vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +53 -0
- vllm/_custom_ops.py +1828 -0
- vllm/_ipex_ops.py +244 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +106 -0
- vllm/adapter_commons/request.py +26 -0
- vllm/adapter_commons/utils.py +93 -0
- vllm/adapter_commons/worker_manager.py +39 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +34 -0
- vllm/assets/video.py +115 -0
- vllm/attention/__init__.py +20 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +308 -0
- vllm/attention/backends/blocksparse_attn.py +461 -0
- vllm/attention/backends/cpu_mla.py +307 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
- vllm/attention/backends/flash_attn.py +1003 -0
- vllm/attention/backends/flashinfer.py +1104 -0
- vllm/attention/backends/flashmla.py +244 -0
- vllm/attention/backends/hpu_attn.py +313 -0
- vllm/attention/backends/ipex_attn.py +398 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1385 -0
- vllm/attention/backends/pallas.py +351 -0
- vllm/attention/backends/placeholder_attn.py +400 -0
- vllm/attention/backends/rocm_aiter_mla.py +435 -0
- vllm/attention/backends/rocm_flash_attn.py +975 -0
- vllm/attention/backends/torch_sdpa.py +703 -0
- vllm/attention/backends/triton_mla.py +115 -0
- vllm/attention/backends/utils.py +610 -0
- vllm/attention/backends/xformers.py +802 -0
- vllm/attention/layer.py +468 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
- vllm/attention/ops/blocksparse_attention/interface.py +239 -0
- vllm/attention/ops/blocksparse_attention/utils.py +246 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
- vllm/attention/ops/flashmla.py +116 -0
- vllm/attention/ops/hpu_paged_attn.py +88 -0
- vllm/attention/ops/ipex_attn.py +195 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/nki_flash_attn.py +906 -0
- vllm/attention/ops/paged_attn.py +256 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +100 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +674 -0
- vllm/attention/ops/triton_flash_attention.py +979 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_unified_attention.py +334 -0
- vllm/attention/selector.py +187 -0
- vllm/attention/utils/fa_utils.py +55 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +1185 -0
- vllm/benchmarks/endpoint_request_func.py +381 -0
- vllm/benchmarks/latency.py +168 -0
- vllm/benchmarks/serve.py +1135 -0
- vllm/benchmarks/throughput.py +609 -0
- vllm/benchmarks/utils.py +70 -0
- vllm/collect_env.py +820 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +89 -0
- vllm/compilation/backends.py +563 -0
- vllm/compilation/base_piecewise_backend.py +72 -0
- vllm/compilation/collective_fusion.py +127 -0
- vllm/compilation/compiler_interface.py +544 -0
- vllm/compilation/counter.py +38 -0
- vllm/compilation/cuda_piecewise_backend.py +214 -0
- vllm/compilation/decorators.py +250 -0
- vllm/compilation/fix_functionalization.py +191 -0
- vllm/compilation/fusion.py +618 -0
- vllm/compilation/fx_utils.py +62 -0
- vllm/compilation/inductor_pass.py +115 -0
- vllm/compilation/monitor.py +39 -0
- vllm/compilation/multi_output_match.py +109 -0
- vllm/compilation/noop_elimination.py +137 -0
- vllm/compilation/pass_manager.py +78 -0
- vllm/compilation/sequence_parallelism.py +268 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +67 -0
- vllm/compilation/wrapper.py +135 -0
- vllm/config.py +4746 -0
- vllm/connections.py +174 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +399 -0
- vllm/core/block/common.py +371 -0
- vllm/core/block/cpu_gpu_block_allocator.py +441 -0
- vllm/core/block/interfaces.py +319 -0
- vllm/core/block/naive_block.py +466 -0
- vllm/core/block/prefix_caching_block.py +1135 -0
- vllm/core/block/utils.py +28 -0
- vllm/core/block_manager.py +521 -0
- vllm/core/evictor.py +157 -0
- vllm/core/interfaces.py +135 -0
- vllm/core/placeholder_block_space_manager.py +100 -0
- vllm/core/scheduler.py +2093 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +281 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +264 -0
- vllm/distributed/device_communicators/base_device_communicator.py +260 -0
- vllm/distributed/device_communicators/cpu_communicator.py +145 -0
- vllm/distributed/device_communicators/cuda_communicator.py +176 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
- vllm/distributed/device_communicators/hpu_communicator.py +46 -0
- vllm/distributed/device_communicators/neuron_communicator.py +20 -0
- vllm/distributed/device_communicators/pynccl.py +218 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
- vllm/distributed/device_communicators/shm_broadcast.py +585 -0
- vllm/distributed/device_communicators/tpu_communicator.py +103 -0
- vllm/distributed/device_communicators/xpu_communicator.py +55 -0
- vllm/distributed/kv_events.py +356 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +12 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
- vllm/distributed/parallel_state.py +1296 -0
- vllm/distributed/tpu_distributed_utils.py +177 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1708 -0
- vllm/engine/async_llm_engine.py +1200 -0
- vllm/engine/async_timeout.py +173 -0
- vllm/engine/llm_engine.py +2097 -0
- vllm/engine/metrics.py +629 -0
- vllm/engine/metrics_types.py +94 -0
- vllm/engine/multiprocessing/__init__.py +148 -0
- vllm/engine/multiprocessing/client.py +681 -0
- vllm/engine/multiprocessing/engine.py +460 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +75 -0
- vllm/engine/output_processor/multi_step.py +216 -0
- vllm/engine/output_processor/single_step.py +145 -0
- vllm/engine/output_processor/stop_checker.py +131 -0
- vllm/engine/output_processor/util.py +28 -0
- vllm/engine/protocol.py +317 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1299 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +39 -0
- vllm/entrypoints/cli/benchmark/latency.py +30 -0
- vllm/entrypoints/cli/benchmark/main.py +54 -0
- vllm/entrypoints/cli/benchmark/serve.py +30 -0
- vllm/entrypoints/cli/benchmark/throughput.py +30 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +65 -0
- vllm/entrypoints/cli/openai.py +205 -0
- vllm/entrypoints/cli/run_batch.py +62 -0
- vllm/entrypoints/cli/serve.py +328 -0
- vllm/entrypoints/cli/types.py +25 -0
- vllm/entrypoints/launcher.py +147 -0
- vllm/entrypoints/llm.py +1544 -0
- vllm/entrypoints/logger.py +50 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1387 -0
- vllm/entrypoints/openai/cli_args.py +315 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +1913 -0
- vllm/entrypoints/openai/run_batch.py +463 -0
- vllm/entrypoints/openai/serving_chat.py +1221 -0
- vllm/entrypoints/openai/serving_classification.py +160 -0
- vllm/entrypoints/openai/serving_completion.py +592 -0
- vllm/entrypoints/openai/serving_embedding.py +201 -0
- vllm/entrypoints/openai/serving_engine.py +986 -0
- vllm/entrypoints/openai/serving_models.py +315 -0
- vllm/entrypoints/openai/serving_pooling.py +232 -0
- vllm/entrypoints/openai/serving_score.py +433 -0
- vllm/entrypoints/openai/serving_tokenization.py +157 -0
- vllm/entrypoints/openai/serving_transcription.py +424 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/score_utils.py +50 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/utils.py +233 -0
- vllm/env_override.py +41 -0
- vllm/envs.py +944 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +401 -0
- vllm/executor/mp_distributed_executor.py +244 -0
- vllm/executor/msgspec_utils.py +30 -0
- vllm/executor/multiproc_worker_utils.py +313 -0
- vllm/executor/ray_distributed_executor.py +701 -0
- vllm/executor/ray_utils.py +399 -0
- vllm/executor/uniproc_executor.py +139 -0
- vllm/forward_context.py +179 -0
- vllm/inputs/__init__.py +41 -0
- vllm/inputs/data.py +331 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +909 -0
- vllm/inputs/registry.py +237 -0
- vllm/jsontree.py +80 -0
- vllm/logger.py +212 -0
- vllm/logging_utils/__init__.py +8 -0
- vllm/logging_utils/dump_input.py +85 -0
- vllm/logging_utils/formatter.py +18 -0
- vllm/logits_process.py +119 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +355 -0
- vllm/lora/layers.py +1285 -0
- vllm/lora/lora.py +199 -0
- vllm/lora/models.py +818 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
- vllm/lora/ops/triton_ops/utils.py +120 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +145 -0
- vllm/lora/peft_helper.py +136 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +485 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +290 -0
- vllm/lora/punica_wrapper/punica_hpu.py +145 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +405 -0
- vllm/lora/punica_wrapper/utils.py +164 -0
- vllm/lora/request.py +99 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +240 -0
- vllm/lora/worker_manager.py +259 -0
- vllm/model_executor/__init__.py +16 -0
- vllm/model_executor/custom_op.py +152 -0
- vllm/model_executor/guided_decoding/__init__.py +181 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
- vllm/model_executor/guided_decoding/guided_fields.py +41 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
- vllm/model_executor/guided_decoding/utils.py +242 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +369 -0
- vllm/model_executor/layers/fused_moe/__init__.py +54 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
- vllm/model_executor/layers/fused_moe/layer.py +1535 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/utils.py +98 -0
- vllm/model_executor/layers/layernorm.py +288 -0
- vllm/model_executor/layers/lightning_attn.py +652 -0
- vllm/model_executor/layers/linear.py +1524 -0
- vllm/model_executor/layers/logits_processor.py +197 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
- vllm/model_executor/layers/pooler.py +350 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/auto_round.py +310 -0
- vllm/model_executor/layers/quantization/awq.py +194 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +151 -0
- vllm/model_executor/layers/quantization/bitblas.py +461 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
- vllm/model_executor/layers/quantization/experts_int8.py +196 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +906 -0
- vllm/model_executor/layers/quantization/gguf.py +565 -0
- vllm/model_executor/layers/quantization/gptq.py +278 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +139 -0
- vllm/model_executor/layers/quantization/marlin.py +261 -0
- vllm/model_executor/layers/quantization/modelopt.py +737 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
- vllm/model_executor/layers/quantization/qqq.py +275 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +441 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +161 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
- vllm/model_executor/layers/rejection_sampler.py +406 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding.py +1862 -0
- vllm/model_executor/layers/sampler.py +1204 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
- vllm/model_executor/layers/utils.py +95 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +76 -0
- vllm/model_executor/model_loader/base_loader.py +43 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
- vllm/model_executor/model_loader/default_loader.py +282 -0
- vllm/model_executor/model_loader/dummy_loader.py +27 -0
- vllm/model_executor/model_loader/gguf_loader.py +120 -0
- vllm/model_executor/model_loader/neuron.py +476 -0
- vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
- vllm/model_executor/model_loader/tensorizer.py +600 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
- vllm/model_executor/model_loader/tpu.py +112 -0
- vllm/model_executor/model_loader/utils.py +302 -0
- vllm/model_executor/model_loader/weight_utils.py +782 -0
- vllm/model_executor/models/__init__.py +28 -0
- vllm/model_executor/models/adapters.py +248 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +657 -0
- vllm/model_executor/models/aya_vision.py +466 -0
- vllm/model_executor/models/baichuan.py +474 -0
- vllm/model_executor/models/bamba.py +543 -0
- vllm/model_executor/models/bart.py +938 -0
- vllm/model_executor/models/bert.py +523 -0
- vllm/model_executor/models/bert_with_rope.py +769 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +718 -0
- vllm/model_executor/models/bloom.py +373 -0
- vllm/model_executor/models/chameleon.py +1136 -0
- vllm/model_executor/models/chatglm.py +478 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/commandr.py +472 -0
- vllm/model_executor/models/constant_size_cache.py +137 -0
- vllm/model_executor/models/dbrx.py +472 -0
- vllm/model_executor/models/deepseek.py +486 -0
- vllm/model_executor/models/deepseek_mtp.py +269 -0
- vllm/model_executor/models/deepseek_v2.py +843 -0
- vllm/model_executor/models/deepseek_vl2.py +648 -0
- vllm/model_executor/models/eagle.py +260 -0
- vllm/model_executor/models/exaone.py +551 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +510 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/florence2.py +1103 -0
- vllm/model_executor/models/fuyu.py +389 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +425 -0
- vllm/model_executor/models/gemma3.py +533 -0
- vllm/model_executor/models/gemma3_mm.py +709 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4v.py +648 -0
- vllm/model_executor/models/gpt2.py +328 -0
- vllm/model_executor/models/gpt_bigcode.py +335 -0
- vllm/model_executor/models/gpt_j.py +339 -0
- vllm/model_executor/models/gpt_neox.py +332 -0
- vllm/model_executor/models/granite.py +493 -0
- vllm/model_executor/models/granite_speech.py +779 -0
- vllm/model_executor/models/granitemoe.py +437 -0
- vllm/model_executor/models/granitemoehybrid.py +586 -0
- vllm/model_executor/models/granitemoeshared.py +341 -0
- vllm/model_executor/models/gritlm.py +224 -0
- vllm/model_executor/models/grok1.py +546 -0
- vllm/model_executor/models/h2ovl.py +546 -0
- vllm/model_executor/models/idefics2_vision_model.py +389 -0
- vllm/model_executor/models/idefics3.py +776 -0
- vllm/model_executor/models/interfaces.py +572 -0
