vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +53 -0
- vllm/_custom_ops.py +1828 -0
- vllm/_ipex_ops.py +244 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +106 -0
- vllm/adapter_commons/request.py +26 -0
- vllm/adapter_commons/utils.py +93 -0
- vllm/adapter_commons/worker_manager.py +39 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +34 -0
- vllm/assets/video.py +115 -0
- vllm/attention/__init__.py +20 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +308 -0
- vllm/attention/backends/blocksparse_attn.py +461 -0
- vllm/attention/backends/cpu_mla.py +307 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
- vllm/attention/backends/flash_attn.py +1003 -0
- vllm/attention/backends/flashinfer.py +1104 -0
- vllm/attention/backends/flashmla.py +244 -0
- vllm/attention/backends/hpu_attn.py +313 -0
- vllm/attention/backends/ipex_attn.py +398 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1385 -0
- vllm/attention/backends/pallas.py +351 -0
- vllm/attention/backends/placeholder_attn.py +400 -0
- vllm/attention/backends/rocm_aiter_mla.py +435 -0
- vllm/attention/backends/rocm_flash_attn.py +975 -0
- vllm/attention/backends/torch_sdpa.py +703 -0
- vllm/attention/backends/triton_mla.py +115 -0
- vllm/attention/backends/utils.py +610 -0
- vllm/attention/backends/xformers.py +802 -0
- vllm/attention/layer.py +468 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
- vllm/attention/ops/blocksparse_attention/interface.py +239 -0
- vllm/attention/ops/blocksparse_attention/utils.py +246 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
- vllm/attention/ops/flashmla.py +116 -0
- vllm/attention/ops/hpu_paged_attn.py +88 -0
- vllm/attention/ops/ipex_attn.py +195 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/nki_flash_attn.py +906 -0
- vllm/attention/ops/paged_attn.py +256 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +100 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +674 -0
- vllm/attention/ops/triton_flash_attention.py +979 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_unified_attention.py +334 -0
- vllm/attention/selector.py +187 -0
- vllm/attention/utils/fa_utils.py +55 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +1185 -0
- vllm/benchmarks/endpoint_request_func.py +381 -0
- vllm/benchmarks/latency.py +168 -0
- vllm/benchmarks/serve.py +1135 -0
- vllm/benchmarks/throughput.py +609 -0
- vllm/benchmarks/utils.py +70 -0
- vllm/collect_env.py +820 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +89 -0
- vllm/compilation/backends.py +563 -0
- vllm/compilation/base_piecewise_backend.py +72 -0
- vllm/compilation/collective_fusion.py +127 -0
- vllm/compilation/compiler_interface.py +544 -0
- vllm/compilation/counter.py +38 -0
- vllm/compilation/cuda_piecewise_backend.py +214 -0
- vllm/compilation/decorators.py +250 -0
- vllm/compilation/fix_functionalization.py +191 -0
- vllm/compilation/fusion.py +618 -0
- vllm/compilation/fx_utils.py +62 -0
- vllm/compilation/inductor_pass.py +115 -0
- vllm/compilation/monitor.py +39 -0
- vllm/compilation/multi_output_match.py +109 -0
- vllm/compilation/noop_elimination.py +137 -0
- vllm/compilation/pass_manager.py +78 -0
- vllm/compilation/sequence_parallelism.py +268 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +67 -0
- vllm/compilation/wrapper.py +135 -0
- vllm/config.py +4746 -0
- vllm/connections.py +174 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +399 -0
- vllm/core/block/common.py +371 -0
- vllm/core/block/cpu_gpu_block_allocator.py +441 -0
- vllm/core/block/interfaces.py +319 -0
- vllm/core/block/naive_block.py +466 -0
- vllm/core/block/prefix_caching_block.py +1135 -0
- vllm/core/block/utils.py +28 -0
- vllm/core/block_manager.py +521 -0
- vllm/core/evictor.py +157 -0
- vllm/core/interfaces.py +135 -0
- vllm/core/placeholder_block_space_manager.py +100 -0
- vllm/core/scheduler.py +2093 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +281 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +264 -0
- vllm/distributed/device_communicators/base_device_communicator.py +260 -0
- vllm/distributed/device_communicators/cpu_communicator.py +145 -0
- vllm/distributed/device_communicators/cuda_communicator.py +176 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
- vllm/distributed/device_communicators/hpu_communicator.py +46 -0
- vllm/distributed/device_communicators/neuron_communicator.py +20 -0
- vllm/distributed/device_communicators/pynccl.py +218 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
- vllm/distributed/device_communicators/shm_broadcast.py +585 -0
- vllm/distributed/device_communicators/tpu_communicator.py +103 -0
- vllm/distributed/device_communicators/xpu_communicator.py +55 -0
- vllm/distributed/kv_events.py +356 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +12 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
- vllm/distributed/parallel_state.py +1296 -0
- vllm/distributed/tpu_distributed_utils.py +177 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1708 -0
- vllm/engine/async_llm_engine.py +1200 -0
- vllm/engine/async_timeout.py +173 -0
- vllm/engine/llm_engine.py +2097 -0
- vllm/engine/metrics.py +629 -0
- vllm/engine/metrics_types.py +94 -0
- vllm/engine/multiprocessing/__init__.py +148 -0
- vllm/engine/multiprocessing/client.py +681 -0
- vllm/engine/multiprocessing/engine.py +460 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +75 -0
- vllm/engine/output_processor/multi_step.py +216 -0
- vllm/engine/output_processor/single_step.py +145 -0
- vllm/engine/output_processor/stop_checker.py +131 -0
- vllm/engine/output_processor/util.py +28 -0
- vllm/engine/protocol.py +317 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1299 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +39 -0
- vllm/entrypoints/cli/benchmark/latency.py +30 -0
- vllm/entrypoints/cli/benchmark/main.py +54 -0
- vllm/entrypoints/cli/benchmark/serve.py +30 -0
- vllm/entrypoints/cli/benchmark/throughput.py +30 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +65 -0
- vllm/entrypoints/cli/openai.py +205 -0
- vllm/entrypoints/cli/run_batch.py +62 -0
- vllm/entrypoints/cli/serve.py +328 -0
- vllm/entrypoints/cli/types.py +25 -0
- vllm/entrypoints/launcher.py +147 -0
- vllm/entrypoints/llm.py +1544 -0
- vllm/entrypoints/logger.py +50 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1387 -0
- vllm/entrypoints/openai/cli_args.py +315 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +1913 -0
- vllm/entrypoints/openai/run_batch.py +463 -0
- vllm/entrypoints/openai/serving_chat.py +1221 -0
- vllm/entrypoints/openai/serving_classification.py +160 -0
- vllm/entrypoints/openai/serving_completion.py +592 -0
- vllm/entrypoints/openai/serving_embedding.py +201 -0
- vllm/entrypoints/openai/serving_engine.py +986 -0
- vllm/entrypoints/openai/serving_models.py +315 -0
- vllm/entrypoints/openai/serving_pooling.py +232 -0
- vllm/entrypoints/openai/serving_score.py +433 -0
- vllm/entrypoints/openai/serving_tokenization.py +157 -0
- vllm/entrypoints/openai/serving_transcription.py +424 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/score_utils.py +50 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/utils.py +233 -0
- vllm/env_override.py +41 -0
- vllm/envs.py +944 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +401 -0
- vllm/executor/mp_distributed_executor.py +244 -0
- vllm/executor/msgspec_utils.py +30 -0
- vllm/executor/multiproc_worker_utils.py +313 -0
- vllm/executor/ray_distributed_executor.py +701 -0
- vllm/executor/ray_utils.py +399 -0
- vllm/executor/uniproc_executor.py +139 -0
- vllm/forward_context.py +179 -0
- vllm/inputs/__init__.py +41 -0
- vllm/inputs/data.py +331 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +909 -0
- vllm/inputs/registry.py +237 -0
- vllm/jsontree.py +80 -0
- vllm/logger.py +212 -0
- vllm/logging_utils/__init__.py +8 -0
- vllm/logging_utils/dump_input.py +85 -0
- vllm/logging_utils/formatter.py +18 -0
- vllm/logits_process.py +119 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +355 -0
- vllm/lora/layers.py +1285 -0
- vllm/lora/lora.py +199 -0
- vllm/lora/models.py +818 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
- vllm/lora/ops/triton_ops/utils.py +120 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +145 -0
- vllm/lora/peft_helper.py +136 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +485 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +290 -0
- vllm/lora/punica_wrapper/punica_hpu.py +145 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +405 -0
- vllm/lora/punica_wrapper/utils.py +164 -0
- vllm/lora/request.py +99 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +240 -0
- vllm/lora/worker_manager.py +259 -0
- vllm/model_executor/__init__.py +16 -0
- vllm/model_executor/custom_op.py +152 -0
- vllm/model_executor/guided_decoding/__init__.py +181 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
- vllm/model_executor/guided_decoding/guided_fields.py +41 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
- vllm/model_executor/guided_decoding/utils.py +242 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +369 -0
- vllm/model_executor/layers/fused_moe/__init__.py +54 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
- vllm/model_executor/layers/fused_moe/layer.py +1535 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/utils.py +98 -0
- vllm/model_executor/layers/layernorm.py +288 -0
- vllm/model_executor/layers/lightning_attn.py +652 -0
- vllm/model_executor/layers/linear.py +1524 -0
- vllm/model_executor/layers/logits_processor.py +197 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
- vllm/model_executor/layers/pooler.py +350 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/auto_round.py +310 -0
- vllm/model_executor/layers/quantization/awq.py +194 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +151 -0
- vllm/model_executor/layers/quantization/bitblas.py +461 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
- vllm/model_executor/layers/quantization/experts_int8.py +196 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +906 -0
- vllm/model_executor/layers/quantization/gguf.py +565 -0
- vllm/model_executor/layers/quantization/gptq.py +278 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +139 -0
- vllm/model_executor/layers/quantization/marlin.py +261 -0
- vllm/model_executor/layers/quantization/modelopt.py +737 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
- vllm/model_executor/layers/quantization/qqq.py +275 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +441 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +161 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
- vllm/model_executor/layers/rejection_sampler.py +406 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding.py +1862 -0
- vllm/model_executor/layers/sampler.py +1204 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
- vllm/model_executor/layers/utils.py +95 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +76 -0
- vllm/model_executor/model_loader/base_loader.py +43 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
- vllm/model_executor/model_loader/default_loader.py +282 -0
- vllm/model_executor/model_loader/dummy_loader.py +27 -0
- vllm/model_executor/model_loader/gguf_loader.py +120 -0
- vllm/model_executor/model_loader/neuron.py +476 -0
- vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
- vllm/model_executor/model_loader/tensorizer.py +600 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
- vllm/model_executor/model_loader/tpu.py +112 -0
- vllm/model_executor/model_loader/utils.py +302 -0
- vllm/model_executor/model_loader/weight_utils.py +782 -0
- vllm/model_executor/models/__init__.py +28 -0
- vllm/model_executor/models/adapters.py +248 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +657 -0
- vllm/model_executor/models/aya_vision.py +466 -0
- vllm/model_executor/models/baichuan.py +474 -0
- vllm/model_executor/models/bamba.py +543 -0
- vllm/model_executor/models/bart.py +938 -0
- vllm/model_executor/models/bert.py +523 -0
- vllm/model_executor/models/bert_with_rope.py +769 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +718 -0
- vllm/model_executor/models/bloom.py +373 -0
- vllm/model_executor/models/chameleon.py +1136 -0
- vllm/model_executor/models/chatglm.py +478 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/commandr.py +472 -0
- vllm/model_executor/models/constant_size_cache.py +137 -0
- vllm/model_executor/models/dbrx.py +472 -0
- vllm/model_executor/models/deepseek.py +486 -0
- vllm/model_executor/models/deepseek_mtp.py +269 -0
- vllm/model_executor/models/deepseek_v2.py +843 -0
- vllm/model_executor/models/deepseek_vl2.py +648 -0
- vllm/model_executor/models/eagle.py +260 -0
- vllm/model_executor/models/exaone.py +551 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +510 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/florence2.py +1103 -0
- vllm/model_executor/models/fuyu.py +389 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +425 -0
- vllm/model_executor/models/gemma3.py +533 -0
- vllm/model_executor/models/gemma3_mm.py +709 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4v.py +648 -0
- vllm/model_executor/models/gpt2.py +328 -0
- vllm/model_executor/models/gpt_bigcode.py +335 -0
- vllm/model_executor/models/gpt_j.py +339 -0
- vllm/model_executor/models/gpt_neox.py +332 -0
- vllm/model_executor/models/granite.py +493 -0
- vllm/model_executor/models/granite_speech.py +779 -0
- vllm/model_executor/models/granitemoe.py +437 -0
- vllm/model_executor/models/granitemoehybrid.py +586 -0
- vllm/model_executor/models/granitemoeshared.py +341 -0
- vllm/model_executor/models/gritlm.py +224 -0
- vllm/model_executor/models/grok1.py +546 -0
- vllm/model_executor/models/h2ovl.py +546 -0
- vllm/model_executor/models/idefics2_vision_model.py +389 -0
- vllm/model_executor/models/idefics3.py +776 -0
- vllm/model_executor/models/interfaces.py +572 -0
