|
412
|
+
loaded = nl.copy(loaded, dtype=cur_v_tile.dtype)
|
|
413
|
+
cur_v_tile[:, nl.ds(v_i * B_D_SIZE, B_D_SIZE)] = loaded
|
|
414
|
+
|
|
415
|
+
|
|
416
|
+
@nki.jit
|
|
417
|
+
def flash_paged_attention(
|
|
418
|
+
query,
|
|
419
|
+
key,
|
|
420
|
+
value,
|
|
421
|
+
kv_cache,
|
|
422
|
+
block_tables,
|
|
423
|
+
mask,
|
|
424
|
+
softmax_scale=None,
|
|
425
|
+
mixed_precision=True,
|
|
426
|
+
LARGE_TILE_SZ=2048,
|
|
427
|
+
return_debug_tensors=False,
|
|
428
|
+
):
|
|
429
|
+
"""
|
|
430
|
+
Flash PagedAttention Forward Kernel.
|
|
431
|
+
|
|
432
|
+
IO tensor layouts:
|
|
433
|
+
- query: shape (1, n_heads, d, seq_q)
|
|
434
|
+
- key: shape (1, n_kv_heads, d, seq_k)
|
|
435
|
+
- value: shape (1, n_kv_heads, seq_v, d)
|
|
436
|
+
- kv_cache: (2, num_blocks, n_kv_heads, block_size, d)
|
|
437
|
+
- block_tables: (num_active_blocks, )
|
|
438
|
+
- mask: (seq_q, num_active_blocks * block_size + seq_q)
|
|
439
|
+
- o: shape (1, n_heads, seq_q, d)
|
|
440
|
+
|
|
441
|
+
- This kernel requires seq_k == seq_v
|
|
442
|
+
- We use continuous batching by default, so the batch dimension is
|
|
443
|
+
always 1, and different requests are concatenated along sequence
|
|
444
|
+
dimension.
|
|
445
|
+
- We use paged cache blocks (kv_cache) to store KV cache.
|
|
446
|
+
|
|
447
|
+
IO tensor dtypes:
|
|
448
|
+
- This kernel assumes all IO tensors have the same dtype except for
|
|
449
|
+
block_tables (int32) and mask (int32)
|
|
450
|
+
- If mixed_precision is True, then all Tensor Engine operation will be
|
|
451
|
+
performed in bfloat16 and accumulation will be performed in float32.
|
|
452
|
+
Otherwise the intermediates will be in the same type as the inputs.
|
|
453
|
+
|
|
454
|
+
Compile-time Constants:
|
|
455
|
+
- softmax_scale: scaling for softmax, is None, default is `1.0/(d**0.5)`
|
|
456
|
+
- mixed_precision: flag to set non-matmul ops in fp32 precision, default
|
|
457
|
+
is set to `true`, if false, we use same precision as input types
|
|
458
|
+
- LARGE_TILE_SZ: `default=2048`, size of the kv tile size for attention
|
|
459
|
+
computation reduction
|
|
460
|
+
|
|
461
|
+
GQA support Notes:
|
|
462
|
+
the spmd kernel for launching kernel should be on kv_heads instead of
|
|
463
|
+
nheads
|
|
464
|
+
|
|
465
|
+
Example usage:
|
|
466
|
+
MHA: q: [b, h, d, s], k: [b, h, d, s], v: [b, h, s, d]
|
|
467
|
+
usage: `flash_fwd[b, h](q, k, v, ...)`
|
|
468
|
+
GQA: q: [b, h, d, s], k: [b, kv_h, d, s], v: [b, kv_h, s, d]
|
|
469
|
+
usage: `flash_fwd[b, kv_h](q, k, v, ...)`
|
|
470
|
+
"""
|
|
471
|
+
B_F_SIZE = 512
|
|
472
|
+
B_P_SIZE = 128
|
|
473
|
+
b, h, d, seqlen_q = query.shape
|
|
474
|
+
B_D_SIZE = d
|
|
475
|
+
n_tile_q = seqlen_q // B_P_SIZE # since q will be loaded on tensor engine
|
|
476
|
+
_, num_blocks, k_h, block_size, _ = kv_cache.shape
|
|
477
|
+
q_h_per_k_h = h // k_h
|
|
478
|
+
assert b == 1, f"invalid batch size {b=}"
|
|
479
|
+
assert d <= 128, f" we do not support head_dim > 128, got head dim {d=}"
|
|
480
|
+
cache_shape = (2, num_blocks, k_h, block_size, d)
|
|
481
|
+
assert (tuple(kv_cache.shape) == cache_shape
|
|
482
|
+
), f"{kv_cache.shape=} mismatch, expect {cache_shape}"
|
|
483
|
+
assert key is None or tuple(key.shape) == (
|
|
484
|
+
1,
|
|
485
|
+
k_h,
|
|
486
|
+
d,
|
|
487
|
+
seqlen_q,
|
|
488
|
+
), f"key shape {key.shape} mismatch!"