- vllm/model_executor/models/interfaces_base.py +164 -0
- vllm/model_executor/models/intern_vit.py +480 -0
- vllm/model_executor/models/internlm2.py +455 -0
- vllm/model_executor/models/internlm2_ve.py +147 -0
- vllm/model_executor/models/internvl.py +1418 -0
- vllm/model_executor/models/jais.py +373 -0
- vllm/model_executor/models/jamba.py +592 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +644 -0
- vllm/model_executor/models/llama4.py +532 -0
- vllm/model_executor/models/llama_eagle.py +165 -0
- vllm/model_executor/models/llama_eagle3.py +263 -0
- vllm/model_executor/models/llava.py +866 -0
- vllm/model_executor/models/llava_next.py +586 -0
- vllm/model_executor/models/llava_next_video.py +471 -0
- vllm/model_executor/models/llava_onevision.py +956 -0
- vllm/model_executor/models/mamba.py +273 -0
- vllm/model_executor/models/mamba2.py +308 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +219 -0
- vllm/model_executor/models/mimo.py +192 -0
- vllm/model_executor/models/mimo_mtp.py +285 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +391 -0
- vllm/model_executor/models/minicpmo.py +759 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +36 -0
- vllm/model_executor/models/minimax_text_01.py +1301 -0
- vllm/model_executor/models/minimax_vl_01.py +364 -0
- vllm/model_executor/models/mistral3.py +604 -0
- vllm/model_executor/models/mixtral.py +488 -0
- vllm/model_executor/models/mixtral_quant.py +453 -0
- vllm/model_executor/models/mllama.py +1624 -0
- vllm/model_executor/models/mllama4.py +938 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +331 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1568 -0
- vllm/model_executor/models/moonvit.py +630 -0
- vllm/model_executor/models/mpt.py +331 -0
- vllm/model_executor/models/nemotron.py +508 -0
- vllm/model_executor/models/nemotron_h.py +573 -0
- vllm/model_executor/models/nemotron_nas.py +484 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +389 -0
- vllm/model_executor/models/olmo2.py +414 -0
- vllm/model_executor/models/olmoe.py +468 -0
- vllm/model_executor/models/opt.py +412 -0
- vllm/model_executor/models/orion.py +349 -0
- vllm/model_executor/models/ovis.py +567 -0
- vllm/model_executor/models/paligemma.py +398 -0
- vllm/model_executor/models/persimmon.py +344 -0
- vllm/model_executor/models/phi.py +356 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3_small.py +465 -0
- vllm/model_executor/models/phi3v.py +723 -0
- vllm/model_executor/models/phi4mm.py +1246 -0
- vllm/model_executor/models/phi4mm_audio.py +1233 -0
- vllm/model_executor/models/phi4mm_utils.py +1884 -0
- vllm/model_executor/models/phimoe.py +665 -0
- vllm/model_executor/models/pixtral.py +1316 -0
- vllm/model_executor/models/plamo2.py +738 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
- vllm/model_executor/models/qwen.py +362 -0
- vllm/model_executor/models/qwen2.py +497 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
- vllm/model_executor/models/qwen2_5_vl.py +1166 -0
- vllm/model_executor/models/qwen2_audio.py +410 -0
- vllm/model_executor/models/qwen2_moe.py +540 -0
- vllm/model_executor/models/qwen2_rm.py +132 -0
- vllm/model_executor/models/qwen2_vl.py +1405 -0
- vllm/model_executor/models/qwen3.py +321 -0
- vllm/model_executor/models/qwen3_moe.py +535 -0
- vllm/model_executor/models/qwen_vl.py +785 -0
- vllm/model_executor/models/registry.py +622 -0
- vllm/model_executor/models/roberta.py +276 -0
- vllm/model_executor/models/siglip.py +524 -0
- vllm/model_executor/models/skyworkr1v.py +951 -0
- vllm/model_executor/models/smolvlm.py +52 -0
- vllm/model_executor/models/solar.py +506 -0
- vllm/model_executor/models/stablelm.py +343 -0
- vllm/model_executor/models/starcoder2.py +356 -0
- vllm/model_executor/models/tarsier.py +643 -0
- vllm/model_executor/models/telechat2.py +140 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/transformers.py +508 -0
- vllm/model_executor/models/ultravox.py +656 -0
- vllm/model_executor/models/utils.py +731 -0
- vllm/model_executor/models/vision.py +147 -0
- vllm/model_executor/models/whisper.py +747 -0
- vllm/model_executor/models/zamba2.py +1009 -0
- vllm/model_executor/parameter.py +459 -0
- vllm/model_executor/pooling_metadata.py +72 -0
- vllm/model_executor/sampling_metadata.py +597 -0
- vllm/model_executor/utils.py +77 -0
- vllm/multimodal/__init__.py +33 -0
- vllm/multimodal/audio.py +106 -0
- vllm/multimodal/base.py +219 -0
- vllm/multimodal/hasher.py +118 -0
- vllm/multimodal/image.py +97 -0
- vllm/multimodal/inputs.py +876 -0
- vllm/multimodal/parse.py +461 -0
- vllm/multimodal/processing.py +1895 -0
- vllm/multimodal/profiling.py +258 -0
- vllm/multimodal/registry.py +331 -0
- vllm/multimodal/utils.py +436 -0
- vllm/multimodal/video.py +198 -0
- vllm/outputs.py +512 -0
- vllm/platforms/__init__.py +291 -0
- vllm/platforms/cpu.py +266 -0
- vllm/platforms/cuda.py +526 -0
- vllm/platforms/hpu.py +106 -0
- vllm/platforms/interface.py +538 -0
- vllm/platforms/neuron.py +150 -0
- vllm/platforms/rocm.py +435 -0
- vllm/platforms/tpu.py +216 -0
- vllm/platforms/xpu.py +156 -0
- vllm/plugins/__init__.py +94 -0
- vllm/plugins/lora_resolvers/README.md +15 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +54 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +83 -0
- vllm/prompt_adapter/models.py +358 -0
- vllm/prompt_adapter/request.py +37 -0
- vllm/prompt_adapter/utils.py +98 -0
- vllm/prompt_adapter/worker_manager.py +179 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +15 -0
- vllm/reasoning/abs_reasoning_parsers.py +192 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/qwen3_reasoning_parser.py +151 -0
- vllm/sampling_params.py +602 -0
- vllm/scalar_type.py +347 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +1568 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +506 -0
- vllm/spec_decode/draft_model_runner.py +349 -0
- vllm/spec_decode/interfaces.py +99 -0
- vllm/spec_decode/medusa_worker.py +138 -0
- vllm/spec_decode/metrics.py +213 -0
- vllm/spec_decode/mlp_speculator_worker.py +94 -0
- vllm/spec_decode/mqa_scorer.py +160 -0
- vllm/spec_decode/multi_step_worker.py +423 -0
- vllm/spec_decode/ngram_worker.py +196 -0
- vllm/spec_decode/proposer_worker_base.py +59 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
- vllm/spec_decode/spec_decode_worker.py +1326 -0
- vllm/spec_decode/target_model_runner.py +45 -0
- vllm/spec_decode/top1_proposer.py +275 -0
- vllm/spec_decode/util.py +277 -0
- vllm/test_utils.py +130 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +131 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +60 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/config.py +887 -0
- vllm/transformers_utils/configs/__init__.py +61 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/cohere2.py +195 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +85 -0
- vllm/transformers_utils/configs/exaone.py +190 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/h2ovl.py +16 -0
- vllm/transformers_utils/configs/internvl.py +54 -0
- vllm/transformers_utils/configs/jais.py +238 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/minimax_text_01.py +70 -0
- vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
- vllm/transformers_utils/configs/mllama.py +31 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/mpt.py +180 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +258 -0
- vllm/transformers_utils/configs/nvlm_d.py +15 -0
- vllm/transformers_utils/configs/ovis.py +184 -0
- vllm/transformers_utils/configs/skyworkr1v.py +54 -0
- vllm/transformers_utils/configs/solar.py +247 -0
- vllm/transformers_utils/configs/telechat2.py +64 -0
- vllm/transformers_utils/configs/ultravox.py +108 -0
- vllm/transformers_utils/detokenizer.py +168 -0
- vllm/transformers_utils/detokenizer_utils.py +189 -0
- vllm/transformers_utils/processor.py +221 -0
- vllm/transformers_utils/processors/__init__.py +8 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/s3_utils.py +162 -0
- vllm/transformers_utils/tokenizer.py +302 -0
- vllm/transformers_utils/tokenizer_base.py +149 -0
- vllm/transformers_utils/tokenizer_group.py +120 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +493 -0
- vllm/transformers_utils/utils.py +99 -0
- vllm/triton_utils/__init__.py +14 -0
- vllm/triton_utils/importing.py +50 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +256 -0
- vllm/utils.py +2910 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +163 -0
- vllm/v1/attention/backends/flash_attn.py +869 -0
- vllm/v1/attention/backends/flashinfer.py +651 -0
- vllm/v1/attention/backends/flex_attention.py +477 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +931 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
- vllm/v1/attention/backends/mla/flashmla.py +152 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
- vllm/v1/attention/backends/mla/triton_mla.py +120 -0
- vllm/v1/attention/backends/pallas.py +240 -0
- vllm/v1/attention/backends/triton_attn.py +285 -0
- vllm/v1/attention/backends/utils.py +52 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +349 -0
- vllm/v1/core/encoder_cache_manager.py +150 -0
- vllm/v1/core/kv_cache_coordinator.py +363 -0
- vllm/v1/core/kv_cache_manager.py +392 -0
- vllm/v1/core/kv_cache_utils.py +996 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +150 -0
- vllm/v1/core/sched/output.py +154 -0
- vllm/v1/core/sched/scheduler.py +1044 -0
- vllm/v1/core/sched/utils.py +23 -0
- vllm/v1/core/single_type_kv_cache_manager.py +403 -0
- vllm/v1/engine/__init__.py +173 -0
- vllm/v1/engine/async_llm.py +558 -0
- vllm/v1/engine/coordinator.py +253 -0
- vllm/v1/engine/core.py +961 -0
- vllm/v1/engine/core_client.py +1129 -0
- vllm/v1/engine/detokenizer.py +261 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +317 -0
- vllm/v1/engine/logprobs.py +199 -0
- vllm/v1/engine/mm_input_cache.py +91 -0
- vllm/v1/engine/output_processor.py +428 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +407 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +113 -0
- vllm/v1/executor/multiproc_executor.py +537 -0
- vllm/v1/executor/ray_distributed_executor.py +62 -0
- vllm/v1/kv_cache_interface.py +194 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +523 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +131 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +239 -0
- vllm/v1/outputs.py +116 -0
- vllm/v1/request.py +193 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/penalties.py +59 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +286 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +145 -0
- vllm/v1/serial_utils.py +315 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +432 -0
- vllm/v1/spec_decode/medusa.py +62 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +178 -0
- vllm/v1/spec_decode/ngram_proposer.py +132 -0
- vllm/v1/spec_decode/utils.py +46 -0
- vllm/v1/structured_output/__init__.py +222 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +318 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +175 -0
- vllm/v1/utils.py +743 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +142 -0
- vllm/v1/worker/cpu_model_runner.py +86 -0
- vllm/v1/worker/cpu_worker.py +152 -0
- vllm/v1/worker/gpu_input_batch.py +681 -0
- vllm/v1/worker/gpu_model_runner.py +2320 -0
- vllm/v1/worker/gpu_worker.py +393 -0
- vllm/v1/worker/lora_model_runner_mixin.py +173 -0
- vllm/v1/worker/tpu_model_runner.py +1673 -0
- vllm/v1/worker/tpu_worker.py +299 -0
- vllm/v1/worker/utils.py +111 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +145 -0
- vllm/worker/cpu_enc_dec_model_runner.py +326 -0
- vllm/worker/cpu_model_runner.py +671 -0
- vllm/worker/cpu_pooling_model_runner.py +125 -0
- vllm/worker/cpu_worker.py +450 -0
- vllm/worker/enc_dec_model_runner.py +555 -0
- vllm/worker/hpu_model_runner.py +2320 -0
- vllm/worker/hpu_worker.py +484 -0
- vllm/worker/model_runner.py +2178 -0
- vllm/worker/model_runner_base.py +282 -0
- vllm/worker/multi_step_hpu_worker.py +123 -0
- vllm/worker/multi_step_model_runner.py +911 -0
- vllm/worker/multi_step_neuron_model_runner.py +84 -0
- vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
- vllm/worker/multi_step_tpu_worker.py +108 -0
- vllm/worker/multi_step_worker.py +197 -0
- vllm/worker/neuron_model_runner.py +460 -0
- vllm/worker/neuron_worker.py +193 -0
- vllm/worker/neuronx_distributed_model_runner.py +294 -0
- vllm/worker/pooling_model_runner.py +211 -0
- vllm/worker/tpu_model_runner.py +909 -0
- vllm/worker/tpu_worker.py +337 -0
- vllm/worker/utils.py +53 -0
- vllm/worker/worker.py +577 -0
- vllm/worker/worker_base.py +646 -0
- vllm/worker/xpu_model_runner.py +606 -0
- vllm/worker/xpu_worker.py +186 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1862 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
# Adapted from
|
|
5
|
+
# https://github.com/huggingface/transformers/blob/v4.33.2/src/transformers/models/llama/modeling_llama.py
|
|
6
|
+
# Copyright 2023 The vLLM team.
|
|
7
|
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
8
|
+
#
|
|
9
|
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
10
|
+
# and OPT implementations in this library. It has been modified from its
|
|
11
|
+
# original forms to accommodate minor architectural differences compared
|
|
12
|
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
13
|
+
#
|
|
14
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
15
|
+
# you may not use this file except in compliance with the License.
|
|
16
|
+
# You may obtain a copy of the License at
|
|
17
|
+
#
|
|
18
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
19
|
+
#
|
|
20
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
21
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
22
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
23
|
+
# See the License for the specific language governing permissions and
|
|
24
|
+
# limitations under the License.
|
|
25
|
+
"""Rotary Positional Embeddings."""
