vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +53 -0
- vllm/_custom_ops.py +1828 -0
- vllm/_ipex_ops.py +244 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +106 -0
- vllm/adapter_commons/request.py +26 -0
- vllm/adapter_commons/utils.py +93 -0
- vllm/adapter_commons/worker_manager.py +39 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +34 -0
- vllm/assets/video.py +115 -0
- vllm/attention/__init__.py +20 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +308 -0
- vllm/attention/backends/blocksparse_attn.py +461 -0
- vllm/attention/backends/cpu_mla.py +307 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
- vllm/attention/backends/flash_attn.py +1003 -0
- vllm/attention/backends/flashinfer.py +1104 -0
- vllm/attention/backends/flashmla.py +244 -0
- vllm/attention/backends/hpu_attn.py +313 -0
- vllm/attention/backends/ipex_attn.py +398 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1385 -0
- vllm/attention/backends/pallas.py +351 -0
- vllm/attention/backends/placeholder_attn.py +400 -0
- vllm/attention/backends/rocm_aiter_mla.py +435 -0
- vllm/attention/backends/rocm_flash_attn.py +975 -0
- vllm/attention/backends/torch_sdpa.py +703 -0
- vllm/attention/backends/triton_mla.py +115 -0
- vllm/attention/backends/utils.py +610 -0
- vllm/attention/backends/xformers.py +802 -0
- vllm/attention/layer.py +468 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
- vllm/attention/ops/blocksparse_attention/interface.py +239 -0
- vllm/attention/ops/blocksparse_attention/utils.py +246 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
- vllm/attention/ops/flashmla.py +116 -0
- vllm/attention/ops/hpu_paged_attn.py +88 -0
- vllm/attention/ops/ipex_attn.py +195 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/nki_flash_attn.py +906 -0
- vllm/attention/ops/paged_attn.py +256 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +100 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +674 -0
- vllm/attention/ops/triton_flash_attention.py +979 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_unified_attention.py +334 -0
- vllm/attention/selector.py +187 -0
- vllm/attention/utils/fa_utils.py +55 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +1185 -0
- vllm/benchmarks/endpoint_request_func.py +381 -0
- vllm/benchmarks/latency.py +168 -0
- vllm/benchmarks/serve.py +1135 -0
- vllm/benchmarks/throughput.py +609 -0
- vllm/benchmarks/utils.py +70 -0
- vllm/collect_env.py +820 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +89 -0
- vllm/compilation/backends.py +563 -0
- vllm/compilation/base_piecewise_backend.py +72 -0
- vllm/compilation/collective_fusion.py +127 -0
- vllm/compilation/compiler_interface.py +544 -0
- vllm/compilation/counter.py +38 -0
- vllm/compilation/cuda_piecewise_backend.py +214 -0
- vllm/compilation/decorators.py +250 -0
- vllm/compilation/fix_functionalization.py +191 -0
- vllm/compilation/fusion.py +618 -0
- vllm/compilation/fx_utils.py +62 -0
- vllm/compilation/inductor_pass.py +115 -0
- vllm/compilation/monitor.py +39 -0
- vllm/compilation/multi_output_match.py +109 -0
- vllm/compilation/noop_elimination.py +137 -0
- vllm/compilation/pass_manager.py +78 -0
- vllm/compilation/sequence_parallelism.py +268 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +67 -0
- vllm/compilation/wrapper.py +135 -0
- vllm/config.py +4746 -0
- vllm/connections.py +174 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +399 -0
- vllm/core/block/common.py +371 -0
- vllm/core/block/cpu_gpu_block_allocator.py +441 -0
- vllm/core/block/interfaces.py +319 -0
- vllm/core/block/naive_block.py +466 -0
- vllm/core/block/prefix_caching_block.py +1135 -0
- vllm/core/block/utils.py +28 -0
- vllm/core/block_manager.py +521 -0
- vllm/core/evictor.py +157 -0
- vllm/core/interfaces.py +135 -0
- vllm/core/placeholder_block_space_manager.py +100 -0
- vllm/core/scheduler.py +2093 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +281 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +264 -0
- vllm/distributed/device_communicators/base_device_communicator.py +260 -0
- vllm/distributed/device_communicators/cpu_communicator.py +145 -0
- vllm/distributed/device_communicators/cuda_communicator.py +176 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
- vllm/distributed/device_communicators/hpu_communicator.py +46 -0
- vllm/distributed/device_communicators/neuron_communicator.py +20 -0
- vllm/distributed/device_communicators/pynccl.py +218 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
- vllm/distributed/device_communicators/shm_broadcast.py +585 -0
- vllm/distributed/device_communicators/tpu_communicator.py +103 -0
- vllm/distributed/device_communicators/xpu_communicator.py +55 -0
- vllm/distributed/kv_events.py +356 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +12 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
- vllm/distributed/parallel_state.py +1296 -0
- vllm/distributed/tpu_distributed_utils.py +177 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1708 -0
- vllm/engine/async_llm_engine.py +1200 -0
- vllm/engine/async_timeout.py +173 -0
- vllm/engine/llm_engine.py +2097 -0
- vllm/engine/metrics.py +629 -0
- vllm/engine/metrics_types.py +94 -0
- vllm/engine/multiprocessing/__init__.py +148 -0
- vllm/engine/multiprocessing/client.py +681 -0
- vllm/engine/multiprocessing/engine.py +460 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +75 -0
- vllm/engine/output_processor/multi_step.py +216 -0
- vllm/engine/output_processor/single_step.py +145 -0
- vllm/engine/output_processor/stop_checker.py +131 -0
- vllm/engine/output_processor/util.py +28 -0
- vllm/engine/protocol.py +317 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1299 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +39 -0
- vllm/entrypoints/cli/benchmark/latency.py +30 -0
- vllm/entrypoints/cli/benchmark/main.py +54 -0
- vllm/entrypoints/cli/benchmark/serve.py +30 -0
- vllm/entrypoints/cli/benchmark/throughput.py +30 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +65 -0
- vllm/entrypoints/cli/openai.py +205 -0
- vllm/entrypoints/cli/run_batch.py +62 -0
- vllm/entrypoints/cli/serve.py +328 -0
- vllm/entrypoints/cli/types.py +25 -0
- vllm/entrypoints/launcher.py +147 -0
- vllm/entrypoints/llm.py +1544 -0
- vllm/entrypoints/logger.py +50 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1387 -0
- vllm/entrypoints/openai/cli_args.py +315 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +1913 -0
- vllm/entrypoints/openai/run_batch.py +463 -0
- vllm/entrypoints/openai/serving_chat.py +1221 -0
- vllm/entrypoints/openai/serving_classification.py +160 -0
- vllm/entrypoints/openai/serving_completion.py +592 -0
- vllm/entrypoints/openai/serving_embedding.py +201 -0
- vllm/entrypoints/openai/serving_engine.py +986 -0
- vllm/entrypoints/openai/serving_models.py +315 -0
- vllm/entrypoints/openai/serving_pooling.py +232 -0
- vllm/entrypoints/openai/serving_score.py +433 -0
- vllm/entrypoints/openai/serving_tokenization.py +157 -0
- vllm/entrypoints/openai/serving_transcription.py +424 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/score_utils.py +50 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/utils.py +233 -0
- vllm/env_override.py +41 -0
- vllm/envs.py +944 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +401 -0
- vllm/executor/mp_distributed_executor.py +244 -0
- vllm/executor/msgspec_utils.py +30 -0
- vllm/executor/multiproc_worker_utils.py +313 -0
- vllm/executor/ray_distributed_executor.py +701 -0
- vllm/executor/ray_utils.py +399 -0
- vllm/executor/uniproc_executor.py +139 -0
- vllm/forward_context.py +179 -0
- vllm/inputs/__init__.py +41 -0
- vllm/inputs/data.py +331 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +909 -0
- vllm/inputs/registry.py +237 -0
- vllm/jsontree.py +80 -0
- vllm/logger.py +212 -0
- vllm/logging_utils/__init__.py +8 -0
- vllm/logging_utils/dump_input.py +85 -0
- vllm/logging_utils/formatter.py +18 -0
- vllm/logits_process.py +119 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +355 -0
- vllm/lora/layers.py +1285 -0
- vllm/lora/lora.py +199 -0
- vllm/lora/models.py +818 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
- vllm/lora/ops/triton_ops/utils.py +120 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +145 -0
- vllm/lora/peft_helper.py +136 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +485 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +290 -0
- vllm/lora/punica_wrapper/punica_hpu.py +145 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +405 -0
- vllm/lora/punica_wrapper/utils.py +164 -0
- vllm/lora/request.py +99 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +240 -0
- vllm/lora/worker_manager.py +259 -0
- vllm/model_executor/__init__.py +16 -0
- vllm/model_executor/custom_op.py +152 -0
- vllm/model_executor/guided_decoding/__init__.py +181 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
- vllm/model_executor/guided_decoding/guided_fields.py +41 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
- vllm/model_executor/guided_decoding/utils.py +242 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +369 -0
- vllm/model_executor/layers/fused_moe/__init__.py +54 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
- vllm/model_executor/layers/fused_moe/layer.py +1535 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/utils.py +98 -0
- vllm/model_executor/layers/layernorm.py +288 -0
- vllm/model_executor/layers/lightning_attn.py +652 -0
- vllm/model_executor/layers/linear.py +1524 -0
- vllm/model_executor/layers/logits_processor.py +197 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
- vllm/model_executor/layers/pooler.py +350 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/auto_round.py +310 -0
- vllm/model_executor/layers/quantization/awq.py +194 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +151 -0
- vllm/model_executor/layers/quantization/bitblas.py +461 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
- vllm/model_executor/layers/quantization/experts_int8.py +196 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +906 -0
- vllm/model_executor/layers/quantization/gguf.py +565 -0
- vllm/model_executor/layers/quantization/gptq.py +278 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +139 -0
- vllm/model_executor/layers/quantization/marlin.py +261 -0
- vllm/model_executor/layers/quantization/modelopt.py +737 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
- vllm/model_executor/layers/quantization/qqq.py +275 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +441 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +161 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
- vllm/model_executor/layers/rejection_sampler.py +406 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding.py +1862 -0
- vllm/model_executor/layers/sampler.py +1204 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
- vllm/model_executor/layers/utils.py +95 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +76 -0
- vllm/model_executor/model_loader/base_loader.py +43 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
- vllm/model_executor/model_loader/default_loader.py +282 -0
- vllm/model_executor/model_loader/dummy_loader.py +27 -0
- vllm/model_executor/model_loader/gguf_loader.py +120 -0
- vllm/model_executor/model_loader/neuron.py +476 -0
- vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
- vllm/model_executor/model_loader/tensorizer.py +600 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
- vllm/model_executor/model_loader/tpu.py +112 -0
- vllm/model_executor/model_loader/utils.py +302 -0
- vllm/model_executor/model_loader/weight_utils.py +782 -0
- vllm/model_executor/models/__init__.py +28 -0
- vllm/model_executor/models/adapters.py +248 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +657 -0
- vllm/model_executor/models/aya_vision.py +466 -0
- vllm/model_executor/models/baichuan.py +474 -0
- vllm/model_executor/models/bamba.py +543 -0
- vllm/model_executor/models/bart.py +938 -0
- vllm/model_executor/models/bert.py +523 -0
- vllm/model_executor/models/bert_with_rope.py +769 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +718 -0
- vllm/model_executor/models/bloom.py +373 -0
- vllm/model_executor/models/chameleon.py +1136 -0
- vllm/model_executor/models/chatglm.py +478 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/commandr.py +472 -0
- vllm/model_executor/models/constant_size_cache.py +137 -0
- vllm/model_executor/models/dbrx.py +472 -0
- vllm/model_executor/models/deepseek.py +486 -0
- vllm/model_executor/models/deepseek_mtp.py +269 -0
- vllm/model_executor/models/deepseek_v2.py +843 -0
- vllm/model_executor/models/deepseek_vl2.py +648 -0
- vllm/model_executor/models/eagle.py +260 -0
- vllm/model_executor/models/exaone.py +551 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +510 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/florence2.py +1103 -0
- vllm/model_executor/models/fuyu.py +389 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +425 -0
- vllm/model_executor/models/gemma3.py +533 -0
- vllm/model_executor/models/gemma3_mm.py +709 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4v.py +648 -0
- vllm/model_executor/models/gpt2.py +328 -0
- vllm/model_executor/models/gpt_bigcode.py +335 -0
- vllm/model_executor/models/gpt_j.py +339 -0
- vllm/model_executor/models/gpt_neox.py +332 -0
- vllm/model_executor/models/granite.py +493 -0
- vllm/model_executor/models/granite_speech.py +779 -0
- vllm/model_executor/models/granitemoe.py +437 -0
- vllm/model_executor/models/granitemoehybrid.py +586 -0
- vllm/model_executor/models/granitemoeshared.py +341 -0
- vllm/model_executor/models/gritlm.py +224 -0
- vllm/model_executor/models/grok1.py +546 -0
- vllm/model_executor/models/h2ovl.py +546 -0
- vllm/model_executor/models/idefics2_vision_model.py +389 -0
- vllm/model_executor/models/idefics3.py +776 -0
- vllm/model_executor/models/interfaces.py +572 -0
- vllm/model_executor/models/interfaces_base.py +164 -0
- vllm/model_executor/models/intern_vit.py +480 -0
- vllm/model_executor/models/internlm2.py +455 -0
- vllm/model_executor/models/internlm2_ve.py +147 -0
- vllm/model_executor/models/internvl.py +1418 -0
- vllm/model_executor/models/jais.py +373 -0
- vllm/model_executor/models/jamba.py +592 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +644 -0