- vllm/model_executor/models/interfaces_base.py +164 -0
- vllm/model_executor/models/intern_vit.py +480 -0
- vllm/model_executor/models/internlm2.py +455 -0
- vllm/model_executor/models/internlm2_ve.py +147 -0
- vllm/model_executor/models/internvl.py +1418 -0
- vllm/model_executor/models/jais.py +373 -0
- vllm/model_executor/models/jamba.py +592 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +644 -0
- vllm/model_executor/models/llama4.py +532 -0
- vllm/model_executor/models/llama_eagle.py +165 -0
- vllm/model_executor/models/llama_eagle3.py +263 -0
- vllm/model_executor/models/llava.py +866 -0
- vllm/model_executor/models/llava_next.py +586 -0
- vllm/model_executor/models/llava_next_video.py +471 -0
- vllm/model_executor/models/llava_onevision.py +956 -0
- vllm/model_executor/models/mamba.py +273 -0
- vllm/model_executor/models/mamba2.py +308 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +219 -0
- vllm/model_executor/models/mimo.py +192 -0
- vllm/model_executor/models/mimo_mtp.py +285 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +391 -0
- vllm/model_executor/models/minicpmo.py +759 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +36 -0
- vllm/model_executor/models/minimax_text_01.py +1301 -0
- vllm/model_executor/models/minimax_vl_01.py +364 -0
- vllm/model_executor/models/mistral3.py +604 -0
- vllm/model_executor/models/mixtral.py +488 -0
- vllm/model_executor/models/mixtral_quant.py +453 -0
- vllm/model_executor/models/mllama.py +1624 -0
- vllm/model_executor/models/mllama4.py +938 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +331 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1568 -0
- vllm/model_executor/models/moonvit.py +630 -0
- vllm/model_executor/models/mpt.py +331 -0
- vllm/model_executor/models/nemotron.py +508 -0
- vllm/model_executor/models/nemotron_h.py +573 -0
- vllm/model_executor/models/nemotron_nas.py +484 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +389 -0
- vllm/model_executor/models/olmo2.py +414 -0
- vllm/model_executor/models/olmoe.py +468 -0
- vllm/model_executor/models/opt.py +412 -0
- vllm/model_executor/models/orion.py +349 -0
- vllm/model_executor/models/ovis.py +567 -0
- vllm/model_executor/models/paligemma.py +398 -0
- vllm/model_executor/models/persimmon.py +344 -0
- vllm/model_executor/models/phi.py +356 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3_small.py +465 -0
- vllm/model_executor/models/phi3v.py +723 -0
- vllm/model_executor/models/phi4mm.py +1246 -0
- vllm/model_executor/models/phi4mm_audio.py +1233 -0
- vllm/model_executor/models/phi4mm_utils.py +1884 -0
- vllm/model_executor/models/phimoe.py +665 -0
- vllm/model_executor/models/pixtral.py +1316 -0
- vllm/model_executor/models/plamo2.py +738 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
- vllm/model_executor/models/qwen.py +362 -0
- vllm/model_executor/models/qwen2.py +497 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
- vllm/model_executor/models/qwen2_5_vl.py +1166 -0
- vllm/model_executor/models/qwen2_audio.py +410 -0
- vllm/model_executor/models/qwen2_moe.py +540 -0
- vllm/model_executor/models/qwen2_rm.py +132 -0
- vllm/model_executor/models/qwen2_vl.py +1405 -0
- vllm/model_executor/models/qwen3.py +321 -0
- vllm/model_executor/models/qwen3_moe.py +535 -0
- vllm/model_executor/models/qwen_vl.py +785 -0
- vllm/model_executor/models/registry.py +622 -0
- vllm/model_executor/models/roberta.py +276 -0
- vllm/model_executor/models/siglip.py +524 -0
- vllm/model_executor/models/skyworkr1v.py +951 -0
- vllm/model_executor/models/smolvlm.py +52 -0
- vllm/model_executor/models/solar.py +506 -0
- vllm/model_executor/models/stablelm.py +343 -0
- vllm/model_executor/models/starcoder2.py +356 -0
- vllm/model_executor/models/tarsier.py +643 -0
- vllm/model_executor/models/telechat2.py +140 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/transformers.py +508 -0
- vllm/model_executor/models/ultravox.py +656 -0
- vllm/model_executor/models/utils.py +731 -0
- vllm/model_executor/models/vision.py +147 -0
- vllm/model_executor/models/whisper.py +747 -0
- vllm/model_executor/models/zamba2.py +1009 -0
- vllm/model_executor/parameter.py +459 -0
- vllm/model_executor/pooling_metadata.py +72 -0
- vllm/model_executor/sampling_metadata.py +597 -0
- vllm/model_executor/utils.py +77 -0
- vllm/multimodal/__init__.py +33 -0
- vllm/multimodal/audio.py +106 -0
- vllm/multimodal/base.py +219 -0
- vllm/multimodal/hasher.py +118 -0
- vllm/multimodal/image.py +97 -0
- vllm/multimodal/inputs.py +876 -0
- vllm/multimodal/parse.py +461 -0
- vllm/multimodal/processing.py +1895 -0
- vllm/multimodal/profiling.py +258 -0
- vllm/multimodal/registry.py +331 -0
- vllm/multimodal/utils.py +436 -0
- vllm/multimodal/video.py +198 -0
- vllm/outputs.py +512 -0
- vllm/platforms/__init__.py +291 -0
- vllm/platforms/cpu.py +266 -0
- vllm/platforms/cuda.py +526 -0
- vllm/platforms/hpu.py +106 -0
- vllm/platforms/interface.py +538 -0
- vllm/platforms/neuron.py +150 -0
- vllm/platforms/rocm.py +435 -0
- vllm/platforms/tpu.py +216 -0
- vllm/platforms/xpu.py +156 -0
- vllm/plugins/__init__.py +94 -0
- vllm/plugins/lora_resolvers/README.md +15 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +54 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +83 -0
- vllm/prompt_adapter/models.py +358 -0
- vllm/prompt_adapter/request.py +37 -0
- vllm/prompt_adapter/utils.py +98 -0
- vllm/prompt_adapter/worker_manager.py +179 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +15 -0
- vllm/reasoning/abs_reasoning_parsers.py +192 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/qwen3_reasoning_parser.py +151 -0
- vllm/sampling_params.py +602 -0
- vllm/scalar_type.py +347 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +1568 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +506 -0
- vllm/spec_decode/draft_model_runner.py +349 -0
- vllm/spec_decode/interfaces.py +99 -0
- vllm/spec_decode/medusa_worker.py +138 -0
- vllm/spec_decode/metrics.py +213 -0
- vllm/spec_decode/mlp_speculator_worker.py +94 -0
- vllm/spec_decode/mqa_scorer.py +160 -0
- vllm/spec_decode/multi_step_worker.py +423 -0
- vllm/spec_decode/ngram_worker.py +196 -0
- vllm/spec_decode/proposer_worker_base.py +59 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
- vllm/spec_decode/spec_decode_worker.py +1326 -0
- vllm/spec_decode/target_model_runner.py +45 -0
- vllm/spec_decode/top1_proposer.py +275 -0
- vllm/spec_decode/util.py +277 -0
- vllm/test_utils.py +130 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +131 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +60 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/config.py +887 -0
- vllm/transformers_utils/configs/__init__.py +61 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/cohere2.py +195 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +85 -0
- vllm/transformers_utils/configs/exaone.py +190 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/h2ovl.py +16 -0
- vllm/transformers_utils/configs/internvl.py +54 -0
- vllm/transformers_utils/configs/jais.py +238 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/minimax_text_01.py +70 -0
- vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
- vllm/transformers_utils/configs/mllama.py +31 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/mpt.py +180 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +258 -0
- vllm/transformers_utils/configs/nvlm_d.py +15 -0
- vllm/transformers_utils/configs/ovis.py +184 -0
- vllm/transformers_utils/configs/skyworkr1v.py +54 -0
- vllm/transformers_utils/configs/solar.py +247 -0
- vllm/transformers_utils/configs/telechat2.py +64 -0
- vllm/transformers_utils/configs/ultravox.py +108 -0
- vllm/transformers_utils/detokenizer.py +168 -0
- vllm/transformers_utils/detokenizer_utils.py +189 -0
- vllm/transformers_utils/processor.py +221 -0
- vllm/transformers_utils/processors/__init__.py +8 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/s3_utils.py +162 -0
- vllm/transformers_utils/tokenizer.py +302 -0
- vllm/transformers_utils/tokenizer_base.py +149 -0
- vllm/transformers_utils/tokenizer_group.py +120 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +493 -0
- vllm/transformers_utils/utils.py +99 -0
- vllm/triton_utils/__init__.py +14 -0
- vllm/triton_utils/importing.py +50 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +256 -0
- vllm/utils.py +2910 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +163 -0
- vllm/v1/attention/backends/flash_attn.py +869 -0
- vllm/v1/attention/backends/flashinfer.py +651 -0
- vllm/v1/attention/backends/flex_attention.py +477 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +931 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
- vllm/v1/attention/backends/mla/flashmla.py +152 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
- vllm/v1/attention/backends/mla/triton_mla.py +120 -0
- vllm/v1/attention/backends/pallas.py +240 -0
- vllm/v1/attention/backends/triton_attn.py +285 -0
- vllm/v1/attention/backends/utils.py +52 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +349 -0
- vllm/v1/core/encoder_cache_manager.py +150 -0
- vllm/v1/core/kv_cache_coordinator.py +363 -0
- vllm/v1/core/kv_cache_manager.py +392 -0
- vllm/v1/core/kv_cache_utils.py +996 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +150 -0
- vllm/v1/core/sched/output.py +154 -0
- vllm/v1/core/sched/scheduler.py +1044 -0
- vllm/v1/core/sched/utils.py +23 -0
- vllm/v1/core/single_type_kv_cache_manager.py +403 -0
- vllm/v1/engine/__init__.py +173 -0
- vllm/v1/engine/async_llm.py +558 -0
- vllm/v1/engine/coordinator.py +253 -0
- vllm/v1/engine/core.py +961 -0
- vllm/v1/engine/core_client.py +1129 -0
- vllm/v1/engine/detokenizer.py +261 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +317 -0
- vllm/v1/engine/logprobs.py +199 -0
- vllm/v1/engine/mm_input_cache.py +91 -0
- vllm/v1/engine/output_processor.py +428 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +407 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +113 -0
- vllm/v1/executor/multiproc_executor.py +537 -0
- vllm/v1/executor/ray_distributed_executor.py +62 -0
- vllm/v1/kv_cache_interface.py +194 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +523 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +131 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +239 -0
- vllm/v1/outputs.py +116 -0
- vllm/v1/request.py +193 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/penalties.py +59 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +286 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +145 -0
- vllm/v1/serial_utils.py +315 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +432 -0
- vllm/v1/spec_decode/medusa.py +62 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +178 -0
- vllm/v1/spec_decode/ngram_proposer.py +132 -0
- vllm/v1/spec_decode/utils.py +46 -0
- vllm/v1/structured_output/__init__.py +222 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +318 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +175 -0
- vllm/v1/utils.py +743 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +142 -0
- vllm/v1/worker/cpu_model_runner.py +86 -0
- vllm/v1/worker/cpu_worker.py +152 -0
- vllm/v1/worker/gpu_input_batch.py +681 -0
- vllm/v1/worker/gpu_model_runner.py +2320 -0
- vllm/v1/worker/gpu_worker.py +393 -0
- vllm/v1/worker/lora_model_runner_mixin.py +173 -0
- vllm/v1/worker/tpu_model_runner.py +1673 -0
- vllm/v1/worker/tpu_worker.py +299 -0
- vllm/v1/worker/utils.py +111 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +145 -0
- vllm/worker/cpu_enc_dec_model_runner.py +326 -0
- vllm/worker/cpu_model_runner.py +671 -0
- vllm/worker/cpu_pooling_model_runner.py +125 -0
- vllm/worker/cpu_worker.py +450 -0
- vllm/worker/enc_dec_model_runner.py +555 -0
- vllm/worker/hpu_model_runner.py +2320 -0
- vllm/worker/hpu_worker.py +484 -0
- vllm/worker/model_runner.py +2178 -0
- vllm/worker/model_runner_base.py +282 -0
- vllm/worker/multi_step_hpu_worker.py +123 -0
- vllm/worker/multi_step_model_runner.py +911 -0
- vllm/worker/multi_step_neuron_model_runner.py +84 -0
- vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
- vllm/worker/multi_step_tpu_worker.py +108 -0
- vllm/worker/multi_step_worker.py +197 -0
- vllm/worker/neuron_model_runner.py +460 -0
- vllm/worker/neuron_worker.py +193 -0
- vllm/worker/neuronx_distributed_model_runner.py +294 -0
- vllm/worker/pooling_model_runner.py +211 -0
- vllm/worker/tpu_model_runner.py +909 -0
- vllm/worker/tpu_worker.py +337 -0
- vllm/worker/utils.py +53 -0
- vllm/worker/worker.py +577 -0
- vllm/worker/worker_base.py +646 -0
- vllm/worker/xpu_model_runner.py +606 -0
- vllm/worker/xpu_worker.py +186 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1385 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
"""
|
|
4
|
+
# MLA Common Components
|
|
5
|
+
|
|
6
|
+
This file implements common components for MLA implementations.
|
|
7
|
+
|
|
8
|
+
First we define:
|
|
9
|
+
|
|
10
|
+
Sq as Q sequence length
|
|
11
|
+
Skv as KV sequence length
|
|
12
|
+
|
|
13
|
+
MLA has two possible ways of computing, a data-movement friendly approach and a
|
|
14
|
+
compute friendly approach, we generally want to use the compute friendly
|
|
15
|
+
approach for "prefill" (i.e. the ratio Sq / Skv is "small", is near 1)
|
|
16
|
+
and the data-movement friendly approach for "decode" (i.e. the ratio
|
|
17
|
+
Sq / Skv is "large").
|
|
18
|
+
|
|
19
|
+
NOTE what we deem small and large is currently determined by if its labelled
|
|
20
|
+
prefill or decode by the scheduler, but this is something we should probably
|
|
21
|
+
tune.
|
|
22
|
+
|
|
23
|
+
Main reference: DeepseekV2 paper, and FlashInfer Implementation
|
|
24
|
+
(https://arxiv.org/abs/2405.04434 and https://github.com/flashinfer-ai/flashinfer/pull/551).
|
|
25
|
+
|
|
26
|
+
Deepseek's MLA attention works the following way:
|
|
27
|
+
* Use a single latent vector to represent the per-token entry of the KV cache.