|
|
489
|
+
assert value is None or tuple(value.shape) == (
|
|
490
|
+
1,
|
|
491
|
+
k_h,
|
|
492
|
+
seqlen_q,
|
|
493
|
+
d,
|
|
494
|
+
), f"value shape {value.shape} mismatch!"
|
|
495
|
+
|
|
496
|
+
assert (
|
|
497
|
+
nl.program_ndim() == 2
|
|
498
|
+
), f"Expect spmd grid with 2 dimensions, got {nl.program_ndim()} instead!"
|
|
499
|
+
batch_id = nl.program_id(axis=0)
|
|
500
|
+
head_id = nl.program_id(axis=1)
|
|
501
|
+
|
|
502
|
+
(num_active_blocks, ) = block_tables.shape
|
|
503
|
+
context_kv_len = num_active_blocks * block_size
|
|
504
|
+
assert (
|
|
505
|
+
LARGE_TILE_SZ % B_F_SIZE == 0
|
|
506
|
+
), f"Need {LARGE_TILE_SZ=} to be divisible by {B_F_SIZE=} in transpose_p"
|
|
507
|
+
assert (context_kv_len % LARGE_TILE_SZ == 0
|
|
508
|
+
), f"Need {context_kv_len=} to be divisible by {LARGE_TILE_SZ=}"
|
|
509
|
+
|
|
510
|
+
num_blocks_per_large_tile = LARGE_TILE_SZ // block_size
|
|
511
|
+
assert is_power_of_2(
|
|
512
|
+
num_blocks_per_large_tile
|
|
513
|
+
), f"{num_blocks_per_large_tile=} is expected of be power of 2"
|
|
514
|
+
if seqlen_q > B_F_SIZE:
|
|
515
|
+
MAX_REDUCTION_TILE = 2048
|
|
516
|
+
if seqlen_q // 2 > MAX_REDUCTION_TILE:
|
|
517
|
+
assert (
|
|
518
|
+
seqlen_q % MAX_REDUCTION_TILE == 0
|
|
519
|
+
), f"{seqlen_q=} should be divisible by {MAX_REDUCTION_TILE=}"
|
|
520
|
+
else:
|
|
521
|
+
assert (seqlen_q % B_F_SIZE == 0
|
|
522
|
+
), f"{seqlen_q=} should be divisible by {B_F_SIZE=})"
|
|
523
|
+
|
|
524
|
+
kernel_dtype = nl.bfloat16 if mixed_precision else query.dtype
|
|
525
|
+
acc_type = np.dtype(np.float32) if mixed_precision else kernel_dtype
|
|
526
|
+
softmax_scale = softmax_scale or (1.0 / (d**0.5))
|
|
527
|
+
num_large_k_tile = context_kv_len // LARGE_TILE_SZ
|
|
528
|
+
|
|
529
|
+
o = nl.ndarray((b, h, seqlen_q, d),
|
|
530
|
+
dtype=query.dtype,
|
|
531
|
+
buffer=nl.shared_hbm)
|
|
532
|
+
hbm_l_buffer, hbm_m_buffer, hbm_qk_res, qk_res_buffer = (
|
|
533
|
+
None,
|
|
534
|
+
None,
|
|
535
|
+
None,
|
|
536
|
+
None,
|
|
537
|
+
)
|
|
538
|
+
if return_debug_tensors:
|
|
539
|
+
hbm_l_buffer = nl.ndarray((b, h, seqlen_q),
|
|
540
|
+
dtype=acc_type,
|
|
541
|
+