- vllm/model_executor/models/llama4.py +532 -0
- vllm/model_executor/models/llama_eagle.py +165 -0
- vllm/model_executor/models/llama_eagle3.py +263 -0
- vllm/model_executor/models/llava.py +866 -0
- vllm/model_executor/models/llava_next.py +586 -0
- vllm/model_executor/models/llava_next_video.py +471 -0
- vllm/model_executor/models/llava_onevision.py +956 -0
- vllm/model_executor/models/mamba.py +273 -0
- vllm/model_executor/models/mamba2.py +308 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +219 -0
- vllm/model_executor/models/mimo.py +192 -0
- vllm/model_executor/models/mimo_mtp.py +285 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +391 -0
- vllm/model_executor/models/minicpmo.py +759 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +36 -0
- vllm/model_executor/models/minimax_text_01.py +1301 -0
- vllm/model_executor/models/minimax_vl_01.py +364 -0
- vllm/model_executor/models/mistral3.py +604 -0
- vllm/model_executor/models/mixtral.py +488 -0
- vllm/model_executor/models/mixtral_quant.py +453 -0
- vllm/model_executor/models/mllama.py +1624 -0
- vllm/model_executor/models/mllama4.py +938 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +331 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1568 -0
- vllm/model_executor/models/moonvit.py +630 -0
- vllm/model_executor/models/mpt.py +331 -0
- vllm/model_executor/models/nemotron.py +508 -0
- vllm/model_executor/models/nemotron_h.py +573 -0
- vllm/model_executor/models/nemotron_nas.py +484 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +389 -0
- vllm/model_executor/models/olmo2.py +414 -0
- vllm/model_executor/models/olmoe.py +468 -0
- vllm/model_executor/models/opt.py +412 -0
- vllm/model_executor/models/orion.py +349 -0
- vllm/model_executor/models/ovis.py +567 -0
- vllm/model_executor/models/paligemma.py +398 -0
- vllm/model_executor/models/persimmon.py +344 -0
- vllm/model_executor/models/phi.py +356 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3_small.py +465 -0
- vllm/model_executor/models/phi3v.py +723 -0
- vllm/model_executor/models/phi4mm.py +1246 -0
- vllm/model_executor/models/phi4mm_audio.py +1233 -0
- vllm/model_executor/models/phi4mm_utils.py +1884 -0
- vllm/model_executor/models/phimoe.py +665 -0
- vllm/model_executor/models/pixtral.py +1316 -0
- vllm/model_executor/models/plamo2.py +738 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
- vllm/model_executor/models/qwen.py +362 -0
- vllm/model_executor/models/qwen2.py +497 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
- vllm/model_executor/models/qwen2_5_vl.py +1166 -0
- vllm/model_executor/models/qwen2_audio.py +410 -0
- vllm/model_executor/models/qwen2_moe.py +540 -0
- vllm/model_executor/models/qwen2_rm.py +132 -0
- vllm/model_executor/models/qwen2_vl.py +1405 -0
- vllm/model_executor/models/qwen3.py +321 -0
- vllm/model_executor/models/qwen3_moe.py +535 -0
- vllm/model_executor/models/qwen_vl.py +785 -0
- vllm/model_executor/models/registry.py +622 -0
- vllm/model_executor/models/roberta.py +276 -0
- vllm/model_executor/models/siglip.py +524 -0
- vllm/model_executor/models/skyworkr1v.py +951 -0
- vllm/model_executor/models/smolvlm.py +52 -0
- vllm/model_executor/models/solar.py +506 -0
- vllm/model_executor/models/stablelm.py +343 -0
- vllm/model_executor/models/starcoder2.py +356 -0
- vllm/model_executor/models/tarsier.py +643 -0
- vllm/model_executor/models/telechat2.py +140 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/transformers.py +508 -0
- vllm/model_executor/models/ultravox.py +656 -0
- vllm/model_executor/models/utils.py +731 -0
- vllm/model_executor/models/vision.py +147 -0
- vllm/model_executor/models/whisper.py +747 -0
- vllm/model_executor/models/zamba2.py +1009 -0
- vllm/model_executor/parameter.py +459 -0
- vllm/model_executor/pooling_metadata.py +72 -0
- vllm/model_executor/sampling_metadata.py +597 -0
- vllm/model_executor/utils.py +77 -0
- vllm/multimodal/__init__.py +33 -0
- vllm/multimodal/audio.py +106 -0
- vllm/multimodal/base.py +219 -0
- vllm/multimodal/hasher.py +118 -0
- vllm/multimodal/image.py +97 -0
- vllm/multimodal/inputs.py +876 -0
- vllm/multimodal/parse.py +461 -0
- vllm/multimodal/processing.py +1895 -0
- vllm/multimodal/profiling.py +258 -0
- vllm/multimodal/registry.py +331 -0
- vllm/multimodal/utils.py +436 -0
- vllm/multimodal/video.py +198 -0
- vllm/outputs.py +512 -0
- vllm/platforms/__init__.py +291 -0
- vllm/platforms/cpu.py +266 -0
- vllm/platforms/cuda.py +526 -0
- vllm/platforms/hpu.py +106 -0
- vllm/platforms/interface.py +538 -0
- vllm/platforms/neuron.py +150 -0
- vllm/platforms/rocm.py +435 -0
- vllm/platforms/tpu.py +216 -0
- vllm/platforms/xpu.py +156 -0
- vllm/plugins/__init__.py +94 -0
- vllm/plugins/lora_resolvers/README.md +15 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +54 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +83 -0
- vllm/prompt_adapter/models.py +358 -0
- vllm/prompt_adapter/request.py +37 -0
- vllm/prompt_adapter/utils.py +98 -0
- vllm/prompt_adapter/worker_manager.py +179 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +15 -0
- vllm/reasoning/abs_reasoning_parsers.py +192 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/qwen3_reasoning_parser.py +151 -0
- vllm/sampling_params.py +602 -0
- vllm/scalar_type.py +347 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +1568 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +506 -0
- vllm/spec_decode/draft_model_runner.py +349 -0
- vllm/spec_decode/interfaces.py +99 -0
- vllm/spec_decode/medusa_worker.py +138 -0
- vllm/spec_decode/metrics.py +213 -0
- vllm/spec_decode/mlp_speculator_worker.py +94 -0
- vllm/spec_decode/mqa_scorer.py +160 -0
- vllm/spec_decode/multi_step_worker.py +423 -0
- vllm/spec_decode/ngram_worker.py +196 -0
- vllm/spec_decode/proposer_worker_base.py +59 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
- vllm/spec_decode/spec_decode_worker.py +1326 -0
- vllm/spec_decode/target_model_runner.py +45 -0
- vllm/spec_decode/top1_proposer.py +275 -0
- vllm/spec_decode/util.py +277 -0
- vllm/test_utils.py +130 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +131 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +60 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/config.py +887 -0
- vllm/transformers_utils/configs/__init__.py +61 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/cohere2.py +195 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +85 -0
- vllm/transformers_utils/configs/exaone.py +190 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/h2ovl.py +16 -0
- vllm/transformers_utils/configs/internvl.py +54 -0
- vllm/transformers_utils/configs/jais.py +238 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/minimax_text_01.py +70 -0
- vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
- vllm/transformers_utils/configs/mllama.py +31 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/mpt.py +180 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +258 -0
- vllm/transformers_utils/configs/nvlm_d.py +15 -0
- vllm/transformers_utils/configs/ovis.py +184 -0
- vllm/transformers_utils/configs/skyworkr1v.py +54 -0
- vllm/transformers_utils/configs/solar.py +247 -0
- vllm/transformers_utils/configs/telechat2.py +64 -0
- vllm/transformers_utils/configs/ultravox.py +108 -0
- vllm/transformers_utils/detokenizer.py +168 -0
- vllm/transformers_utils/detokenizer_utils.py +189 -0
- vllm/transformers_utils/processor.py +221 -0
- vllm/transformers_utils/processors/__init__.py +8 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/s3_utils.py +162 -0
- vllm/transformers_utils/tokenizer.py +302 -0
- vllm/transformers_utils/tokenizer_base.py +149 -0
- vllm/transformers_utils/tokenizer_group.py +120 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +493 -0
- vllm/transformers_utils/utils.py +99 -0
- vllm/triton_utils/__init__.py +14 -0
- vllm/triton_utils/importing.py +50 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +256 -0
- vllm/utils.py +2910 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +163 -0
- vllm/v1/attention/backends/flash_attn.py +869 -0
- vllm/v1/attention/backends/flashinfer.py +651 -0
- vllm/v1/attention/backends/flex_attention.py +477 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +931 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
- vllm/v1/attention/backends/mla/flashmla.py +152 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
- vllm/v1/attention/backends/mla/triton_mla.py +120 -0
- vllm/v1/attention/backends/pallas.py +240 -0
- vllm/v1/attention/backends/triton_attn.py +285 -0
- vllm/v1/attention/backends/utils.py +52 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +349 -0
- vllm/v1/core/encoder_cache_manager.py +150 -0
- vllm/v1/core/kv_cache_coordinator.py +363 -0
- vllm/v1/core/kv_cache_manager.py +392 -0
- vllm/v1/core/kv_cache_utils.py +996 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +150 -0
- vllm/v1/core/sched/output.py +154 -0
- vllm/v1/core/sched/scheduler.py +1044 -0
- vllm/v1/core/sched/utils.py +23 -0
- vllm/v1/core/single_type_kv_cache_manager.py +403 -0
- vllm/v1/engine/__init__.py +173 -0
- vllm/v1/engine/async_llm.py +558 -0
- vllm/v1/engine/coordinator.py +253 -0
- vllm/v1/engine/core.py +961 -0
- vllm/v1/engine/core_client.py +1129 -0
- vllm/v1/engine/detokenizer.py +261 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +317 -0
- vllm/v1/engine/logprobs.py +199 -0
- vllm/v1/engine/mm_input_cache.py +91 -0
- vllm/v1/engine/output_processor.py +428 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +407 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +113 -0
- vllm/v1/executor/multiproc_executor.py +537 -0
- vllm/v1/executor/ray_distributed_executor.py +62 -0
- vllm/v1/kv_cache_interface.py +194 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +523 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +131 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +239 -0
- vllm/v1/outputs.py +116 -0
- vllm/v1/request.py +193 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/penalties.py +59 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +286 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +145 -0
- vllm/v1/serial_utils.py +315 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +432 -0
- vllm/v1/spec_decode/medusa.py +62 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +178 -0
- vllm/v1/spec_decode/ngram_proposer.py +132 -0
- vllm/v1/spec_decode/utils.py +46 -0
- vllm/v1/structured_output/__init__.py +222 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +318 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +175 -0
- vllm/v1/utils.py +743 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +142 -0
- vllm/v1/worker/cpu_model_runner.py +86 -0
- vllm/v1/worker/cpu_worker.py +152 -0
- vllm/v1/worker/gpu_input_batch.py +681 -0
- vllm/v1/worker/gpu_model_runner.py +2320 -0
- vllm/v1/worker/gpu_worker.py +393 -0
- vllm/v1/worker/lora_model_runner_mixin.py +173 -0
- vllm/v1/worker/tpu_model_runner.py +1673 -0
- vllm/v1/worker/tpu_worker.py +299 -0
- vllm/v1/worker/utils.py +111 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +145 -0
- vllm/worker/cpu_enc_dec_model_runner.py +326 -0
- vllm/worker/cpu_model_runner.py +671 -0
- vllm/worker/cpu_pooling_model_runner.py +125 -0
- vllm/worker/cpu_worker.py +450 -0
- vllm/worker/enc_dec_model_runner.py +555 -0
- vllm/worker/hpu_model_runner.py +2320 -0
- vllm/worker/hpu_worker.py +484 -0
- vllm/worker/model_runner.py +2178 -0
- vllm/worker/model_runner_base.py +282 -0
- vllm/worker/multi_step_hpu_worker.py +123 -0
- vllm/worker/multi_step_model_runner.py +911 -0
- vllm/worker/multi_step_neuron_model_runner.py +84 -0
- vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
- vllm/worker/multi_step_tpu_worker.py +108 -0
- vllm/worker/multi_step_worker.py +197 -0
- vllm/worker/neuron_model_runner.py +460 -0
- vllm/worker/neuron_worker.py +193 -0
- vllm/worker/neuronx_distributed_model_runner.py +294 -0
- vllm/worker/pooling_model_runner.py +211 -0
- vllm/worker/tpu_model_runner.py +909 -0
- vllm/worker/tpu_worker.py +337 -0
- vllm/worker/utils.py +53 -0
- vllm/worker/worker.py +577 -0
- vllm/worker/worker_base.py +646 -0
- vllm/worker/xpu_model_runner.py +606 -0
- vllm/worker/xpu_worker.py +186 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1895 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
import json
|
|
4
|
+
import sys
|
|
5
|
+
from abc import ABC, abstractmethod
|
|
6
|
+
from collections import defaultdict
|
|
7
|
+
from collections.abc import (Callable, Generator, ItemsView, Iterable, Mapping,
|
|
8
|
+
Sequence)
|
|
9
|
+
from dataclasses import dataclass, field
|
|
10
|
+
from enum import Enum
|
|
11
|
+
from functools import lru_cache
|
|
12
|
+
from typing import (TYPE_CHECKING, Generic, NamedTuple, Optional, Protocol,
|
|
13
|
+
TypeVar, Union, cast)
|
|
14
|
+
|
|
15
|
+
import regex as re
|
|
16
|
+
import torch
|
|
17
|
+
from typing_extensions import assert_never
|
|
18
|
+
|
|
19
|
+
from vllm.inputs import InputProcessingContext
|
|
20
|
+
from vllm.jsontree import json_map_leaves, json_reduce_leaves
|
|
21
|
+
from vllm.logger import init_logger
|
|
22
|
+
from vllm.transformers_utils.tokenizer import (AnyTokenizer, decode_tokens,
|
|
23
|
+
encode_tokens)
|
|
24
|
+
from vllm.utils import GiB_bytes, LRUCache, flatten_2d_lists, full_groupby
|
|
25
|
+
|
|
26
|
+
from .hasher import MultiModalHasher
|
|
27
|
+
from .inputs import (MultiModalDataDict, MultiModalEncDecInputs,
|
|
28
|
+
MultiModalFieldConfig, MultiModalInputs, MultiModalKwargs,
|
|
29
|
+
MultiModalKwargsItem, NestedTensors, PlaceholderRange)
|
|
30
|
+
from .parse import (DictEmbeddingItems, EmbeddingItems, MultiModalDataItems,
|
|
31
|
+
MultiModalDataParser)
|
|
32
|
+
|
|
33
|
+
if TYPE_CHECKING:
|
|
34
|
+
from transformers.configuration_utils import PretrainedConfig
|
|
35
|
+
from transformers.feature_extraction_utils import BatchFeature
|
|
36
|
+
from transformers.processing_utils import ProcessorMixin
|
|
37
|
+
|
|
38
|
+
from .profiling import BaseDummyInputsBuilder
|
|
39
|
+
|
|
40
|
+
logger = init_logger(__name__)
|
|
41
|
+
|
|
42
|
+
_S = TypeVar("_S", str, list[int])
|
|
43
|
+
|
|
44
|
+
PromptSeq = Union[str, list[int]]
|
|
45
|
+
"""A token sequence (list of token IDs) or text."""