|
|
28
|
+
* For decode (i.e. the memory friendly approach) the attention "simulates" a
|
|
29
|
+
multi-head attention, while the compute is similar to multi-query attention.
|
|
30
|
+
|
|
31
|
+
Below is example of both paths assuming batchsize = 1
|
|
32
|
+
|
|
33
|
+
## More Extent Definitions:
|
|
34
|
+
|
|
35
|
+
C Context length, `Skv - Sq`
|
|
36
|
+
H hidden size
|
|
37
|
+
N number of attention heads
|
|
38
|
+
Lq latent dimension for Q 1536 in DSV3
|
|
39
|
+
Lkv latent dimension for K/V 512 in DSV3
|
|
40
|
+
P nope dimension, no rope. 128 in DSV3
|
|
41
|
+
R rope dimension, goes through rope. 64 in DSV3
|
|
42
|
+
V V head dim. 128 in DSV3
|
|
43
|
+
|
|
44
|
+
## Vector/Matrix Definitions
|
|
45
|
+
|
|
46
|
+
h_t hidden states (input to attention) shape [Sq, H]
|
|
47
|
+
q_c latent/compressed Q shape [Sq, Lq]
|
|
48
|
+
q_nope uncompressed Q (no-rope) shape [Sq, N, P]
|
|
49
|
+
q_pe uncompressed Q (rope) shape [Sq, N, R]
|
|
50
|
+
kv_c latent/compressed KV shape [Skv, Lkv]
|
|
51
|
+
k_pe decoupled k position embeddings shape [Skv, R]
|
|
52
|
+
new_kv_c new kv_c from current iter shape [Sq, Lkv]
|
|
53
|
+
new_k_pe new k_pe from current iter shape [Sq, R]
|
|
54
|
+
cache_kv_c cached k_c from previous iters shape [C, Lkv]
|
|
55
|
+
cache_k_pe cached k_pe from previous iters shape [C, R]
|
|
56
|
+
W_DQ project h_t to q_c shape [H, Lq]
|
|
57
|
+
W_UQ project q_c to q_nope shape [Lq, N * P]
|
|
58
|
+
W_QR project q_c to q_pe shape [Lq, N * R]
|
|
59
|
+
W_DKV project h_t to kv_c shape [H, Lkv]
|
|
60
|
+
W_UK project kv_c to k_nope shape [Lkv, N, P]
|
|
61
|
+
W_KR project h_t to k_pe shape [H, R]
|
|
62
|
+
W_UV project kv_c to v shape [Lkv, N, V]
|
|
63
|
+
W_O project v to h_t shape [N * V, H]
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
## Compute Friendly Approach (i.e. "_forward_prefill"):
|
|
67
|
+
|
|
68
|
+
q_c = h_t @ W_DQ
|
|
69
|
+
q_nope = (q_c @ W_UQ).view(Sq, N, P)
|
|
70
|
+
q_pe = RoPE(q_c @ W_QR).view(Sq, N, R)
|
|
71
|
+
new_kv_c = h_t @ W_DKV
|
|
72
|
+
new_k_pe = RoPE(h_t @ W_KR)
|
|
73
|
+
kv_c = torch.cat([new_kv_c, cache_kv_c], dim=0)
|
|
74
|
+
k_pe = torch.cat([new_k_pe, cache_k_pe], dim=0)
|
|
75
|
+
k_nope = (kv_c @ W_UK.view(Lkv, N * P)).view(Skv, N, P)
|
|
76
|
+
v = (kv_c @ W_UV.view(Lkv, N * V)).view(Skv, N, V)
|
|
77
|
+
|
|
78
|
+
// MHA with QK headdim = P + R
|
|
79
|
+
// V headdim = V
|
|
80
|
+
// spda_o shape [Sq, N, V]
|
|
81
|
+
spda_o = scaled_dot_product_attention(
|
|
82
|
+
torch.cat([q_nope, q_pe], dim=-1),
|
|
83
|
+
torch.cat([k_nope, k_pe.unsqueeze(1).expand(-1, N, -1)], dim=-1),
|
|
84
|
+
v
|
|
85
|
+
)
|
|
86
|
+
return spda_o @ W_O
|
|
87
|
+
|
|
88
|
+
NOTE: in the actual code,
|
|
89
|
+
`kv_b_proj` is [W_UK; W_UV] concatenated per head
|
|
90
|
+
`q_b_proj` is [W_UQ; W_QR] concatenated per head
|
|
91
|
+
`out_proj` is W_O
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
## Data-Movement Friendly Approach (i.e. "_forward_decode"):
|
|
95
|
+
|
|
96
|
+
Runtime
|
|
97
|
+
q_c = h_t @ W_DQ
|
|
98
|
+
q_nope = (q_c @ W_UQ).view(-1, N, P)
|
|
99
|
+
ql_nope = einsum("snh,lnh->snl", q, W_UK)
|
|
100
|
+
q_pe = RoPE(q_c @ W_QR).view(Sq, N, R)
|
|
101
|
+
new_kv_c = h_t @ W_DKV
|
|
102
|
+
new_k_pe = RoPE(h_t @ W_KR)
|
|
103
|
+
kv_c = torch.cat([new_kv_c, cache_kv_c], dim=0)
|
|
104
|
+
k_pe = torch.cat([new_k_pe, cache_k_pe], dim=0)
|
|
105
|
+
|
|
106
|
+
// MQA with QK headdim = Lkv + R
|
|
107
|
+
// V headdim = Lkv
|
|
108
|
+
// spda_o shape [Sq, N, Lkv]
|
|
109
|
+
// NOTE: this is less compute-friendly since Lkv > P
|
|
110
|
+
// but is more data-movement friendly since its MQA vs MHA
|
|
111
|
+
spda_o = scaled_dot_product_attention(
|
|
112
|
+
torch.cat([ql_nope, q_pe], dim=-1),
|
|
113
|
+
torch.cat([kv_c, k_pe], dim=-1),
|
|
114
|
+
kv_c
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
o = einsum("snl,lnv->snv", spda_o.reshape(-1, N, Lkv), W_UV)
|
|
118
|
+
return o.view(-1, N * V) @ self.num_heads @ W_O
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
## Chunked Prefill
|
|
122
|
+
|
|
123
|
+
For chunked prefill we want to use the compute friendly algorithm. We are
|
|
124
|
+
assuming sufficiently large Sq / Skv ratio, in the future may want to switch to
|
|
125
|
+
the data-movement friendly approach if the chunk (i.e. `Sq`) is small.
|
|
126
|
+
|
|
127
|
+
However, the compute-friendly approach can potentially run out of memory if Skv
|
|
128
|
+
is large due to: `k_nope = (kv_c @ W_UK).view(Skv, N, P)`
|
|
129
|
+
|
|
130
|
+
To mitigate this, we chunk the computation of attention with respect to the
|
|
131
|
+
current context (i.e. `cache_kv_c` and `cache_k_pe`) so that we can used a
|
|
132
|
+
fixed workspace size.
|
|
133
|
+
|
|
134
|
+
The chunked prefill approach is as follows:
|
|
135
|
+
|
|
136
|
+
MCC Max chunk of context to process per iter, computed dynamically,
|
|
137
|
+
used to bound the memory usage
|
|
138
|
+
|
|
139
|
+
q_c = h_t @ W_DQ
|
|
140
|
+
q_nope = (q_c @ W_UQ).view(Sq, N, P)
|
|
141
|
+
q_pe = RoPE(q_c @ W_QR).view(Sq, N, R)
|
|
142
|
+
new_kv_c = h_t @ W_DKV
|
|
143
|
+
new_k_pe = RoPE(h_t @ W_KR)
|
|
144
|
+
new_k_nope = (new_kv_c @ W_UK.view(Lkv, N * P)).view(Sq, N, P)
|
|
145
|
+
new_v = (new_kv_c @ W_UV.view(Lkv, N * V)).view(Sq, N, V)
|
|
146
|
+
|
|
147
|
+
// MHA between queries and new KV
|
|
148
|
+
// with QK headdim = P + R
|
|
149
|
+
// V headdim = V
|
|
150
|
+
// curr_o shape [Sq, N, V]
|
|
151
|
+
// curr_lse shape [N, Sq], this is just order FA returns
|
|
152
|
+
curr_o, curr_lse = scaled_dot_product_attention(
|
|
153
|
+
torch.cat([q_nope, q_pe], dim=-1),
|
|
154
|
+
torch.cat([new_k_nope, new_k_pe.unsqueeze(1).expand(-1, N, -1)], dim=-1),
|
|
155
|
+
new_v,
|
|
156
|
+
casual=True,
|
|
157
|
+
return_softmax_lse=True
|
|
158
|
+
)
|
|
159
|
+
|
|
160
|
+
// Compute attention with the already existing context
|
|
161
|
+
for chunk_idx in range(cdiv(C, MCC)):
|
|
162
|
+
chunk_start = chunk_idx * MCC
|
|
163
|
+
chunk_end = min(chunk_start + MCC, C)
|
|
164
|
+
Sc = chunk_end - chunk_start
|
|
165
|
+
cache_kv_c_chunk = cache_kv_c[chunk_start:chunk_end]
|
|
166
|
+
cache_k_pe_chunk = cache_k_pe[chunk_start:chunk_end]
|
|
167
|
+
cache_k_nope_chunk = (cache_kv_c_chunk @ W_UK).view(-1, N, P)
|
|
168
|
+
cache_v_chunk = (cache_kv_c_chunk @ W_UV).view(-1, N, V)
|
|
169
|
+
|
|
170
|
+
chunk_o, chunk_lse = scaled_dot_product_attention(
|
|
171
|
+
torch.cat([q_nope, q_pe], dim=-1),
|
|
172
|
+
torch.cat([cache_k_nope_chunk,
|
|
173
|
+
cache_k_pe_chunk.unsqueeze(1).expand(-1, N, -1)],
|
|
174
|
+
dim=-1),
|
|
175
|
+
cache_v_chunk,
|
|
176
|
+
casual=False,
|
|
177
|
+
return_softmax_lse=True
|
|
178
|
+
)
|
|
179
|
+
|
|
180
|
+
curr_o, curr_lse = merge_attn_states(
|
|
181
|
+
suffix_output=curr_o,
|
|
182
|
+
suffix_lse=curr_lse,
|
|
183
|
+
prefix_output=chunk_o,
|
|
184
|
+
prefix_lse=chunk_lse,
|
|
185
|
+
)
|
|
186
|
+
|
|
187
|
+
return curr_o @ W_O
|
|
188
|
+
"""
|
|
189
|
+
|
|
190
|
+
import functools
|
|
191
|
+
from abc import abstractmethod
|
|
192
|
+
from collections import defaultdict
|
|
193
|
+
from contextlib import contextmanager
|
|
194
|
+
from dataclasses import dataclass
|
|
195
|
+
from itertools import accumulate
|
|
196
|
+
from typing import (TYPE_CHECKING, Any, Dict, Generic, List, Optional, Tuple,
|
|
197
|
+
Type, TypeVar)
|
|
198
|
+
|
|
199
|
+
import torch
|
|
200
|
+
|
|
201
|
+
from vllm import _custom_ops as ops
|
|
202
|
+
from vllm import envs
|
|
203
|
+
from vllm.attention.backends.abstract import (AttentionBackend, AttentionLayer,
|
|
204
|
+
AttentionMetadata,
|
|
205
|
+
AttentionMetadataBuilder,
|
|
206
|
+
AttentionState, MLAAttentionImpl)
|
|
207
|
+
from vllm.attention.backends.utils import (PAD_SLOT_ID, compute_slot_mapping,
|
|
208
|
+
compute_slot_mapping_start_idx,
|
|
209
|
+
is_block_tables_empty)
|
|
210
|
+
from vllm.attention.ops.merge_attn_states import merge_attn_states
|
|
211
|
+
from vllm.attention.utils.fa_utils import get_flash_attn_version
|
|
212
|
+
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
213
|
+
LinearBase,
|
|
214
|
+
UnquantizedLinearMethod)
|
|
215
|
+
from vllm.multimodal import MultiModalPlaceholderMap
|
|
216
|
+
from vllm.platforms import current_platform
|
|
217
|
+
from vllm.triton_utils import HAS_TRITON
|
|
218
|
+
from vllm.utils import async_tensor_h2d, cdiv, make_tensor_with_pad, round_down
|
|
219
|
+
|
|
220
|
+
if HAS_TRITON:
|
|
221
|
+
from vllm.attention.ops.triton_flash_attention import triton_attention
|
|
222
|
+
else:
|
|
223
|
+
triton_attention = None
|
|
224
|
+
|
|
225
|
+
try:
|
|
226
|
+
from vllm.vllm_flash_attn import flash_attn_varlen_func
|
|
227
|
+
is_vllm_fa = True
|
|
228
|
+
except ImportError:
|
|
229
|
+
is_vllm_fa = False
|
|
230
|
+
try:
|
|
231
|
+
# For rocm use upstream flash attention
|
|
232
|
+
from flash_attn import flash_attn_varlen_func
|
|
233
|
+
except ImportError:
|
|
234
|
+
flash_attn_varlen_func = None
|
|
235
|
+
|
|
236
|
+
if TYPE_CHECKING:
|
|
237
|
+
from vllm.worker.model_runner import (ModelInputForGPUBuilder,
|
|
238
|
+
ModelInputForGPUWithSamplingMetadata)
|
|
239
|
+
|
|
240
|
+
is_hip = current_platform.is_rocm()
|
|
241
|
+
|
|
242
|
+
|
|
243
|
+
class MLACommonBackend(AttentionBackend):
|
|
244
|
+
|
|
245
|
+
@staticmethod
|
|
246
|
+
def get_name() -> str:
|
|
247
|
+
return "TRITON_MLA"
|
|
248
|
+
|
|
249
|
+
@staticmethod
|
|
250
|
+
def get_metadata_cls() -> Type["AttentionMetadata"]:
|
|
251
|
+
return MLACommonMetadata
|
|
252
|
+
|
|
253
|
+
@staticmethod
|
|
254
|
+
def get_builder_cls() -> Type["MLACommonMetadataBuilder"]:
|
|
255
|
+
return MLACommonMetadataBuilder
|
|
256
|
+
|
|
257
|
+
@staticmethod
|
|
258
|
+
def get_state_cls() -> Type["MLACommonState"]:
|
|
259
|
+
return MLACommonState
|
|
260
|
+
|
|
261
|
+
@staticmethod
|
|
262
|
+
def get_kv_cache_shape(
|
|
263
|
+
num_blocks: int,
|
|
264
|
+
block_size: int,
|
|
265
|
+
num_kv_heads: int, # assumed to be 1 for MLA
|
|
266
|
+
head_size: int,
|
|
267
|
+
) -> Tuple[int, ...]:
|
|
268
|
+
return (num_blocks, block_size, head_size)
|
|
269
|
+
|
|
270
|
+
@staticmethod
|
|
271
|
+
def swap_blocks(
|
|
272
|
+
src_kv_cache: torch.Tensor,
|
|
273
|
+
dst_kv_cache: torch.Tensor,
|
|
274
|
+
src_to_dst: torch.Tensor,
|
|
275
|
+
) -> None:
|
|
276
|
+
ops.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
|
|
277
|
+
|
|
278
|
+
@staticmethod
|
|
279
|
+
def copy_blocks(
|
|
280
|
+
kv_caches: List[torch.Tensor],
|
|
281
|
+
src_to_dists: torch.Tensor,
|
|
282
|
+
) -> None:
|
|
283
|
+
ops.copy_blocks_mla(kv_caches, src_to_dists)
|
|
284
|
+
|
|
285
|
+
@staticmethod
|
|
286
|
+
def get_supported_head_sizes() -> List[int]:
|
|
287
|
+
return [576]
|
|