buffer=nl.shared_hbm)
|
|
542
|
+
hbm_m_buffer = nl.ndarray((b, h, seqlen_q),
|
|
543
|
+
dtype=acc_type,
|
|
544
|
+
buffer=nl.shared_hbm)
|
|
545
|
+
hbm_qk_res = nl.ndarray((b, h, B_P_SIZE, seqlen_q),
|
|
546
|
+
dtype=acc_type,
|
|
547
|
+
buffer=nl.shared_hbm)
|
|
548
|
+
qk_res_buffer = nl.zeros(
|
|
549
|
+
(n_tile_q, q_h_per_k_h, par_dim(B_P_SIZE), seqlen_q),
|
|
550
|
+
dtype=acc_type,
|
|
551
|
+
buffer=nl.sbuf,
|
|
552
|
+
lazy_initialization=True,
|
|
553
|
+
)
|
|
554
|
+
block_tables_sbuf = load_block_tables(
|
|
555
|
+
block_tables_hbm=block_tables,
|
|
556
|
+
num_tiles=num_large_k_tile,
|
|
557
|
+
num_blocks_per_tile=num_blocks_per_large_tile,
|
|
558
|
+
)
|
|
559
|
+
|
|
560
|
+
# On Neuron, we need B_P_SIZE = 128 blocks to make DMA efficient
|
|
561
|
+
if num_blocks_per_large_tile < B_P_SIZE:
|
|
562
|
+
# we checked num_blocks_per_tile is a power of 2
|
|
563
|
+
assert B_P_SIZE % num_blocks_per_large_tile == 0
|
|
564
|
+
block_size_tiling_factor = B_P_SIZE // num_blocks_per_large_tile
|
|
565
|
+
# We assume block_size >= block_size_tiling_factor
|
|
566
|
+
assert block_size % block_size_tiling_factor == 0
|
|
567
|
+
else:
|
|
568
|
+
block_size_tiling_factor = 1
|
|
569
|
+
tiled_block_size = block_size // block_size_tiling_factor
|
|
570
|
+
|
|
571
|
+
# Indirect DMA load must be placed along Partition Dimension
|
|
572
|
+
block_tables_sbuf = transform_block_tables_for_indirect_load(
|
|
573
|
+
block_tables_sbuf,
|
|
574
|
+
block_size_tiling_factor=block_size_tiling_factor,
|
|
575
|
+
num_head=k_h,
|
|
576
|
+
head_id=head_id,
|
|
577
|
+
)
|
|
578
|
+
|
|
579
|
+
# Flatten KV cache to be 3D for loading into SBUF
|
|
580
|
+
new_cache_shape = (
|
|
581
|
+
2,
|
|
582
|
+
num_blocks * k_h * block_size_tiling_factor,
|
|
583
|
+
tiled_block_size * d,
|
|
584
|
+
)
|
|
585
|
+
kv_cache = kv_cache.reshape(new_cache_shape)
|
|
586
|
+
|
|
587
|
+
# Global Flash Attention accumulators
|
|
588
|
+
o_buffer = nl.zeros(
|
|
589
|
+
(n_tile_q, q_h_per_k_h, par_dim(B_P_SIZE), d),
|
|
590
|
+
dtype=acc_type,
|
|
591
|
+
buffer=nl.sbuf,
|
|
592
|
+
lazy_initialization=True,
|
|
593
|
+
)
|
|
594
|
+
l_buffer = nl.zeros(
|
|
595