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
@dataclass
|
|
49
|
+
class PromptIndex:
|
|
50
|
+
"""Resolves to an index in the prompt."""
|
|
51
|
+
get_match_index: Callable[[AnyTokenizer, PromptSeq], Optional[int]]
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class PromptIndexTargets:
|
|
55
|
+
|
|
56
|
+
@staticmethod
|
|
57
|
+
def start() -> PromptIndex:
|
|
58
|
+
"""
|
|
59
|
+
Resolves to the start of the prompt (before the first token).
|
|
60
|
+
|
|
61
|
+
This results in a match even if the prompt is empty.
|
|
62
|
+
"""
|
|
63
|
+
return PromptIndex(lambda tok, prompt: 0)
|
|
64
|
+
|
|
65
|
+
@staticmethod
|
|
66
|
+
def prefix(seq: PromptSeq) -> PromptIndex:
|
|
67
|
+
"""
|
|
68
|
+
Resolves to a location in the prompt after the given prefix.
|
|
69
|
+
"""
|
|
70
|
+
|
|
71
|
+
def get_match_index(
|
|
72
|
+
tokenizer: AnyTokenizer,
|
|
73
|
+
prompt: PromptSeq,
|
|
74
|
+
) -> Optional[int]:
|
|
75
|
+
prefix = seq
|
|
76
|
+
|
|
77
|
+
if isinstance(prompt, str):
|
|
78
|
+
if not isinstance(prefix, str):
|
|
79
|
+
# Make both `str`
|
|
80
|
+
prefix = decode_tokens(tokenizer, prefix)
|
|
81
|
+
else:
|
|
82
|
+
if isinstance(prefix, str):
|
|
83
|
+
# Make both `list[int]`
|
|
84
|
+
prefix = encode_tokens(tokenizer,
|
|
85
|
+
prefix,
|
|
86
|
+
add_special_tokens=False)
|
|
87
|
+
|
|
88
|
+
match_idx = len(prefix)
|
|
89
|
+
return match_idx if prompt[:match_idx] == prefix else None
|
|
90
|
+
|
|
91
|
+
return PromptIndex(get_match_index)
|
|
92
|
+
|
|
93
|
+
@staticmethod
|
|
94
|
+
def end() -> PromptIndex:
|
|
95
|
+
"""
|
|
96
|
+
Resolves to the end of the prompt (after the last token).
|
|
97
|
+
|
|
98
|
+
This results in a match even if the prompt is empty.
|
|
99
|
+
"""
|
|
100
|
+
return PromptIndex(lambda tok, prompt: len(prompt))
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
PromptTarget = Union[PromptSeq, PromptIndex]
|
|
104
|
+
"""
|
|
105
|
+
The token sequence or text to update.
|
|
106
|
+
"""
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
@dataclass
|
|
110
|
+
class PromptUpdateDetails(Generic[_S]):
|
|
111
|
+
"""Details about the token sequence or text that are part of the update."""
|
|
112
|
+
|
|
113
|
+
full: _S
|
|
114
|
+
"""The full content."""
|
|
115
|
+
|
|
116
|
+
is_embed: Optional[Callable[["_BoundPromptSequence"], torch.Tensor]] = None
|
|
117
|
+
"""
|
|
118
|
+
Given [`full`][vllm.multimodal.processing.PromptUpdateDetails.full],
|
|
119
|
+
return a boolean mask of shape `(len(full),)` indicating which positions
|
|
120
|
+
of `full` to assign embeddings to.
|
|
121
|
+
|
|
122
|
+
`None` (default) means to assign embeddings to all positions of `full`.
|
|
123
|
+
|
|
124
|
+
The embeddings are obtained by calling
|
|
125
|
+
[`SupportsMultiModal.get_multimodal_embeddings`][vllm.model_executor.models.interfaces.SupportsMultiModal.get_multimodal_embeddings].
|
|
126
|
+
"""
|
|
127
|
+
|
|
128
|
+
@staticmethod
|
|
129
|
+
def from_seq(seq: _S) -> "PromptUpdateDetails[_S]":
|
|
130
|
+
return PromptUpdateDetails(full=seq)
|
|
131
|
+
|
|
132
|
+
@staticmethod
|
|
133
|
+
def select_text(
|
|
134
|
+
seq: _S,
|
|
135
|
+
embed_text: str,
|
|
136
|
+
) -> "PromptUpdateDetails[_S]":
|
|
137
|
+
|
|
138
|
+
def is_embed(full: "_BoundPromptSequence") -> torch.Tensor:
|
|
139
|
+
embed_token_ids = encode_tokens(full.tokenizer, embed_text)
|
|
140
|
+
|
|
141
|
+
return torch.isin(
|
|
142
|
+
torch.tensor(full.token_ids),
|
|
143
|
+
torch.tensor(embed_token_ids),
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
return PromptUpdateDetails(full=seq, is_embed=is_embed)
|
|
147
|
+
|
|
148
|
+
@staticmethod
|
|
149
|
+
def select_token_id(
|
|
150
|
+
seq: _S,
|
|
151
|
+
embed_token_id: int,
|
|
152
|
+
) -> "PromptUpdateDetails[_S]":
|
|
153
|
+
return PromptUpdateDetails(
|
|
154
|
+
full=seq,
|
|
155
|
+
is_embed=lambda f: torch.tensor(f.token_ids) == embed_token_id,
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
PromptUpdateInfo = Union[PromptSeq, PromptUpdateDetails]
|
|
160
|
+
"""
|
|
161
|
+
The token sequence or text that are part of the update.
|
|
162
|
+
|
|
163
|
+
If only part of the content corresponds to feature placeholders, you can
|
|
164
|
+
use [`PromptUpdateDetails`][vllm.multimodal.processing.PromptUpdateDetails] to
|
|
165
|
+
specify which part.
|
|
166
|
+
"""
|
|
167
|
+
|
|
168
|
+
PromptUpdateContent = Union[Callable[[int], PromptUpdateInfo],
|
|
169
|
+
PromptUpdateInfo]
|
|
170
|
+
"""
|
|
171
|
+
Given the index of the processed item within
|
|
172
|
+
[`modality`][vllm.multimodal.processing.PromptUpdate.modality],
|
|
173
|
+
output the corresponding token sequence (or text).
|
|
174
|
+
|
|
175
|
+
For convenience, you can directly pass in the token sequence (or text)
|
|
176
|
+
instead of a function if it does not depend on the input.
|
|
177
|
+
"""
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
class UpdateMode(str, Enum):
|
|
181
|
+
INSERT = "insert"
|
|
182
|
+
REPLACE = "replace"
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
@dataclass
|
|
186
|
+
class PromptUpdate(ABC):
|
|
187
|
+
"""
|
|
188
|
+
Defines how to update a prompt with placeholder tokens.
|
|
189
|
+
"""
|
|
190
|
+
|
|
191
|
+
modality: str
|
|
192
|
+
"""The modality for which the update is made."""
|
|
193
|
+
|
|
194
|
+
target: PromptTarget
|
|
195
|
+
"""The token sequence (or text) to update."""
|
|
196
|
+
|
|
197
|
+
@property
|
|
198
|
+
@abstractmethod
|
|
199
|
+
def content(self) -> PromptUpdateContent:
|
|
200
|
+
"""The placeholder tokens that are part of the update."""
|
|
201
|
+
raise NotImplementedError
|
|
202
|
+
|
|
203
|
+
@property
|
|
204
|
+
@abstractmethod
|
|
205
|
+
def mode(self) -> UpdateMode:
|
|
206
|
+
"""Defines how to update the prompt."""
|
|
207
|
+
raise NotImplementedError
|
|
208
|
+
|
|
209
|
+
def bind(self, tokenizer: AnyTokenizer) -> "BoundPromptUpdate":
|
|
210
|
+
return BoundPromptUpdate(
|
|
211
|
+
_origin=self,
|
|
212
|
+
tokenizer=tokenizer,
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
@dataclass
|
|
217
|
+
class PromptInsertion(PromptUpdate):
|
|
218
|
+
"""
|
|
219
|
+
Defines how to insert placeholder tokens into a prompt.
|
|
220
|
+
|
|
221
|
+
Example:
|
|
222
|
+
|
|
223
|
+
For each image, insert a number of ``<image>`` feature placeholders
|
|
224
|
+
equal to the feature size of the vision encoder after the ``<s>`` token:
|
|
225
|
+
|
|
226
|
+
```python
|
|
227
|
+
PromptInsertion(
|
|
228
|
+
modality="image",
|
|
229
|
+
target="<s>",
|
|
230
|
+
insertion="<image>" * image_feature_size,
|
|
231
|
+
)
|
|
232
|
+
```
|
|
233
|
+
|
|
234
|
+
Insert these tokens at the start of the prompt:
|
|
235
|
+
|
|
236
|
+
```python
|
|
237
|
+
PromptInsertion(
|
|
238
|
+
modality="image",
|
|
239
|
+
target=PromptIndexTargets.start(),
|
|
240
|
+
insertion="<image>" * image_feature_size,
|
|
241
|
+
)
|
|
242
|
+
```
|
|
243
|
+
|
|
244
|
+
Insert these tokens after a prefix ``Images:``:
|
|
245
|
+
|
|
246
|
+
```python
|
|
247
|
+
PromptInsertion(
|
|
248
|
+
modality="image",
|
|
249
|
+
target=PromptIndexTargets.prefix("Images:"),
|
|
250
|
+
insertion="<image>" * image_feature_size,
|
|
251
|
+
)
|
|
252
|
+
```
|
|
253
|
+
|
|
254
|
+
Insert these tokens at the end of the prompt:
|
|
255
|
+
|
|
256
|
+
```python
|
|
257
|
+
PromptInsertion(
|
|
258
|
+
modality="image",
|
|
259
|
+
target=PromptIndexTargets.end(),
|
|
260
|
+
insertion="<image>" * image_feature_size,
|
|
261
|
+
)
|
|
262
|
+
```
|
|
263
|
+
"""
|
|
264
|
+
|
|
265
|
+
insertion: PromptUpdateContent = field(repr=False)
|
|
266
|
+
"""
|
|
267
|
+
Given the index of the processed item within
|
|
268
|
+
[`modality`][vllm.multimodal.processing.PromptUpdate.modality],
|
|
269
|
+
output the token sequence (or text) to insert right after
|
|
270
|
+
[`target`][vllm.multimodal.processing.PromptUpdate.target].
|
|
271
|
+
|
|
272
|
+
For convenience, you can directly pass in the token sequence (or text)
|
|
273
|
+
instead of a function if it does not depend on the input.
|
|
274
|
+
"""
|
|
275
|
+
|
|
276
|
+
@property
|
|
277
|
+
def content(self) -> PromptUpdateContent:
|
|
278
|
+
return self.insertion
|
|
279
|
+
|
|
280
|
+
@property
|
|
281
|
+
def mode(self) -> UpdateMode:
|
|
282
|
+
return UpdateMode.INSERT
|
|
283
|
+
|
|
284
|
+
|
|
285
|
+
@dataclass
|
|
286
|
+
class PromptReplacement(PromptUpdate):
|
|
287
|
+
"""
|
|
288
|
+
Defines how to replace portions of an input prompt with placeholder tokens.
|
|
289
|
+
|
|
290
|
+
Example:
|
|
291
|
+
|
|
292
|
+
For each image, replace one ``<image>`` input placeholder in the prompt
|
|
293
|
+
with a number of ``<image>`` feature placeholders
|
|
294
|
+
equal to the feature size of the vision encoder:
|
|
295
|
+
|
|
296
|
+
```python
|
|
297
|
+
PromptReplacement(
|
|
298
|
+
modality="image",
|
|
299
|
+
target="<image>",
|
|
300
|
+
replacement="<image>" * image_feature_size,
|
|
301
|
+
)
|
|
302
|
+
```
|
|
303
|
+
|
|
304
|
+
As above, but further pad the feature placeholders with ``<image_bos>``
|
|
305
|
+
and `<image_eos>``, which are not supposed to be passed to the vision
|
|
306
|
+
encoder:
|
|
307
|
+
|
|
308
|
+
```python
|
|
309
|
+
PromptReplacement(
|
|
310
|
+
modality="image",
|
|
311
|
+
target="<image>",
|
|
312
|
+
replacement=PromptUpdateDetails(
|
|
313
|
+
full="".join([
|
|
314
|
+
"<image_bos>",
|
|
315
|
+
"<image>" * image_feature_size,
|
|
316
|
+
"<image_eos>",
|
|
317
|
+
]),
|
|
318
|
+
features="<image>" * image_feature_size,
|
|
319
|
+
),
|
|
320
|
+
)
|
|
321
|
+
```
|
|
322
|
+
|
|
323
|
+
To avoid unnecessary tokenization during prompt replacement,
|
|
324
|
+
we recommended passing token sequences instead of text:
|
|
325
|
+
|
|
326
|
+
```python
|
|
327
|
+
PromptReplacement(
|
|
328
|
+
modality="image",
|
|
329
|
+
target=[image_token_id],
|
|
330
|
+
replacement=PromptUpdateDetails(
|
|
331
|
+
full=([image_bos_id] + [image_token_id] * image_feature_size
|
|
332
|
+
+ [image_eos_id]),
|
|
333
|
+
features=[image_token_id] * image_feature_size,
|
|
334
|
+
),
|
|
335
|
+
)
|
|
336
|
+
```
|
|
337
|
+
"""
|
|
338
|
+
|
|
339
|
+
replacement: PromptUpdateContent = field(repr=False)
|
|
340
|
+
"""
|
|
341
|
+
Given the index of the processed item within
|
|
342
|
+
[`modality`][vllm.multimodal.processing.PromptUpdate.modality],
|
|
343
|
+
output the token sequence (or text) to replace
|
|
344
|
+
[`target`][vllm.multimodal.processing.PromptUpdate.target].
|
|
345
|
+
|
|
346
|
+
For convenience, you can directly pass in the token sequence (or text)
|
|
347
|
+
instead of a function if it does not depend on the input.
|
|
348
|
+
"""
|
|
349
|
+
|
|
350
|
+
@property
|
|
351
|
+
def content(self) -> PromptUpdateContent:
|
|
352
|
+
return self.replacement
|
|
353
|
+
|
|
354
|
+
@property
|
|
355
|
+
def mode(self) -> UpdateMode:
|
|
356
|
+
return UpdateMode.REPLACE
|
|
357
|
+
|
|
358
|
+
|
|
359
|
+
@lru_cache(maxsize=2048)
|
|
360
|
+
def _cached_encode(
|
|
361
|
+
tokenizer: AnyTokenizer,
|
|
362
|
+
text: str,
|
|
363
|
+
*,
|
|
364
|
+
add_special_tokens: Optional[bool] = None,
|
|
365
|
+
) -> list[int]:
|
|
366
|
+
return encode_tokens(tokenizer,
|
|
367
|
+
text,
|
|
368
|
+
add_special_tokens=add_special_tokens)
|
|
369
|
+
|
|
370
|
+
|
|
371
|
+
@lru_cache(maxsize=2048)
|
|
372
|
+
def _cached_decode(
|
|
373
|
+
tokenizer: AnyTokenizer,
|
|
374
|
+
token_ids: tuple[int, ...],
|
|
375
|
+
*,
|
|
376
|
+
skip_special_tokens: Optional[bool] = None,
|
|
377
|
+
) -> str:
|
|
378
|
+
return decode_tokens(tokenizer,
|
|
379
|
+
list(token_ids),
|
|
380
|
+
skip_special_tokens=skip_special_tokens)
|
|
381
|
+
|
|
382
|
+
|
|
383
|
+
class _HasModalityAttr(Protocol):
|
|
384
|
+
modality: str
|
|
385
|
+
|
|
386
|
+
|
|
387
|
+
class _HasModalityProp(Protocol):
|
|
388
|
+
|
|
389
|
+
@property
|
|
390
|
+
def modality(self) -> str:
|
|
391
|
+
...
|
|
392
|
+
|
|
393
|
+
|
|
394
|
+
_M = TypeVar("_M", bound=Union[_HasModalityAttr, _HasModalityProp])
|
|
395
|
+
|
|
396
|
+
|
|
397
|
+
def full_groupby_modality(values: Iterable[_M]) -> ItemsView[str, list[_M]]:
|
|
398
|
+
"""Convenience function to apply [`full_groupby`][vllm.utils.full_groupby]
|
|
399
|
+
based on modality."""
|
|
400
|
+
return full_groupby(values, key=lambda x: x.modality)
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
@dataclass
|
|
404
|
+
class _BoundPromptSequence:
|
|
405
|
+
"""
|
|
406
|
+
A [`_PromptSeq`][vllm.multimodal.processing.PromptSeq] bound
|
|
407
|
+
to a tokenizer to automatically
|
|
408
|
+
convert between token sequence and text representations.