288
|
+
|
|
289
|
+
|
|
290
|
+
T = TypeVar("T", bound="MLACommonMetadata")
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
class MLACommonState(AttentionState, Generic[T]):
|
|
294
|
+
|
|
295
|
+
def __init__(self, runner):
|
|
296
|
+
self.runner = runner
|
|
297
|
+
self._is_graph_capturing = False
|
|
298
|
+
|
|
299
|
+
scheduler_config = runner.scheduler_config
|
|
300
|
+
self.model_config = runner.model_config
|
|
301
|
+
cache_config = runner.cache_config
|
|
302
|
+
|
|
303
|
+
self.chunked_prefill_enabled = scheduler_config.chunked_prefill_enabled
|
|
304
|
+
self.enable_prefix_caching = cache_config.enable_prefix_caching
|
|
305
|
+
|
|
306
|
+
if self.chunked_prefill_enabled or self.enable_prefix_caching:
|
|
307
|
+
self.context_chunk_workspace_size = min(
|
|
308
|
+
# Max sure there is enough for 8 full length request or at least
|
|
309
|
+
# 4 pages of cache per request
|
|
310
|
+
max(
|
|
311
|
+
8 * self.model_config.max_model_len, 4 *
|
|
312
|
+
scheduler_config.max_num_seqs * cache_config.block_size),
|
|
313
|
+
# For long-context models try not to over-allocate limiting
|
|
314
|
+
# kv-cache space, limiting it to 64k tokens,
|
|
315
|
+
# which would result in the workspace being:
|
|
316
|
+
# 2*(576)*(64*1024) = 144mb
|
|
317
|
+
# (assuming 576 MLA head dim, and fp16)
|
|
318
|
+
# which would result in up-projected context being
|
|
319
|
+
# 2*(192*128)*(64*1024) = 3gb
|
|
320
|
+
# (assuming 192 QK head dim, 128 heads, and fp16)
|
|
321
|
+
128 * 1024)
|
|
322
|
+
assert self.context_chunk_workspace_size >= \
|
|
323
|
+
scheduler_config.max_num_seqs * cache_config.block_size
|
|
324
|
+
|
|
325
|
+
@contextmanager
|
|
326
|
+
def graph_capture(self, max_batch_size: int):
|
|
327
|
+
self._is_graph_capturing = True
|
|
328
|
+
|
|
329
|
+
self._graph_slot_mapping = torch.full((max_batch_size, ),
|
|
330
|
+
PAD_SLOT_ID,
|
|
331
|
+
dtype=torch.long,
|
|
332
|
+
device=self.runner.device)
|
|
333
|
+
self._graph_seq_lens = torch.ones(max_batch_size,
|
|
334
|
+
dtype=torch.int32,
|
|
335
|
+
device=self.runner.device)
|
|
336
|
+
self._graph_block_tables = torch.from_numpy(
|
|
337
|
+
self.runner.graph_block_tables).to(device=self.runner.device)
|
|
338
|
+
|
|
339
|
+
self._positions = torch.zeros((max_batch_size, ),
|
|
340
|
+
dtype=torch.long,
|
|
341
|
+
device=self.runner.device)
|
|
342
|
+
|
|
343
|
+
yield
|
|
344
|
+
|
|
345
|
+
self._is_graph_capturing = False
|
|
346
|
+
del self._graph_slot_mapping
|
|
347
|
+
del self._graph_seq_lens
|
|
348
|
+
del self._graph_block_tables
|
|
349
|
+
del self._positions
|
|
350
|
+
|
|
351
|
+
def graph_clone(self, batch_size: int):
|
|
352
|
+
assert self._is_graph_capturing
|
|
353
|
+
return self.__class__(self.runner)
|
|
354
|
+
|
|
355
|
+
def graph_capture_get_metadata_for_batch(
|
|
356
|
+
self,
|
|
357
|
+
batch_size: int,
|
|
358
|
+
is_encoder_decoder_model: bool = False) -> T:
|
|
359
|
+
assert self._is_graph_capturing
|
|
360
|
+
|
|
361
|
+
attn_metadata = self.runner.attn_backend.make_metadata(
|
|
362
|
+
multi_modal_placeholder_index_maps=None,
|
|
363
|
+
enable_kv_scales_calculation=False,
|
|
364
|
+
use_cuda_graph=True,
|
|
365
|
+
num_prefills=0,
|
|
366
|
+
num_prefill_tokens=0,
|
|
367
|
+
num_decode_tokens=batch_size,
|
|
368
|
+
slot_mapping=self._graph_slot_mapping[:batch_size],
|
|
369
|
+
seq_lens=None,
|
|
370
|
+
seq_lens_tensor=self._graph_seq_lens[:batch_size],
|
|
371
|
+
max_query_len=1,
|
|
372
|
+
max_decode_query_len=1,
|
|
373
|
+
max_prefill_seq_len=0,
|
|
374
|
+
max_decode_seq_len=self.runner.max_seq_len_to_capture,
|
|
375
|
+
query_start_loc=None,
|
|
376
|
+
seq_start_loc=None,
|
|
377
|
+
context_lens_tensor=None,
|
|
378
|
+
block_tables=self._graph_block_tables[:batch_size],
|
|
379
|
+
head_dim=self.runner.model_config.get_head_size())
|
|
380
|
+
|
|
381
|
+
if is_encoder_decoder_model:
|
|
382
|
+
raise NotImplementedError(
|
|
383
|
+
"MLACommonState does not support encoder/decoder yet")
|
|
384
|
+
|
|
385
|
+
return attn_metadata
|
|
386
|
+
|
|
387
|
+
def get_graph_input_buffers(self,
|
|
388
|
+
attn_metadata,
|
|
389
|
+
is_encoder_decoder_model: bool = False):
|
|
390
|
+
input_buffers = {
|
|
391
|
+
"slot_mapping": attn_metadata.slot_mapping,
|
|
392
|
+
"seq_lens_tensor": attn_metadata.decode_metadata.seq_lens_tensor,
|
|
393
|
+
"block_tables": attn_metadata.decode_metadata.block_tables,
|
|
394
|
+
}
|
|
395
|
+
if is_encoder_decoder_model:
|
|
396
|
+
raise NotImplementedError(
|
|
397
|
+
"MLACommonState does not support encoder/decoder yet")
|
|
398
|
+
|
|
399
|
+
return input_buffers
|
|
400
|
+
|
|
401
|
+
def prepare_graph_input_buffers(self,
|
|
402
|
+
input_buffers,
|
|
403
|
+
attn_metadata,
|
|
404
|
+
is_encoder_decoder_model: bool = False):
|
|
405
|
+
input_buffers["seq_lens_tensor"].copy_(
|
|
406
|
+
attn_metadata.decode_metadata.seq_lens_tensor, non_blocking=True)
|
|
407
|
+
input_buffers["block_tables"].copy_(
|
|
408
|
+
attn_metadata.decode_metadata.block_tables, non_blocking=True)
|
|
409
|
+
if is_encoder_decoder_model:
|
|
410
|
+
raise NotImplementedError(
|
|
411
|
+
"TritonMLAState does not support encoder/decoder yet")
|
|
412
|
+
|
|
413
|
+
def begin_forward(self, model_input):
|
|
414
|
+
if self.chunked_prefill_enabled or self.enable_prefix_caching:
|
|
415
|
+
if not hasattr(self, "context_chunk_workspace"):
|
|
416
|
+
# not self.runner.device does not return the correct device
|
|
417
|
+
# for this process, (init_device sets the correct device but
|
|
418
|
+
# only on the Worker). The only way Ive figured out to get the
|
|
419
|
+
# correct device is to allocate the workspace on the first call
|
|
420
|
+
# to begin_forward and use the device of the input tokens
|
|
421
|
+
assert model_input.input_tokens is not None
|
|
422
|
+
self.context_chunk_workspace = torch.empty(
|
|
423
|
+
(self.context_chunk_workspace_size,
|
|
424
|
+
self.model_config.get_head_size()),
|
|
425
|
+
dtype=self.model_config.dtype,
|
|
426
|
+
device=model_input.input_tokens.device,
|
|
427
|
+
)
|
|
428
|
+
|
|
429
|
+
model_input.attn_metadata.context_chunk_workspace = \
|
|
430
|
+
self.context_chunk_workspace
|
|
431
|
+
|
|
432
|
+
|
|
433
|
+
@dataclass
|
|
434
|
+
class MLACommonMetadata(AttentionMetadata):
|
|
435
|
+
"""Metadata for MLACommon.
|
|
436
|
+
|
|
437
|
+
NOTE: Please read the comment at the top of the file before trying to
|
|
438
|
+
understand this class
|
|
439
|
+
|
|
440
|
+
NOTE: Any python object stored here is not updated when it is
|
|
441
|
+
cuda-graph replayed. If you have values that need to be changed
|
|
442
|
+
dynamically, it should be stored in tensor. The tensor has to be
|
|
443
|
+
updated from `CUDAGraphRunner.forward` API.
|
|
444
|
+
"""
|
|
445
|
+
# Whether or not if cuda graph is enabled.
|
|
446
|
+
# Cuda-graph is currently enabled for decoding only.
|
|
447
|
+
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
|
|
448
|
+
use_cuda_graph: bool
|
|
449
|
+
|
|
450
|
+
# NOTE(sang): Definition of context_len, query_len, and seq_len.
|
|
451
|
+
# |---------- N-1 iteration --------|
|
|
452
|
+
# |---------------- N iteration ---------------------|
|
|
453
|
+
# |- tokenA -|......................|-- newTokens ---|
|
|
454
|
+
# |---------- context_len ----------|
|
|
455
|
+
# |-------------------- seq_len ---------------------|
|
|
456
|
+
# |-- query_len ---|
|
|
457
|
+
|
|
458
|
+
# (batch_size,). The sequence length per sequence. Sequence length means
|
|
459
|
+
# the computed tokens + new tokens None if it is a decoding.
|
|
460
|
+
seq_lens: Optional[List[int]]
|
|
461
|
+
# seq_lens stored as a tensor.
|
|
462
|
+
seq_lens_tensor: Optional[torch.Tensor]
|
|
463
|
+
|
|
464
|
+
# Maximum sequence length among prefill batch. 0 if there are decoding
|
|
465
|
+
# requests only.
|
|
466
|
+
max_prefill_seq_len: int
|
|
467
|
+
# Maximum sequence length among decode batch. 0 if there are prefill
|
|
468
|
+
# requests only.
|
|
469
|
+
max_decode_seq_len: int
|
|
470
|
+
# (batch_size,) A tensor of context lengths (tokens that are computed
|
|
471
|
+
# so far).
|
|
472
|
+
context_lens_tensor: Optional[torch.Tensor]
|
|
473
|
+
|
|
474
|
+
# (batch_size, max_blocks_per_seq).
|
|
475
|
+
# Block addresses per sequence. (Seq id -> list of physical block)
|
|
476
|
+
# E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks
|
|
477
|
+
# in the kv cache. Each block can contain up to block_size tokens.
|
|
478
|
+
# 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph
|
|
479
|
+
# captured.
|
|
480
|
+
block_tables: Optional[torch.Tensor]
|
|
481
|
+
|
|
482
|
+
# Maximum query length in the batch.
|
|
483
|
+
max_query_len: Optional[int] = None
|
|
484
|
+
|
|
485
|
+
# Max number of query tokens among request in the batch.
|
|
486
|
+
max_decode_query_len: Optional[int] = None
|
|
487
|
+
|
|
488
|
+
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
|
|
489
|
+
# the batch, used to index into subquery. E.g., if the subquery length
|
|
490
|
+
# is [4, 6], it is [0, 4, 10].
|
|
491
|
+
query_start_loc: Optional[torch.Tensor] = None
|
|
492
|
+
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
|
|
493
|
+
# the batch, used to index into sequence. E.g., if the sequence length is
|
|
494
|
+
# [4, 6], it is [0, 4, 10].
|
|
495
|
+
seq_start_loc: Optional[torch.Tensor] = None
|
|
496
|
+
|
|
497
|
+
_cached_prefill_metadata: Optional[Any] = None
|
|
498
|
+
_cached_decode_metadata: Optional[Any] = None
|
|
499
|
+
|
|
500
|
+
num_prefill_tokens: int
|
|
501
|
+
|
|
502
|
+
# The dimension of the attention heads
|
|
503
|
+
head_dim: Optional[int] = None
|
|
504
|
+
|
|
505
|
+
# Used when chunked prefill is enabled to simulate worst case workspace
|
|
506
|
+
# allocations, hopefully to avoid going OOM
|
|
507
|
+
is_profile_run: bool = False
|
|
508
|
+
|
|
509
|
+
# New for MLA (compared to FlashAttention)
|
|
510
|
+
# For chunked prefill
|
|
511
|
+
context_chunk_cu_seq_lens: Optional[torch.Tensor] = None
|
|
512
|
+
context_chunk_starts: Optional[torch.Tensor] = None
|
|
513
|
+
context_chunk_seq_tot: Optional[List[int]] = None
|
|
514
|
+
context_chunk_max_seq_lens: Optional[List[int]] = None
|
|
515
|
+
# Set by MLAAttentionState in `begin_forward` so it doesn't get broadcasted
|
|
516
|
+
context_chunk_workspace: Optional[torch.Tensor] = None
|
|
517
|
+
|
|
518
|
+
def __post_init__(self):
|
|
519
|
+
supported_head_sizes = MLACommonBackend.get_supported_head_sizes()
|
|
520
|
+
if self.head_dim is not None and self.head_dim \
|
|
521
|
+
not in supported_head_sizes:
|
|
522
|
+
raise ValueError(
|
|
523
|
+
f"Only {supported_head_sizes} are supported for head_dim,",
|
|
524
|
+
f" received {self.head_dim}.")