|
+
(n_tile_q, q_h_per_k_h, par_dim(B_P_SIZE), 1),
|
|
596
|
+
dtype=acc_type,
|
|
597
|
+
buffer=nl.sbuf,
|
|
598
|
+
lazy_initialization=True,
|
|
599
|
+
)
|
|
600
|
+
m_buffer = nl.zeros(
|
|
601
|
+
(n_tile_q, q_h_per_k_h, par_dim(B_P_SIZE), 1),
|
|
602
|
+
dtype=acc_type,
|
|
603
|
+
buffer=nl.sbuf,
|
|
604
|
+
lazy_initialization=True,
|
|
605
|
+
)
|
|
606
|
+
|
|
607
|
+
for large_k_tile_idx in nl.sequential_range(0, num_large_k_tile):
|
|
608
|
+
num_loads = ceil_div(num_blocks_per_large_tile, B_P_SIZE)
|
|
609
|
+
cur_k_tile = nl.ndarray(
|
|
610
|
+
(par_dim(B_D_SIZE), LARGE_TILE_SZ),
|
|
611
|
+
dtype=kernel_dtype,
|
|
612
|
+
)
|
|
613
|
+
cur_v_tile = nl.ndarray(
|
|
614
|
+
(par_dim(B_P_SIZE), num_loads * tiled_block_size * B_D_SIZE),
|
|
615
|
+
dtype=kernel_dtype,
|
|
616
|
+
)
|
|
617
|
+
load_kv_tile_from_cache(
|
|
618
|
+
cur_k_tile=cur_k_tile,
|
|
619
|
+
cur_v_tile=cur_v_tile,
|
|
620
|
+
kv_cache=kv_cache,
|
|
621
|
+
block_tables=block_tables_sbuf,
|
|
622
|
+
large_k_tile_idx=large_k_tile_idx,
|
|
623
|
+
num_blocks_per_large_tile=num_blocks_per_large_tile,
|
|
624
|
+
tiled_block_size=tiled_block_size,
|
|
625
|
+
B_P_SIZE=B_P_SIZE,
|
|
626
|
+
B_D_SIZE=B_D_SIZE,
|
|
627
|
+
)
|
|
628
|
+
|
|
629
|
+
for i in nl.affine_range(n_tile_q):
|
|
630
|
+
cur_mask = nl.load(mask[
|
|
631
|
+
nl.ds(i * B_P_SIZE, B_P_SIZE),
|
|
632
|
+
nl.ds(large_k_tile_idx * LARGE_TILE_SZ, LARGE_TILE_SZ),
|
|
633
|
+
])
|
|
634
|
+
for i_q_h in nl.affine_range(q_h_per_k_h):
|
|
635
|
+
q_tile = nl.ndarray((B_D_SIZE, B_P_SIZE), dtype=kernel_dtype)
|
|
636
|
+
q_hbm_tile = query[batch_id, head_id * q_h_per_k_h + i_q_h]
|
|
637
|
+
q_sbuf_tile = nl.load(q_hbm_tile[:,
|
|
638
|
+
nl.ds(i *
|
|
639
|
+
B_P_SIZE, B_P_SIZE)])
|
|
640
|
+
if q_sbuf_tile.dtype != kernel_dtype:
|
|
641
|
+
q_sbuf_tile = nl.copy(q_sbuf_tile, dtype=kernel_dtype)
|
|
642
|
+
q_tile[:, :] = q_sbuf_tile * softmax_scale
|
|
643
|
+
|
|
644
|
+
_flash_attention_core(
|
|
645
|
+
q_local_tile=q_tile,
|
|
646
|
+
k=cur_k_tile,
|
|
647
|
+
v=cur_v_tile,
|
|
648
|
+
o_buffer=o_buffer[i, i_q_h],
|
|
649
|
+
l_buffer=l_buffer[i, i_q_h],
|
|
650
|
+
m_buffer=m_buffer[i, i_q_h],