|
|
26
|
+
import math
|
|
27
|
+
from typing import Any, Optional, Union
|
|
28
|
+
|
|
29
|
+
import torch
|
|
30
|
+
import torch.nn as nn
|
|
31
|
+
from transformers import PretrainedConfig
|
|
32
|
+
|
|
33
|
+
from vllm.model_executor.custom_op import CustomOp
|
|
34
|
+
from vllm.platforms import current_platform
|
|
35
|
+
|
|
36
|
+
if current_platform.is_cuda():
|
|
37
|
+
from vllm.vllm_flash_attn.layers.rotary import apply_rotary_emb
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def _rotate_neox(x: torch.Tensor) -> torch.Tensor:
|
|
41
|
+
x1 = x[..., :x.shape[-1] // 2]
|
|
42
|
+
x2 = x[..., x.shape[-1] // 2:]
|
|
43
|
+
return torch.cat((-x2, x1), dim=-1)
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
def _rotate_gptj(x: torch.Tensor) -> torch.Tensor:
|
|
47
|
+
x1 = x[..., ::2]
|
|
48
|
+
x2 = x[..., 1::2]
|
|
49
|
+
x = torch.stack((-x2, x1), dim=-1)
|
|
50
|
+
return x.flatten(-2)
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def _apply_rotary_emb_torch(
|
|
54
|
+
x: torch.Tensor,
|
|
55
|
+
cos: torch.Tensor,
|
|
56
|
+
sin: torch.Tensor,
|
|
57
|
+
is_neox_style: bool,
|
|
58
|
+
) -> torch.Tensor:
|
|
59
|
+
cos = cos.unsqueeze(-2).to(x.dtype)
|
|
60
|
+
sin = sin.unsqueeze(-2).to(x.dtype)
|
|
61
|
+
if is_neox_style:
|
|
62
|
+
x1, x2 = torch.chunk(x, 2, dim=-1)
|
|
63
|
+
else:
|
|
64
|
+
x1 = x[..., ::2]
|
|
65
|
+
x2 = x[..., 1::2]
|
|
66
|
+
o1 = x1 * cos - x2 * sin
|
|
67
|
+
o2 = x2 * cos + x1 * sin
|
|
68
|
+
if is_neox_style:
|
|
69
|
+
return torch.cat((o1, o2), dim=-1)
|
|
70
|
+
else:
|
|
71
|
+
return torch.stack((o1, o2), dim=-1).flatten(-2)
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def _apply_rotary_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor,
|
|
75
|
+
is_neox_style: bool) -> torch.Tensor:
|
|
76
|
+
"""
|
|
77
|
+
Args:
|
|
78
|
+
x: [num_tokens, num_heads, head_size]
|
|
79
|
+
cos: [num_tokens, head_size // 2]
|
|
80
|
+
sin: [num_tokens, head_size // 2]
|
|
81
|
+
is_neox_style: Whether to use the Neox-style or GPT-J-style rotary
|
|
82
|
+
positional embeddings.
|
|
83
|
+
"""
|
|
84
|
+
if current_platform.is_cuda():
|
|
85
|
+
return apply_rotary_emb(x.unsqueeze(0), cos, sin,
|
|
86
|
+
not is_neox_style).squeeze(0)
|
|
87
|
+
else:
|
|
88
|
+
return _apply_rotary_emb_torch(x, cos, sin, is_neox_style)
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
@CustomOp.register("rotary_embedding")
|
|
92
|
+
class RotaryEmbedding(CustomOp):
|
|
93
|
+
"""Original rotary positional embedding."""
|
|
94
|
+
|
|
95
|
+
def __init__(
|
|
96
|
+
self,
|
|
97
|
+
head_size: int,
|
|
98
|
+
rotary_dim: int,
|
|
99
|
+
max_position_embeddings: int,
|
|
100
|
+
base: float,
|
|
101
|
+
is_neox_style: bool,
|
|
102
|
+
dtype: torch.dtype,
|
|
103
|
+
) -> None:
|
|
104
|
+
super().__init__()
|
|
105
|
+
self.head_size = head_size
|
|
106
|
+
self.rotary_dim = rotary_dim
|
|
107
|
+
self.max_position_embeddings = max_position_embeddings
|
|
108
|
+
self.base = base
|
|
109
|
+
self.is_neox_style = is_neox_style
|
|
110
|
+
self.dtype = dtype
|
|
111
|
+
|
|
112
|
+
cache = self._compute_cos_sin_cache()
|
|
113
|
+
cache = cache.to(dtype)
|
|
114
|
+
self.cos_sin_cache: torch.Tensor
|
|
115
|
+
self.register_buffer("cos_sin_cache", cache, persistent=False)
|
|
116
|
+
|
|
117
|
+
def _compute_inv_freq(self, base: float) -> torch.Tensor:
|
|
118
|
+
"""Compute the inverse frequency."""
|
|
119
|
+
# NOTE(woosuk): To exactly match the HF implementation, we need to
|
|
120
|
+
# use CPU to compute the cache and then move it to GPU. However, we
|
|
121
|
+
# create the cache on GPU for faster initialization. This may cause
|
|
122
|
+
# a slight numerical difference between the HF implementation and ours.
|
|
123
|
+
inv_freq = 1.0 / (base**(torch.arange(
|
|
124
|
+
0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim))
|
|
125
|
+
return inv_freq
|
|
126
|
+
|
|
127
|
+
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
|
128
|
+
"""Compute the cos and sin cache."""
|
|
129
|
+
inv_freq = self._compute_inv_freq(self.base)
|
|
130
|
+
t = torch.arange(self.max_position_embeddings, dtype=torch.float)
|
|
131
|
+
|
|
132
|
+
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
|
133
|
+
cos = freqs.cos()
|
|
134
|
+
sin = freqs.sin()
|
|
135
|
+
cache = torch.cat((cos, sin), dim=-1)
|
|
136
|
+
return cache
|
|
137
|
+
|
|
138
|
+
def forward_native(
|
|
139
|
+
self,
|
|
140
|
+
positions: torch.Tensor,
|
|
141
|
+
query: torch.Tensor,
|
|
142
|
+
key: Optional[torch.Tensor] = None,
|
|
143
|
+
offsets: Optional[torch.Tensor] = None,
|
|
144
|
+
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
145
|
+
"""A PyTorch-native implementation of forward()."""
|
|
146
|
+
if offsets is not None:
|
|
147
|
+
positions = positions + offsets
|
|
148
|
+
positions = positions.flatten()
|
|
149
|
+
num_tokens = positions.shape[0]
|
|
150
|
+
cos_sin = self.cos_sin_cache.index_select(0, positions)
|
|
151
|
+
cos, sin = cos_sin.chunk(2, dim=-1)
|
|
152
|
+
|
|
153
|
+
query_shape = query.shape
|
|
154
|
+
query = query.view(num_tokens, -1, self.head_size)
|
|
155
|
+
query_rot = query[..., :self.rotary_dim]
|
|
156
|
+
query_pass = query[..., self.rotary_dim:]
|
|
157
|
+
query_rot = _apply_rotary_emb_torch(query_rot, cos, sin,
|
|
158
|
+
self.is_neox_style)
|
|
159
|
+
query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
|
|
160
|
+
|
|
161
|
+
# key may be None in some cases, e.g. cross-layer KV sharing
|
|
162
|
+
if key is not None:
|
|
163
|
+
key_shape = key.shape
|
|
164
|
+
key = key.view(num_tokens, -1, self.head_size)
|
|
165
|
+
key_rot = key[..., :self.rotary_dim]
|
|
166
|
+
key_pass = key[..., self.rotary_dim:]
|
|
167
|
+
key_rot = _apply_rotary_emb_torch(key_rot, cos, sin,
|
|
168
|
+
self.is_neox_style)
|
|
169
|
+
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
|
|
170
|
+
return query, key
|
|
171
|
+
|
|
172
|
+
def forward_cuda(
|
|
173
|
+
self,
|
|
174
|
+
positions: torch.Tensor,
|
|
175
|
+
query: torch.Tensor,
|
|
176
|
+
key: Optional[torch.Tensor] = None,
|
|
177
|
+
offsets: Optional[torch.Tensor] = None,
|
|
178
|
+
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
179
|
+
from vllm import _custom_ops as ops
|
|
180
|
+
|
|
181
|
+
# __setattr__ in nn.Module (called by `self.cos_sin_cache = ...`)
|
|
182
|
+
# is expensive, so avoid calling it if possible
|
|
183
|
+
if self.cos_sin_cache.device != query.device or \
|
|
184
|
+
self.cos_sin_cache.dtype != query.dtype:
|
|
185
|
+
self.cos_sin_cache = self.cos_sin_cache.to(query.device,
|
|
186
|
+
dtype=query.dtype)
|
|
187
|
+
|
|
188
|
+
# ops.rotary_embedding()/batched_rotary_embedding()
|
|
189
|
+
# are in-place operations that update the query and key tensors.
|
|
190
|
+
if offsets is not None:
|
|
191
|
+
ops.batched_rotary_embedding(positions, query, key, self.head_size,
|
|
192
|
+
self.cos_sin_cache,
|
|
193
|
+
self.is_neox_style, self.rotary_dim,
|
|
194
|
+
offsets)
|
|
195
|
+
else:
|
|
196
|
+
ops.rotary_embedding(positions, query, key, self.head_size,
|
|
197
|
+
self.cos_sin_cache, self.is_neox_style)
|
|
198
|
+
return query, key
|
|
199
|
+
|
|
200
|
+
def forward_xpu(
|
|
201
|
+
self,
|
|
202
|
+
positions: torch.Tensor,
|
|
203
|
+
query: torch.Tensor,
|
|
204
|
+
key: Optional[torch.Tensor] = None,
|
|
205
|
+
offsets: Optional[torch.Tensor] = None,
|
|
206
|
+
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
207
|
+
from vllm._ipex_ops import ipex_ops as ops
|
|
208
|
+
|
|
209
|
+
self.cos_sin_cache = self.cos_sin_cache.to(positions.device,
|
|
210
|
+
dtype=query.dtype)
|
|
211
|
+
# ops.rotary_embedding()/batched_rotary_embedding()
|
|
212
|
+
# are in-place operations that update the query and key tensors.
|
|
213
|
+
if key is None:
|
|
214
|
+
# XPU kernel doesn't support key=None so fall back to native impl
|
|
215
|
+
# TODO(sarckk): add support for optional key in
|
|
216
|
+
# ipex.llm.functional.rotary_embedding_batched
|
|
217
|
+
return self.forward_native(positions, query, key, offsets)
|
|
218
|
+
else:
|
|
219
|
+
if offsets is not None:
|
|
220
|
+
ops.batched_rotary_embedding(positions, query, key,
|
|
221
|
+
self.head_size,
|
|
222
|
+
self.cos_sin_cache,
|
|
223
|
+
self.is_neox_style,
|
|
224
|
+
self.rotary_dim, offsets)
|
|
225
|
+
else:
|
|
226
|
+
ops.rotary_embedding(positions, query, key, self.head_size,
|
|
227
|
+
self.cos_sin_cache, self.is_neox_style)
|
|
228
|
+
return query, key
|
|
229
|
+
|
|
230
|
+
def forward_hpu(
|
|
231
|
+
self,
|
|
232
|
+
positions: torch.Tensor,
|
|
233
|
+
query: torch.Tensor,
|
|
234
|
+
key: Optional[torch.Tensor] = None,
|
|
235
|
+
offsets: Optional[torch.Tensor] = None,
|
|
236
|
+
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
237
|
+
from habana_frameworks.torch.hpex.kernels import (
|
|
238
|
+
RotaryPosEmbeddingMode, apply_rotary_pos_emb)
|
|
239
|
+
if offsets is not None:
|
|
240
|
+
offsets = offsets.view(positions.shape[0], -1)
|
|
241
|
+
positions = positions + offsets
|
|
242
|
+
positions = positions.flatten()
|
|
243
|
+
num_tokens = positions.shape[0]
|
|
244
|
+
cos_sin = self.cos_sin_cache.index_select(0, positions).view(
|
|
245
|
+
num_tokens, 1, -1)
|
|
246
|
+
cos, sin = cos_sin.chunk(2, dim=-1)
|
|
247
|
+
# HPU RoPE kernel requires hidden dimension for cos and sin to be equal
|
|
248
|
+
# to query hidden dimension, so the original tensors need to be
|
|
249
|
+
# expanded
|
|
250
|
+
# GPT-NeoX kernel requires position_ids = None, offset, mode = BLOCKWISE
|
|
251
|
+
# and expansion of cos/sin tensors via concatenation
|
|
252
|
+
# GPT-J kernel requires position_ids = None, offset = 0, mode = PAIRWISE
|
|
253
|
+
# and expansion of cos/sin tensors via repeat_interleave
|
|
254
|
+
rope_mode: RotaryPosEmbeddingMode
|
|
255
|
+
if self.is_neox_style:
|
|
256
|
+
rope_mode = RotaryPosEmbeddingMode.BLOCKWISE
|
|
257
|
+
cos = torch.cat((cos, cos), dim=-1)
|
|
258
|
+
sin = torch.cat((sin, sin), dim=-1)
|
|
259
|
+
else:
|
|
260
|
+