|
|
525
|
+
|
|
526
|
+
@property
|
|
527
|
+
def prefill_metadata(self):
|
|
528
|
+
if self.num_prefills == 0:
|
|
529
|
+
return None
|
|
530
|
+
|
|
531
|
+
if self._cached_prefill_metadata is not None:
|
|
532
|
+
return self._cached_prefill_metadata
|
|
533
|
+
|
|
534
|
+
assert self.seq_lens is not None
|
|
535
|
+
assert self.seq_lens_tensor is not None
|
|
536
|
+
|
|
537
|
+
# Compute some attn_metadata fields which default to None
|
|
538
|
+
query_start_loc = (None if self.query_start_loc is None else
|
|
539
|
+
self.query_start_loc[:self.num_prefills + 1])
|
|
540
|
+
slot_mapping = (None if self.slot_mapping is None else
|
|
541
|
+
self.slot_mapping[:self.num_prefill_tokens])
|
|
542
|
+
seq_lens = (None if self.seq_lens is None else
|
|
543
|
+
self.seq_lens[:self.num_prefills])
|
|
544
|
+
seq_lens_tensor = (None if self.seq_lens_tensor is None else
|
|
545
|
+
self.seq_lens_tensor[:self.num_prefills])
|
|
546
|
+
seq_start_loc = (None if self.seq_start_loc is None else
|
|
547
|
+
self.seq_start_loc[:self.num_prefills + 1])
|
|
548
|
+
context_lens_tensor = (None if self.context_lens_tensor is None else
|
|
549
|
+
self.context_lens_tensor[:self.num_prefills])
|
|
550
|
+
block_tables = (None if self.block_tables is None else
|
|
551
|
+
self.block_tables[:self.num_prefills])
|
|
552
|
+
|
|
553
|
+
self._cached_prefill_metadata = self.__class__(
|
|
554
|
+
# Required by ModelRunner
|
|
555
|
+
use_cuda_graph=False, # Not Attention Related
|
|
556
|
+
# Required by Attention Metadata
|
|
557
|
+
num_prefills=self.num_prefills,
|
|
558
|
+
num_prefill_tokens=self.num_prefill_tokens,
|
|
559
|
+
num_decode_tokens=0,
|
|
560
|
+
slot_mapping=slot_mapping,
|
|
561
|
+
# Required by Attention Metadata (not used)
|
|
562
|
+
multi_modal_placeholder_index_maps=None,
|
|
563
|
+
enable_kv_scales_calculation=False,
|
|
564
|
+
# MLACommonMetadata
|
|
565
|
+
seq_lens=seq_lens,
|
|
566
|
+
seq_lens_tensor=seq_lens_tensor,
|
|
567
|
+
max_query_len=self.max_query_len,
|
|
568
|
+
max_prefill_seq_len=self.max_prefill_seq_len,
|
|
569
|
+
max_decode_query_len=0,
|
|
570
|
+
max_decode_seq_len=0,
|
|
571
|
+
query_start_loc=query_start_loc,
|
|
572
|
+
seq_start_loc=seq_start_loc,
|
|
573
|
+
context_lens_tensor=context_lens_tensor,
|
|
574
|
+
block_tables=block_tables,
|
|
575
|
+
head_dim=self.head_dim,
|
|
576
|
+
is_profile_run=self.is_profile_run,
|
|
577
|
+
# MLACommonMetadata Chunk prefill specific
|
|
578
|
+
context_chunk_cu_seq_lens=self.context_chunk_cu_seq_lens,
|
|
579
|
+
context_chunk_starts=self.context_chunk_starts,
|
|
580
|
+
context_chunk_seq_tot=self.context_chunk_seq_tot,
|
|
581
|
+
context_chunk_max_seq_lens=self.context_chunk_max_seq_lens,
|
|
582
|
+
)
|
|
583
|
+
return self._cached_prefill_metadata
|
|
584
|
+
|
|
585
|
+
@property
|
|
586
|
+
def decode_metadata(self):
|
|
587
|
+
if self.num_decode_tokens == 0:
|
|
588
|
+
return None
|
|
589
|
+
|
|
590
|
+
if self._cached_decode_metadata is not None:
|
|
591
|
+
return self._cached_decode_metadata
|
|
592
|
+
assert self.seq_lens_tensor is not None
|
|
593
|
+
|
|
594
|
+
# Compute some attn_metadata fields which default to None
|
|
595
|
+
slot_mapping = (None if self.slot_mapping is None else
|
|
596
|
+
self.slot_mapping[self.num_prefill_tokens:])
|
|
597
|
+
seq_lens_tensor = (None if self.seq_lens_tensor is None else
|
|
598
|
+
self.seq_lens_tensor[self.num_prefills:])
|
|
599
|
+
block_tables = (None if self.block_tables is None else
|
|
600
|
+
self.block_tables[self.num_prefills:])
|
|
601
|
+
|
|
602
|
+
self._cached_decode_metadata = self.__class__(
|
|
603
|
+
# Required by ModelRunner
|
|
604
|
+
use_cuda_graph=self.use_cuda_graph, # Not Attention Related
|
|
605
|
+
# Required by Attention Metadata
|
|
606
|
+
num_prefills=0,
|
|
607
|
+
num_prefill_tokens=0,
|
|
608
|
+
num_decode_tokens=self.num_decode_tokens,
|
|
609
|
+
slot_mapping=slot_mapping,
|
|
610
|
+
# Required by Attention Metadata (not used)
|
|
611
|
+
multi_modal_placeholder_index_maps=None,
|
|
612
|
+
enable_kv_scales_calculation=False,
|
|
613
|
+
# MLACommonMetadata
|
|
614
|
+
seq_lens=None,
|
|
615
|
+
seq_lens_tensor=seq_lens_tensor,
|
|
616
|
+
max_decode_query_len=self.max_decode_query_len,
|
|
617
|
+
max_query_len=self.max_query_len,
|
|
618
|
+
max_prefill_seq_len=0,
|
|
619
|
+
max_decode_seq_len=self.max_decode_seq_len,
|
|
620
|
+
# Batch may be composed of prefill|decodes, adjust query start
|
|
621
|
+
# indices to refer to the start of decodes. E.g.
|
|
622
|
+
# in tokens:[3 prefills|6 decodes], query_start_loc=[3,9] => [0,6].
|
|
623
|
+
query_start_loc=(self.query_start_loc[self.num_prefills:] -
|
|
624
|
+
self.query_start_loc[self.num_prefills])
|
|
625
|
+
if self.query_start_loc is not None else None,
|
|
626
|
+
seq_start_loc=self.seq_start_loc[self.num_prefills:]
|
|
627
|
+
if self.seq_start_loc is not None else None,
|
|
628
|
+
context_lens_tensor=None,
|
|
629
|
+
block_tables=block_tables,
|
|
630
|
+
head_dim=self.head_dim,
|
|
631
|
+
is_profile_run=self.is_profile_run)
|
|
632
|
+
return self._cached_decode_metadata
|
|
633
|
+
|
|
634
|
+
def advance_step(self,
|
|
635
|
+
model_input: "ModelInputForGPUWithSamplingMetadata",
|
|
636
|
+
sampled_token_ids: Optional[torch.Tensor],
|
|
637
|
+
block_size: int,
|
|
638
|
+
num_seqs: int,
|
|
639
|
+
num_queries: int,
|
|
640
|
+
turn_prefills_into_decodes: bool = False):
|
|
641
|
+
"""
|
|
642
|
+
Update metadata in-place to advance one decode step.
|
|
643
|
+
"""
|
|
644
|
+
# When using cudagraph, the num_seqs is padded to the next captured
|
|
645
|
+
# batch sized, but num_queries tracks the actual number of requests in
|
|
646
|
+
# the batch. For --enforce-eager mode, num_seqs == num_queries
|
|
647
|
+
if num_seqs != num_queries:
|
|
648
|
+
assert num_seqs > num_queries
|
|
649
|
+
|
|
650
|
+
if turn_prefills_into_decodes:
|
|
651
|
+
# When Multi-Step is enabled with Chunked-Prefill, prefills and
|
|
652
|
+
# decodes are scheduled together. In the first step, all the
|
|
653
|
+
# prefills turn into decodes. This update reflects that
|
|
654
|
+
# conversion.
|
|
655
|
+
assert self.num_decode_tokens + self.num_prefills == num_seqs
|
|
656
|
+
self.num_decode_tokens += self.num_prefills
|
|
657
|
+
self.num_prefills = 0
|
|
658
|
+
self.num_prefill_tokens = 0
|
|
659
|
+
self.max_prefill_seq_len = 0
|
|
660
|
+
self.max_query_len = 1
|
|
661
|
+
|
|
662
|
+
self.slot_mapping = self.slot_mapping[:num_seqs]
|
|
663
|
+
else:
|
|
664
|
+
assert self.seq_lens is not None
|
|
665
|
+
assert self.max_decode_seq_len == max(self.seq_lens)
|
|
666
|
+
|
|
667
|
+
assert self.num_prefills == 0
|
|
668
|
+
assert self.num_prefill_tokens == 0
|
|
669
|
+
assert self.num_decode_tokens == num_seqs
|
|
670
|
+
assert self.slot_mapping.shape == (num_seqs, )
|
|
671
|
+
|
|
672
|
+
assert self.seq_lens is not None
|
|
673
|
+
assert len(self.seq_lens) == num_seqs
|
|
674
|
+
assert self.seq_lens_tensor is not None
|
|
675
|
+
assert self.seq_lens_tensor.shape == (num_seqs, )
|
|
676
|
+
assert self.max_query_len == 1
|
|
677
|
+
assert self.max_prefill_seq_len == 0
|
|
678
|
+
|
|
679
|
+
assert self.query_start_loc is not None
|
|
680
|
+
assert self.query_start_loc.shape == (num_queries + 1, )
|
|
681
|
+
assert self.seq_start_loc is not None
|
|
682
|
+
assert self.seq_start_loc.shape == (num_seqs + 1, )
|
|
683
|
+
|
|
684
|
+
assert self.context_lens_tensor is not None
|
|
685
|
+
assert self.context_lens_tensor.shape == (num_queries, )
|
|
686
|
+
|
|
687
|
+
assert self.block_tables is not None
|
|
688
|
+
assert self.block_tables.shape[0] == num_seqs
|
|
689
|
+
|
|
690
|
+
# Update query lengths. Note that we update only queries and not seqs,
|
|
691
|
+
# since tensors may be padded due to captured cuda graph batch size
|
|
692
|
+
for i in range(num_queries):
|
|
693
|
+
self.seq_lens[i] += 1
|
|
694
|
+
self.max_decode_seq_len = max(self.seq_lens)
|
|
695
|
+
|
|
696
|
+
self._ops_advance_step(num_seqs=num_seqs,
|
|
697
|
+
num_queries=num_queries,
|
|
698
|
+
block_size=block_size,
|
|
699
|
+
input_tokens=model_input.input_tokens,
|
|
700
|
+
sampled_token_ids=sampled_token_ids,
|
|
701
|
+
input_positions=model_input.input_positions)
|
|
702
|
+
|
|
703
|
+
def _ops_advance_step(self, num_seqs: int, num_queries: int,
|
|
704
|
+
block_size: int, input_tokens: torch.Tensor,
|
|
705
|
+
sampled_token_ids: torch.Tensor,
|
|
706
|
+
input_positions: torch.Tensor) -> None:
|
|
707
|
+
# here we use advance_step_flashinfo to update the paged_kv_* tensors
|
|
708
|
+
ops.advance_step_flashattn(num_seqs=num_seqs,
|
|
709
|
+
num_queries=num_queries,
|
|
710
|
+
block_size=block_size,
|
|
711
|
+
input_tokens=input_tokens,
|
|
712
|
+
sampled_token_ids=sampled_token_ids,
|
|
713
|
+
input_positions=input_positions,
|
|
714
|
+
seq_lens=self.seq_lens_tensor,
|
|
715
|
+
slot_mapping=self.slot_mapping,
|
|
716
|
+
block_tables=self.block_tables)
|
|
717
|
+
|
|
718
|
+
|
|
719
|
+
class MLACommonMetadataBuilder(AttentionMetadataBuilder[T], Generic[T]):
|
|
720
|
+
"""
|
|
721
|
+
NOTE: Please read the comment at the top of the file before trying to
|
|
722
|
+
understand this class
|
|
723
|
+
"""
|
|
724
|
+
BLOCK_TABLE_EXTENDER: list[list[int]] = []
|
|
725
|
+
|
|
726
|
+
def __init__(self, input_builder: "ModelInputForGPUBuilder"):
|
|
727
|
+
self.input_builder = input_builder
|
|
728
|
+
self.runner = input_builder.runner
|
|
729
|
+
self.sliding_window = input_builder.sliding_window
|
|
730
|
+
self.block_size = input_builder.block_size
|
|
731
|
+
self.chunked_prefill_enabled = \
|
|
732
|
+
self.runner.scheduler_config.chunked_prefill_enabled
|
|
733
|
+
self.enable_prefix_caching = \
|
|
734
|
+
self.runner.cache_config.enable_prefix_caching
|
|
735
|
+
|
|
736
|
+
if self.chunked_prefill_enabled or self.enable_prefix_caching:
|
|
737
|
+
attn_state = self.input_builder.runner.attn_state
|
|
738
|
+
self.context_chunk_workspace_size = \
|
|
739
|
+
attn_state.context_chunk_workspace_size
|
|
740
|
+
self.page_size = self.runner.block_size
|
|
741
|
+
|
|
742
|
+
def prepare(self):
|
|
743
|
+
self.slot_mapping: List[int] = []
|
|
744
|
+
self.prefill_seq_lens: List[int] = []
|
|
745
|
+
self.context_lens: List[int] = []
|
|
746
|
+
self.block_tables: List[List[int]] = []
|
|
747
|
+
self.curr_seq_lens: List[int] = []
|
|
748
|
+
self.multimodal_placeholder_maps: Dict[
|
|
749
|
+
str,
|
|
750
|
+
MultiModalPlaceholderMap] = defaultdict(MultiModalPlaceholderMap)
|
|
751
|
+
self.num_prefills = 0
|
|
752
|
+
self.num_prefill_tokens = 0
|
|
753
|
+
self.num_decode_tokens = 0
|
|
754
|
+
self.has_prefix_cache_hit = False
|
|
755
|
+
|
|
756
|
+
def _add_seq_group(
|
|
757
|
+
self, inter_data: "ModelInputForGPUBuilder.InterDataForSeqGroup",
|
|
758
|
+
chunked_prefill_enabled: bool, prefix_cache_hit: bool):
|
|
759
|
+
"""Add a sequence group to the metadata. Specifically update/append
|
|
760
|
+
1. context length.