|
|
651
|
+
kernel_dtype=kernel_dtype,
|
|
652
|
+
acc_type=acc_type,
|
|
653
|
+
tile_mask=cur_mask,
|
|
654
|
+
use_causal_mask=False,
|
|
655
|
+
q_tile_idx=i,
|
|
656
|
+
initialize=large_k_tile_idx == 0,
|
|
657
|
+
LARGE_TILE_SZ=LARGE_TILE_SZ,
|
|
658
|
+
B_P_SIZE=B_P_SIZE,
|
|
659
|
+
B_F_SIZE=B_F_SIZE,
|
|
660
|
+
B_D_SIZE=B_D_SIZE,
|
|
661
|
+
)
|
|
662
|
+
|
|
663
|
+
# compute attention between input query, key and value
|
|
664
|
+
if key is not None and value is not None:
|
|
665
|
+
B_F_SIZE = min(seqlen_q, B_F_SIZE)
|
|
666
|
+
LARGE_TILE_SZ = seqlen_q
|
|
667
|
+
|
|
668
|
+
cur_k_tile = nl.ndarray((par_dim(B_D_SIZE), LARGE_TILE_SZ),
|
|
669
|
+
dtype=kernel_dtype)
|
|
670
|
+
cur_v_tile = nl.ndarray(
|
|
671
|
+
(par_dim(B_P_SIZE), LARGE_TILE_SZ // B_P_SIZE * B_D_SIZE),
|
|
672
|
+
dtype=kernel_dtype,
|
|
673
|
+
)
|
|
674
|
+
|
|
675
|
+
loaded = nl.load(key[batch_id, head_id, :, :])
|
|
676
|
+
if loaded.dtype != kernel_dtype:
|
|
677
|
+
loaded = nl.copy(loaded, dtype=kernel_dtype)
|
|
678
|
+
cur_k_tile[:, :] = loaded
|
|
679
|
+
|
|
680
|
+
v_hbm_tile = value[batch_id, head_id]
|
|
681
|
+
for v_i in nl.affine_range(LARGE_TILE_SZ // B_P_SIZE):
|
|
682
|
+
load_v_tile(
|
|
683
|
+
v_hbm_tile=v_hbm_tile,
|
|
684
|
+
cur_v_tile=cur_v_tile,
|
|
685
|
+
large_tile_idx=0,
|
|
686
|
+
v_i=v_i,
|
|
687
|
+
LARGE_TILE_SZ=LARGE_TILE_SZ,
|
|
688
|
+
)
|
|
689
|
+
|
|
690
|
+
for i in nl.affine_range(n_tile_q):
|
|
691
|
+
cur_mask = nl.load(mask[
|
|
692
|
+
nl.ds(i * B_P_SIZE, B_P_SIZE),
|
|
693
|
+
nl.ds(context_kv_len, LARGE_TILE_SZ),
|
|
694
|
+
])
|
|
695
|
+
for i_q_h in nl.affine_range(q_h_per_k_h):
|
|
696
|
+
|
|
697
|
+
q_tile = nl.ndarray((B_D_SIZE, B_P_SIZE), dtype=kernel_dtype)
|
|
698
|
+
q_hbm_tile = query[batch_id, head_id * q_h_per_k_h + i_q_h]
|
|
699
|
+
q_sbuf_tile = nl.load(q_hbm_tile[:,
|
|
700
|
+
nl.ds(i *
|
|
701
|
+
B_P_SIZE, B_P_SIZE)])
|
|
702
|
+
if q_sbuf_tile.dtype != kernel_dtype:
|
|
703
|
+
q_sbuf_tile = nl.copy(q_sbuf_tile, dtype=kernel_dtype)
|
|
704
|
+
q_tile[:, :] = q_sbuf_tile * softmax_scale
|
|
705
|
+
_flash_attention_core(
|
|
706
|
+
q_local_tile=q_tile,
|
|
707
|
+
k=cur_k_tile,
|