rope_mode = RotaryPosEmbeddingMode.PAIRWISE
|
|
261
|
+
sin = torch.repeat_interleave(sin,
|
|
262
|
+
2,
|
|
263
|
+
dim=-1,
|
|
264
|
+
output_size=cos_sin.shape[-1])
|
|
265
|
+
cos = torch.repeat_interleave(cos,
|
|
266
|
+
2,
|
|
267
|
+
dim=-1,
|
|
268
|
+
output_size=cos_sin.shape[-1])
|
|
269
|
+
|
|
270
|
+
query_shape = query.shape
|
|
271
|
+
query = query.view(num_tokens, -1, self.head_size)
|
|
272
|
+
query_rot = query[..., :self.rotary_dim]
|
|
273
|
+
query_pass = query[..., self.rotary_dim:]
|
|
274
|
+
query_rot = apply_rotary_pos_emb(query_rot, cos, sin, None, 0,
|
|
275
|
+
rope_mode)
|
|
276
|
+
query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
|
|
277
|
+
|
|
278
|
+
if key is not None:
|
|
279
|
+
key_shape = key.shape
|
|
280
|
+
key = key.view(num_tokens, -1, self.head_size)
|
|
281
|
+
key_rot = key[..., :self.rotary_dim]
|
|
282
|
+
key_pass = key[..., self.rotary_dim:]
|
|
283
|
+
key_rot = apply_rotary_pos_emb(key_rot, cos, sin, None, 0,
|
|
284
|
+
rope_mode)
|
|
285
|
+
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
|
|
286
|
+
return query, key
|
|
287
|
+
|
|
288
|
+
def forward_neuron(
|
|
289
|
+
self,
|
|
290
|
+
positions: torch.Tensor,
|
|
291
|
+
query: torch.Tensor,
|
|
292
|
+
key: Optional[torch.Tensor] = None,
|
|
293
|
+
offsets: Optional[torch.Tensor] = None,
|
|
294
|
+
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
295
|
+
|
|
296
|
+
def _apply_rotary_emb_neuron(
|
|
297
|
+
x: torch.Tensor,
|
|
298
|
+
cos: torch.Tensor,
|
|
299
|
+
sin: torch.Tensor,
|
|
300
|
+
is_neox_style: bool,
|
|
301
|
+
) -> torch.Tensor:
|
|
302
|
+
cos = cos.unsqueeze(-2).to(x.dtype)
|
|
303
|
+
sin = sin.unsqueeze(-2).to(x.dtype)
|
|
304
|
+
if is_neox_style:
|
|
305
|
+
x1, x2 = torch.chunk(x, 2, dim=-1)
|
|
306
|
+
else:
|
|
307
|
+
# x1 = x[..., ::2]
|
|
308
|
+
|
|
309
|
+
# x2 = x[..., 1::2]
|
|
310
|
+
d = x.shape[-1] // 2
|
|
311
|
+
x_reshaped = x.view(-1, x.shape[-1])
|
|
312
|
+
x1 = x_reshaped[:, ::2].view(*x.shape[:-1], d)
|
|
313
|
+
x2 = x_reshaped[:, 1::2].view(*x.shape[:-1], d)
|
|
314
|
+
o1 = x1 * cos - x2 * sin
|
|
315
|
+
o2 = x2 * cos + x1 * sin
|
|
316
|
+
if is_neox_style:
|
|
317
|
+
return torch.cat((o1, o2), dim=-1)
|
|
318
|
+
else:
|
|
319
|
+
return torch.stack((o1, o2), dim=-1).flatten(-2)
|
|
320
|
+
|
|
321
|
+
if offsets is not None:
|
|
322
|
+
positions = positions + offsets
|
|
323
|
+
|
|
324
|
+
self.cos_sin_cache = self.cos_sin_cache.to(query.device,
|
|
325
|
+
dtype=query.dtype)
|
|
326
|
+
|
|
327
|
+
positions = positions.flatten()
|
|
328
|
+
num_tokens = positions.shape[0]
|
|
329
|
+
cos_sin = self.cos_sin_cache.index_select(0, positions)
|
|
330
|
+
cos, sin = cos_sin.chunk(2, dim=-1)
|
|
331
|
+
|
|
332
|
+
query_shape = query.shape
|
|
333
|
+
query = query.view(num_tokens, -1, self.head_size)
|
|
334
|
+
if key is not None:
|
|
335
|
+
key_shape = key.shape
|
|
336
|
+
key = key.view(num_tokens, -1, self.head_size)
|
|
337
|
+
|
|
338
|
+
if self.rotary_dim == self.head_size:
|
|
339
|
+
query = _apply_rotary_emb(query, cos, sin, self.is_neox_style)
|
|
340
|
+
query = query.reshape(query_shape)
|
|
341
|
+
if key is not None:
|
|
342
|
+
key = _apply_rotary_emb(key, cos, sin, self.is_neox_style)
|
|
343
|
+
key = key.reshape(key_shape)
|
|
344
|
+
else:
|
|
345
|
+
head_size = query.shape[-1]
|
|
346
|
+
query_reshaped = query.view(-1, head_size)
|
|
347
|
+
query_pass = query_reshaped[:, self.rotary_dim:].view(
|
|
348
|
+
*query.shape[:-1], head_size - self.rotary_dim)
|
|
349
|
+
query_rot = query_reshaped[:, :self.rotary_dim].view(
|
|
350
|
+
*query.shape[:-1], self.rotary_dim)
|
|
351
|
+
query_rot = _apply_rotary_emb_neuron(query_rot, cos, sin,
|
|
352
|
+
self.is_neox_style)
|
|
353
|
+
query = torch.cat((query_rot, query_pass),
|
|
354
|
+
dim=-1).reshape(query_shape)
|
|
355
|
+
|
|
356
|
+
if key is not None:
|
|
357
|
+
key_reshaped = key.view(-1, head_size)
|
|
358
|
+
key_pass = key_reshaped[:, self.rotary_dim:].view(
|
|
359
|
+
*key.shape[:-1], head_size - self.rotary_dim)
|
|
360
|
+
key_rot = key_reshaped[:, :self.rotary_dim].view(
|
|
361
|
+
*key.shape[:-1], self.rotary_dim)
|
|
362
|
+
key_rot = _apply_rotary_emb_neuron(key_rot, cos, sin,
|
|
363
|
+
self.is_neox_style)
|
|
364
|
+
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
|
|
365
|
+
return query, key
|
|
366
|
+
|
|
367
|
+
def extra_repr(self) -> str:
|
|
368
|
+
s = f"head_size={self.head_size}, rotary_dim={self.rotary_dim}"
|
|
369
|
+
s += f", max_position_embeddings={self.max_position_embeddings}"
|
|
370
|
+
s += f", base={self.base}, is_neox_style={self.is_neox_style}"
|
|
371
|
+
return s
|
|
372
|
+
|
|
373
|
+
|
|
374
|
+
class LinearScalingRotaryEmbedding(RotaryEmbedding):
|
|
375
|
+
"""RotaryEmbedding extended with linear scaling.
|
|
376
|
+
|
|
377
|
+
It supports multiple scaling factors. Since multiple LoRA adapters may have
|
|
378
|
+
different scaling factors, we need multiple cos/sin caches. In this way,
|
|
379
|
+
instead of running rotary embedding kernel per lora, we can run multiple
|
|
380
|
+
lora in a batched way.
|
|
381
|
+
|
|
382
|
+
In addition to that, we also keep the cos/sin cache for the scaling factor
|
|
383
|
+
of 1 (default) at all times.
|
|
384
|
+
|
|
385
|
+
Exemplary for two scaling factors x=1, y and z with embeddings
|
|
386
|
+
[[x11, x12, ... x1m], ..., [xn1, xn2, ..., xnm]] and
|
|
387
|
+
[[y11, y12, ... y1o], ..., [yn1, yn2, ..., yno]], and
|
|
388
|
+
[[z11, z12, ... z1p], ..., [zn1, zn2, ..., znp]],
|
|
389
|
+
|
|
390
|
+
we construct the cos/sin cache as follows:
|
|
391
|
+
[[x11, x12, ... x1m, y11, y12, ... y1o, z11, z12, ... z1p],
|
|
392
|
+
...
|
|
393
|
+
[xn1, xn2, ... xnm, yn1, yn2, ... yno, zn1, zn2, ... znp]]
|
|
394
|
+
|
|
395
|
+
We then use offsets to index into the cos/sin cache for
|
|
396
|
+
the respective scaling factors.
|
|
397
|
+
|
|
398
|
+
The offset to cache can be accessed via `scaling_factor_to_offset` API.
|
|
399
|
+
|
|
400
|
+
Credits to the Reddit user /u/kaiokendev
|
|
401
|
+
"""
|
|
402
|
+
|
|
403
|
+
def __init__(
|
|
404
|
+
self,
|
|
405
|
+
head_size: int,
|
|
406
|
+
rotary_dim: int,
|
|
407
|
+
max_position_embeddings: int,
|
|
408
|
+
base: float,
|
|
409
|
+
is_neox_style: bool,
|
|
410
|
+
scaling_factors: Union[list[float], float],
|
|
411
|
+
dtype: torch.dtype,
|
|
412
|
+
) -> None:
|
|
413
|
+
if isinstance(scaling_factors, float):
|
|
414
|
+
scaling_factors = [scaling_factors]
|
|
415
|
+
self.scaling_factors: list[float] = scaling_factors # noqa
|
|
416
|
+
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
|
417
|
+
is_neox_style, dtype)
|
|
418
|
+
# Lazy initialized.
|
|
419
|
+
self._scaling_factor_to_offset: dict[float, int]
|
|
420
|
+
|
|
421
|
+
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
|
422
|
+
inv_freq = self._compute_inv_freq(self.base)
|
|
423
|
+
cache_list: list[torch.Tensor] = []
|
|
424
|
+
# offsets to the next cache in a tensor.
|
|
425
|
+
# Each offset corresponds to the same index in scaling_factors.
|
|
426
|
+
offsets: list[int] = []
|
|
427
|
+
for scaling_factor in self.scaling_factors:
|
|
428
|
+
# NOTE(woosuk): self.max_position_embeddings is the original
|
|
429
|
+
# maximum length before applying the rope scaling.
|
|
430
|
+
# Thus, the maximum length after applying the rope scaling is
|
|
431
|
+
# self.max_position_embeddings * self.scaling_factor.
|
|
432
|
+
max_len = self.max_position_embeddings * scaling_factor
|
|
433
|
+
t = torch.arange(max_len, dtype=torch.float)
|
|
434
|
+
t = t / scaling_factor
|
|
435
|
+
|
|
436
|
+
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
|
437
|
+
cos = freqs.cos()
|
|
438
|
+
sin = freqs.sin()
|
|
439
|
+
cache = torch.cat((cos, sin), dim=-1)
|
|
440
|
+
if not cache_list:
|
|
441
|
+
offset = 0
|
|
442
|
+
else:
|
|
443
|
+
last_offset = offsets[-1]
|
|
444
|
+
next_max_len = cache_list[-1].shape[0]
|
|
445
|
+
offset = last_offset + next_max_len
|
|
446
|
+
offsets.append(offset)
|
|
447
|
+
cache_list.append(cache)
|
|
448
|
+
self._scaling_factor_to_offset = {
|
|
449
|
+
float(scaling_factor): offsets[i]
|
|
450
|
+
for i, scaling_factor in enumerate(self.scaling_factors)
|
|
451
|
+
}
|
|
452
|
+
assert len(self.scaling_factors) == len(offsets)
|
|
453
|
+
return torch.cat(cache_list, dim=0)
|
|
454
|
+
|
|
455
|
+
@property
|
|
456
|
+
def scaling_factor_to_offset(self) -> dict[float, int]:
|
|
457
|
+
return self._scaling_factor_to_offset
|
|
458
|
+
|
|
459
|
+
|
|
460
|
+
class NTKScalingRotaryEmbedding(RotaryEmbedding):
|
|
461
|
+
"""RotaryEmbedding extended with fixed and mixed NTK scaling.
|
|
462
|
+
https://kexue.fm/archives/9706 """
|
|
463
|
+
|
|
464
|
+
def __init__(self,
|
|
465
|
+
head_size: int,
|
|
466
|
+
rotary_dim: int,
|
|
467
|
+
max_position_embeddings: int,
|
|
468
|
+
base: float,
|
|
469
|
+
is_neox_style: bool,
|
|
470
|
+
scaling_factor: float,
|
|
471
|
+
dtype: torch.dtype,
|
|
472
|
+
mixed_b: Optional[float] = None) -> None:
|
|
473
|
+
self.scaling_factor = scaling_factor
|
|
474
|
+
self.mixed_b = mixed_b
|
|
475
|
+
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
|
476
|
+
is_neox_style, dtype)
|
|
477
|
+
|
|
478
|
+
def _compute_inv_freq(self, base: float) -> torch.Tensor:
|
|
479
|
+
base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
|
|
480
|
+
inv_freq = super()._compute_inv_freq(base)
|
|
481
|
+
|
|
482
|
+
if self.mixed_b is None:
|
|
483
|
+
inv_freq = inv_freq / self.scaling_factor**(2 / self.rotary_dim)
|
|
484
|
+
else:
|
|
485
|
+
a = torch.tensor(self.scaling_factor).log() / (self.rotary_dim /
|
|
486
|
+
2)**self.mixed_b
|
|
487
|
+
lambda_1_m = (a * torch.arange(
|
|
488
|
+
1, self.rotary_dim // 2 + 1).float()**self.mixed_b).exp()
|
|
489
|
+
inv_freq = inv_freq / lambda_1_m
|
|
490
|
+
|
|
491
|
+
return inv_freq
|
|
492
|
+
|
|
493
|
+
|
|
494
|
+
class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding):
|
|
495
|
+
"""RotaryEmbedding extended with Dynamic NTK scaling.