|
|
409
|
+
"""
|
|
410
|
+
tokenizer: AnyTokenizer = field(repr=False)
|
|
411
|
+
|
|
412
|
+
_text: Optional[str]
|
|
413
|
+
_token_ids: Optional[list[int]]
|
|
414
|
+
|
|
415
|
+
@staticmethod
|
|
416
|
+
def from_seq(
|
|
417
|
+
tokenizer: AnyTokenizer,
|
|
418
|
+
seq: PromptSeq,
|
|
419
|
+
) -> "_BoundPromptSequence":
|
|
420
|
+
return _BoundPromptSequence(
|
|
421
|
+
tokenizer=tokenizer,
|
|
422
|
+
_text=seq if isinstance(seq, str) else None,
|
|
423
|
+
_token_ids=seq if isinstance(seq, list) else None,
|
|
424
|
+
)
|
|
425
|
+
|
|
426
|
+
def __post_init__(self) -> None:
|
|
427
|
+
if self._text is None and self._token_ids is None:
|
|
428
|
+
raise ValueError("At least one of 'text' and 'token_ids' must be "
|
|
429
|
+
"specified")
|
|
430
|
+
|
|
431
|
+
@property
|
|
432
|
+
def text(self) -> str:
|
|
433
|
+
if self._text is None:
|
|
434
|
+
assert self._token_ids is not None
|
|
435
|
+
self._text = _cached_decode(self.tokenizer, tuple(self._token_ids))
|
|
436
|
+
|
|
437
|
+
return self._text
|
|
438
|
+
|
|
439
|
+
@property
|
|
440
|
+
def token_ids(self) -> list[int]:
|
|
441
|
+
if self._token_ids is None:
|
|
442
|
+
assert self._text is not None
|
|
443
|
+
self._token_ids = _cached_encode(self.tokenizer,
|
|
444
|
+
self._text,
|
|
445
|
+
add_special_tokens=False)
|
|
446
|
+
|
|
447
|
+
return self._token_ids
|
|
448
|
+
|
|
449
|
+
|
|
450
|
+
@dataclass
|
|
451
|
+
class _BoundPromptContent:
|
|
452
|
+
full: _BoundPromptSequence
|
|
453
|
+
is_embed: Optional[Callable[["_BoundPromptSequence"], torch.Tensor]]
|
|
454
|
+
|
|
455
|
+
|
|
456
|
+
@dataclass
|
|
457
|
+
class BoundPromptUpdate:
|
|
458
|
+
"""
|
|
459
|
+
A [`PromptUpdate`][vllm.multimodal.processing.PromptUpdate] bound
|
|
460
|
+
to a tokenizer to automatically convert
|
|
461
|
+
[`target`][vllm.multimodal.processing.PromptUpdate.target] and the result of
|
|
462
|
+
[`get_content`][vllm.multimodal.processing.BoundPromptUpdate.get_content]
|
|
463
|
+
between token sequence and text representations.
|
|
464
|
+
"""
|
|
465
|
+
_origin: PromptUpdate
|
|
466
|
+
tokenizer: AnyTokenizer = field(repr=False)
|
|
467
|
+
|
|
468
|
+
def __post_init__(self) -> None:
|
|
469
|
+
self._content_cache = dict[int, _BoundPromptContent]()
|
|
470
|
+
|
|
471
|
+
@property
|
|
472
|
+
def modality(self) -> str:
|
|
473
|
+
return self._origin.modality
|
|
474
|
+
|
|
475
|
+
@property
|
|
476
|
+
def target(self) -> Union[_BoundPromptSequence, PromptIndex]:
|
|
477
|
+
"""The token sequence (or text) to update."""
|
|
478
|
+
target = self._origin.target
|
|
479
|
+
|
|
480
|
+
if isinstance(target, PromptIndex):
|
|
481
|
+
return target
|
|
482
|
+
|
|
483
|
+
return _BoundPromptSequence.from_seq(self.tokenizer, target)
|
|
484
|
+
|
|
485
|
+
@property
|
|
486
|
+
def content(self) -> PromptUpdateContent:
|
|
487
|
+
"""The placeholder tokens that are part of the update."""
|
|
488
|
+
return self._origin.content
|
|
489
|
+
|
|
490
|
+
@property
|
|
491
|
+
def mode(self) -> UpdateMode:
|
|
492
|
+
"""Defines how to update the prompt."""
|
|
493
|
+
return self._origin.mode
|
|
494
|
+
|
|
495
|
+
def get_content(self, item_idx: int) -> _BoundPromptContent:
|
|
496
|
+
"""
|
|
497
|
+
Given the index of the processed item within
|
|
498
|
+
[`modality`][vllm.multimodal.processing.PromptUpdate.modality],
|
|
499
|
+
output the token sequence (or text) to update.
|
|
500
|
+
"""
|
|
501
|
+
content = self.content
|
|
502
|
+
if callable(content):
|
|
503
|
+
cache_key = item_idx
|
|
504
|
+
if cache_key in self._content_cache:
|
|
505
|
+
return self._content_cache[cache_key]
|
|
506
|
+
|
|
507
|
+
content = content(item_idx)
|
|
508
|
+
else:
|
|
509
|
+
cache_key = None
|
|
510
|
+
|
|
511
|
+
if not isinstance(content, PromptUpdateDetails):
|
|
512
|
+
content = PromptUpdateDetails.from_seq(content)
|
|
513
|
+
|
|
514
|
+
bound_full = _BoundPromptSequence.from_seq(self.tokenizer,
|
|
515
|
+
content.full)
|
|
516
|
+
bound_content = _BoundPromptContent(full=bound_full,
|
|
517
|
+
is_embed=content.is_embed)
|
|
518
|
+
|
|
519
|
+
if cache_key is not None:
|
|
520
|
+
self._content_cache[cache_key] = bound_content
|
|
521
|
+
|
|
522
|
+
return bound_content
|
|
523
|
+
|
|
524
|
+
|
|
525
|
+
class _TokenMatch(NamedTuple):
|
|
526
|
+
start_idx: int
|
|
527
|
+
end_idx: int
|
|
528
|
+
|
|
529
|
+
|
|
530
|
+
def iter_token_matches(
|
|
531
|
+
token_ids: list[int],
|
|
532
|
+
match_ids: list[int],
|
|
533
|
+
) -> Generator[_TokenMatch]:
|
|
534
|
+
"""
|
|
535
|
+
Yield each occurrence of `match_ids` in `token_ids`.
|
|
536
|
+
|
|
537
|
+
Note that empty matches are ignored.
|
|
538
|
+
"""
|
|
539
|
+
prompt_len = len(token_ids)
|
|
540
|
+
match_len = len(match_ids)
|
|
541
|
+
|
|
542
|
+
if match_len == 0:
|
|
543
|
+
return
|
|
544
|
+
|
|
545
|
+
start_idx = 0
|
|
546
|
+
while start_idx < prompt_len - match_len + 1:
|
|
547
|
+
end_idx = start_idx + match_len
|
|
548
|
+
|
|
549
|
+
if token_ids[start_idx:end_idx] == match_ids:
|
|
550
|
+
yield _TokenMatch(start_idx=start_idx, end_idx=end_idx)
|
|
551
|
+
|
|
552
|
+
# Exclude overlapping matches
|
|
553
|
+
start_idx = end_idx
|
|
554
|
+
else:
|
|
555
|
+
start_idx += 1
|
|
556
|
+
|
|
557
|
+
|
|
558
|
+
def replace_token_matches(
|
|
559
|
+
token_ids: list[int],
|
|
560
|
+
match_ids: list[int],
|
|
561
|
+
new_ids: list[int],
|
|
562
|
+
) -> list[int]:
|
|
563
|
+
"""
|
|
564
|
+
Replace each occurrence of `match_ids` in `token_ids`
|
|
565
|
+
with `new_ids`.
|
|
566
|
+
|
|
567
|
+
Note that empty matches are ignored.
|
|
568
|
+
"""
|
|
569
|
+
out_seqs = list[list[int]]()
|
|
570
|
+
prev_end_idx = 0
|
|
571
|
+
|
|
572
|
+
for match in iter_token_matches(token_ids, match_ids):
|
|
573
|
+
start_idx = match.start_idx
|
|
574
|
+
end_idx = match.end_idx
|
|
575
|
+
|
|
576
|
+
out_seqs.append(token_ids[prev_end_idx:start_idx])
|
|
577
|
+
out_seqs.append(new_ids)
|
|
578
|
+
prev_end_idx = end_idx
|
|
579
|
+
|
|
580
|
+
out_seqs.append(token_ids[prev_end_idx:])
|
|
581
|
+
|
|
582
|
+
return flatten_2d_lists(out_seqs)
|
|
583
|
+
|
|
584
|
+
|
|
585
|
+
@dataclass(repr=False)
|
|
586
|
+
class PromptTargetMatch(ABC):
|
|
587
|
+
_origin: BoundPromptUpdate
|
|
588
|
+
|
|
589
|
+
@property
|
|
590
|
+
def modality(self) -> str:
|
|
591
|
+
return self._origin.modality
|
|
592
|
+
|
|
593
|
+
@property
|
|
594
|
+
@abstractmethod
|
|
595
|
+
def start_idx(self) -> int:
|
|
596
|
+
raise NotImplementedError
|
|
597
|
+
|
|
598
|
+
@property
|
|
599
|
+
@abstractmethod
|
|
600
|
+
def end_idx(self) -> int:
|
|
601
|
+
raise NotImplementedError
|
|
602
|
+
|
|
603
|
+
def __repr__(self) -> str:
|
|
604
|
+
return (f"{type(self).__name__}(modality={self.modality!r}, "
|
|
605
|
+
f"start_idx={self.start_idx!r}, end_idx={self.end_idx!r})")
|
|
606
|
+
|
|
607
|
+
|
|
608
|
+
@dataclass(repr=False)
|
|
609
|
+
class _PromptTargetIndexMatch(PromptTargetMatch):
|
|
610
|
+
match_idx: int
|
|
611
|
+
|
|
612
|
+
@property
|
|
613
|
+
def start_idx(self) -> int:
|
|
614
|
+
return self.match_idx
|
|
615
|
+
|
|
616
|
+
@property
|
|
617
|
+
def end_idx(self) -> int:
|
|
618
|
+
return self.match_idx
|
|
619
|
+
|
|
620
|
+
|
|
621
|
+
@dataclass(repr=False)
|
|
622
|
+
class _PromptTargetTokenMatch(PromptTargetMatch):
|
|
623
|
+
match: _TokenMatch
|
|
624
|
+
|
|
625
|
+
@property
|
|
626
|
+
def start_idx(self) -> int:
|
|
627
|
+
return self.match.start_idx
|
|
628
|
+
|
|
629
|
+
@property
|
|
630
|
+
def end_idx(self) -> int:
|
|
631
|
+
return self.match.end_idx
|
|
632
|
+
|
|
633
|
+
|
|
634
|
+
@dataclass(repr=False)
|
|
635
|
+
class _PromptTargetTextMatch(PromptTargetMatch):
|
|
636
|
+
match: re.Match[str]
|
|
637
|
+
|
|
638
|
+
@property
|
|
639
|
+
def start_idx(self) -> int:
|
|
640
|
+
return self.match.start()
|
|
641
|
+
|
|
642
|
+
@property
|
|
643
|
+
def end_idx(self) -> int:
|
|
644
|
+
return self.match.end()
|
|
645
|
+
|
|
646
|
+
|
|
647
|
+
@dataclass
|
|
648
|
+
class PlaceholderFeaturesInfo:
|
|
649
|
+
modality: str
|
|
650
|
+
item_idx: int
|
|
651
|
+
start_idx: int
|
|
652
|
+
tokens: list[int]
|
|
653
|
+
is_embed: Optional[torch.Tensor]
|
|
654
|
+
|
|
655
|
+
@property
|
|
656
|
+
def length(self) -> int:
|
|
657
|
+
return len(self.tokens)
|
|
658
|
+
|
|
659
|
+
def to_range(self) -> PlaceholderRange:
|
|
660
|
+
# TODO: Is it worth it to optimize this by stripping the
|
|
661
|
+
# leading and ending positions where `is_embed=False`?
|
|
662
|
+
return PlaceholderRange(
|
|
663
|
+
offset=self.start_idx,
|
|
664
|
+
length=self.length,
|
|
665
|
+
is_embed=self.is_embed,
|
|
666
|
+
)
|
|
667
|
+
|
|
668
|
+
|
|
669
|
+
def find_token_matches(
|
|
670
|
+
prompt: list[int],
|
|
671
|
+
prompt_updates: Sequence[BoundPromptUpdate],
|
|
672
|
+
) -> Sequence[PromptTargetMatch]:
|
|
673
|
+
"""Return each target of `prompt_updates` found in `prompt`."""
|
|
674
|
+
|
|
675
|
+
def get_matches(update: BoundPromptUpdate):
|
|
676
|
+
target = update.target
|
|
677
|
+
|
|
678
|
+
if isinstance(target, PromptIndex):
|
|
679
|
+
match_idx = target.get_match_index(update.tokenizer, prompt)
|
|
680
|
+
if match_idx is None:
|
|
681
|
+
return []
|
|
682
|
+
|
|
683
|
+
return [_PromptTargetIndexMatch(update, match_idx)]
|
|
684
|
+
|
|
685
|
+
return [
|
|
686
|
+
_PromptTargetTokenMatch(update, match)
|
|
687
|
+
for match in iter_token_matches(prompt, target.token_ids)
|
|
688
|
+
]
|
|
689
|
+
|
|
690
|
+
return [
|
|
691
|
+
match for update in prompt_updates for match in get_matches(update)
|
|
692
|
+
]
|
|
693
|
+
|
|
694
|
+
|
|
695
|
+
def find_text_matches(
|
|
696
|
+
prompt: str,
|
|
697
|
+
prompt_updates: Sequence[BoundPromptUpdate],
|
|
698
|
+
) -> Sequence[PromptTargetMatch]:
|
|
699
|
+
"""Return each target of `prompt_updates` found in `prompt`."""
|
|
700
|
+
|
|
701
|
+
def get_matches(update: BoundPromptUpdate):
|
|
702
|
+
target = update.target
|
|
703
|
+
|
|
704
|
+
if isinstance(target, PromptIndex):
|
|
705
|
+
match_idx = target.get_match_index(update.tokenizer, prompt)
|
|
706
|
+
if match_idx is None:
|
|
707
|
+
return []
|
|
708
|
+
|
|
709
|
+
return [_PromptTargetIndexMatch(update, match_idx)]
|
|
710
|
+
|
|
711
|
+
return [
|
|
712
|
+
_PromptTargetTextMatch(update, match)
|
|
713
|
+
for match in re.finditer(re.escape(target.text), prompt)
|
|
714
|
+
]
|
|
715
|
+
|
|
716
|
+
return [
|
|
717
|
+
match for update in prompt_updates for match in get_matches(update)
|
|
718
|
+
]
|
|
719
|
+
|
|
720
|
+
|
|
721
|
+
def _resolve_matches(
|
|
722
|
+
prompt: PromptSeq,
|
|
723
|
+
mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
|
|
724
|
+
) -> list[PromptTargetMatch]:
|
|
725
|
+
"""
|
|
726
|
+
Resolve `mm_matches` to ensure that there are no overlapping matches,
|
|
727
|
+
and sort them such that earlier matches take priority over later ones.
|
|
728
|
+
"""
|
|
729
|
+
matches = [m for matches in mm_matches.values() for m in matches]
|
|
730
|
+
|
|
731
|
+
seen_matches: list[Optional[PromptTargetMatch]] = [None] * len(prompt)
|
|
732
|
+
|
|
733
|
+
for match in matches:
|
|
734
|
+
for idx in range(match.start_idx, match.end_idx):
|
|
735
|
+
if seen_matches[idx] is not None:
|
|
736
|
+
raise ValueError("Found overlapping matches "
|
|
737
|
+
f"({seen_matches[idx]} and {match}) "
|
|
738
|
+
f"at index={idx} of prompt={prompt}")
|
|
739
|
+
|
|
740
|
+
seen_matches[idx] = match
|
|
741
|
+
|
|
742
|
+
return sorted(matches, key=lambda x: x.start_idx)
|
|
743
|
+
|
|
744
|
+
|
|
745
|
+
def _apply_matches(
|
|
746
|
+
prompt: _S,
|
|
747
|
+
mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
|
|
748
|
+
mm_item_counts: Mapping[str, int],
|
|
749
|
+
) -> list[_S]:
|
|
750
|
+
"""Apply the updates in `mm_matches` to `prompt`."""