|
708
|
+
v=cur_v_tile,
|
|
709
|
+
o_buffer=o_buffer[i, i_q_h],
|
|
710
|
+
l_buffer=l_buffer[i, i_q_h],
|
|
711
|
+
m_buffer=m_buffer[i, i_q_h],
|
|
712
|
+
kernel_dtype=kernel_dtype,
|
|
713
|
+
acc_type=acc_type,
|
|
714
|
+
tile_mask=cur_mask,
|
|
715
|
+
use_causal_mask=True,
|
|
716
|
+
q_tile_idx=i,
|
|
717
|
+
initialize=False,
|
|
718
|
+
LARGE_TILE_SZ=LARGE_TILE_SZ,
|
|
719
|
+
B_P_SIZE=B_P_SIZE,
|
|
720
|
+
B_F_SIZE=B_F_SIZE,
|
|
721
|
+
B_D_SIZE=B_D_SIZE,
|
|
722
|
+
qk_res_buffer=(qk_res_buffer[i, i_q_h]
|
|
723
|
+
if qk_res_buffer is not None else None),
|
|
724
|
+
)
|
|
725
|
+
|
|
726
|
+
# -- -- -- -- write output to buffer on HBM -- -- -- -- -- -- #
|
|
727
|
+
for i_q_h in nl.affine_range(q_h_per_k_h):
|
|
728
|
+
for i in nl.affine_range(n_tile_q):
|
|
729
|
+
out = nl.multiply(
|
|
730
|
+
o_buffer[i, i_q_h],
|
|
731
|
+
nl.exp(m_buffer[i, i_q_h] - l_buffer[i, i_q_h]),
|
|
732
|
+
dtype=kernel_dtype,
|
|
733
|
+
)
|
|
734
|
+
|
|
735
|
+
nl.store(
|
|
736
|
+
o[
|
|
737
|
+
batch_id,
|
|
738
|
+
head_id * q_h_per_k_h + i_q_h,
|
|
739
|
+
nl.ds(i * B_P_SIZE, B_P_SIZE),
|
|
740
|
+
:,
|
|
741
|
+
],
|
|
742
|
+
out,
|
|
743
|
+
)
|
|
744
|
+
# maximum and summation statistics
|
|
745
|
+
if return_debug_tensors:
|
|
746
|
+
nl.store(
|
|
747
|
+
hbm_m_buffer[
|
|
748
|
+
batch_id,
|
|
749
|
+
head_id * q_h_per_k_h + i_q_h,
|
|
750
|
+
nl.ds(i * B_P_SIZE, B_P_SIZE),
|
|
751
|
+
],
|
|
752
|
+
m_buffer[i, i_q_h, :, :],
|
|
753
|
+
)
|
|
754
|
+
nl.store(
|
|
755
|
+
hbm_l_buffer[
|
|
756
|
+
batch_id,
|
|
757
|
+
head_id * q_h_per_k_h + i_q_h,
|
|
758
|
+
nl.ds(i * B_P_SIZE, B_P_SIZE),
|
|
759
|
+
],
|
|
760
|
+
l_buffer[i, i_q_h],
|
|
761
|
+
)
|
|
762
|
+
nl.store(
|
|
763
|
+
hbm_qk_res[batch_id, head_id * q_h_per_k_h + i_q_h, :, :],
|
|
764
|
+
qk_res_buffer[batch_id, i_q_h, :, :],
|
|
765
|
+
)
|
|
766
|
+
|
|
767
|
+
if return_debug_tensors:
|
|
768
|
+
return o, hbm_m_buffer, hbm_l_buffer, hbm_qk_res
|
|
769
|
+
return o
|
|
770
|
+
|
|
771
|
+
|
|
772
|
+
def reorder_context_mask(mask, LARGE_TILE_SZ, block_size):
|
|
773
|
+
"""
|
|
774
|
+
Reorder the mask to make it compatible with the flash attention kernel.