|
|
496
|
+
|
|
497
|
+
Credits to the Reddit users /u/bloc97 and /u/emozilla
|
|
498
|
+
"""
|
|
499
|
+
|
|
500
|
+
def __init__(
|
|
501
|
+
self,
|
|
502
|
+
head_size: int,
|
|
503
|
+
rotary_dim: int,
|
|
504
|
+
max_position_embeddings: int,
|
|
505
|
+
base: float,
|
|
506
|
+
is_neox_style: bool,
|
|
507
|
+
scaling_factor: float,
|
|
508
|
+
dtype: torch.dtype,
|
|
509
|
+
) -> None:
|
|
510
|
+
self.scaling_factor = scaling_factor
|
|
511
|
+
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
|
512
|
+
is_neox_style, dtype)
|
|
513
|
+
|
|
514
|
+
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
|
515
|
+
# NOTE(woosuk): self.max_position_embeddings is the original
|
|
516
|
+
# maximum length before applying the rope scaling.
|
|
517
|
+
# Thus, the maximum length after applying the rope scaling is
|
|
518
|
+
# self.max_position_embeddings * self.scaling_factor.
|
|
519
|
+
max_len = self.max_position_embeddings * self.scaling_factor
|
|
520
|
+
base = self.base * (
|
|
521
|
+
(self.scaling_factor * max_len / self.max_position_embeddings) -
|
|
522
|
+
(self.scaling_factor - 1))**(self.rotary_dim /
|
|
523
|
+
(self.rotary_dim - 2))
|
|
524
|
+
inv_freq = self._compute_inv_freq(base)
|
|
525
|
+
t = torch.arange(max_len, dtype=torch.float)
|
|
526
|
+
|
|
527
|
+
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
|
528
|
+
cos = freqs.cos()
|
|
529
|
+
sin = freqs.sin()
|
|
530
|
+
cache = torch.cat((cos, sin), dim=-1)
|
|
531
|
+
return cache
|
|
532
|
+
|
|
533
|
+
|
|
534
|
+
# Inverse dim formula to find dim based on number of rotations
|
|
535
|
+
def _yarn_find_correction_dim(num_rotations: int,
|
|
536
|
+
dim: int,
|
|
537
|
+
base: float = 10000,
|
|
538
|
+
max_position_embeddings: int = 2048) -> float:
|
|
539
|
+
return (dim * math.log(max_position_embeddings /
|
|
540
|
+
(num_rotations * 2 * math.pi))) / (2 *
|
|
541
|
+
math.log(base))
|
|
542
|
+
|
|
543
|
+
|
|
544
|
+
# Find dim range bounds based on rotations
|
|
545
|
+
def _yarn_find_correction_range(
|
|
546
|
+
low_rot: int,
|
|
547
|
+
high_rot: int,
|
|
548
|
+
dim: int,
|
|
549
|
+
base: float = 10000,
|
|
550
|
+
max_position_embeddings: int = 2048) -> tuple[int, int]:
|
|
551
|
+
low = math.floor(
|
|
552
|
+
_yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings))
|
|
553
|
+
high = math.ceil(
|
|
554
|
+
_yarn_find_correction_dim(high_rot, dim, base,
|
|
555
|
+
max_position_embeddings))
|
|
556
|
+
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
|
557
|
+
|
|
558
|
+
|
|
559
|
+
def _yarn_linear_ramp_mask(low: float, high: float, dim: int,
|
|
560
|
+
dtype: torch.dtype) -> torch.Tensor:
|
|
561
|
+
if low == high:
|
|
562
|
+
high += 0.001 # Prevent singularity
|
|
563
|
+
|
|
564
|
+
linear_func = (torch.arange(dim, dtype=dtype) - low) / (high - low)
|
|
565
|
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
|
566
|
+
return ramp_func
|
|
567
|
+
|
|
568
|
+
|
|
569
|
+
def _yarn_get_mscale(scale: float = 1) -> float:
|
|
570
|
+
if scale <= 1:
|
|
571
|
+
return 1.0
|
|
572
|
+
return 0.1 * math.log(scale) + 1.0
|
|
573
|
+
|
|
574
|
+
|
|
575
|
+
class YaRNScalingRotaryEmbedding(RotaryEmbedding):
|
|
576
|
+
"""RotaryEmbedding extended with YaRN method.
|
|
577
|
+
|
|
578
|
+
Credits to Peng et al. github.com/jquesnelle/yarn
|
|
579
|
+
"""
|
|
580
|
+
|
|
581
|
+
def __init__(
|
|
582
|
+
self,
|
|
583
|
+
head_size: int,
|
|
584
|
+
rotary_dim: int,
|
|
585
|
+
max_position_embeddings: int,
|
|
586
|
+
base: float,
|
|
587
|
+
is_neox_style: bool,
|
|
588
|
+
scaling_factor: float,
|
|
589
|
+
dtype: torch.dtype,
|
|
590
|
+
*,
|
|
591
|
+
extrapolation_factor: float = 1,
|
|
592
|
+
attn_factor: float = 1,
|
|
593
|
+
beta_fast: int = 32,
|
|
594
|
+
beta_slow: int = 1,
|
|
595
|
+
) -> None:
|
|
596
|
+
self.scaling_factor = scaling_factor
|
|
597
|
+
self.extrapolation_factor = extrapolation_factor
|
|
598
|
+
self.attn_factor = attn_factor
|
|
599
|
+
self.beta_fast = beta_fast
|
|
600
|
+
self.beta_slow = beta_slow
|
|
601
|
+
# Get n-d magnitude scaling corrected for interpolation
|
|
602
|
+
self.mscale = float(
|
|
603
|
+
_yarn_get_mscale(self.scaling_factor) * attn_factor)
|
|
604
|
+
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
|
605
|
+
is_neox_style, dtype)
|
|
606
|
+
|
|
607
|
+
def _compute_inv_freq(self, scaling_factor: float) -> torch.Tensor:
|
|
608
|
+
pos_freqs = self.base**(
|
|
609
|
+
torch.arange(0, self.rotary_dim, 2, dtype=torch.float) /
|
|
610
|
+
self.rotary_dim)
|
|
611
|
+
inv_freq_extrapolation = 1.0 / pos_freqs
|
|
612
|
+
inv_freq_interpolation = 1.0 / (scaling_factor * pos_freqs)
|
|
613
|
+
|
|
614
|
+
low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow,
|
|
615
|
+
self.rotary_dim, self.base,
|
|
616
|
+
self.max_position_embeddings)
|
|
617
|
+
# Get n-d rotational scaling corrected for extrapolation
|
|
618
|
+
inv_freq_mask = (1 - _yarn_linear_ramp_mask(
|
|
619
|
+
low, high, self.rotary_dim // 2,
|
|
620
|
+
dtype=torch.float)) * self.extrapolation_factor
|
|
621
|
+
inv_freq = inv_freq_interpolation * (
|
|
622
|
+
1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
|
|
623
|
+
return inv_freq
|
|
624
|
+
|
|
625
|
+
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
|
626
|
+
inv_freq = self._compute_inv_freq(self.scaling_factor)
|
|
627
|
+
t = torch.arange(self.max_position_embeddings * self.scaling_factor,
|
|
628
|
+
dtype=torch.float32)
|
|
629
|
+
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
|
630
|
+
cos = (freqs.cos() * self.mscale)
|
|
631
|
+
sin = (freqs.sin() * self.mscale)
|
|
632
|
+
cache = torch.cat((cos, sin), dim=-1)
|
|
633
|
+
return cache
|
|
634
|
+
|
|
635
|
+
|
|
636
|
+
class Phi3LongRoPEScaledRotaryEmbedding(nn.Module):
|
|
637
|
+
"""Phi3 family of models scaled rotary embedding.
|
|
638
|
+
|
|
639
|
+
Based on the original RotaryEmbedding implementation.
|
|
640
|
+
"""
|
|
641
|
+
|
|
642
|
+
def __init__(
|
|
643
|
+
self,
|
|
644
|
+
head_size: int,
|
|
645
|
+
rotary_dim: int,
|
|
646
|
+
max_position_embeddings: int,
|
|
647
|
+
original_max_position_embeddings: int,
|
|
648
|
+
base: float,
|
|
649
|
+
is_neox_style: bool,
|
|
650
|
+
dtype: torch.dtype,
|
|
651
|
+
short_factor: list[float],
|
|
652
|
+
long_factor: list[float],
|
|
653
|
+
short_mscale: Optional[float] = None,
|
|
654
|
+
long_mscale: Optional[float] = None,
|
|
655
|
+
):
|
|
656
|
+
super().__init__()
|
|
657
|
+
|
|
658
|
+
if is_neox_style is False:
|
|
659
|
+
raise ValueError(
|
|
660
|
+
"`Phi3LongRoPEScaledRotaryEmbedding` only supports neox_style."
|
|
661
|
+
)
|
|
662
|
+
|
|
663
|
+
self.rotary_dim = rotary_dim
|
|
664
|
+
self.head_size = head_size
|
|
665
|
+
self.max_position_embeddings = max_position_embeddings
|
|
666
|
+
self.original_max_position_embeddings = original_max_position_embeddings
|
|
667
|
+
self.base = base
|
|
668
|
+
self.short_factor = short_factor
|
|
669
|
+
self.long_factor = long_factor
|
|
670
|
+
|
|
671
|
+
scale = self.max_position_embeddings / \
|
|
672
|
+
self.original_max_position_embeddings
|
|
673
|
+
if scale <= 1.0:
|
|
674
|
+
scaling_factor = 1.0
|
|
675
|
+
else:
|
|
676
|
+
scaling_factor = math.sqrt(
|
|
677
|
+
1 + math.log(scale) /
|
|
678
|
+
math.log(self.original_max_position_embeddings))
|
|
679
|
+
if short_mscale is None:
|
|
680
|
+
short_mscale = scaling_factor
|
|
681
|
+
if long_mscale is None:
|
|
682
|
+
long_mscale = scaling_factor
|
|
683
|
+
|
|
684
|
+
self.short_mscale = short_mscale
|
|
685
|
+
self.long_mscale = long_mscale
|
|
686
|
+
|
|
687
|
+
short_cache = self._compute_cos_sin_cache(
|
|
688
|
+
original_max_position_embeddings, short_factor, short_mscale)
|
|
689
|
+
short_cache = short_cache.to(dtype)
|
|
690
|
+
|
|
691
|
+
long_cache = self._compute_cos_sin_cache(max_position_embeddings,
|
|
692
|
+
long_factor, long_mscale)
|
|
693
|
+
long_cache = long_cache.to(dtype)
|
|
694
|
+
|
|
695
|
+
long_short_cache = torch.cat([short_cache, long_cache], dim=0)
|
|
696
|
+
self.register_buffer("long_short_cos_sin_cache",
|
|
697
|
+
long_short_cache,
|
|
698
|
+
persistent=False)
|
|
699
|
+
|
|
700
|
+
def _compute_inv_freq(self, rescale_factors: list[float]) -> torch.Tensor:
|
|
701
|
+
rescale_factors = torch.tensor(rescale_factors, dtype=torch.float32)
|
|
702
|
+
inv_freq = 1.0 / (rescale_factors * (self.base**(torch.arange(
|
|
703
|
+
0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim)))
|
|
704
|
+
return inv_freq
|
|
705
|
+
|
|
706
|
+
def _compute_cos_sin_cache(
|
|
707
|
+
self,
|
|
708
|
+
max_position_embeddings: int,
|
|
709
|
+
rescale_factors: list[float],
|
|
710
|
+
mscale: float,
|
|
711
|
+
) -> torch.Tensor:
|
|
712
|
+
inv_freq = self._compute_inv_freq(rescale_factors)
|
|
713
|
+
t = torch.arange(max_position_embeddings, dtype=torch.float)
|
|
714
|
+
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
|
715
|
+
cos = freqs.cos() * mscale
|
|
716
|
+
sin = freqs.sin() * mscale
|
|
717
|
+
cache = torch.cat((cos, sin), dim=-1)
|
|
718
|
+
return cache
|
|
719
|
+
|
|
720
|
+
def forward(
|
|
721
|
+
self,
|
|
722
|
+
positions: torch.Tensor,
|
|
723
|
+
query: torch.Tensor,
|
|
724
|
+
key: Optional[torch.Tensor] = None,
|
|
725
|
+
offsets: Optional[torch.Tensor] = None,
|
|
726
|
+
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
727
|
+
assert key is not None
|
|
728
|
+
query = query.view(*query.shape[:-1], -1, self.head_size)
|
|
729
|
+
key = key.view(*key.shape[:-1], -1, self.head_size)
|
|
730
|
+
|
|
731
|
+
k = self.original_max_position_embeddings
|
|
732
|
+
long_prompt_offset = (torch.any(positions > k).float() *
|
|
733
|
+
torch.full_like(positions, k)).long()
|
|
734
|
+
idx = (torch.add(positions, long_prompt_offset)
|
|
735
|
+
if long_prompt_offset is not None else positions)
|
|
736
|
+
idx = torch.add(idx, offsets) if offsets is not None else idx
|
|
737
|
+
cos_sin = torch.index_select(self.long_short_cos_sin_cache, 0, idx)
|
|
738
|
+
|
|
739
|
+
cos, sin = cos_sin.chunk(2, dim=-1)
|
|
740
|
+
cos = cos.repeat(1, 2).unsqueeze(-2)
|
|
741
|
+
sin = sin.repeat(1, 2).unsqueeze(-2)
|
|
742
|
+
|
|
743
|
+
query_rot = query[..., :self.rotary_dim]
|
|
744
|
+
query_pass = query[..., self.rotary_dim:]
|
|
745
|
+
query_rot = query_rot * cos + _rotate_neox(query_rot) * sin
|
|
746
|
+
query = torch.cat((query_rot, query_pass), dim=-1)
|
|
747
|
+
|
|
748
|
+
key_rot = key[..., :self.rotary_dim]
|
|
749
|
+
key_pass = key[..., self.rotary_dim:]
|
|
750
|
+
key_rot = key_rot * cos + _rotate_neox(key_rot) * sin
|
|
751
|
+
key = torch.cat((key_rot, key_pass), dim=-1)
|
|
752
|
+
|
|
753
|
+
return query.flatten(-2), key.flatten(-2)
|
|
754
|
+
|
|
755
|
+
|
|
756
|
+
def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
|
|
757
|
+
if scale <= 1:
|
|
758
|
+
return 1.0
|
|
759
|
+
return 0.1 * mscale * math.log(scale) + 1.0
|
|
760
|
+
|
|
761
|
+
|
|
762
|
+
class DeepseekScalingRotaryEmbedding(RotaryEmbedding):
|
|
763
|
+
"""RotaryEmbedding extended with YaRN method.