|
|
751
|
+
out_seqs = list[Union[str, list[int]]]()
|
|
752
|
+
prev_end_idx = 0
|
|
753
|
+
next_idx_by_modality = defaultdict[str, int](lambda: 0)
|
|
754
|
+
|
|
755
|
+
for match in _resolve_matches(prompt, mm_matches):
|
|
756
|
+
modality = match.modality
|
|
757
|
+
|
|
758
|
+
item_start_idx = next_idx_by_modality[modality]
|
|
759
|
+
max_item_count = mm_item_counts.get(modality, 0)
|
|
760
|
+
if item_start_idx >= max_item_count:
|
|
761
|
+
continue
|
|
762
|
+
|
|
763
|
+
start_idx = match.start_idx
|
|
764
|
+
end_idx = match.end_idx
|
|
765
|
+
origin = match._origin
|
|
766
|
+
mode = origin.mode
|
|
767
|
+
|
|
768
|
+
if mode == UpdateMode.INSERT:
|
|
769
|
+
out_seqs.append(prompt[prev_end_idx:end_idx])
|
|
770
|
+
num_inserts = max_item_count
|
|
771
|
+
elif mode == UpdateMode.REPLACE:
|
|
772
|
+
out_seqs.append(prompt[prev_end_idx:start_idx])
|
|
773
|
+
num_inserts = max_item_count if start_idx == end_idx else 1
|
|
774
|
+
else:
|
|
775
|
+
assert_never(mode)
|
|
776
|
+
|
|
777
|
+
item_end_idx = min(item_start_idx + num_inserts, max_item_count)
|
|
778
|
+
|
|
779
|
+
for item_idx in range(item_start_idx, item_end_idx):
|
|
780
|
+
content = origin.get_content(item_idx)
|
|
781
|
+
insert_seq = (content.full.text if isinstance(prompt, str) else
|
|
782
|
+
content.full.token_ids)
|
|
783
|
+
|
|
784
|
+
out_seqs.append(insert_seq)
|
|
785
|
+
|
|
786
|
+
prev_end_idx = end_idx
|
|
787
|
+
next_idx_by_modality[modality] += item_end_idx - item_start_idx
|
|
788
|
+
|
|
789
|
+
out_seqs.append(prompt[prev_end_idx:])
|
|
790
|
+
|
|
791
|
+
return cast(list[_S], out_seqs)
|
|
792
|
+
|
|
793
|
+
|
|
794
|
+
def apply_token_matches(
|
|
795
|
+
prompt: list[int],
|
|
796
|
+
mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
|
|
797
|
+
mm_item_counts: Mapping[str, int],
|
|
798
|
+
) -> list[int]:
|
|
799
|
+
"""Apply the updates in `mm_matches` to `prompt`."""
|
|
800
|
+
if not mm_matches:
|
|
801
|
+
return prompt
|
|
802
|
+
|
|
803
|
+
token_id_seqs = _apply_matches(prompt, mm_matches, mm_item_counts)
|
|
804
|
+
|
|
805
|
+
return flatten_2d_lists(token_id_seqs)
|
|
806
|
+
|
|
807
|
+
|
|
808
|
+
def apply_text_matches(
|
|
809
|
+
prompt: str,
|
|
810
|
+
mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
|
|
811
|
+
mm_item_counts: Mapping[str, int],
|
|
812
|
+
) -> str:
|
|
813
|
+
"""Apply the updates in `mm_matches` to `prompt`."""
|
|
814
|
+
if not mm_matches:
|
|
815
|
+
return prompt
|
|
816
|
+
|
|
817
|
+
texts = _apply_matches(prompt, mm_matches, mm_item_counts)
|
|
818
|
+
|
|
819
|
+
return "".join(texts)
|
|
820
|
+
|
|
821
|
+
|
|
822
|
+
def _iter_placeholders(
|
|
823
|
+
mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
|
|
824
|
+
prompt: list[int],
|
|
825
|
+
mm_item_counts: Mapping[str, int],
|
|
826
|
+
) -> Iterable[PlaceholderFeaturesInfo]:
|
|
827
|
+
"""
|
|
828
|
+
Yield each set of placeholder tokens found in `prompt`.
|
|
829
|
+
|
|
830
|
+
Matches are exclusive even when multiple modalities share
|
|
831
|
+
the same placeholder tokens. In that case, the modality that
|
|
832
|
+
appears earlier in `mm_prompt_updates` takes priority.
|
|
833
|
+
|
|
834
|
+
Note that empty matches are ignored.
|
|
835
|
+
"""
|
|
836
|
+
prompt_len = len(prompt)
|
|
837
|
+
item_idx_by_modality = defaultdict[str, int](lambda: 0)
|
|
838
|
+
|
|
839
|
+
start_idx = 0
|
|
840
|
+
while start_idx < prompt_len:
|
|
841
|
+
found = False
|
|
842
|
+
|
|
843
|
+
for modality, modality_updates in mm_prompt_updates.items():
|
|
844
|
+
item_idx = item_idx_by_modality[modality]
|
|
845
|
+
if item_idx >= mm_item_counts.get(modality, 0):
|
|
846
|
+
continue
|
|
847
|
+
|
|
848
|
+
for update_info in modality_updates:
|
|
849
|
+
content = update_info.get_content(item_idx)
|
|
850
|
+
content_tokens_full = content.full.token_ids
|
|
851
|
+
content_len_full = len(content_tokens_full)
|
|
852
|
+
end_idx_full = start_idx + content_len_full
|
|
853
|
+
|
|
854
|
+
if content_len_full == 0 or end_idx_full > prompt_len:
|
|
855
|
+
continue
|
|
856
|
+
|
|
857
|
+
if prompt[start_idx:end_idx_full] == content_tokens_full:
|
|
858
|
+
content_is_embed = content.is_embed
|
|
859
|
+
if content_is_embed is not None:
|
|
860
|
+
content_is_embed = content_is_embed(content.full)
|
|
861
|
+
|
|
862
|
+
yield PlaceholderFeaturesInfo(
|
|
863
|
+
modality=modality,
|
|
864
|
+
item_idx=item_idx,
|
|
865
|
+
start_idx=start_idx,
|
|
866
|
+
tokens=content_tokens_full,
|
|
867
|
+
is_embed=content_is_embed,
|
|
868
|
+
)
|
|
869
|
+
|
|
870
|
+
# Exclude overlapping matches
|
|
871
|
+
start_idx = end_idx_full
|
|
872
|
+
item_idx_by_modality[modality] += 1
|
|
873
|
+
found = True
|
|
874
|
+
break
|
|
875
|
+
|
|
876
|
+
if found:
|
|
877
|
+
break # Go back to the outer while loop
|
|
878
|
+
|
|
879
|
+
if not found:
|
|
880
|
+
start_idx += 1
|
|
881
|
+
|
|
882
|
+
|
|
883
|
+
def find_mm_placeholders(
|
|
884
|
+
mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
|
|
885
|
+
prompt: list[int],
|
|
886
|
+
mm_item_counts: Mapping[str, int],
|
|
887
|
+
) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
|
|
888
|
+
it = _iter_placeholders(mm_prompt_updates, prompt, mm_item_counts)
|
|
889
|
+
return dict(full_groupby_modality(it))
|
|
890
|
+
|
|
891
|
+
|
|
892
|
+
_V = TypeVar("_V", bound="Union[MultiModalKwargs, MultiModalKwargsItem]")
|
|
893
|
+
|
|
894
|
+
|
|
895
|
+
class ProcessingCacheOptionalItem(NamedTuple):
|
|
896
|
+
key: str
|
|
897
|
+
value: Optional[MultiModalKwargsItem]
|
|
898
|
+
|
|
899
|
+
|
|
900
|
+
class ProcessingCacheItem(NamedTuple):
|
|
901
|
+
key: str
|
|
902
|
+
value: MultiModalKwargsItem
|
|
903
|
+
|
|
904
|
+
|
|
905
|
+
class ProcessingCache:
|
|
906
|
+
|
|
907
|
+
@staticmethod
|
|
908
|
+
def get_lru_cache(
|
|
909
|
+
capacity_gb: float,
|
|
910
|
+
value_type: type[_V],
|
|
911
|
+
*,
|
|
912
|
+
debug: bool = False,
|
|
913
|
+
) -> LRUCache[str, _V]:
|
|
914
|
+
|
|
915
|
+
def get_leaf_size(leaf: object) -> int:
|
|
916
|
+
# MultiModalKwargs is not a subclass of dict
|
|
917
|
+
if isinstance(leaf, MultiModalKwargs):
|
|
918
|
+
return get_item_size(leaf.data)
|
|
919
|
+
|
|
920
|
+
# MultiModalKwargsItem is not a subclass of dict
|
|
921
|
+
if isinstance(leaf, MultiModalKwargsItem):
|
|
922
|
+
leaf_data = {k: v.data for k, v in leaf.items()}
|
|
923
|
+
return get_item_size(leaf_data)
|
|
924
|
+
|
|
925
|
+
# sys.getsizeof doesn't work for tensors
|
|
926
|
+
if isinstance(leaf, torch.Tensor):
|
|
927
|
+
return leaf.nbytes
|
|
928
|
+
|
|
929
|
+
return sys.getsizeof(leaf)
|
|
930
|
+
|
|
931
|
+
def get_item_size(
|
|
932
|
+
value: Union[MultiModalKwargs, MultiModalKwargsItem,
|
|
933
|
+
Mapping[str, NestedTensors]]
|
|
934
|
+
) -> int:
|
|
935
|
+
size = json_reduce_leaves(
|
|
936
|
+
lambda a, b: a + b,
|
|
937
|
+
json_map_leaves(get_leaf_size, value),
|
|
938
|
+
)
|
|
939
|
+
|
|
940
|
+
if debug:
|
|
941
|
+
logger.debug("Calculated size of %s to be %.2f GiB",
|
|
942
|
+
type(value), size / GiB_bytes)
|
|
943
|
+
|
|
944
|
+
return size
|
|
945
|
+
|
|
946
|
+
return LRUCache(GiB_bytes * capacity_gb, getsizeof=get_item_size)
|
|
947
|
+
|
|
948
|
+
def __init__(
|
|
949
|
+
self,
|
|
950
|
+
capacity_gb: float,
|
|
951
|
+
*,
|
|
952
|
+
debug_cache_hit_ratio_steps: Optional[int] = None,
|
|
953
|
+
) -> None:
|
|
954
|
+
super().__init__()
|
|
955
|
+
|
|
956
|
+
self.debug_cache_hit_ratio_steps = debug_cache_hit_ratio_steps
|
|
957
|
+
self.debug_cache_hits = 0
|
|
958
|
+
self.debug_cache_total = 0
|
|
959
|
+
|
|
960
|
+
self._cache = self.get_lru_cache(
|
|
961
|
+
capacity_gb,
|
|
962
|
+
MultiModalKwargsItem,
|
|
963
|
+
debug=bool(debug_cache_hit_ratio_steps),
|
|
964
|
+
)
|
|
965
|
+
|
|
966
|
+
def _maybe_log_cache_stats(self) -> None:
|
|
967
|
+
steps = self.debug_cache_hit_ratio_steps
|
|
968
|
+
if not steps:
|
|
969
|
+
return
|
|
970
|
+
|
|
971
|
+
total = self.debug_cache_total
|
|
972
|
+
if total > 0 and total % steps == 0:
|
|
973
|
+
logger.debug("ProcessingCache: hit_ratio = %.2f",
|
|
974
|
+
self.debug_cache_hits / total)
|
|
975
|
+
logger.debug("ProcessingCache: size = %.2f / %.2f GiB",
|
|
976
|
+
self._cache.currsize / GiB_bytes,
|
|
977
|
+
self._cache.maxsize / GiB_bytes)
|
|
978
|
+
|
|
979
|
+
def get(
|
|
980
|
+
self,
|
|
981
|
+
model_id: str,
|
|
982
|
+
modality: str,
|
|
983
|
+
input_item: object,
|
|
984
|
+
input_kwargs: Mapping[str, object],
|
|
985
|
+
) -> Optional[MultiModalKwargsItem]:
|
|
986
|
+
"""
|
|
987
|
+
Get a processed multi-modal item from the cache
|
|
988
|
+
according to its dependencies, including:
|
|
989
|
+
|
|
990
|
+
- The model ID
|
|
991
|
+
- The modality of the item
|
|
992
|
+
- The original data item passed to the HF processor
|
|
993
|
+
- The configuration options of the HF processor
|
|
994
|
+
"""
|
|
995
|
+
self._maybe_log_cache_stats()
|
|
996
|
+
|
|
997
|
+
cache_key = MultiModalHasher.hash_kwargs(model_id=model_id,
|
|
998
|
+
**{modality: input_item},
|
|
999
|
+
**input_kwargs)
|
|
1000
|
+
|
|
1001
|
+
if self.debug_cache_hit_ratio_steps:
|
|
1002
|
+
if cache_key in self._cache:
|
|
1003
|
+
self.debug_cache_hits += 1
|
|
1004
|
+
|
|
1005
|
+
self.debug_cache_total += 1
|
|
1006
|
+
|
|
1007
|
+
return self._cache.get(cache_key)
|
|
1008
|
+
|
|
1009
|
+
def get_item(
|
|
1010
|
+
self,
|
|
1011
|
+
model_id: str,
|
|
1012
|
+
modality: str,
|
|
1013
|
+
input_item: object,
|
|
1014
|
+
input_kwargs: Mapping[str, object],
|
|
1015
|
+
) -> ProcessingCacheOptionalItem:
|
|
1016
|
+
cache_key = MultiModalHasher.hash_kwargs(model_id=model_id,
|
|
1017
|
+
**{modality: input_item},
|
|
1018
|
+
**input_kwargs)
|
|
1019
|
+
|
|
1020
|
+
return ProcessingCacheOptionalItem(
|
|
1021
|
+
key=cache_key,
|
|
1022
|
+
value=self._cache.get(cache_key),
|
|
1023
|
+
)
|
|
1024
|
+
|
|
1025
|
+
def put(
|
|
1026
|
+
self,
|
|
1027
|
+
model_id: str,
|
|
1028
|
+
modality: str,
|
|
1029
|
+
input_item: object,
|
|
1030
|
+
input_kwargs: Mapping[str, object],
|
|
1031
|
+
output_kwargs: MultiModalKwargsItem,
|
|
1032
|
+
) -> None:
|
|
1033
|
+
"""
|
|
1034
|
+
Put a processed multi-modal item into the cache
|
|
1035
|
+
according to its dependencies
|
|
1036
|
+
(see [`get`][vllm.multimodal.processing.ProcessingCache.get]).