|
|
775
|
+
|
|
776
|
+
We vectorize KV cache read to improve DMA utilization. However, the layout
|
|
777
|
+
that maximizes DMA bandwidth changes the order tokens are consumed.
|
|
778
|
+
|
|
779
|
+
The token layout (inner 2 dimensions) after vectorized load is (B_P_SIZE,
|
|
780
|
+
tiled_block_size) in a tile of `B_P_SIZE * tiled_block_size` tokens. And
|
|
781
|
+
each step the engine consumes a column (rather than a row) of B_P_SIZE
|
|
782
|
+
tokens. Therefore, the tokens are visited in a strided way.
|
|
783
|
+
|
|
784
|
+
To make sure mask matches the order tokens are consumed, we need to properly
|
|
785
|
+
transpose mask.
|
|
786
|
+
"""
|
|
787
|
+
total_query_len, total_seq_len = mask.shape
|
|
788
|
+
context_kv_len = total_seq_len - total_query_len
|
|
789
|
+
|
|
790
|
+
B_P_SIZE = 128
|
|
791
|
+
assert (LARGE_TILE_SZ
|
|
792
|
+
>= B_P_SIZE), f"{LARGE_TILE_SZ=} must be larger than {B_P_SIZE=}"
|
|
793
|
+
num_tiled_blocks = max(B_P_SIZE, LARGE_TILE_SZ // block_size)
|
|
794
|
+
tiled_block_size = LARGE_TILE_SZ // num_tiled_blocks
|
|
795
|
+
if tiled_block_size > 1:
|
|
796
|
+
# Mask reordering is needed when tiled_block_size > 1
|
|
797
|
+
device = mask.device
|
|
798
|
+
mask = mask.cpu()
|
|
799
|
+
context_mask = mask[:, :context_kv_len]
|
|
800
|
+
context_mask = context_mask.view(
|
|
801
|
+
total_query_len,
|
|
802
|
+
context_kv_len // LARGE_TILE_SZ,
|
|
803
|
+
num_tiled_blocks // B_P_SIZE,
|
|
804
|
+
B_P_SIZE,
|
|
805
|
+
tiled_block_size,
|
|
806
|
+
)
|
|
807
|
+
context_mask = context_mask.transpose(3, 4).reshape(
|
|
808
|
+
total_query_len, context_kv_len)
|
|
809
|
+
new_mask = mask[:, context_kv_len:]
|
|
810
|
+
return torch.concat([context_mask, new_mask], dim=1).to(device)
|
|
811
|
+
else:
|
|
812
|
+
return mask
|
|
813
|
+
|
|
814
|
+
|
|
815
|
+
def flash_attn_varlen_nkifunc(
|
|
816
|
+
query,
|
|
817
|
+
key,
|
|
818
|
+
value,
|
|
819
|
+
kv_cache,
|
|
820
|
+
block_table,
|
|
821
|
+
attn_mask,
|
|
822
|
+
n_kv_head=None,
|
|
823
|
+
head_size=None,
|
|
824
|
+
LARGE_TILE_SZ=2048,
|
|
825
|
+
mixed_precision=True,
|
|
826
|
+
):
|
|
827
|
+
"""
|
|
828
|
+
Compute flash paged attention for variable length sequences.