|
|
761
|
+
2. block table.
|
|
762
|
+
3. slot mapping.
|
|
763
|
+
"""
|
|
764
|
+
is_prompt = inter_data.is_prompt
|
|
765
|
+
block_tables = inter_data.block_tables
|
|
766
|
+
|
|
767
|
+
for (seq_id, token_len, seq_len, curr_seq_len, query_len, context_len,
|
|
768
|
+
curr_sliding_window_block) in zip(
|
|
769
|
+
inter_data.seq_ids, [len(t) for t in inter_data.input_tokens],
|
|
770
|
+
inter_data.orig_seq_lens, inter_data.seq_lens,
|
|
771
|
+
inter_data.query_lens, inter_data.context_lens,
|
|
772
|
+
inter_data.curr_sliding_window_blocks):
|
|
773
|
+
self.context_lens.append(context_len)
|
|
774
|
+
if is_prompt:
|
|
775
|
+
self.num_prefills += 1
|
|
776
|
+
self.num_prefill_tokens += token_len
|
|
777
|
+
self.prefill_seq_lens.append(seq_len)
|
|
778
|
+
else:
|
|
779
|
+
self.num_decode_tokens += query_len
|
|
780
|
+
self.curr_seq_lens.append(curr_seq_len)
|
|
781
|
+
|
|
782
|
+
# Compute block table.
|
|
783
|
+
# TODO(sang): Combine chunked prefill and prefix caching by
|
|
784
|
+
# only allowing multiple of block_size chunk size.
|
|
785
|
+
# NOTE: This only works for oooooooxxx style attention.
|
|
786
|
+
block_table = []
|
|
787
|
+
if prefix_cache_hit:
|
|
788
|
+
# NOTE(woosuk): For flash-attn, the block table should
|
|
789
|
+
# include the entries for the incoming prefill tokens.
|
|
790
|
+
block_table = block_tables[seq_id]
|
|
791
|
+
elif ((chunked_prefill_enabled or not is_prompt)
|
|
792
|
+
and block_tables is not None):
|
|
793
|
+
if curr_sliding_window_block == 0:
|
|
794
|
+
block_table = block_tables[seq_id]
|
|
795
|
+
else:
|
|
796
|
+
block_table = block_tables[seq_id][
|
|
797
|
+
-curr_sliding_window_block:]
|
|
798
|
+
self.block_tables.append(block_table)
|
|
799
|
+
|
|
800
|
+
# Compute slot mapping.
|
|
801
|
+
is_profile_run = is_block_tables_empty(block_tables)
|
|
802
|
+
start_idx = compute_slot_mapping_start_idx(is_prompt, query_len,
|
|
803
|
+
context_len,
|
|
804
|
+
self.sliding_window)
|
|
805
|
+
compute_slot_mapping(is_profile_run, self.slot_mapping, seq_id,
|
|
806
|
+
seq_len, context_len, start_idx,
|
|
807
|
+
self.block_size, inter_data.block_tables)
|
|
808
|
+
|
|
809
|
+
def _get_graph_runner_block_tables(
|
|
810
|
+
self, num_seqs: int,
|
|
811
|
+
block_tables: List[List[int]]) -> torch.Tensor:
|
|
812
|
+
# The shape of graph_block_tables is
|
|
813
|
+
# [max batch size, max context len // block size].
|
|
814
|
+
max_batch_size, max_blocks = self.runner.graph_block_tables.shape
|
|
815
|
+
assert max_batch_size >= num_seqs
|
|
816
|
+
|
|
817
|
+
graph_block_tables = self.runner.graph_block_tables[:num_seqs]
|
|
818
|
+
for i, block_table in enumerate(block_tables):
|
|
819
|
+
if block_table:
|
|
820
|
+
num_blocks = len(block_table)
|
|
821
|
+
if num_blocks <= max_blocks:
|
|
822
|
+
graph_block_tables[i, :num_blocks] = block_table
|
|
823
|
+
else:
|
|
824
|
+
# It may be possible to have more blocks allocated due
|
|
825
|
+
# to lookahead slots of multi-step, however, they are
|
|
826
|
+
# not used anyway, so can be safely ignored.
|
|
827
|
+
graph_block_tables[
|
|
828
|
+
i, :max_blocks] = block_table[:max_blocks]
|
|
829
|
+
|
|
830
|
+
return torch.from_numpy(graph_block_tables).to(
|
|
831
|
+
device=self.runner.device, non_blocking=True)
|
|
832
|
+
|
|
833
|
+
def build(self, seq_lens: List[int], query_lens: List[int],
|
|
834
|
+
cuda_graph_pad_size: int, batch_size: int):
|
|
835
|
+
"""Build attention metadata with on-device tensors.
|
|
836
|
+
|
|
837
|
+
Args:
|
|
838
|
+
seq_lens: The maybe padded sequence lengths of the input sequences.
|
|
839
|
+
query_lens: The query lengths of the input sequences.
|
|
840
|
+
cuda_graph_pad_size: The padding size for cuda graph.
|
|
841
|
+
-1 if cuda graph is not used.
|
|
842
|
+
batch_size: The maybe padded batch size.
|
|
843
|
+
"""
|
|
844
|
+
prefix_cache_hit = any([
|
|
845
|
+
inter_data.prefix_cache_hit
|
|
846
|
+
for inter_data in self.input_builder.inter_data_list
|
|
847
|
+
])
|
|
848
|
+
|
|
849
|
+
for inter_data in self.input_builder.inter_data_list:
|
|
850
|
+
self._add_seq_group(inter_data,
|
|
851
|
+
self.input_builder.chunked_prefill_enabled,
|
|
852
|
+
prefix_cache_hit)
|
|
853
|
+
|
|
854
|
+
device = self.runner.device
|
|
855
|
+
use_captured_graph = cuda_graph_pad_size != -1
|
|
856
|
+
|
|
857
|
+
max_query_len = max(query_lens)
|
|
858
|
+
decode_query_lens = query_lens[self.num_prefills:]
|
|
859
|
+
if len(decode_query_lens) > 0:
|
|
860
|
+
max_decode_query_len = max(decode_query_lens)
|
|
861
|
+
else:
|
|
862
|
+
max_decode_query_len = 1
|
|
863
|
+
max_prefill_seq_len = max(self.prefill_seq_lens, default=0)
|
|
864
|
+
max_decode_seq_len = max(self.curr_seq_lens, default=0)
|
|
865
|
+
num_decode_tokens = self.num_decode_tokens
|
|
866
|
+
query_start_loc = list(accumulate(query_lens, initial=0))
|
|
867
|
+
seq_start_loc = list(accumulate(seq_lens, initial=0))
|
|
868
|
+
|
|
869
|
+
num_seqs = len(seq_lens)
|
|
870
|
+
if use_captured_graph:
|
|
871
|
+
self.slot_mapping.extend([PAD_SLOT_ID] * cuda_graph_pad_size)
|
|
872
|
+
self.block_tables.extend(self.__class__.BLOCK_TABLE_EXTENDER *
|
|
873
|
+
cuda_graph_pad_size)
|
|
874
|
+
num_decode_tokens = batch_size - self.num_prefill_tokens
|
|
875
|
+
|
|
876
|
+
block_tables = self._get_graph_runner_block_tables(
|
|
877
|
+
num_seqs, self.block_tables)
|
|
878
|
+
else:
|
|
879
|
+
block_tables = make_tensor_with_pad(
|
|
880
|
+
self.block_tables,
|
|
881
|
+
pad=0,
|
|
882
|
+
dtype=torch.int,
|
|
883
|
+
device=device,
|
|
884
|
+
)
|
|
885
|
+
assert max_query_len > 0, ("query_lens: {}".format(query_lens))
|
|
886
|
+
|
|
887
|
+
assert device is not None
|
|
888
|
+
context_lens_tensor = async_tensor_h2d(self.context_lens, torch.int,
|
|
889
|
+
device, self.runner.pin_memory)
|
|
890
|
+
seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device,
|
|
891
|
+
self.runner.pin_memory)
|
|
892
|
+
slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long,
|
|
893
|
+
device, self.runner.pin_memory)
|
|
894
|
+
query_start_loc_tensor = async_tensor_h2d(query_start_loc, torch.int32,
|
|
895
|
+
device,
|
|
896
|
+
self.runner.pin_memory)
|
|
897
|
+
seq_start_loc_tensor = async_tensor_h2d(seq_start_loc, torch.int32,
|
|
898
|
+
device, self.runner.pin_memory)
|
|
899
|
+
|
|
900
|
+
context_chunk_cu_seq_lens = None
|
|
901
|
+
context_chunk_starts = None
|
|
902
|
+
context_chunk_seq_tot = None
|
|
903
|
+
context_chunk_max_seq_lens = None
|
|
904
|
+
|
|
905
|
+
if (self.chunked_prefill_enabled or self.enable_prefix_caching) \
|
|
906
|
+
and self.num_prefills > 0 \
|
|
907
|
+
and context_lens_tensor is not None \
|
|
908
|
+
and context_lens_tensor[:self.num_prefills].max() > 0:
|
|
909
|
+
|
|
910
|
+
# NOTE: it is recommend you read the `Chunked Prefill` section in
|
|
911
|
+
# the comment at the top of the file before trying to understand
|
|
912
|
+
# the following code
|
|
913
|
+
|
|
914
|
+
num_prefills_with_context = \
|
|
915
|
+
(context_lens_tensor[:self.num_prefills] > 0).sum().item()
|
|
916
|
+
|
|
917
|
+
# currently we allocate an equal amount of workspace for each
|
|
918
|
+
# prefill in the batch, we could probably use a more advanced
|
|
919
|
+
# algorithm here and allocate more workspace to prefills with
|
|
920
|
+
# longer context lengths
|
|
921
|
+
max_context_chunk = \
|
|
922
|
+
self.context_chunk_workspace_size // num_prefills_with_context
|
|
923
|
+
|
|
924
|
+
# align max_context_chunk to page_size by rounding down,
|
|
925
|
+
# currently the `gather_cache` kernel cannot handle
|
|
926
|
+
# `context_chunk_starts` that are not aligned to page_size
|
|
927
|
+
max_context_chunk = round_down(max_context_chunk, self.page_size)
|
|
928
|
+
assert max_context_chunk > 0
|
|
929
|
+
num_chunks = cdiv(context_lens_tensor.max(), max_context_chunk)
|
|
930
|
+
|
|
931
|
+
# if `max_context_chunk = 256`, `num_chunks = 3`, and
|
|
932
|
+
# `num_prefills_with_context = 4`, create a tensor that looks like
|
|
933
|
+
# [[0, 0, 0, 0], [256, 256, 256, 256], [512, 512, 512, 512]]
|
|
934
|
+
context_chunk_starts = \
|
|
935
|
+
torch.arange(num_chunks, device=device, dtype=torch.int32)\
|
|
936
|
+
.unsqueeze(1).expand(-1, self.num_prefills)\
|
|
937
|
+
* max_context_chunk