|
|
764
|
+
|
|
765
|
+
Credits to Peng et al. github.com/jquesnelle/yarn
|
|
766
|
+
"""
|
|
767
|
+
|
|
768
|
+
def __init__(
|
|
769
|
+
self,
|
|
770
|
+
head_size: int,
|
|
771
|
+
rotary_dim: int,
|
|
772
|
+
max_position_embeddings: int,
|
|
773
|
+
base: float,
|
|
774
|
+
is_neox_style: bool,
|
|
775
|
+
scaling_factor: float,
|
|
776
|
+
dtype: torch.dtype,
|
|
777
|
+
*,
|
|
778
|
+
extrapolation_factor: float = 1,
|
|
779
|
+
attn_factor: float = 1,
|
|
780
|
+
beta_fast: int = 32,
|
|
781
|
+
beta_slow: int = 1,
|
|
782
|
+
mscale: float = 1,
|
|
783
|
+
mscale_all_dim: float = 0,
|
|
784
|
+
) -> None:
|
|
785
|
+
self.scaling_factor = scaling_factor
|
|
786
|
+
self.extrapolation_factor = extrapolation_factor
|
|
787
|
+
self.attn_factor = attn_factor
|
|
788
|
+
self.beta_fast = beta_fast
|
|
789
|
+
self.beta_slow = beta_slow
|
|
790
|
+
# Get n-d magnitude scaling corrected for interpolation.
|
|
791
|
+
self.mscale = float(
|
|
792
|
+
yarn_get_mscale(self.scaling_factor, float(mscale)) /
|
|
793
|
+
yarn_get_mscale(self.scaling_factor, float(mscale_all_dim)) *
|
|
794
|
+
attn_factor)
|
|
795
|
+
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
|
796
|
+
is_neox_style, dtype)
|
|
797
|
+
|
|
798
|
+
def _compute_inv_freq(self, scaling_factor: float) -> torch.Tensor:
|
|
799
|
+
pos_freqs = self.base**(
|
|
800
|
+
torch.arange(0,
|
|
801
|
+
self.rotary_dim,
|
|
802
|
+
2,
|
|
803
|
+
dtype=torch.float,
|
|
804
|
+
device=current_platform.device_type) /
|
|
805
|
+
self.rotary_dim)
|
|
806
|
+
inv_freq_extrapolation = 1.0 / pos_freqs
|
|
807
|
+
inv_freq_interpolation = 1.0 / (scaling_factor * pos_freqs)
|
|
808
|
+
|
|
809
|
+
low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow,
|
|
810
|
+
self.rotary_dim, self.base,
|
|
811
|
+
self.max_position_embeddings)
|
|
812
|
+
# Get n-d rotational scaling corrected for extrapolation
|
|
813
|
+
inv_freq_mask = (1 - _yarn_linear_ramp_mask(
|
|
814
|
+
low, high, self.rotary_dim // 2,
|
|
815
|
+
dtype=torch.float)) * self.extrapolation_factor
|
|
816
|
+
inv_freq = inv_freq_interpolation * (
|
|
817
|
+
1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
|
|
818
|
+
return inv_freq
|
|
819
|
+
|
|
820
|
+
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
|
821
|
+
inv_freq = self._compute_inv_freq(self.scaling_factor)
|
|
822
|
+
t = torch.arange(self.max_position_embeddings * self.scaling_factor,
|
|
823
|
+
device=current_platform.device_type,
|
|
824
|
+
dtype=torch.float32)
|
|
825
|
+
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
|
826
|
+
cos = (freqs.cos() * self.mscale)
|
|
827
|
+
sin = (freqs.sin() * self.mscale)
|
|
828
|
+
cache = torch.cat((cos, sin), dim=-1)
|
|
829
|
+
return cache
|
|
830
|
+
|
|
831
|
+
def forward(
|
|
832
|
+
self,
|
|
833
|
+
positions: torch.Tensor,
|
|
834
|
+
query: torch.Tensor,
|
|
835
|
+
key: Optional[torch.Tensor] = None,
|
|
836
|
+
offsets: Optional[torch.Tensor] = None,
|
|
837
|
+
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
838
|
+
"""PyTorch-native implementation equivalent to forward()."""
|
|
839
|
+
assert key is not None
|
|
840
|
+
query_rot = query[..., :self.rotary_dim]
|
|
841
|
+
key_rot = key[..., :self.rotary_dim]
|
|
842
|
+
if self.rotary_dim < self.head_size:
|
|
843
|
+
query_pass = query[..., self.rotary_dim:]
|
|
844
|
+
key_pass = key[..., self.rotary_dim:]
|
|
845
|
+
|
|
846
|
+
if self.cos_sin_cache.device != positions.device:
|
|
847
|
+
self.cos_sin_cache: torch.Tensor = self.cos_sin_cache.to(
|
|
848
|
+
positions.device)
|
|
849
|
+
cos_sin = self.cos_sin_cache[torch.add(positions, offsets)
|
|
850
|
+
if offsets is not None else positions]
|
|
851
|
+
cos, sin = cos_sin.chunk(2, dim=-1)
|
|
852
|
+
if self.is_neox_style:
|
|
853
|
+
# NOTE(woosuk): Here we assume that the positions tensor has the
|
|
854
|
+
# shape [batch_size, seq_len].
|
|
855
|
+
cos = cos.repeat(1, 1, 2).unsqueeze(-2)
|
|
856
|
+
sin = sin.repeat(1, 1, 2).unsqueeze(-2)
|
|
857
|
+
else:
|
|
858
|
+
cos = cos.repeat_interleave(2, dim=-1).unsqueeze(-2)
|
|
859
|
+
sin = sin.repeat_interleave(2, dim=-1).unsqueeze(-2)
|
|
860
|
+
|
|
861
|
+
rotate_fn = _rotate_neox if self.is_neox_style else _rotate_gptj
|
|
862
|
+
query_rot = query_rot * cos + rotate_fn(query_rot) * sin
|
|
863
|
+
key_rot = key_rot * cos + rotate_fn(key_rot) * sin
|
|
864
|
+
|
|
865
|
+
if self.rotary_dim < self.head_size:
|
|
866
|
+
query = torch.cat((query_rot, query_pass), dim=-1)
|
|
867
|
+
key = torch.cat((key_rot, key_pass), dim=-1)
|
|
868
|
+
else:
|
|
869
|
+
query = query_rot
|
|
870
|
+
key = key_rot
|
|
871
|
+
return query, key
|
|
872
|
+
|
|
873
|
+
|
|
874
|
+
class Llama3RotaryEmbedding(RotaryEmbedding):
|
|
875
|
+
|
|
876
|
+
def __init__(
|
|
877
|
+
self,
|
|
878
|
+
head_size: int,
|
|
879
|
+
rotary_dim: int,
|
|
880
|
+
max_position_embeddings: int,
|
|
881
|
+
base: float,
|
|
882
|
+
is_neox_style: bool,
|
|
883
|
+
dtype: torch.dtype,
|
|
884
|
+
scaling_factor: float,
|
|
885
|
+
low_freq_factor: float,
|
|
886
|
+
high_freq_factor: float,
|
|
887
|
+
orig_max_position: int,
|
|
888
|
+
) -> None:
|
|
889
|
+
self.scaling_factor = scaling_factor
|
|
890
|
+
self.low_freq_factor = low_freq_factor
|
|
891
|
+
self.high_freq_factor = high_freq_factor
|
|
892
|
+
self.orig_max_position = orig_max_position
|
|
893
|
+
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
|
894
|
+
is_neox_style, dtype)
|
|
895
|
+
|
|
896
|
+
def _compute_inv_freq(self, base: float) -> torch.Tensor:
|
|
897
|
+
inv_freqs = super()._compute_inv_freq(base)
|
|
898
|
+
low_freq_wavelen = self.orig_max_position / self.low_freq_factor
|
|
899
|
+
high_freq_wavelen = self.orig_max_position / self.high_freq_factor
|
|
900
|
+
|
|
901
|
+
wave_len = 2 * math.pi / inv_freqs
|
|
902
|
+
if self.low_freq_factor != self.high_freq_factor:
|
|
903
|
+
smooth = (self.orig_max_position / wave_len - self.low_freq_factor
|
|
904
|
+
) / (self.high_freq_factor - self.low_freq_factor)
|
|
905
|
+
else:
|
|
906
|
+
smooth = 0
|
|
907
|
+
new_freqs = torch.where(
|
|
908
|
+
wave_len < high_freq_wavelen,
|
|
909
|
+
inv_freqs,
|
|
910
|
+
torch.where(
|
|
911
|
+
wave_len > low_freq_wavelen,
|
|
912
|
+
inv_freqs / self.scaling_factor,
|
|
913
|
+
(1 - smooth) * inv_freqs / self.scaling_factor +
|
|
914
|
+
smooth * inv_freqs,
|
|
915
|
+
),
|
|
916
|
+
)
|
|
917
|
+
return new_freqs
|
|
918
|
+
|
|
919
|
+
|
|
920
|
+
class Llama4VisionRotaryEmbedding(RotaryEmbedding):
|
|
921
|
+
|
|
922
|
+
def __init__(
|
|
923
|
+
self,
|
|
924
|
+
head_size: int,
|
|
925
|
+
rotary_dim: int,
|
|
926
|
+
max_position_embeddings: int,
|
|
927
|
+
base: float,
|
|
928
|
+
is_neox_style: bool,
|
|
929
|
+
dtype: torch.dtype,
|
|
930
|
+
):
|
|
931
|
+
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
|
932
|
+
is_neox_style, dtype)
|
|
933
|
+
|
|
934
|
+
def _compute_inv_freq(self, base: float) -> torch.Tensor:
|
|
935
|
+
inv_freqs = super()._compute_inv_freq(base)
|
|
936
|
+
inv_freqs = inv_freqs[:(self.rotary_dim // 2)]
|
|
937
|
+
return inv_freqs
|
|
938
|
+
|
|
939
|
+
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
|
940
|
+
inv_freq = self._compute_inv_freq(self.base)
|
|
941
|
+
|
|
942
|
+
# self.max_position_embeddings here is number of image patches
|
|
943
|
+
# i.e. (image_size // patch_size) ** 2
|
|
944
|
+
num_patches = self.max_position_embeddings
|
|
945
|
+
img_idx = torch.arange(num_patches,
|
|
946
|
+
dtype=torch.int32) \
|
|
947
|
+
.reshape(num_patches, 1)
|
|
948
|
+
img_idx = torch.cat([img_idx, img_idx[:1]], dim=0)
|
|
949
|
+
img_idx[-1, -1] = -2 # set to ID_CLS_TOKEN
|
|
950
|
+
num_patches_single_dim = int(math.sqrt(num_patches))
|
|
951
|
+
frequencies_x = img_idx % num_patches_single_dim
|
|
952
|
+
frequencies_y = img_idx // num_patches_single_dim
|
|
953
|
+
freqs_x = ((frequencies_x + 1)[..., None] *
|
|
954
|
+
inv_freq[None, None, :]).repeat_interleave(2, dim=-1)
|
|
955
|
+
freqs_y = ((frequencies_y + 1)[..., None] *
|
|
956
|
+
inv_freq[None, None, :]).repeat_interleave(2, dim=-1)
|
|
957
|
+
freqs = torch.cat([freqs_x, freqs_y],
|
|
958
|
+
dim=-1).float().contiguous()[..., ::2]
|
|
959
|
+
freqs = freqs.masked_fill(img_idx.reshape(-1, 1, 1) < 0, 0)
|
|
960
|
+
cache = torch.view_as_complex(
|
|
961
|
+
torch.stack([torch.cos(freqs), torch.sin(freqs)], dim=-1))
|
|
962
|
+
return cache
|
|
963
|
+
|
|
964
|
+
def forward(
|
|
965
|
+
self,
|
|
966
|
+
query: torch.Tensor,
|
|
967
|
+
key: Optional[torch.Tensor] = None,
|
|
968
|
+
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
969
|
+
assert key is not None
|
|
970
|
+
self.cos_sin_cache: torch.Tensor = self.cos_sin_cache.to(query.device)
|
|
971
|
+
query_ = torch.view_as_complex(query.float().reshape(
|
|
972
|
+
*query.shape[:-1], -1, 2))
|
|
973
|
+
key_ = torch.view_as_complex(key.float().reshape(
|
|
974
|
+
*key.shape[:-1], -1, 2))
|
|
975
|
+
broadcast_shape = [
|
|
976
|
+
d if i == 1 or i == (query_.ndim - 1) else 1
|
|
977
|
+
for i, d in enumerate(query_.shape)
|
|
978
|
+
]
|
|
979
|
+
freqs_ci = self.cos_sin_cache.view(*broadcast_shape)
|
|
980
|
+
query_out = torch.view_as_real(query_ * freqs_ci).flatten(3)
|
|
981
|
+
key_out = torch.view_as_real(key_ * freqs_ci).flatten(3)
|
|
982
|
+
return query_out.type_as(query), key_out.type_as(key)
|
|
983
|
+
|
|
984
|
+
|
|
985
|
+
class MRotaryEmbedding(RotaryEmbedding):
|
|
986
|
+
"""Rotary Embedding with Multimodal Sections."""
|
|
987
|
+
|
|
988
|
+
def __init__(
|
|
989
|
+
self,
|
|
990
|
+
head_size: int,
|
|
991
|
+
rotary_dim: int,
|
|
992
|
+
max_position_embeddings: int,
|
|
993
|
+
base: float,
|
|
994
|
+
is_neox_style: bool,
|
|
995
|
+
dtype: torch.dtype,
|
|
996
|
+
mrope_section: Optional[list[int]] = None,
|
|
997
|
+
) -> None:
|
|
998
|
+
# In Qwen2.5-VL, the maximum index value is related to the duration of
|
|
999
|
+
# the input video. We enlarge max_position_embeddings to 4 times to get
|
|
1000
|
+
# a larger the cos and sin cache.
|
|
1001
|
+
self.cache_max_position_num = max_position_embeddings * 4
|
|
1002
|
+
super().__init__(head_size, rotary_dim, self.cache_max_position_num,
|
|
1003
|
+
base, is_neox_style, dtype)
|
|
1004
|
+
|
|
1005
|
+
self.mrope_section = mrope_section
|
|
1006
|
+
if self.mrope_section:
|
|
1007
|
+
assert sum(self.mrope_section) == rotary_dim // 2
|
|
1008
|
+
|
|
1009
|
+
def forward(
|
|
1010
|
+
self,
|
|
1011
|
+
positions: torch.Tensor,
|
|
1012
|
+
query: torch.Tensor,
|
|
1013
|
+
key: Optional[torch.Tensor] = None,
|
|
1014
|
+
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
1015
|
+
"""PyTorch-native implementation equivalent to forward().