|
|
1037
|
+
"""
|
|
1038
|
+
cache_key = MultiModalHasher.hash_kwargs(model_id=model_id,
|
|
1039
|
+
**{modality: input_item},
|
|
1040
|
+
**input_kwargs)
|
|
1041
|
+
self._cache[cache_key] = output_kwargs
|
|
1042
|
+
|
|
1043
|
+
def put_item(self, item: ProcessingCacheItem) -> None:
|
|
1044
|
+
self._cache[item.key] = item.value
|
|
1045
|
+
|
|
1046
|
+
def reset(self) -> bool:
|
|
1047
|
+
self._cache.clear()
|
|
1048
|
+
|
|
1049
|
+
return True
|
|
1050
|
+
|
|
1051
|
+
|
|
1052
|
+
class BaseProcessingInfo:
|
|
1053
|
+
"""Base class to provide the information necessary for data processing."""
|
|
1054
|
+
|
|
1055
|
+
def __init__(self, ctx: InputProcessingContext) -> None:
|
|
1056
|
+
super().__init__()
|
|
1057
|
+
|
|
1058
|
+
self.ctx = ctx
|
|
1059
|
+
|
|
1060
|
+
@property
|
|
1061
|
+
def model_id(self) -> str:
|
|
1062
|
+
return self.ctx.model_config.model
|
|
1063
|
+
|
|
1064
|
+
def get_tokenizer(self) -> AnyTokenizer:
|
|
1065
|
+
return self.ctx.tokenizer
|
|
1066
|
+
|
|
1067
|
+
def get_hf_config(self) -> "PretrainedConfig":
|
|
1068
|
+
return self.ctx.get_hf_config()
|
|
1069
|
+
|
|
1070
|
+
def get_hf_processor(self, **kwargs: object) -> "ProcessorMixin":
|
|
1071
|
+
"""
|
|
1072
|
+
Subclasses can override this method to handle
|
|
1073
|
+
specific kwargs from model config or user inputs.
|
|
1074
|
+
"""
|
|
1075
|
+
return self.ctx.get_hf_processor(**kwargs)
|
|
1076
|
+
|
|
1077
|
+
@abstractmethod
|
|
1078
|
+
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
|
1079
|
+
"""
|
|
1080
|
+
Return the maximum supported number of items for each modality.
|
|
1081
|
+
|
|
1082
|
+
A value of `None` means unlimited number of items.
|
|
1083
|
+
|
|
1084
|
+
Omitting a modality from the returned dictionary means that
|
|
1085
|
+
it is not supported at all.
|
|
1086
|
+
"""
|
|
1087
|
+
raise NotImplementedError
|
|
1088
|
+
|
|
1089
|
+
def get_allowed_mm_limits(self) -> Mapping[str, int]:
|
|
1090
|
+
"""Return the maximum allowed number of items for each modality."""
|
|
1091
|
+
supported_mm_limits = self.get_supported_mm_limits()
|
|
1092
|
+
mm_config = self.ctx.get_mm_config()
|
|
1093
|
+
|
|
1094
|
+
allowed_limits = dict[str, int]()
|
|
1095
|
+
for modality, supported_limit in supported_mm_limits.items():
|
|
1096
|
+
user_limit = mm_config.get_limit_per_prompt(modality)
|
|
1097
|
+
|
|
1098
|
+
allowed_limits[modality] = (user_limit if supported_limit is None
|
|
1099
|
+
else min(user_limit, supported_limit))
|
|
1100
|
+
|
|
1101
|
+
return allowed_limits
|
|
1102
|
+
|
|
1103
|
+
|
|
1104
|
+
_I = TypeVar("_I", bound=BaseProcessingInfo)
|
|
1105
|
+
|
|
1106
|
+
MultiModalHashes = dict[str, list[str]]
|
|
1107
|
+
"""
|
|
1108
|
+
A collection of hashes with a similar structure as
|
|
1109
|
+
[`MultiModalKwargs`][vllm.multimodal.inputs.MultiModalKwargs].
|
|
1110
|
+
"""
|
|
1111
|
+
|
|
1112
|
+
|
|
1113
|
+
class BaseMultiModalProcessor(ABC, Generic[_I]):
|
|
1114
|
+
"""
|
|
1115
|
+
Abstract base class to process multi-modal inputs to be used in vLLM.
|
|
1116
|
+
|
|
1117
|
+
Not to be confused with `transformers.ProcessorMixin`.
|
|
1118
|
+
"""
|
|
1119
|
+
|
|
1120
|
+
def __init__(self,
|
|
1121
|
+
info: _I,
|
|
1122
|
+
dummy_inputs: "BaseDummyInputsBuilder[_I]",
|
|
1123
|
+
*,
|
|
1124
|
+
cache: Optional[ProcessingCache] = None) -> None:
|
|
1125
|
+
super().__init__()
|
|
1126
|
+
|
|
1127
|
+
self.info = info
|
|
1128
|
+
self.dummy_inputs = dummy_inputs
|
|
1129
|
+
self.cache = cache
|
|
1130
|
+
|
|
1131
|
+
self.data_parser = self._get_data_parser()
|
|
1132
|
+
|
|
1133
|
+
def __call__(
|
|
1134
|
+
self,
|
|
1135
|
+
prompt: str,
|
|
1136
|
+
mm_data: MultiModalDataDict,
|
|
1137
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1138
|
+
) -> MultiModalInputs:
|
|
1139
|
+
return self.apply(prompt, mm_data, hf_processor_mm_kwargs)
|
|
1140
|
+
|
|
1141
|
+
def _get_data_parser(self) -> MultiModalDataParser:
|
|
1142
|
+
"""
|
|
1143
|
+
Construct a parser to preprocess multi-modal data items
|
|
1144
|
+
before passing them to
|
|
1145
|
+
[`_get_hf_mm_data`][vllm.multimodal.processing.BaseMultiModalProcessor._get_hf_mm_data].
|
|
1146
|
+
|
|
1147
|
+
You can support additional modalities by creating a subclass
|
|
1148
|
+
of [`MultiModalDataParser`][vllm.multimodal.parse.MultiModalDataParser]
|
|
1149
|
+
that has additional subparsers.
|
|
1150
|
+
"""
|
|
1151
|
+
return MultiModalDataParser()
|
|
1152
|
+
|
|
1153
|
+
def _to_mm_items(
|
|
1154
|
+
self,
|
|
1155
|
+
mm_data: MultiModalDataDict,
|
|
1156
|
+
) -> MultiModalDataItems:
|
|
1157
|
+
"""
|
|
1158
|
+
Normalize
|
|
1159
|
+
[`MultiModalDataDict`][vllm.multimodal.inputs.MultiModalDataDict]
|
|
1160
|
+
to [`MultiModalDataItems`][vllm.multimodal.parse.MultiModalDataItems]
|
|
1161
|
+
before passing them to
|
|
1162
|
+
[`_get_hf_mm_data`][vllm.multimodal.processing.BaseMultiModalProcessor._get_hf_mm_data].
|
|
1163
|
+
"""
|
|
1164
|
+
mm_items = self.data_parser.parse_mm_data(mm_data)
|
|
1165
|
+
supported_mm_limits = self.info.get_supported_mm_limits()
|
|
1166
|
+
allowed_mm_limits = self.info.get_allowed_mm_limits()
|
|
1167
|
+
|
|
1168
|
+
for modality, items in mm_items.items():
|
|
1169
|
+
supported_limit = supported_mm_limits.get(modality, 0)
|
|
1170
|
+
allowed_limit = allowed_mm_limits.get(modality, 0)
|
|
1171
|
+
num_items = len(items)
|
|
1172
|
+
|
|
1173
|
+
if supported_limit is not None and num_items > supported_limit:
|
|
1174
|
+
raise ValueError(
|
|
1175
|
+
f"The model only supports at most {supported_limit} "
|
|
1176
|
+
f"{modality} items, but you passed {num_items} "
|
|
1177
|
+
f"{modality} items in the same prompt.")
|
|
1178
|
+
|
|
1179
|
+
if num_items > allowed_limit:
|
|
1180
|
+
raise ValueError(
|
|
1181
|
+
"You set or defaulted to "
|
|
1182
|
+
f"'{json.dumps({modality: allowed_limit})}' in "
|
|
1183
|
+
f"`--limit-mm-per-prompt`, but passed {num_items} "
|
|
1184
|
+
f"{modality} items in the same prompt.")
|
|
1185
|
+
|
|
1186
|
+
return mm_items
|
|
1187
|
+
|
|
1188
|
+
@abstractmethod
|
|
1189
|
+
def _get_mm_fields_config(
|
|
1190
|
+
self,
|
|
1191
|
+
hf_inputs: "BatchFeature",
|
|
1192
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1193
|
+
) -> Mapping[str, MultiModalFieldConfig]:
|
|
1194
|
+
"""Given the HF-processed data, output the metadata of each field."""
|
|
1195
|
+
raise NotImplementedError
|
|
1196
|
+
|
|
1197
|
+
@abstractmethod
|
|
1198
|
+
def _get_prompt_updates(
|
|
1199
|
+
self,
|
|
1200
|
+
mm_items: MultiModalDataItems,
|
|
1201
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1202
|
+
out_mm_kwargs: MultiModalKwargs,
|
|
1203
|
+
) -> Sequence[PromptUpdate]:
|
|
1204
|
+
"""
|
|
1205
|
+
Given the original multi-modal items for this modality
|
|
1206
|
+
and HF-processed data, output the updates to perform.
|
|
1207
|
+
|
|
1208
|
+
The information returned by this method is used to update token inputs
|
|
1209
|
+
which bypass the HF processor. It is also used to update the output of
|
|
1210
|
+
HF processor if the HF process does not apply prompt updates to text
|
|
1211
|
+
inputs.
|
|
1212
|
+
|
|
1213
|
+
Moreover, this information is critical to determine the token positions
|
|
1214
|
+
in order to construct
|
|
1215
|
+
[`PlaceholderRange`][vllm.multimodal.inputs.PlaceholderRange]
|
|
1216
|
+
for each multi-modal item.
|
|
1217
|
+
"""
|
|
1218
|
+
raise NotImplementedError
|
|
1219
|
+
|
|
1220
|
+
def _find_mm_placeholders(
|
|
1221
|
+
self,
|
|
1222
|
+
mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
|
|
1223
|
+
new_token_ids: list[int],
|
|
1224
|
+
mm_item_counts: Mapping[str, int],
|
|
1225
|
+
) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
|
|
1226
|
+
return find_mm_placeholders(mm_prompt_updates, new_token_ids,
|
|
1227
|
+
mm_item_counts)
|
|
1228
|
+
|
|
1229
|
+
def _get_hf_mm_data(
|
|
1230
|
+
self,
|
|
1231
|
+
mm_items: MultiModalDataItems,
|
|
1232
|
+
) -> tuple[Mapping[str, object], Mapping[str, object]]:
|
|
1233
|
+
processor_data = dict[str, object]()
|
|
1234
|
+
passthrough_data = dict[str, object]()
|
|
1235
|
+
|
|
1236
|
+
for items in mm_items.values():
|
|
1237
|
+
processor_data.update(items.get_processor_data())
|
|
1238
|
+
passthrough_data.update(items.get_passthrough_data())
|
|
1239
|
+
|
|
1240
|
+
return processor_data, passthrough_data
|
|
1241
|
+
|
|
1242
|
+
def _call_hf_processor(
|
|
1243
|
+
self,
|
|
1244
|
+
prompt: str,
|
|
1245
|
+
# Not to be confused with `mm_data` in `self.apply`.
|
|
1246
|
+
# This refers to the data to be passed to HF processor.
|
|
1247
|
+
mm_data: Mapping[str, object],
|
|
1248
|
+
mm_kwargs: Mapping[str, object],
|
|
1249
|
+
) -> "BatchFeature":
|
|
1250
|
+
"""
|
|
1251
|
+
Call the HF processor on the prompt text and
|
|
1252
|
+
associated multi-modal data.
|
|
1253
|
+
"""
|
|
1254
|
+
return self.info.ctx.call_hf_processor(
|
|
1255
|
+
self.info.get_hf_processor(**mm_kwargs),
|
|
1256
|
+
dict(text=prompt, **mm_data),
|
|
1257
|
+
mm_kwargs,
|
|
1258
|
+
)
|
|
1259
|
+
|
|
1260
|
+
def _hf_processor_applies_updates(
|
|
1261
|
+
self,
|
|
1262
|
+
prompt_text: str,
|
|
1263
|
+
mm_items: MultiModalDataItems,
|
|
1264
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1265
|
+
) -> bool:
|
|
1266
|
+
"""
|
|
1267
|
+
Return whether the HF processor applies prompt updates.
|
|
1268
|
+
|
|
1269
|
+
For most HF processors, this should be `True` when multi-modal
|
|
1270
|
+
data items are passed, but `False` when multi-modal embeddings
|
|
1271
|
+
are passed.
|
|
1272
|
+
"""
|
|
1273
|
+
return not any(
|
|
1274
|
+
isinstance(items, (EmbeddingItems, DictEmbeddingItems))
|
|
1275
|
+
for items in mm_items.values())
|
|
1276
|
+
|
|
1277
|
+
def _apply_hf_processor_text_mm(
|
|
1278
|
+
self,
|
|
1279
|
+
prompt_text: str,
|
|
1280
|
+
mm_items: MultiModalDataItems,
|
|
1281
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1282
|
+
) -> tuple[list[int], MultiModalKwargs, bool]:
|
|
1283
|
+
"""
|
|
1284
|
+
Apply the HF processor on the prompt text and multi-modal data
|
|
1285
|
+
together.
|
|
1286
|
+
|
|
1287
|
+
In addition, return whether prompt updates have been applied.
|
|
1288
|
+
"""
|
|
1289
|
+
processor_data, passthrough_data = self._get_hf_mm_data(mm_items)
|
|
1290
|
+
|
|
1291
|
+
processed_data = self._call_hf_processor(
|
|
1292
|
+
prompt=prompt_text,
|
|
1293
|
+
mm_data=processor_data,
|
|
1294
|
+
mm_kwargs=hf_processor_mm_kwargs,
|
|
1295
|
+
)
|
|
1296
|
+
processed_data.update(passthrough_data)
|
|
1297
|
+
|
|
1298
|
+
prompt_ids, = processed_data.pop("input_ids").tolist()
|
|
1299
|
+
|
|
1300
|
+
mm_kwargs = MultiModalKwargs.from_hf_inputs(
|
|
1301
|
+
processed_data,
|
|
1302
|
+
self._get_mm_fields_config(processed_data, hf_processor_mm_kwargs),
|
|
1303
|
+
)
|
|
1304
|
+
|
|
1305
|
+
is_update_applied = self._hf_processor_applies_updates(
|
|
1306
|
+
prompt_text=prompt_text,
|
|
1307
|
+
mm_items=mm_items,
|
|
1308
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1309
|
+
)
|
|
1310
|
+
|
|
1311
|
+
return prompt_ids, mm_kwargs, is_update_applied
|
|
1312
|
+
|
|
1313
|
+
def _apply_hf_processor_text_only(self, prompt_text: str) -> list[int]:
|
|
1314
|
+
"""
|
|
1315
|
+
Apply the HF processor on the prompt text only.
|
|
1316
|
+
|
|
1317
|
+
Since HF processor requires that text and multi-modal items
|
|
1318
|
+
correspond to each other, we create dummy multi-modal items
|
|
1319
|
+
to go along with the text.