|
|
938
|
+
chunk_ends = torch.min(context_lens_tensor[:self.num_prefills]\
|
|
939
|
+
.unsqueeze(0), context_chunk_starts + max_context_chunk)
|
|
940
|
+
chunk_seq_lens = (chunk_ends - context_chunk_starts).clamp(min=0)
|
|
941
|
+
_context_chunk_cu_seq_lens = chunk_seq_lens.cumsum(dim=1).to(
|
|
942
|
+
torch.int32)
|
|
943
|
+
zero = torch.zeros(num_chunks, dtype=torch.int32, device=device)\
|
|
944
|
+
.unsqueeze(-1)
|
|
945
|
+
context_chunk_cu_seq_lens = \
|
|
946
|
+
torch.cat([zero, _context_chunk_cu_seq_lens], dim=1)
|
|
947
|
+
context_chunk_max_seq_lens = \
|
|
948
|
+
chunk_seq_lens.max(dim=1).values.tolist()
|
|
949
|
+
context_chunk_seq_tot = chunk_seq_lens.sum(dim=1).tolist()
|
|
950
|
+
assert max(context_chunk_seq_tot) <= \
|
|
951
|
+
self.context_chunk_workspace_size
|
|
952
|
+
|
|
953
|
+
return self.runner.attn_backend.make_metadata(
|
|
954
|
+
# Required by ModelRunner
|
|
955
|
+
use_cuda_graph=use_captured_graph, # Not Attention Related
|
|
956
|
+
# Required by Attention Metadata
|
|
957
|
+
num_prefills=self.num_prefills,
|
|
958
|
+
slot_mapping=slot_mapping_tensor,
|
|
959
|
+
num_prefill_tokens=self.num_prefill_tokens,
|
|
960
|
+
num_decode_tokens=num_decode_tokens,
|
|
961
|
+
# Required by Attention Metadata (not used)
|
|
962
|
+
multi_modal_placeholder_index_maps=None, # Not Attention Related
|
|
963
|
+
enable_kv_scales_calculation=False,
|
|
964
|
+
# MLACommonMetadata
|
|
965
|
+
seq_lens=seq_lens,
|
|
966
|
+
seq_lens_tensor=seq_lens_tensor,
|
|
967
|
+
max_query_len=max_query_len,
|
|
968
|
+
max_decode_query_len=max_decode_query_len,
|
|
969
|
+
max_prefill_seq_len=max_prefill_seq_len,
|
|
970
|
+
max_decode_seq_len=max_decode_seq_len,
|
|
971
|
+
query_start_loc=query_start_loc_tensor,
|
|
972
|
+
seq_start_loc=seq_start_loc_tensor,
|
|
973
|
+
context_lens_tensor=context_lens_tensor,
|
|
974
|
+
block_tables=block_tables,
|
|
975
|
+
head_dim=self.runner.model_config.get_head_size(),
|
|
976
|
+
is_profile_run=self.runner.in_profile_run,
|
|
977
|
+
# MLACommonMetadata Chunk prefill specific
|
|
978
|
+
context_chunk_cu_seq_lens=context_chunk_cu_seq_lens,
|
|
979
|
+
context_chunk_starts=context_chunk_starts,
|
|
980
|
+
context_chunk_seq_tot=context_chunk_seq_tot,
|
|
981
|
+
context_chunk_max_seq_lens=context_chunk_max_seq_lens,
|
|
982
|
+
)
|
|
983
|
+
|
|
984
|
+
|
|
985
|
+
class MLACommonImpl(MLAAttentionImpl[T], Generic[T]):
|
|
986
|
+
"""
|
|
987
|
+
NOTE: Please read the comment at the top of the file before trying to
|
|
988
|
+
understand this class
|
|
989
|
+
"""
|
|
990
|
+
|
|
991
|
+
def __init__(
|
|
992
|
+
self,
|
|
993
|
+
num_heads: int,
|
|
994
|
+
head_size: int,
|
|
995
|
+
scale: float,
|
|
996
|
+
num_kv_heads: int,
|
|
997
|
+
alibi_slopes: Optional[List[float]],
|
|
998
|
+
sliding_window: Optional[int],
|
|
999
|
+
kv_cache_dtype: str,
|
|
1000
|
+
blocksparse_params: Optional[Dict[str, Any]],
|
|
1001
|
+
logits_soft_cap: Optional[float],
|
|
1002
|
+
attn_type: str,
|
|
1003
|
+
kv_sharing_target_layer_name: Optional[str],
|
|
1004
|
+
# MLA Specific Arguments
|
|
1005
|
+
q_lora_rank: Optional[int],
|
|
1006
|
+
kv_lora_rank: int,
|
|
1007
|
+
qk_nope_head_dim: int,
|
|
1008
|
+
qk_rope_head_dim: int,
|
|
1009
|
+
qk_head_dim: int,
|
|
1010
|
+
v_head_dim: int,
|
|
1011
|
+
kv_b_proj: ColumnParallelLinear,
|
|
1012
|
+
) -> None:
|
|
1013
|
+
if kv_sharing_target_layer_name is not None:
|
|
1014
|
+
raise NotImplementedError("KV sharing not supported in V0.")
|
|
1015
|
+
self.num_heads = num_heads
|
|
1016
|
+
self.head_size = head_size
|
|
1017
|
+
self.scale = float(scale)
|
|
1018
|
+
self.num_kv_heads = num_kv_heads
|
|
1019
|
+
self.kv_cache_dtype = kv_cache_dtype
|
|
1020
|
+
|
|
1021
|
+
self.q_lora_rank = q_lora_rank
|
|
1022
|
+
self.kv_lora_rank = kv_lora_rank
|
|
1023
|
+
self.qk_nope_head_dim = qk_nope_head_dim
|
|
1024
|
+
self.qk_rope_head_dim = qk_rope_head_dim
|
|
1025
|
+
self.qk_head_dim = qk_head_dim
|
|
1026
|
+
self.v_head_dim = v_head_dim
|
|
1027
|
+
self.kv_b_proj = kv_b_proj
|
|
1028
|
+
|
|
1029
|
+
self.triton_fa_func = triton_attention
|
|
1030
|
+
# Handle the differences between the flash_attn_varlen from flash_attn
|
|
1031
|
+
# and the one from vllm_flash_attn. The former is used on RoCM and the
|
|
1032
|
+
# latter has an additional parameter to control FA2 vs FA3
|
|
1033
|
+
self.flash_attn_varlen_func = flash_attn_varlen_func
|
|
1034
|
+
self.vllm_flash_attn_version = get_flash_attn_version()
|
|
1035
|
+
if self.vllm_flash_attn_version is not None:
|
|
1036
|
+
self.flash_attn_varlen_func = \
|
|
1037
|
+
functools.partial(flash_attn_varlen_func,
|
|
1038
|
+
fa_version=self.vllm_flash_attn_version)
|
|
1039
|
+
|
|
1040
|
+
# For MLA the v head dim is smaller than qk head dim so we pad out
|
|
1041
|
+
# v with 0s to match the qk head dim for attention backends that do
|
|
1042
|
+
# not support different headdims
|
|
1043
|
+
# We don't need to pad V if we are on a hopper system with FA3
|
|
1044
|
+
self._pad_v = self.vllm_flash_attn_version is None or not (
|
|
1045
|
+
self.vllm_flash_attn_version == 3
|
|
1046
|
+
and current_platform.get_device_capability()[0] == 9)
|
|
1047
|
+
|
|
1048
|
+
def _flash_attn_varlen_diff_headdims(self, q, k, v, softmax_scale,
|
|
1049
|
+
return_softmax_lse, **kwargs):
|
|
1050
|
+
maybe_padded_v = v
|
|
1051
|
+
if self._pad_v:
|
|
1052
|
+
maybe_padded_v = torch.nn.functional.pad(
|
|
1053
|
+
v, [0, q.shape[-1] - v.shape[-1]], value=0)
|
|
1054
|
+
|
|
1055
|
+
if is_hip and envs.VLLM_USE_TRITON_FLASH_ATTN \
|
|
1056
|
+
and not return_softmax_lse:
|
|
1057
|
+
attn_out = self.triton_fa_func(
|
|
1058
|
+
q,
|
|
1059
|
+
k,
|
|
1060
|
+
maybe_padded_v,
|
|
1061
|
+
None, # output
|
|
1062
|
+
kwargs["cu_seqlens_q"],
|
|
1063
|
+
kwargs["cu_seqlens_k"],
|
|
1064
|
+
kwargs["max_seqlen_q"],
|
|
1065
|
+
kwargs["max_seqlen_k"],
|
|
1066
|
+
kwargs["causal"],
|
|
1067
|
+
softmax_scale,
|
|
1068
|
+
None, # bias
|
|
1069
|
+
)
|
|
1070
|
+
elif is_vllm_fa:
|
|
1071
|
+
attn_out = self.flash_attn_varlen_func(
|
|
1072
|
+
q=q,
|
|
1073
|
+
k=k,
|
|
1074
|
+
v=maybe_padded_v,
|
|
1075
|
+
return_softmax_lse=return_softmax_lse,
|
|
1076
|
+
softmax_scale=softmax_scale,
|
|
1077
|
+
**kwargs,
|
|
1078
|
+
)
|
|
1079
|
+
else:
|
|
1080
|
+
# Use return_attn_probs instead of return_softmax_lse for RoCM
|
|
1081
|
+
attn_out = self.flash_attn_varlen_func(
|
|
1082
|
+
q=q,
|
|
1083
|
+
k=k,
|
|
1084
|
+
v=maybe_padded_v,
|
|
1085
|
+
return_attn_probs=return_softmax_lse,
|
|
1086
|
+
softmax_scale=softmax_scale,
|
|
1087
|
+
**kwargs,
|
|
1088
|
+
)
|
|
1089
|
+
|
|
1090
|
+
# Unpack the output if there is multiple results,
|
|
1091
|
+
# triton always returns (output, softmax_lse),
|
|
1092
|
+
# vllm_flash_attn returns (output, softmax_lse) when
|
|
1093
|
+
# `return_softmax_lse = True`
|
|
1094
|
+
# flash_attn (RoCM) returns (output, softmax_lse, ...) when
|
|
1095
|
+
# `return_attn_probs = True`
|
|
1096
|
+
rest = None
|
|
1097
|
+
if isinstance(attn_out, tuple):
|
|
1098
|
+
attn_out, *rest = attn_out
|
|
1099
|
+
|
|
1100
|
+
# Remain consistent with old `flash_attn_varlen_func` where there
|
|
1101
|
+
# is only one output tensor if `return_softmax_lse` is False.
|
|
1102
|
+
if return_softmax_lse:
|
|
1103
|
+
assert rest is not None
|
|
1104
|
+
return attn_out, rest[0]
|
|
1105
|
+
return attn_out
|
|
1106
|
+
|
|
1107
|
+
def _v_up_proj(self, x):
|
|
1108
|
+
# Convert from (B, N, L) to (N, B, L)
|
|
1109
|
+
x = x.view(-1, self.num_heads, self.kv_lora_rank).transpose(0, 1)
|
|
1110
|
+
# Multiply (N, B, L) x (N, L, V) -> (N, B, V)
|
|
1111
|
+
x = torch.bmm(x, self.W_UV)
|
|
1112
|
+
# Convert from (N, B, V) to (B, N * V)
|
|
1113
|
+
return x.transpose(0, 1).reshape(-1, self.num_heads * self.v_head_dim)
|
|
1114
|
+
|
|
1115
|
+
def process_weights_after_loading(self, act_dtype: torch.dtype):
|
|
1116
|
+
|
|
1117
|
+
def get_layer_weight(layer):
|
|
1118
|
+
WEIGHT_NAMES = ("weight", "qweight", "weight_packed")
|
|
1119
|
+
for attr in WEIGHT_NAMES:
|
|
1120
|
+
if hasattr(layer, attr):
|
|
1121
|
+
return getattr(layer, attr)
|
|
1122
|
+
raise AttributeError(
|
|
1123
|
+
f"Layer '{layer}' has no recognized weight attribute:"
|
|
1124
|
+
f" {WEIGHT_NAMES}.")