|
|
1016
|
+
|
|
1017
|
+
Args:
|
|
1018
|
+
positions:
|
|
1019
|
+
[num_tokens,] (text only) or
|
|
1020
|
+
[3, num_tokens] (T/H/W positions with multimodal inputs)
|
|
1021
|
+
query: [num_tokens, num_heads * head_size]
|
|
1022
|
+
key: [num_tokens, num_kv_heads * head_size]
|
|
1023
|
+
"""
|
|
1024
|
+
assert positions.ndim == 1 or positions.ndim == 2
|
|
1025
|
+
assert key is not None
|
|
1026
|
+
|
|
1027
|
+
num_tokens = positions.shape[-1]
|
|
1028
|
+
cos_sin = self.cos_sin_cache[positions]
|
|
1029
|
+
cos, sin = cos_sin.chunk(2, dim=-1)
|
|
1030
|
+
if positions.ndim == 2:
|
|
1031
|
+
assert self.mrope_section
|
|
1032
|
+
|
|
1033
|
+
cos = torch.cat([
|
|
1034
|
+
m[i]
|
|
1035
|
+
for i, m in enumerate(cos.split(self.mrope_section, dim=-1))
|
|
1036
|
+
],
|
|
1037
|
+
dim=-1)
|
|
1038
|
+
sin = torch.cat([
|
|
1039
|
+
m[i]
|
|
1040
|
+
for i, m in enumerate(sin.split(self.mrope_section, dim=-1))
|
|
1041
|
+
],
|
|
1042
|
+
dim=-1)
|
|
1043
|
+
|
|
1044
|
+
query_shape = query.shape
|
|
1045
|
+
query = query.view(num_tokens, -1, self.head_size)
|
|
1046
|
+
query_rot = query[..., :self.rotary_dim]
|
|
1047
|
+
query_pass = query[..., self.rotary_dim:]
|
|
1048
|
+
query_rot = _apply_rotary_emb(query_rot, cos, sin, self.is_neox_style)
|
|
1049
|
+
query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
|
|
1050
|
+
|
|
1051
|
+
key_shape = key.shape
|
|
1052
|
+
key = key.view(num_tokens, -1, self.head_size)
|
|
1053
|
+
key_rot = key[..., :self.rotary_dim]
|
|
1054
|
+
key_pass = key[..., self.rotary_dim:]
|
|
1055
|
+
key_rot = _apply_rotary_emb(key_rot, cos, sin, self.is_neox_style)
|
|
1056
|
+
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
|
|
1057
|
+
return query, key
|
|
1058
|
+
|
|
1059
|
+
@classmethod
|
|
1060
|
+
def get_input_positions(
|
|
1061
|
+
cls,
|
|
1062
|
+
input_tokens: list[int],
|
|
1063
|
+
hf_config: PretrainedConfig,
|
|
1064
|
+
image_grid_thw: Optional[Union[list[list[int]], torch.Tensor]],
|
|
1065
|
+
video_grid_thw: Optional[Union[list[list[int]], torch.Tensor]],
|
|
1066
|
+
second_per_grid_ts: Optional[list[float]],
|
|
1067
|
+
context_len: int = 0,
|
|
1068
|
+
seq_len: Optional[int] = None,
|
|
1069
|
+
audio_feature_lengths: Optional[torch.Tensor] = None,
|
|
1070
|
+
use_audio_in_video: bool = False,
|
|
1071
|
+
) -> tuple[list[list[int]], int]:
|
|
1072
|
+
"""Get mrope input positions and delta value."""
|
|
1073
|
+
|
|
1074
|
+
image_grid_thw = [] if image_grid_thw is None else image_grid_thw
|
|
1075
|
+
video_grid_thw = [] if video_grid_thw is None else video_grid_thw
|
|
1076
|
+
second_per_grid_ts = [] if second_per_grid_ts is None else \
|
|
1077
|
+
second_per_grid_ts
|
|
1078
|
+
|
|
1079
|
+
llm_positions, mrope_position_delta = \
|
|
1080
|
+
cls.get_input_positions_tensor(
|
|
1081
|
+
input_tokens=input_tokens,
|
|
1082
|
+
hf_config=hf_config,
|
|
1083
|
+
image_grid_thw=image_grid_thw,
|
|
1084
|
+
video_grid_thw=video_grid_thw,
|
|
1085
|
+
second_per_grid_ts=second_per_grid_ts,
|
|
1086
|
+
context_len=context_len,
|
|
1087
|
+
seq_len=seq_len,
|
|
1088
|
+
audio_feature_lengths=audio_feature_lengths,
|
|
1089
|
+
use_audio_in_video=use_audio_in_video,
|
|
1090
|
+
)
|
|
1091
|
+
|
|
1092
|
+
return llm_positions.tolist(), mrope_position_delta
|
|
1093
|
+
|
|
1094
|
+
@classmethod
|
|
1095
|
+
def get_input_positions_tensor(
|
|
1096
|
+
cls,
|
|
1097
|
+
input_tokens: list[int],
|
|
1098
|
+
hf_config: PretrainedConfig,
|
|
1099
|
+
image_grid_thw: Union[list[list[int]], torch.Tensor],
|
|
1100
|
+
video_grid_thw: Union[list[list[int]], torch.Tensor],
|
|
1101
|
+
second_per_grid_ts: list[float],
|
|
1102
|
+
context_len: int = 0,
|
|
1103
|
+
seq_len: Optional[int] = None,
|
|
1104
|
+
audio_feature_lengths: Optional[torch.Tensor] = None,
|
|
1105
|
+
use_audio_in_video: bool = False,
|
|
1106
|
+
) -> tuple[torch.Tensor, int]:
|
|
1107
|
+
from vllm.transformers_utils.config import thinker_uses_mrope
|
|
1108
|
+
if thinker_uses_mrope(hf_config):
|
|
1109
|
+
return cls._omni_get_input_positions_tensor(
|
|
1110
|
+
input_tokens=input_tokens,
|
|
1111
|
+
hf_config=hf_config,
|
|
1112
|
+
image_grid_thw=image_grid_thw,
|
|
1113
|
+
video_grid_thw=video_grid_thw,
|
|
1114
|
+
second_per_grid_ts=second_per_grid_ts,
|
|
1115
|
+
context_len=context_len,
|
|
1116
|
+
seq_len=seq_len,
|
|
1117
|
+
audio_feature_lengths=audio_feature_lengths,
|
|
1118
|
+
use_audio_in_video=use_audio_in_video,
|
|
1119
|
+
)
|
|
1120
|
+
else:
|
|
1121
|
+
return cls._vl_get_input_positions_tensor(
|
|
1122
|
+
input_tokens=input_tokens,
|
|
1123
|
+
hf_config=hf_config,
|
|
1124
|
+
image_grid_thw=image_grid_thw,
|
|
1125
|
+
video_grid_thw=video_grid_thw,
|
|
1126
|
+
second_per_grid_ts=second_per_grid_ts,
|
|
1127
|
+
context_len=context_len,
|
|
1128
|
+
seq_len=seq_len,
|
|
1129
|
+
)
|
|
1130
|
+
|
|
1131
|
+
@classmethod
|
|
1132
|
+
def _vl_get_input_positions_tensor(
|
|
1133
|
+
cls,
|
|
1134
|
+
input_tokens: list[int],
|
|
1135
|
+
hf_config: PretrainedConfig,
|
|
1136
|
+
image_grid_thw: Union[list[list[int]], torch.Tensor],
|
|
1137
|
+
video_grid_thw: Union[list[list[int]], torch.Tensor],
|
|
1138
|
+
second_per_grid_ts: list[float],
|
|
1139
|
+
context_len: int = 0,
|
|
1140
|
+
seq_len: Optional[int] = None,
|
|
1141
|
+
) -> tuple[torch.Tensor, int]:
|
|
1142
|
+
"""Get mrope input positions and delta value."""
|
|
1143
|
+
|
|
1144
|
+
image_token_id = hf_config.image_token_id
|
|
1145
|
+
video_token_id = hf_config.video_token_id
|
|
1146
|
+
vision_start_token_id = hf_config.vision_start_token_id
|
|
1147
|
+
spatial_merge_size = hf_config.vision_config.spatial_merge_size
|
|
1148
|
+
tokens_per_second = getattr(hf_config.vision_config,
|
|
1149
|
+
"tokens_per_second", 1.0)
|
|
1150
|
+
|
|
1151
|
+
input_tokens_tensor = torch.tensor(input_tokens)
|
|
1152
|
+
vision_start_indices = torch.argwhere(
|
|
1153
|
+
input_tokens_tensor == vision_start_token_id).squeeze(1)
|
|
1154
|
+
vision_tokens = input_tokens_tensor[vision_start_indices + 1]
|
|
1155
|
+
image_nums = (vision_tokens == image_token_id).sum()
|
|
1156
|
+
video_nums = (vision_tokens == video_token_id).sum()
|
|
1157
|
+
llm_pos_ids_list: list = []
|
|
1158
|
+
|
|
1159
|
+
st = 0
|
|
1160
|
+
remain_images, remain_videos = image_nums, video_nums
|
|
1161
|
+
|
|
1162
|
+
image_index, video_index = 0, 0
|
|
1163
|
+
for _ in range(image_nums + video_nums):
|
|
1164
|
+
video_second_per_grid_t = 0.0
|
|
1165
|
+
if image_token_id in input_tokens and remain_images > 0:
|
|
1166
|
+
ed_image = input_tokens.index(image_token_id, st)
|
|
1167
|
+
else:
|
|
1168
|
+
ed_image = len(input_tokens) + 1
|
|
1169
|
+
if video_token_id in input_tokens and remain_videos > 0:
|
|
1170
|
+
ed_video = input_tokens.index(video_token_id, st)
|
|
1171
|
+
else:
|
|
1172
|
+
ed_video = len(input_tokens) + 1
|
|
1173
|
+
if ed_image < ed_video:
|
|
1174
|
+
t, h, w = (
|
|
1175
|
+
image_grid_thw[image_index][0],
|
|
1176
|
+
image_grid_thw[image_index][1],
|
|
1177
|
+
image_grid_thw[image_index][2],
|
|
1178
|
+
)
|
|
1179
|
+
image_index += 1
|
|
1180
|
+
remain_images -= 1
|
|
1181
|
+
ed = ed_image
|
|
1182
|
+
else:
|
|
1183
|
+
t, h, w = (
|
|
1184
|
+
video_grid_thw[video_index][0],
|
|
1185
|
+
video_grid_thw[video_index][1],
|
|
1186
|
+
video_grid_thw[video_index][2],
|
|
1187
|
+
)
|
|
1188
|
+
video_second_per_grid_t = 1.0
|
|
1189
|
+
if second_per_grid_ts:
|
|
1190
|
+
video_second_per_grid_t = second_per_grid_ts[video_index]
|
|
1191
|
+
video_index += 1
|
|
1192
|
+
remain_videos -= 1
|
|
1193
|
+
ed = ed_video
|
|
1194
|
+
|
|
1195
|
+
llm_grid_t, llm_grid_h, llm_grid_w = \
|
|
1196
|
+
t, h // spatial_merge_size, w // spatial_merge_size
|
|
1197
|
+
text_len = ed - st
|
|
1198
|
+
|
|
1199
|
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(
|
|
1200
|
+
llm_pos_ids_list) > 0 else 0
|
|
1201
|
+
llm_pos_ids_list.append(
|
|
1202
|
+
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
|
1203
|
+
|
|
1204
|
+
t_index = (torch.arange(llm_grid_t).view(-1, 1).expand(
|
|
1205
|
+
-1, llm_grid_h * llm_grid_w) * video_second_per_grid_t *
|
|
1206
|
+
tokens_per_second).long().flatten()
|
|
1207
|
+
|
|
1208
|
+
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(
|
|
1209
|
+
llm_grid_t, -1, llm_grid_w).flatten()
|
|
1210
|
+
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(
|
|
1211
|
+
llm_grid_t, llm_grid_h, -1).flatten()
|
|
1212
|
+
llm_pos_ids_list.append(
|
|
1213
|
+
torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
|
|
1214
|
+
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
|
1215
|
+
|
|
1216
|
+
if st < len(input_tokens):
|
|
1217
|
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(
|
|
1218
|
+
llm_pos_ids_list) > 0 else 0
|
|
1219
|
+
text_len = len(input_tokens) - st
|
|
1220
|
+
llm_pos_ids_list.append(
|
|
1221
|
+
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
|
1222
|
+
|
|
1223
|
+
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
|
|
1224
|
+
mrope_position_delta = (llm_positions.max() + 1 -
|
|
1225
|
+
len(input_tokens)).item()
|
|
1226
|
+
llm_positions = llm_positions[:, context_len:seq_len]
|
|
1227
|
+
|
|
1228
|
+
return llm_positions, mrope_position_delta
|
|
1229
|
+
|
|
1230
|
+
@classmethod
|
|
1231
|
+
def _omni_get_input_positions_tensor(
|
|
1232
|
+
cls,
|
|
1233
|
+
input_tokens: list[int],
|
|
1234
|
+
hf_config: PretrainedConfig,
|
|
1235
|
+
image_grid_thw: Union[list[list[int]], torch.Tensor],
|
|
1236
|
+
video_grid_thw: Union[list[list[int]], torch.Tensor],
|
|
1237
|
+
second_per_grid_ts: Optional[list[float]] = None,
|
|
1238
|
+
context_len: int = 0,
|
|
1239
|
+
seq_len: Optional[int] = None,
|
|
1240
|
+
audio_feature_lengths: Optional[torch.Tensor] = None,
|
|
1241
|
+
use_audio_in_video: bool = False,
|
|
1242
|
+
) -> tuple[torch.Tensor, int]:
|
|
1243
|
+
"""Get mrope input positions and delta value (Qwen2.5-Omni version).
|
|
1244
|
+
|
|
1245
|
+
Differences from MRotaryEmbedding:
|
|
1246
|
+
1. Add audio support (and related `audio_feature_lengths`).
|
|
1247
|
+
2. Add `use_audio_in_video` option to read audio from video inputs.
|
|
1248
|
+
In this case, audio and vision position ids will be split into
|
|
1249
|
+
chunks and interleaved.
|
|
1250
|
+
|
|
1251
|
+
Example:
|
|
1252
|
+
|
|
1253
|
+
(V_i are vision position ids, A_i are audio position ids)
|
|
1254
|
+
|
|
1255
|
+
|V_1 ... V_n|A_1 ... A_n|V_n+1 ... V_2n|A_n+1 ... A_2n|...
|
|
1256
|
+
|vision chunk 1|audio chunk 1|vision chunk 2|audio chunk 2 |...