|
|
829
|
+
|
|
830
|
+
This function is a wrapper around the flash attention NKI kernel. It takes
|
|
831
|
+
in the following arguments:
|
|
832
|
+
- query: (1, n_heads, d, seq_q)
|
|
833
|
+
- key: (1, n_kv_heads, d, seq_k)
|
|
834
|
+
- value: (1, n_kv_heads, seq_v, d)
|
|
835
|
+
- kv_cache: (2, n_blocks, n_kv_heads, block_size, d)
|
|
836
|
+
- block_tables: (n_active_blocks, )
|
|
837
|
+
- attn_mask: (seq_q, n_active_blocks * block_size + seq_q)
|
|
838
|
+
|
|
839
|
+
Notes:
|
|
840
|
+
- attn_mask must be reordered outside using `reorder_context_mask`
|
|
841
|
+
- Key/value cache layout must be (n_blocks, n_kv_heads, block_size, d)
|
|
842
|
+
for better DMA throughput
|
|
843
|
+
"""
|
|
844
|
+
if n_kv_head is None:
|
|
845
|
+
n_kv_head = kv_cache.shape[2]
|
|
846
|
+
assert kv_cache.shape[0] == 2
|
|
847
|
+
assert kv_cache.shape[2] == n_kv_head
|
|
848
|
+
if head_size is None:
|
|
849
|
+
head_size = kv_cache.shape[-1]
|
|
850
|
+
|
|
851
|
+
kwargs = dict(
|
|
852
|
+
query=query,
|
|
853
|
+
key=key,
|
|
854
|
+
value=value,
|
|
855
|
+
kv_cache=kv_cache,
|
|
856
|
+
block_tables=block_table,
|
|
857
|
+
mask=attn_mask,
|
|
858
|
+
softmax_scale=1.0 / (head_size**0.5),
|
|
859
|
+
mixed_precision=mixed_precision,
|
|
860
|
+
LARGE_TILE_SZ=LARGE_TILE_SZ,
|
|
861
|
+
)
|
|
862
|
+
|
|
863
|
+
o = flash_paged_attention[1, n_kv_head](**kwargs)
|
|
864
|
+
return o
|
|
865
|
+
|
|
866
|
+
|
|
867
|
+
def reshape_and_cache(
|
|
868
|
+
key: torch.Tensor,
|
|
869
|
+
value: torch.Tensor,
|
|
870
|
+
kv_cache: torch.Tensor,
|
|
871
|
+
slot_mapping: torch.Tensor,
|
|
872
|
+
) -> None:
|
|
873
|
+
"""
|
|
874
|
+
Writes key-value pairs to the KV cache at specified positions.
|
|
875
|
+
|
|
876
|
+
Args:
|
|
877
|
+
key (torch.Tensor): Key tensor with shape
|
|
878
|
+
(num_tokens, n_kv_head, d_head)
|
|
879
|
+
value (torch.Tensor): Value tensor with shape
|
|
880
|
+
(num_tokens, n_kv_head, d_head)
|
|
881
|
+
kv_cache (torch.Tensor): Key/value cache tensor with shape
|
|
882
|
+
(2, num_blocks, n_kv_head, block_size, d_head)
|
|
883
|
+
slot_mapping (torch.Tensor): Mapping tensor indicating cache positions
|
|
884
|
+
with shape (num_tokens)
|
|
885
|
+
|
|
886
|
+
Returns:
|
|
887
|
+
None: Updates the kv_cache tensor in-place
|
|
888
|
+
"""
|
|
889
|
+
block_size = kv_cache.size(3)
|
|
890
|
+
n_kv_head = key.size(1)
|
|
891
|
+
|
|
892
|
+
# Calculate indices with explicit floor division
|
|
893
|
+
block_indices = torch.div(slot_mapping, block_size, rounding_mode="floor")
|
|
894
|
+
block_offsets = slot_mapping % block_size
|
|
895
|
+
|
|
896
|
+
# Create the head indices tensor
|
|
897
|
+
head_indices = torch.arange(n_kv_head, device=key.device)
|
|
898
|
+
|
|
899
|
+
# Update caches using index_put_
|
|
900
|
+
kv_cache.index_put_(
|
|
901
|
+
(torch.tensor([0], device=key.device), block_indices[:, None],
|
|
902
|
+
head_indices[None, :], block_offsets[:, None]), key)
|
|
903
|
+
|
|
904
|
+
kv_cache.index_put_(
|
|
905
|
+
(torch.tensor([1], device=key.device), block_indices[:, None],
|
|
906
|
+
head_indices[None, :], block_offsets[:, None]), value)
|