|
|
1125
|
+
|
|
1126
|
+
def get_and_maybe_dequant_weights(layer: LinearBase):
|
|
1127
|
+
if not isinstance(layer.quant_method, UnquantizedLinearMethod):
|
|
1128
|
+
# NOTE: This should only be used offline, since it's O(N^3)
|
|
1129
|
+
eye = torch.eye(layer.input_size_per_partition,
|
|
1130
|
+
dtype=act_dtype,
|
|
1131
|
+
device=get_layer_weight(layer).device)
|
|
1132
|
+
dequant_weights = layer.quant_method.apply(layer,
|
|
1133
|
+
eye,
|
|
1134
|
+
bias=None)
|
|
1135
|
+
del eye
|
|
1136
|
+
# standardize to (output, input)
|
|
1137
|
+
return dequant_weights.T
|
|
1138
|
+
return layer.weight
|
|
1139
|
+
|
|
1140
|
+
# we currently do not have quantized bmm's which are needed for
|
|
1141
|
+
# `W_UV` and `W_UK_T`, we we just store fp16/bf16 copies and perform
|
|
1142
|
+
# the bmm's in 16-bit, the extra memory overhead of this is fairly low
|
|
1143
|
+
kv_b_proj_weight = get_and_maybe_dequant_weights(self.kv_b_proj).T
|
|
1144
|
+
assert kv_b_proj_weight.shape == (
|
|
1145
|
+
self.kv_lora_rank,
|
|
1146
|
+
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim)), (
|
|
1147
|
+
f"{kv_b_proj_weight.shape=}, "
|
|
1148
|
+
f"{self.kv_lora_rank=}, "
|
|
1149
|
+
f"{self.num_heads=}, "
|
|
1150
|
+
f"{self.qk_nope_head_dim=}, "
|
|
1151
|
+
f"{self.v_head_dim=}")
|
|
1152
|
+
kv_b_proj_weight = kv_b_proj_weight.view(
|
|
1153
|
+
self.kv_lora_rank,
|
|
1154
|
+
self.num_heads,
|
|
1155
|
+
self.qk_nope_head_dim + self.v_head_dim,
|
|
1156
|
+
)
|
|
1157
|
+
|
|
1158
|
+
W_UK, W_UV = kv_b_proj_weight.split(
|
|
1159
|
+
[self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
|
1160
|
+
|
|
1161
|
+
# Convert from (L, N, V) to (N, L, V)
|
|
1162
|
+
self.W_UV = W_UV.transpose(0, 1)
|
|
1163
|
+
# Convert from (L, N, P) to (N, P, L)
|
|
1164
|
+
self.W_UK_T = W_UK.permute(1, 2, 0)
|
|
1165
|
+
|
|
1166
|
+
def _compute_prefill_context(
|
|
1167
|
+
self,
|
|
1168
|
+
q: torch.Tensor,
|
|
1169
|
+
kv_c_and_k_pe_cache: torch.Tensor,
|
|
1170
|
+
attn_metadata: MLACommonMetadata,
|
|
1171
|
+
):
|
|
1172
|
+
prefill_metadata = attn_metadata.prefill_metadata
|
|
1173
|
+
assert prefill_metadata is not None
|
|
1174
|
+
assert prefill_metadata.context_chunk_seq_tot is not None
|
|
1175
|
+
assert prefill_metadata.context_chunk_cu_seq_lens is not None
|
|
1176
|
+
assert prefill_metadata.context_chunk_starts is not None
|
|
1177
|
+
assert prefill_metadata.context_chunk_max_seq_lens is not None
|
|
1178
|
+
assert prefill_metadata.context_lens_tensor is not None
|
|
1179
|
+
|
|
1180
|
+
output = None
|
|
1181
|
+
iters = len(prefill_metadata.context_chunk_seq_tot)
|
|
1182
|
+
|
|
1183
|
+
# Fetch from attn_metadata directly, since it late bound by
|
|
1184
|
+
# MLAAttentionState, grabbing it directly `attn_metadata` can avoid
|
|
1185
|
+
# any weirdness around prefill_metadata caching
|
|
1186
|
+
assert attn_metadata.context_chunk_workspace is not None
|
|
1187
|
+
workspace = attn_metadata.context_chunk_workspace
|
|
1188
|
+
|
|
1189
|
+
for i in range(iters):
|
|
1190
|
+
toks = prefill_metadata.context_chunk_seq_tot[i]
|
|
1191
|
+
|
|
1192
|
+
ops.gather_cache(
|
|
1193
|
+
src_cache=kv_c_and_k_pe_cache,
|
|
1194
|
+
dst=workspace,
|
|
1195
|
+
block_table=prefill_metadata.block_tables,
|
|
1196
|
+
cu_seq_lens=prefill_metadata.context_chunk_cu_seq_lens[i],
|
|
1197
|
+
batch_size=prefill_metadata.num_prefills,
|
|
1198
|
+
seq_starts=prefill_metadata.context_chunk_starts[i],
|
|
1199
|
+
)
|
|
1200
|
+
|
|
1201
|
+
kv_c_normed = workspace[:toks]\
|
|
1202
|
+
[..., :self.kv_lora_rank]
|
|
1203
|
+
k_pe = workspace[:toks]\
|
|
1204
|
+
[..., self.kv_lora_rank:].unsqueeze(1)
|
|
1205
|
+
|
|
1206
|
+
kv_nope = self.kv_b_proj(kv_c_normed)[0].view( \
|
|
1207
|
+
-1, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
|
1208
|
+
k_nope, v = kv_nope\
|
|
1209
|
+
.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
|
1210
|
+
|
|
1211
|
+
k = torch.cat((k_nope, k_pe.expand((*k_nope.shape[:-1], -1))),
|
|
1212
|
+
dim=-1)
|
|
1213
|
+
|
|
1214
|
+
attn_output, attn_softmax_lse = \
|
|
1215
|
+
self._flash_attn_varlen_diff_headdims(
|
|
1216
|
+
q=q,
|
|
1217
|
+
k=k,
|
|
1218
|
+
v=v,
|
|
1219
|
+
cu_seqlens_q=prefill_metadata.query_start_loc,
|
|
1220
|
+
cu_seqlens_k=prefill_metadata.context_chunk_cu_seq_lens[i],
|
|
1221
|
+
max_seqlen_q=prefill_metadata.max_query_len,
|
|
1222
|
+
max_seqlen_k=prefill_metadata.context_chunk_max_seq_lens[i],
|
|
1223
|
+
softmax_scale=self.scale,
|
|
1224
|
+
causal=False, # Context is unmasked
|
|
1225
|
+
return_softmax_lse=True,
|
|
1226
|
+
)
|
|
1227
|
+
|
|
1228
|
+
if output is None:
|
|
1229
|
+
output = attn_output
|
|
1230
|
+
output_lse = attn_softmax_lse
|
|
1231
|
+
else:
|
|
1232
|
+
output_tmp = torch.empty_like(output)
|
|
1233
|
+
output_lse_tmp = torch.empty_like(output_lse)
|
|
1234
|
+
merge_attn_states(
|
|
1235
|
+
output=output_tmp,
|
|
1236
|
+
output_lse=output_lse_tmp,
|
|
1237
|
+
prefix_output=output,
|
|
1238
|
+
prefix_lse=output_lse,
|
|
1239
|
+
suffix_output=attn_output,
|
|
1240
|
+
suffix_lse=attn_softmax_lse,
|
|
1241
|
+
)
|
|
1242
|
+
output = output_tmp
|
|
1243
|
+
output_lse = output_lse_tmp
|
|
1244
|
+
|
|
1245
|
+
return output, output_lse
|
|
1246
|
+
|
|
1247
|
+
def _forward_prefill(
|
|
1248
|
+
self,
|
|
1249
|
+
q: torch.Tensor,
|
|
1250
|
+
kv_c_normed: torch.Tensor,
|
|
1251
|
+
k_pe: torch.Tensor,
|
|
1252
|
+
kv_c_and_k_pe_cache: torch.Tensor,
|
|
1253
|
+
attn_metadata: MLACommonMetadata,
|
|
1254
|
+
) -> torch.Tensor:
|
|
1255
|
+
|
|
1256
|
+
prefill_metadata = attn_metadata.prefill_metadata
|
|
1257
|
+
assert prefill_metadata is not None
|
|
1258
|
+
|
|
1259
|
+
has_context = prefill_metadata.context_lens_tensor is not None \
|
|
1260
|
+
and prefill_metadata.context_lens_tensor.max() > 0
|
|
1261
|
+
|
|
1262
|
+
kv_nope = self.kv_b_proj(kv_c_normed)[0].view(\
|
|
1263
|
+
-1, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
|
1264
|
+
k_nope, v = kv_nope\
|
|
1265
|
+
.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
|
1266
|
+
|
|
1267
|
+
k = torch.cat((k_nope, k_pe.expand((*k_nope.shape[:-1], -1))), dim=-1)
|
|
1268
|
+
|
|
1269
|
+
output = self._flash_attn_varlen_diff_headdims(
|
|
1270
|
+
q=q,
|
|
1271
|
+
k=k,
|
|
1272
|
+
v=v,
|
|
1273
|
+
cu_seqlens_q=prefill_metadata.query_start_loc,
|
|
1274
|
+
cu_seqlens_k=prefill_metadata.query_start_loc,
|
|
1275
|
+
max_seqlen_q=prefill_metadata.max_prefill_seq_len,
|
|
1276
|
+
max_seqlen_k=prefill_metadata.max_prefill_seq_len,
|
|
1277
|
+
softmax_scale=self.scale,
|
|
1278
|
+
causal=True,
|
|
1279
|
+
return_softmax_lse=has_context,
|
|
1280
|
+
)
|
|
1281
|
+
|
|
1282
|
+
if has_context:
|
|
1283
|
+
# ROCm flash_attn_varlen_func will return 3 objects instead of 2
|
|
1284
|
+
suffix_output, suffix_lse = output
|
|
1285
|
+
context_output, context_lse = self._compute_prefill_context( \
|
|
1286
|
+
q, kv_c_and_k_pe_cache, attn_metadata)
|
|
1287
|
+
|
|
1288
|
+
output = torch.empty_like(suffix_output)
|
|
1289
|
+
merge_attn_states(
|
|
1290
|
+
output=output,
|
|
1291
|
+
prefix_output=context_output,
|
|
1292
|
+
prefix_lse=context_lse,
|
|
1293
|
+
suffix_output=suffix_output,
|
|
1294
|
+
suffix_lse=suffix_lse,
|
|
1295
|
+
)
|
|
1296
|
+
|
|
1297
|
+
# unpad if necessary
|
|
1298
|
+
if self._pad_v:
|
|
1299
|
+
output = output[..., :v.shape[-1]]
|
|
1300
|
+
|
|
1301
|
+
return output.flatten(start_dim=-2)
|
|
1302
|
+
|
|
1303
|
+
@abstractmethod
|
|
1304
|
+
def _forward_decode(
|
|
1305
|
+
self,
|
|
1306
|
+
ql_nope: torch.Tensor,
|
|
1307
|
+
q_pe: torch.Tensor,
|
|
1308
|
+
kv_c_and_k_pe_cache: torch.Tensor,
|
|
1309
|
+
attn_metadata: T,
|
|
1310
|
+
) -> torch.Tensor:
|
|
1311
|
+
raise NotImplementedError
|
|
1312
|
+
|
|
1313
|
+
def forward(
|
|
1314
|
+
self,
|
|
1315
|
+
layer: AttentionLayer,
|
|
1316
|
+
q: torch.Tensor, # query in unified attn
|
|
1317
|
+
k_c_normed: torch.Tensor, # key in unified attn
|
|
1318
|
+
k_pe: torch.Tensor, # value in unified attn
|
|
1319
|
+
kv_cache: torch.Tensor,
|
|
1320
|
+
attn_metadata: T,
|
|
1321
|
+
output: Optional[torch.Tensor] = None,
|
|
1322
|
+
) -> torch.Tensor:
|
|
1323
|
+
if output is not None:
|
|
1324
|
+
raise NotImplementedError(
|
|
1325
|
+
"output is not yet supported for MLAImplBase")
|
|
1326
|
+
|
|
1327
|
+
if attn_metadata.is_profile_run and \
|
|
1328
|
+
attn_metadata.context_chunk_workspace is not None:
|
|
1329
|
+
# During the profile run try to simulate to worse case output size
|
|
1330
|
+
# for `self.kv_b_proj(kv_c_normed)` in `_compute_prefill_context`
|
|
1331
|
+
# since this can be large
|
|
1332
|
+
_ = torch.empty(
|
|
1333
|
+
(attn_metadata.context_chunk_workspace.shape[0],
|
|
1334
|
+
self.num_heads, self.qk_nope_head_dim + self.v_head_dim),
|
|
1335
|
+
device=k_c_normed.device,
|
|
1336
|
+
dtype=k_c_normed.dtype,
|
|
1337
|
+
)
|
|
1338
|
+
|
|
1339
|
+
has_decode = attn_metadata.decode_metadata is not None
|
|
1340
|
+
has_prefill = attn_metadata.prefill_metadata is not None
|
|
1341
|
+
|
|
1342
|
+
num_prefill_tokens: int = attn_metadata.num_prefill_tokens
|
|
1343
|
+
q = q.view(-1, self.num_heads, self.qk_head_dim)
|
|
1344
|
+
|
|
1345
|
+
decode_q = q[num_prefill_tokens:]
|
|
1346
|
+
|
|
1347
|
+
prefill_q = q[:num_prefill_tokens]
|
|
1348
|
+
prefill_k_pe = k_pe[:num_prefill_tokens]
|
|
1349
|
+
prefill_k_c_normed = k_c_normed[:num_prefill_tokens]
|
|
1350
|
+
|
|
1351
|
+
# write the latent and rope to kv cache
|
|
1352
|
+
if kv_cache.numel() > 0:
|
|
1353
|
+
ops.concat_and_cache_mla(
|
|
1354
|
+
k_c_normed,
|
|
1355
|
+
k_pe.squeeze(1),
|
|
1356
|
+
kv_cache,
|
|
1357
|
+
attn_metadata.slot_mapping.flatten(),
|
|
1358
|
+
kv_cache_dtype=self.kv_cache_dtype,
|
|
1359
|
+
scale=layer._k_scale,
|
|
1360
|
+
)
|
|
1361
|
+
|
|
1362
|
+
output = torch.empty(attn_metadata.num_prefill_tokens +
|
|
1363
|
+
attn_metadata.num_decode_tokens,
|
|
1364
|
+
self.v_head_dim * self.num_heads,
|
|
1365
|
+
device=q.device,
|
|
1366
|
+
dtype=q.dtype)
|
|
1367
|
+
if has_prefill:
|
|
1368
|
+
output[:num_prefill_tokens] = self._forward_prefill(
|
|
1369
|
+
prefill_q, prefill_k_c_normed, prefill_k_pe, kv_cache,
|
|
1370
|
+
attn_metadata)
|
|
1371
|
+
|
|
1372
|
+
if has_decode:
|
|
1373
|
+
decode_q_nope, decode_q_pe = decode_q.split(
|
|
1374
|
+
[self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
|
1375
|
+
# Convert from (B, N, P) to (N, B, P)
|
|
1376
|
+
decode_q_nope = decode_q_nope.transpose(0, 1)
|
|
1377
|
+
# Multiply (N, B, P) x (N, P, L) -> (N, B, L)
|
|
1378
|
+
decode_ql_nope = torch.bmm(decode_q_nope, self.W_UK_T)
|
|
1379
|
+
# Convert from (N, B, L) to (B, N, L)
|
|
1380
|
+
decode_ql_nope = decode_ql_nope.transpose(0, 1)
|
|
1381
|
+
|
|
1382
|
+
output[num_prefill_tokens:] = self._forward_decode(
|
|
1383
|
+
decode_ql_nope, decode_q_pe, kv_cache, attn_metadata)
|
|
1384
|
+
|
|
1385
|
+
return output
|