|
|
1320
|
+
"""
|
|
1321
|
+
prompt_ids, _, _ = self._apply_hf_processor_text_mm(
|
|
1322
|
+
prompt_text=prompt_text,
|
|
1323
|
+
mm_items=MultiModalDataItems({}),
|
|
1324
|
+
hf_processor_mm_kwargs={},
|
|
1325
|
+
)
|
|
1326
|
+
|
|
1327
|
+
return prompt_ids
|
|
1328
|
+
|
|
1329
|
+
def _apply_hf_processor_tokens_only(
|
|
1330
|
+
self,
|
|
1331
|
+
prompt_tokens: list[int],
|
|
1332
|
+
) -> list[int]:
|
|
1333
|
+
"""
|
|
1334
|
+
Apply the HF processor on the prompt tokens only.
|
|
1335
|
+
|
|
1336
|
+
Most HF processors accept prompt text but not prompt tokens.
|
|
1337
|
+
If the HF processor adds or removes tokens that are not related to
|
|
1338
|
+
multi-modal data, you should override this method so it is consistent
|
|
1339
|
+
with the output of
|
|
1340
|
+
[`_apply_hf_processor_text_only`][vllm.multimodal.processing.BaseMultiModalProcessor._apply_hf_processor_text_only]
|
|
1341
|
+
on the
|
|
1342
|
+
corresponding text.
|
|
1343
|
+
"""
|
|
1344
|
+
return prompt_tokens
|
|
1345
|
+
|
|
1346
|
+
def _apply_hf_processor_mm_only(
|
|
1347
|
+
self,
|
|
1348
|
+
mm_items: MultiModalDataItems,
|
|
1349
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1350
|
+
) -> MultiModalKwargs:
|
|
1351
|
+
"""
|
|
1352
|
+
Apply the HF processor on the multi-modal data only.
|
|
1353
|
+
|
|
1354
|
+
Since HF processor requires that text and multi-modal items
|
|
1355
|
+
correspond to each other, we generate dummy text using
|
|
1356
|
+
[`DummyInputsBuilder`][vllm.multimodal.profiling.BaseDummyInputsBuilder]
|
|
1357
|
+
to go along with the multi-modal data.
|
|
1358
|
+
"""
|
|
1359
|
+
mm_counts = mm_items.get_all_counts()
|
|
1360
|
+
|
|
1361
|
+
_, mm_kwargs, _ = self._apply_hf_processor_text_mm(
|
|
1362
|
+
prompt_text=self.dummy_inputs.get_dummy_text(mm_counts),
|
|
1363
|
+
mm_items=mm_items,
|
|
1364
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1365
|
+
)
|
|
1366
|
+
|
|
1367
|
+
return mm_kwargs
|
|
1368
|
+
|
|
1369
|
+
def _apply_hf_processor_main(
|
|
1370
|
+
self,
|
|
1371
|
+
prompt: Union[str, list[int]],
|
|
1372
|
+
mm_items: MultiModalDataItems,
|
|
1373
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1374
|
+
*,
|
|
1375
|
+
enable_hf_prompt_update: bool,
|
|
1376
|
+
) -> tuple[list[int], MultiModalKwargs, bool]:
|
|
1377
|
+
"""
|
|
1378
|
+
Apply the HF processor on the prompt text and multi-modal data.
|
|
1379
|
+
|
|
1380
|
+
In addition, return whether prompt updates have been applied
|
|
1381
|
+
(for most HF processors, this should be `True`).
|
|
1382
|
+
|
|
1383
|
+
Note:
|
|
1384
|
+
If `enable_hf_prompt_update=False`, we use HF processor
|
|
1385
|
+
to perform prompt updates if available; HF processor requires
|
|
1386
|
+
that the prompt corresponds to multi-modal items.
|
|
1387
|
+
"""
|
|
1388
|
+
if isinstance(prompt, str):
|
|
1389
|
+
if enable_hf_prompt_update:
|
|
1390
|
+
return self._apply_hf_processor_text_mm(
|
|
1391
|
+
prompt_text=prompt,
|
|
1392
|
+
mm_items=mm_items,
|
|
1393
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1394
|
+
)
|
|
1395
|
+
|
|
1396
|
+
prompt_ids = self._apply_hf_processor_text_only(prompt)
|
|
1397
|
+
else:
|
|
1398
|
+
prompt_ids = self._apply_hf_processor_tokens_only(prompt)
|
|
1399
|
+
|
|
1400
|
+
mm_kwargs = self._apply_hf_processor_mm_only(
|
|
1401
|
+
mm_items=mm_items,
|
|
1402
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1403
|
+
)
|
|
1404
|
+
|
|
1405
|
+
return prompt_ids, mm_kwargs, False
|
|
1406
|
+
|
|
1407
|
+
def _get_cache_missing_items(
|
|
1408
|
+
self,
|
|
1409
|
+
cache: ProcessingCache,
|
|
1410
|
+
mm_data_items: MultiModalDataItems,
|
|
1411
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1412
|
+
) -> tuple[dict[str, list[ProcessingCacheOptionalItem]], dict[
|
|
1413
|
+
str, list[object]]]:
|
|
1414
|
+
model_id = self.info.model_id
|
|
1415
|
+
|
|
1416
|
+
mm_cache_items = {
|
|
1417
|
+
modality: [
|
|
1418
|
+
cache.get_item(model_id, modality, item,
|
|
1419
|
+
hf_processor_mm_kwargs) for item in items
|
|
1420
|
+
]
|
|
1421
|
+
for modality, items in mm_data_items.items()
|
|
1422
|
+
}
|
|
1423
|
+
|
|
1424
|
+
mm_missing_idxs = {
|
|
1425
|
+
modality: [
|
|
1426
|
+
idx for idx, item in enumerate(cache_items)
|
|
1427
|
+
if item.value is None
|
|
1428
|
+
]
|
|
1429
|
+
for modality, cache_items in mm_cache_items.items()
|
|
1430
|
+
}
|
|
1431
|
+
mm_missing_data = {
|
|
1432
|
+
modality: [mm_data_items[modality][idx] for idx in idxs]
|
|
1433
|
+
for modality, idxs in mm_missing_idxs.items()
|
|
1434
|
+
}
|
|
1435
|
+
|
|
1436
|
+
return mm_cache_items, mm_missing_data
|
|
1437
|
+
|
|
1438
|
+
def _hash_mm_items(
|
|
1439
|
+
self,
|
|
1440
|
+
mm_items: MultiModalDataItems,
|
|
1441
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1442
|
+
) -> MultiModalHashes:
|
|
1443
|
+
"""Create MM hashes to be returned (only used in V1)."""
|
|
1444
|
+
model_id = self.info.model_id
|
|
1445
|
+
|
|
1446
|
+
return {
|
|
1447
|
+
modality: [
|
|
1448
|
+
MultiModalHasher.hash_kwargs(model_id=model_id,
|
|
1449
|
+
**{modality: item},
|
|
1450
|
+
**hf_processor_mm_kwargs)
|
|
1451
|
+
for item in items
|
|
1452
|
+
]
|
|
1453
|
+
for modality, items in mm_items.items()
|
|
1454
|
+
}
|
|
1455
|
+
|
|
1456
|
+
def _merge_mm_kwargs(
|
|
1457
|
+
self,
|
|
1458
|
+
cache: ProcessingCache,
|
|
1459
|
+
mm_cache_items: dict[str, list[ProcessingCacheOptionalItem]],
|
|
1460
|
+
mm_missing_data: dict[str, list[object]],
|
|
1461
|
+
mm_missing_kwargs: MultiModalKwargs,
|
|
1462
|
+
) -> dict[str, list[ProcessingCacheItem]]:
|
|
1463
|
+
mm_missing_next_idx = {modality: 0 for modality in mm_missing_data}
|
|
1464
|
+
|
|
1465
|
+
merged_items = defaultdict[str, list[ProcessingCacheItem]](list)
|
|
1466
|
+
for modality, cache_items in mm_cache_items.items():
|
|
1467
|
+
for cache_item in cache_items:
|
|
1468
|
+
if cache_item.value is None:
|
|
1469
|
+
kw_item = mm_missing_kwargs.get_item(
|
|
1470
|
+
modality,
|
|
1471
|
+
mm_missing_next_idx[modality],
|
|
1472
|
+
)
|
|
1473
|
+
cache_item_new = ProcessingCacheItem(
|
|
1474
|
+
key=cache_item.key,
|
|
1475
|
+
value=kw_item,
|
|
1476
|
+
)
|
|
1477
|
+
|
|
1478
|
+
cache.put_item(cache_item_new)
|
|
1479
|
+
mm_missing_next_idx[modality] += 1
|
|
1480
|
+
else:
|
|
1481
|
+
cache_item_new = ProcessingCacheItem(
|
|
1482
|
+
key=cache_item.key,
|
|
1483
|
+
value=cache_item.value,
|
|
1484
|
+
)
|
|
1485
|
+
|
|
1486
|
+
merged_items[modality].append(cache_item_new)
|
|
1487
|
+
|
|
1488
|
+
return dict(merged_items)
|
|
1489
|
+
|
|
1490
|
+
def _apply_hf_processor(
|
|
1491
|
+
self,
|
|
1492
|
+
prompt: Union[str, list[int]],
|
|
1493
|
+
mm_data_items: MultiModalDataItems,
|
|
1494
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1495
|
+
*,
|
|
1496
|
+
return_mm_hashes: bool,
|
|
1497
|
+
) -> tuple[list[int], MultiModalKwargs, Optional[MultiModalHashes], bool]:
|
|
1498
|
+
(
|
|
1499
|
+
prompt_ids,
|
|
1500
|
+
mm_kwargs,
|
|
1501
|
+
is_update_applied,
|
|
1502
|
+
) = self._apply_hf_processor_main(
|
|
1503
|
+
prompt=prompt,
|
|
1504
|
+
mm_items=mm_data_items,
|
|
1505
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1506
|
+
enable_hf_prompt_update=True,
|
|
1507
|
+
)
|
|
1508
|
+
|
|
1509
|
+
mm_hashes = (self._hash_mm_items(mm_data_items, hf_processor_mm_kwargs)
|
|
1510
|
+
if return_mm_hashes else None)
|
|
1511
|
+
|
|
1512
|
+
return prompt_ids, mm_kwargs, mm_hashes, is_update_applied
|
|
1513
|
+
|
|
1514
|
+
def _cached_apply_hf_processor(
|
|
1515
|
+
self,
|
|
1516
|
+
prompt: Union[str, list[int]],
|
|
1517
|
+
mm_data_items: MultiModalDataItems,
|
|
1518
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1519
|
+
*,
|
|
1520
|
+
return_mm_hashes: bool,
|
|
1521
|
+
) -> tuple[list[int], MultiModalKwargs, Optional[MultiModalHashes], bool]:
|
|
1522
|
+
"""
|
|
1523
|
+
Apply the HF processor on the full prompt text,
|
|
1524
|
+
caching the results and reusing cached results.
|
|
1525
|
+
"""
|
|
1526
|
+
cache = self.cache
|
|
1527
|
+
|
|
1528
|
+
_, passthrough_data = self._get_hf_mm_data(mm_data_items)
|
|
1529
|
+
if cache is None or passthrough_data:
|
|
1530
|
+
return self._apply_hf_processor(
|
|
1531
|
+
prompt=prompt,
|
|
1532
|
+
mm_data_items=mm_data_items,
|
|
1533
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1534
|
+
return_mm_hashes=return_mm_hashes,
|
|
1535
|
+
)
|
|
1536
|
+
|
|
1537
|
+
(
|
|
1538
|
+
mm_cache_items,
|
|
1539
|
+
mm_missing_data,
|
|
1540
|
+
) = self._get_cache_missing_items(
|
|
1541
|
+
cache=cache,
|
|
1542
|
+
mm_data_items=mm_data_items,
|
|
1543
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1544
|
+
)
|
|
1545
|
+
|
|
1546
|
+
# NOTE: `prompt` does not correspond to `mm_missing_data_items`,
|
|
1547
|
+
# so we can't apply prompt updates until the new multimodal
|
|
1548
|
+
# items are combined with the cached multimodal items
|
|
1549
|
+
(
|
|
1550
|
+
prompt_ids,
|
|
1551
|
+
mm_missing_kwargs,
|
|
1552
|
+
is_update_applied,
|
|
1553
|
+
) = self._apply_hf_processor_main(
|
|
1554
|
+
prompt=prompt,
|
|
1555
|
+
mm_items=self._to_mm_items(mm_missing_data),
|
|
1556
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1557
|
+
enable_hf_prompt_update=False,
|
|
1558
|
+
)
|
|
1559
|
+
|
|
1560
|
+
mm_cache_items_merged = self._merge_mm_kwargs(
|
|
1561
|
+
cache,
|
|
1562
|
+
mm_cache_items=mm_cache_items,
|
|
1563
|
+
mm_missing_data=mm_missing_data,
|
|
1564
|
+
mm_missing_kwargs=mm_missing_kwargs,
|
|
1565
|
+
)
|
|
1566
|
+
|
|
1567
|
+
mm_kwargs = MultiModalKwargs.from_items([
|
|
1568
|
+
item.value for cache_items in mm_cache_items_merged.values()
|
|
1569
|
+
for item in cache_items
|
|
1570
|
+
])
|
|
1571
|
+
|
|
1572
|
+
mm_hashes = {
|
|
1573
|
+
modality: [item.key for item in cache_items]
|
|
1574
|
+
for modality, cache_items in mm_cache_items_merged.items()
|
|
1575
|
+
} if return_mm_hashes else None
|
|
1576
|
+
|
|
1577
|
+
return prompt_ids, mm_kwargs, mm_hashes, is_update_applied
|
|
1578
|
+
|
|
1579
|
+
def _bind_and_group_updates(
|
|
1580
|
+
self,
|
|
1581
|
+
prompt_updates: Sequence[PromptUpdate],
|
|
1582
|
+
) -> dict[str, Sequence[BoundPromptUpdate]]:
|
|
1583
|
+
tokenizer = self.info.get_tokenizer()
|
|
1584
|
+
|
|
1585
|
+
it = (update.bind(tokenizer) for update in prompt_updates)
|
|
1586
|
+
return dict(full_groupby_modality(it))
|
|
1587
|
+
|
|
1588
|
+
def _apply_token_matches(
|
|
1589
|
+
self,
|
|
1590
|
+
prompt: list[int],
|
|
1591
|
+
mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
|
|
1592
|
+
mm_item_counts: Mapping[str, int],
|
|
1593
|
+
) -> list[int]:
|
|
1594
|
+
return apply_token_matches(prompt, mm_matches, mm_item_counts)
|
|
1595
|
+
|
|
1596
|
+
def _apply_text_matches(
|
|
1597
|
+
self,
|
|
1598
|
+
prompt: str,
|
|
1599
|
+
mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
|
|
1600
|
+
mm_item_counts: Mapping[str, int],
|
|
1601
|
+
) -> str:
|
|
1602
|
+
return apply_text_matches(prompt, mm_matches, mm_item_counts)
|
|
1603
|
+
|
|
1604
|
+
def _apply_prompt_updates(
|
|
1605
|
+
self,
|
|
1606
|
+
token_ids: list[int],
|
|
1607
|
+
mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
|
|
1608
|
+
mm_item_counts: Mapping[str, int],
|
|
1609
|
+
) -> tuple[list[int], str, Mapping[str, list[PlaceholderFeaturesInfo]]]:
|
|
1610
|
+
tokenizer = self.info.get_tokenizer()
|
|
1611
|
+
|
|
1612
|
+
mm_token_matches = {
|
|
1613
|
+
modality: find_token_matches(token_ids, updates)
|
|
1614
|
+
for modality, updates in mm_prompt_updates.items()
|
|
1615
|
+
}
|
|
1616
|
+
mm_match_counts = {
|
|
1617
|
+
modality: len(matches)
|
|
1618
|
+
for modality, matches in mm_token_matches.items()
|
|
1619
|
+
}
|
|
1620
|
+
|
|
1621
|
+
# If the search text does not represent a special token,
|
|
1622
|
+
# it may have different token IDs in the prompt, because
|
|
1623
|
+
# the tokens may go across the boundaries of the search text.
|
|
1624
|
+
# ----
|
|
1625
|
+
# e.g. when searching for "foo" in "food", if "food" itself makes
|
|
1626
|
+
# up a token, then the token ID of "foo" will not appear at all
|
|
1627
|
+
# ----
|
|
1628
|
+
# Since it is inefficient to search for all possible tokenizations
|
|
1629
|
+
# of the search text in the prompt, we instead perform string-based
|
|
1630
|
+
# updates on the decoded token IDs, then encode them back.
|
|
1631
|
+
if all(
|
|
1632
|
+
mm_match_counts.get(modality, 0) >= item_count
|
|
1633
|
+
for modality, item_count in mm_item_counts.items()
|
|
1634
|
+
): # yapf: disable
|
|
1635
|
+
token_ids = self._apply_token_matches(
|
|
1636
|
+
token_ids,
|
|
1637
|
+
mm_token_matches,
|
|
1638
|
+
mm_item_counts,
|
|
1639
|
+
)
|
|
1640
|
+
|
|
1641
|
+
text = decode_tokens(tokenizer, token_ids)
|
|
1642
|
+
matched_updates = {
|
|
1643
|
+
modality: [match._origin for match in token_matches]
|
|
1644
|
+
for modality, token_matches in mm_token_matches.items()
|
|
1645
|
+
}
|
|
1646
|
+
else:
|
|
1647
|
+
text = decode_tokens(tokenizer, token_ids)
|
|
1648
|
+
|
|
1649
|
+
mm_text_matches = {
|
|
1650
|
+
modality: find_text_matches(text, updates)
|
|
1651
|
+
for modality, updates in mm_prompt_updates.items()
|
|
1652
|
+
}
|
|
1653
|
+
text = self._apply_text_matches(
|
|
1654
|
+
text,
|
|
1655
|
+
mm_text_matches,
|
|
1656
|
+
mm_item_counts,
|
|
1657
|
+
)
|
|
1658
|
+
|
|
1659
|
+
token_ids = encode_tokens(tokenizer,
|
|
1660
|
+
text,
|
|
1661
|
+
add_special_tokens=False)
|
|
1662
|
+
matched_updates = {
|
|
1663
|
+
modality: [match._origin for match in token_matches]
|
|
1664
|
+
for modality, token_matches in mm_text_matches.items()
|
|
1665
|
+
}
|
|
1666
|
+
|
|
1667
|
+
placeholders = self._find_mm_placeholders(
|
|
1668
|
+
matched_updates,
|
|
1669
|
+
token_ids,
|
|
1670
|
+
mm_item_counts,
|
|
1671
|
+
)
|
|
1672
|
+
|
|
1673
|
+
return token_ids, text, placeholders
|
|
1674
|
+
|
|
1675
|
+
def _validate_mm_kwargs(
|
|
1676
|
+
self,
|
|
1677
|
+
mm_kwargs: MultiModalKwargs,
|
|
1678
|
+
mm_item_counts: Mapping[str, int],
|
|
1679
|
+
) -> None:
|
|
1680
|
+
for modality, item_count in mm_item_counts.items():
|
|
1681
|
+
if modality in mm_kwargs.modalities:
|
|
1682
|
+
items = mm_kwargs.get_items(modality)
|
|
1683
|
+
else:
|
|
1684
|
+
items = []
|
|
1685
|
+
|
|
1686
|
+
if len(items) != item_count:
|
|
1687
|
+
raise RuntimeError(
|
|
1688
|
+
f"Expected there to be {item_count} {modality} items in "
|
|
1689
|
+
f"keyword arguments corresponding to {item_count} "
|
|
1690
|
+
f"{modality} data items, but only found {len(items)}! "
|
|
1691
|
+
"There is likely a problem with your "
|
|
1692
|
+
"implementation of merged multi-modal processor for this "
|
|
1693
|
+
"model (usually arising from an inconsistency between "
|
|
1694
|
+
"`_call_hf_processor` and `_get_mm_fields_config`).")
|
|
1695
|
+
|
|
1696
|
+
def _validate_mm_placeholders(
|
|
1697
|
+
self,
|
|
1698
|
+
mm_placeholders: Mapping[str, list[PlaceholderFeaturesInfo]],
|
|
1699
|
+
mm_item_counts: Mapping[str, int],
|
|
1700
|
+
) -> None:
|
|
1701
|
+
for modality, item_count in mm_item_counts.items():
|
|
1702
|
+
placeholders = mm_placeholders.get(modality, [])
|
|
1703
|
+
|
|
1704
|
+
if len(placeholders) != item_count:
|
|
1705
|
+
# NOTE: If you are a model developer, this can also arise from
|
|
1706
|
+
# an inconsistency between `_call_hf_processor` and
|
|
1707
|
+
# `_get_mm_fields_config` implementations
|
|
1708
|
+
raise RuntimeError(
|
|
1709
|
+
f"Expected there to be {item_count} prompt updates "
|
|
1710
|
+
f"corresponding to {item_count} {modality} items, but "
|
|
1711
|
+
f"instead found {len(placeholders)} prompt updates! "
|
|
1712
|
+
"This is likely because you forgot to include input "
|
|
1713
|
+
"placeholder tokens (e.g., `<image>`, `<|image_pad|>`) "
|
|
1714
|
+
"in the prompt. If the model has a chat template, make "
|
|
1715
|
+
"sure you have applied it before calling `LLM.generate`.")
|
|
1716
|
+
|
|
1717
|
+
def _maybe_apply_prompt_updates(
|
|
1718
|
+
self,
|
|
1719
|
+
mm_items: MultiModalDataItems,
|
|
1720
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1721
|
+
prompt_ids: list[int],
|
|
1722
|
+
mm_kwargs: MultiModalKwargs,
|
|
1723
|
+
is_update_applied: bool,
|
|
1724
|
+
) -> tuple[list[int], str, Mapping[str, list[PlaceholderFeaturesInfo]]]:
|
|
1725
|
+
unbound_prompt_updates = self._get_prompt_updates(
|
|
1726
|
+
mm_items,
|
|
1727
|
+
hf_processor_mm_kwargs,
|
|
1728
|
+
mm_kwargs,
|
|
1729
|
+
)
|
|
1730
|
+
mm_prompt_updates = self._bind_and_group_updates(
|
|
1731
|
+
unbound_prompt_updates)
|
|
1732
|
+
|
|
1733
|
+
mm_item_counts = mm_items.get_all_counts()
|
|
1734
|
+
self._validate_mm_kwargs(mm_kwargs, mm_item_counts)
|
|
1735
|
+
|
|
1736
|
+
if is_update_applied:
|
|
1737
|
+
mm_placeholders = self._find_mm_placeholders(
|
|
1738
|
+
mm_prompt_updates,
|
|
1739
|
+
prompt_ids,
|
|
1740
|
+
mm_item_counts,
|
|
1741
|
+
)
|
|
1742
|
+
self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
|
|
1743
|
+
|
|
1744
|
+
tokenizer = self.info.get_tokenizer()
|
|
1745
|
+
prompt = decode_tokens(tokenizer, prompt_ids)
|
|
1746
|
+
else:
|
|
1747
|
+
(
|
|
1748
|
+
prompt_ids,
|
|
1749
|
+
prompt,
|
|
1750
|
+
mm_placeholders,
|
|
1751
|
+
) = self._apply_prompt_updates(
|
|
1752
|
+
prompt_ids,
|
|
1753
|
+
mm_prompt_updates,
|
|
1754
|
+
mm_item_counts,
|
|
1755
|
+
)
|
|
1756
|
+
self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
|
|
1757
|
+
|
|
1758
|
+
return prompt_ids, prompt, mm_placeholders
|
|
1759
|
+
|
|
1760
|
+
def apply(
|
|
1761
|
+
self,
|
|
1762
|
+
prompt: Union[str, list[int]],
|
|
1763
|
+
mm_data: MultiModalDataDict,
|
|
1764
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1765
|
+
return_mm_hashes: bool = False,
|
|
1766
|
+
) -> MultiModalInputs:
|
|
1767
|
+
"""
|
|
1768
|
+
Process multi-modal inputs to be used in vLLM.
|
|
1769
|
+
|
|
1770
|
+
The main steps are:
|
|
1771
|
+
|
|
1772
|
+
1. Apply HF Processor on prompt text and multi-modal data together,
|
|
1773
|
+
outputting token IDs and processed tensors.
|
|
1774
|
+
2. Find and update sequences in the token IDs with placeholder tokens.
|
|
1775
|
+
The number of placeholder tokens equals the feature size of the
|
|
1776
|
+
multi-modal data outputted by the multi-modal encoder.
|
|
1777
|
+
3. Extract information about the placeholder tokens from the
|
|
1778
|
+
processed token IDs.
|
|
1779
|
+
"""
|
|
1780
|
+
mm_items = self._to_mm_items(mm_data)
|
|
1781
|
+
|
|
1782
|
+
(
|
|
1783
|
+
prompt_ids,
|
|
1784
|
+
mm_kwargs,
|
|
1785
|
+
mm_hashes,
|
|
1786
|
+
is_update_applied,
|
|
1787
|
+
) = self._cached_apply_hf_processor(
|
|
1788
|
+
prompt,
|
|
1789
|
+
mm_items,
|
|
1790
|
+
hf_processor_mm_kwargs,
|
|
1791
|
+
return_mm_hashes=return_mm_hashes,
|
|
1792
|
+
)
|
|
1793
|
+
|
|
1794
|
+
prompt_ids, prompt, mm_placeholders = self._maybe_apply_prompt_updates(
|
|
1795
|
+
mm_items=mm_items,
|
|
1796
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1797
|
+
prompt_ids=prompt_ids,
|
|
1798
|
+
mm_kwargs=mm_kwargs,
|
|
1799
|
+
is_update_applied=is_update_applied,
|
|
1800
|
+
)
|
|
1801
|
+
|
|
1802
|
+
mm_placeholder_ranges = {
|
|
1803
|
+
modality: [item.to_range() for item in placeholders]
|
|
1804
|
+
for modality, placeholders in mm_placeholders.items()
|
|
1805
|
+
}
|
|
1806
|
+
|
|
1807
|
+
return MultiModalInputs(
|
|
1808
|
+
type="multimodal",
|
|
1809
|
+
prompt=prompt,
|
|
1810
|
+
prompt_token_ids=prompt_ids,
|
|
1811
|
+
mm_kwargs=mm_kwargs,
|
|
1812
|
+
mm_hashes=mm_hashes,
|
|
1813
|
+
mm_placeholders=mm_placeholder_ranges,
|
|
1814
|
+
)
|
|
1815
|
+
|
|
1816
|
+
|
|
1817
|
+
class EncDecMultiModalProcessor(BaseMultiModalProcessor[_I]):
|
|
1818
|
+
|
|
1819
|
+
@abstractmethod
|
|
1820
|
+
def create_encoder_prompt(
|
|
1821
|
+
self,
|
|
1822
|
+
prompt: Union[str, list[int]],
|
|
1823
|
+
mm_data: MultiModalDataDict,
|
|
1824
|
+
) -> Union[str, list[int]]:
|
|
1825
|
+
"""
|
|
1826
|
+
Create input prompt for the encoder. HF processor will be applied on
|
|
1827
|
+
this prompt during profiling and generation.
|
|
1828
|
+
"""
|
|
1829
|
+
raise NotImplementedError
|
|
1830
|
+
|
|
1831
|
+
@property
|
|
1832
|
+
def pad_dummy_encoder_prompt(self) -> bool:
|
|
1833
|
+
return False
|
|
1834
|
+
|
|
1835
|
+
def create_decoder_prompt(
|
|
1836
|
+
self,
|
|
1837
|
+
prompt: Union[str, list[int]],
|
|
1838
|
+
mm_data: MultiModalDataDict,
|
|
1839
|
+
) -> Union[str, list[int]]:
|
|
1840
|
+
"""Create input prompt for the decoder."""
|
|
1841
|
+
return prompt
|
|
1842
|
+
|
|
1843
|
+
def _get_enc_dec_inputs(
|
|
1844
|
+
self,
|
|
1845
|
+
prompt: Union[str, list[int]],
|
|
1846
|
+
mm_data: MultiModalDataDict,
|
|
1847
|
+
encoder_inputs: MultiModalInputs,
|
|
1848
|
+
):
|
|
1849
|
+
tokenizer = self.info.get_tokenizer()
|
|
1850
|
+
decoder_prompt = self.create_decoder_prompt(prompt, mm_data)
|
|
1851
|
+
if isinstance(decoder_prompt, str):
|
|
1852
|
+
decoder_prompt_ids = encode_tokens(tokenizer,
|
|
1853
|
+
decoder_prompt,
|
|
1854
|
+
add_special_tokens=False)
|
|
1855
|
+
else:
|
|
1856
|
+
decoder_prompt_ids = decoder_prompt
|
|
1857
|
+
decoder_prompt = decode_tokens(tokenizer, decoder_prompt)
|
|
1858
|
+
|
|
1859
|
+
mm_inputs = MultiModalEncDecInputs(
|
|
1860
|
+
encoder_prompt=encoder_inputs["prompt"],
|
|
1861
|
+
encoder_prompt_token_ids=encoder_inputs["prompt_token_ids"],
|
|
1862
|
+
**encoder_inputs)
|
|
1863
|
+
mm_inputs.update({
|
|
1864
|
+
"prompt": decoder_prompt,
|
|
1865
|
+
"prompt_token_ids": decoder_prompt_ids
|
|
1866
|
+
})
|
|
1867
|
+
return mm_inputs
|
|
1868
|
+
|
|
1869
|
+
def apply(
|
|
1870
|
+
self,
|
|
1871
|
+
prompt: Union[str, list[int]],
|
|
1872
|
+
mm_data: MultiModalDataDict,
|
|
1873
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1874
|
+
return_mm_hashes: bool = False,
|
|
1875
|
+
) -> MultiModalEncDecInputs:
|
|
1876
|
+
"""
|
|
1877
|
+
Process multi-modal inputs to be used in vLLM.
|
|
1878
|
+
The main processing steps are modified to fit encoder-decoder model:
|
|
1879
|
+
1. Create encoder prompt from input prompt text.
|
|
1880
|
+
2. Apply the HF processor on encoder prompt.
|
|
1881
|
+
3. Copy the input prompt text as decoder prompt inputs.
|
|
1882
|
+
"""
|
|
1883
|
+
encoder_prompt = self.create_encoder_prompt(prompt, mm_data)
|
|
1884
|
+
encoder_inputs = super().apply(
|
|
1885
|
+
encoder_prompt,
|
|
1886
|
+
mm_data,
|
|
1887
|
+
hf_processor_mm_kwargs,
|
|
1888
|
+
return_mm_hashes,
|
|
1889
|
+
)
|
|
1890
|
+
|
|
1891
|
+
return self._get_enc_dec_inputs(
|
|
1892
|
+
prompt=prompt,
|
|
1893
|
+
mm_data=mm_data,
|
|
1894
|
+
encoder_inputs=encoder_inputs,
|
|
1895
|
+
)
|