|
|
1257
|
+
"""
|
|
1258
|
+
|
|
1259
|
+
# TODO(fyabc): refactor and share more code with
|
|
1260
|
+
# _vl_get_input_positions_tensor.
|
|
1261
|
+
|
|
1262
|
+
thinker_config = hf_config.thinker_config
|
|
1263
|
+
audio_token_id = thinker_config.audio_token_index
|
|
1264
|
+
image_token_id = thinker_config.image_token_index
|
|
1265
|
+
video_token_id = thinker_config.video_token_index
|
|
1266
|
+
audio_start_token_id = thinker_config.audio_start_token_id
|
|
1267
|
+
audio_end_token_id = thinker_config.audio_end_token_id
|
|
1268
|
+
vision_start_token_id = thinker_config.vision_start_token_id
|
|
1269
|
+
vision_end_token_id = thinker_config.vision_end_token_id
|
|
1270
|
+
seconds_per_chunk = thinker_config.seconds_per_chunk
|
|
1271
|
+
spatial_merge_size = thinker_config.vision_config.spatial_merge_size
|
|
1272
|
+
tokens_per_second = getattr(thinker_config.vision_config,
|
|
1273
|
+
"tokens_per_second", 25)
|
|
1274
|
+
|
|
1275
|
+
if isinstance(image_grid_thw, list):
|
|
1276
|
+
image_grid_thw = torch.tensor(image_grid_thw)
|
|
1277
|
+
if isinstance(video_grid_thw, list):
|
|
1278
|
+
video_grid_thw = torch.tensor(video_grid_thw)
|
|
1279
|
+
|
|
1280
|
+
src_item = input_tokens
|
|
1281
|
+
audio_seqlens = audio_feature_lengths
|
|
1282
|
+
if not second_per_grid_ts:
|
|
1283
|
+
second_per_grid_ts = [1] * video_grid_thw.shape[0]
|
|
1284
|
+
audio_idx = 0
|
|
1285
|
+
video_idx = 0
|
|
1286
|
+
image_idx = 0
|
|
1287
|
+
new_src_item: list[int] = []
|
|
1288
|
+
llm_pos_ids_list: list[torch.Tensor] = []
|
|
1289
|
+
|
|
1290
|
+
idx = 0
|
|
1291
|
+
while idx < len(src_item):
|
|
1292
|
+
new_src_item_len = len(new_src_item)
|
|
1293
|
+
start_idx = llm_pos_ids_list[-1].max() + 1 if len(
|
|
1294
|
+
llm_pos_ids_list) > 0 else 0
|
|
1295
|
+
if src_item[idx] not in [
|
|
1296
|
+
audio_token_id, video_token_id, image_token_id
|
|
1297
|
+
]:
|
|
1298
|
+
if use_audio_in_video and idx > 0:
|
|
1299
|
+
if src_item[idx] == vision_end_token_id and \
|
|
1300
|
+
src_item[idx - 1] == audio_end_token_id:
|
|
1301
|
+
# processing the <|audio_eos|> before <|vision_eos|>
|
|
1302
|
+
start_idx -= 1
|
|
1303
|
+
elif src_item[idx] == audio_start_token_id and \
|
|
1304
|
+
src_item[idx - 1] == vision_start_token_id:
|
|
1305
|
+
# processing the <|audio_bos|> after <|vision_eos|>
|
|
1306
|
+
start_idx -= 1
|
|
1307
|
+
new_src_item.append(src_item[idx])
|
|
1308
|
+
llm_pos_ids = torch.tensor([start_idx],
|
|
1309
|
+
dtype=torch.long).expand(3, -1)
|
|
1310
|
+
llm_pos_ids_list.append(llm_pos_ids)
|
|
1311
|
+
elif src_item[idx] == audio_token_id:
|
|
1312
|
+
assert audio_seqlens is not None
|
|
1313
|
+
audio_seqlen = audio_seqlens[audio_idx]
|
|
1314
|
+
place_num = (((audio_seqlen - 1) // 2 + 1 - 2) // 2 + 1)
|
|
1315
|
+
new_src_item.extend([audio_token_id] * place_num)
|
|
1316
|
+
llm_pos_ids = torch.arange(place_num).expand(3, -1) + start_idx
|
|
1317
|
+
llm_pos_ids_list.append(llm_pos_ids)
|
|
1318
|
+
audio_idx += 1
|
|
1319
|
+
elif src_item[idx] == image_token_id:
|
|
1320
|
+
grid_t = image_grid_thw[image_idx][0]
|
|
1321
|
+
grid_hs = image_grid_thw[:, 1]
|
|
1322
|
+
grid_ws = image_grid_thw[:, 2]
|
|
1323
|
+
t_index = (torch.arange(grid_t) * 1 * tokens_per_second).long()
|
|
1324
|
+
llm_pos_ids = cls._get_llm_pos_ids_for_vision(
|
|
1325
|
+
start_idx, image_idx, spatial_merge_size, t_index, grid_hs,
|
|
1326
|
+
grid_ws)
|
|
1327
|
+
llm_pos_ids_list.append(llm_pos_ids)
|
|
1328
|
+
vision_seqlen = image_grid_thw[image_idx].prod() // (
|
|
1329
|
+
spatial_merge_size**2)
|
|
1330
|
+
new_src_item.extend([image_token_id] * vision_seqlen)
|
|
1331
|
+
image_idx += 1
|
|
1332
|
+
elif src_item[idx] == video_token_id and not use_audio_in_video:
|
|
1333
|
+
grid_t = video_grid_thw[video_idx][0]
|
|
1334
|
+
grid_hs = video_grid_thw[:, 1]
|
|
1335
|
+
grid_ws = video_grid_thw[:, 2]
|
|
1336
|
+
t_index = (torch.arange(grid_t) *
|
|
1337
|
+
second_per_grid_ts[video_idx] *
|
|
1338
|
+
tokens_per_second).long()
|
|
1339
|
+
llm_pos_ids = cls._get_llm_pos_ids_for_vision(
|
|
1340
|
+
start_idx, video_idx, spatial_merge_size, t_index, grid_hs,
|
|
1341
|
+
grid_ws)
|
|
1342
|
+
llm_pos_ids_list.append(llm_pos_ids)
|
|
1343
|
+
vision_seqlen = video_grid_thw[video_idx].prod() // (
|
|
1344
|
+
spatial_merge_size**2)
|
|
1345
|
+
new_src_item.extend([video_token_id] * vision_seqlen)
|
|
1346
|
+
video_idx += 1
|
|
1347
|
+
else:
|
|
1348
|
+
# read audio from video
|
|
1349
|
+
assert audio_seqlens is not None
|
|
1350
|
+
audio_seqlen = audio_seqlens[audio_idx]
|
|
1351
|
+
vision_seqlen = video_grid_thw[video_idx].prod() // (
|
|
1352
|
+
spatial_merge_size**2)
|
|
1353
|
+
grid_t = video_grid_thw[video_idx][0]
|
|
1354
|
+
grid_h = video_grid_thw[video_idx][1]
|
|
1355
|
+
grid_w = video_grid_thw[video_idx][2]
|
|
1356
|
+
grid_hs = video_grid_thw[:, 1]
|
|
1357
|
+
grid_ws = video_grid_thw[:, 2]
|
|
1358
|
+
t_ntoken_per_chunk = int(tokens_per_second * seconds_per_chunk)
|
|
1359
|
+
t_index = (torch.arange(grid_t) *
|
|
1360
|
+
second_per_grid_ts[video_idx] *
|
|
1361
|
+
tokens_per_second).long()
|
|
1362
|
+
t_index_split_chunk = cls._split_list_into_ranges(
|
|
1363
|
+
t_index, t_ntoken_per_chunk)
|
|
1364
|
+
place_num = (((audio_seqlen - 1) // 2 + 1 - 2) // 2 + 1) + 2
|
|
1365
|
+
pure_audio_len = place_num - 2
|
|
1366
|
+
added_audio_len = 0
|
|
1367
|
+
audio_llm_pos_ids_list: list[torch.Tensor] = []
|
|
1368
|
+
for t_chunk in t_index_split_chunk:
|
|
1369
|
+
vision_ntoken_per_chunk = len(
|
|
1370
|
+
t_chunk) * grid_h * grid_w // (spatial_merge_size**2)
|
|
1371
|
+
new_src_item.extend([video_token_id] *
|
|
1372
|
+
vision_ntoken_per_chunk)
|
|
1373
|
+
vision_llm_pos_ids_list = cls._get_llm_pos_ids_for_vision(
|
|
1374
|
+
start_idx, video_idx, spatial_merge_size, t_chunk,
|
|
1375
|
+
grid_hs, grid_ws).split(1, dim=1)
|
|
1376
|
+
llm_pos_ids_list.extend(vision_llm_pos_ids_list)
|
|
1377
|
+
new_src_item.extend(
|
|
1378
|
+
min(t_ntoken_per_chunk, pure_audio_len -
|
|
1379
|
+
added_audio_len) * [audio_token_id])
|
|
1380
|
+
audio_start_idx = start_idx if len(
|
|
1381
|
+
audio_llm_pos_ids_list
|
|
1382
|
+
) == 0 else audio_llm_pos_ids_list[-1][0].item() + 1
|
|
1383
|
+
if min(t_ntoken_per_chunk,
|
|
1384
|
+
pure_audio_len - added_audio_len) > 0:
|
|
1385
|
+
audio_llm_pos_ids_list = (torch.arange(
|
|
1386
|
+
min(t_ntoken_per_chunk, pure_audio_len -
|
|
1387
|
+
added_audio_len)).expand(3, -1) +
|
|
1388
|
+
audio_start_idx).split(1,
|
|
1389
|
+
dim=1)
|
|
1390
|
+
else:
|
|
1391
|
+
audio_llm_pos_ids_list = []
|
|
1392
|
+
added_audio_len += min(t_ntoken_per_chunk,
|
|
1393
|
+
pure_audio_len - added_audio_len)
|
|
1394
|
+
llm_pos_ids_list.extend(audio_llm_pos_ids_list)
|
|
1395
|
+
if added_audio_len < pure_audio_len:
|
|
1396
|
+
new_src_item.extend(
|
|
1397
|
+
(pure_audio_len - added_audio_len) * [audio_token_id])
|
|
1398
|
+
audio_llm_pos_ids_list = (
|
|
1399
|
+
torch.arange(pure_audio_len - added_audio_len).expand(
|
|
1400
|
+
3, -1) + llm_pos_ids_list[-1].max() + 1).split(
|
|
1401
|
+
1, dim=1)
|
|
1402
|
+
llm_pos_ids_list.extend(audio_llm_pos_ids_list)
|
|
1403
|
+
audio_idx += 1
|
|
1404
|
+
video_idx += 1
|
|
1405
|
+
# move to the next token
|
|
1406
|
+
idx += len(new_src_item) - new_src_item_len
|
|
1407
|
+
|
|
1408
|
+
llm_positions = torch.cat(llm_pos_ids_list, dim=1)
|
|
1409
|
+
mrope_position_delta = torch.cat(llm_pos_ids_list,
|
|
1410
|
+
dim=1).max() + 1 - len(src_item)
|
|
1411
|
+
llm_positions = llm_positions[:, context_len:seq_len]
|
|
1412
|
+
|
|
1413
|
+
return llm_positions, mrope_position_delta
|
|
1414
|
+
|
|
1415
|
+
@staticmethod
|
|
1416
|
+
def _get_llm_pos_ids_for_vision(
|
|
1417
|
+
start_idx: int,
|
|
1418
|
+
vision_idx: int,
|
|
1419
|
+
spatial_merge_size: int,
|
|
1420
|
+
t_index: list[int],
|
|
1421
|
+
grid_hs: torch.Tensor,
|
|
1422
|
+
grid_ws: torch.Tensor,
|
|
1423
|
+
) -> torch.Tensor:
|
|
1424
|
+
llm_pos_ids_list = []
|
|
1425
|
+
llm_grid_h = grid_hs[vision_idx] // spatial_merge_size
|
|
1426
|
+
llm_grid_w = grid_ws[vision_idx] // spatial_merge_size
|
|
1427
|
+
h_index = (torch.arange(llm_grid_h).view(1, -1, 1).expand(
|
|
1428
|
+
len(t_index), -1, llm_grid_w).flatten())
|
|
1429
|
+
w_index = (torch.arange(llm_grid_w).view(1, 1, -1).expand(
|
|
1430
|
+
len(t_index), llm_grid_h, -1).flatten())
|
|
1431
|
+
t_index_tensor = torch.Tensor(t_index).to(llm_grid_h.device).view(
|
|
1432
|
+
-1, 1).expand(-1, llm_grid_h * llm_grid_w).long().flatten()
|
|
1433
|
+
_llm_pos_ids = torch.stack([t_index_tensor, h_index, w_index])
|
|
1434
|
+
llm_pos_ids_list.append(_llm_pos_ids + start_idx)
|
|
1435
|
+
llm_pos_ids = torch.cat(llm_pos_ids_list, dim=1)
|
|
1436
|
+
return llm_pos_ids
|
|
1437
|
+
|
|
1438
|
+
@staticmethod
|
|
1439
|
+
def _split_list_into_ranges(lst: torch.Tensor,
|
|
1440
|
+
interval: int) -> list[list[int]]:
|
|
1441
|
+
ranges: list[list[int]] = [[]
|
|
1442
|
+
for _ in range((max(lst) // interval) + 1)]
|
|
1443
|
+
for num in lst:
|
|
1444
|
+
index = num // interval
|
|
1445
|
+
ranges[index].append(num)
|
|
1446
|
+
return ranges
|
|
1447
|
+
|
|
1448
|
+
@staticmethod
|
|
1449
|
+
def get_next_input_positions(
|
|
1450
|
+
mrope_position_delta: int,
|
|
1451
|
+
context_len: int,
|
|
1452
|
+
seq_len: int,
|
|
1453
|
+
) -> list[list[int]]:
|
|
1454
|
+
return [
|
|
1455
|
+
list(
|
|
1456
|
+
range(context_len + mrope_position_delta,
|
|
1457
|
+
seq_len + mrope_position_delta)) for _ in range(3)
|
|
1458
|
+
]
|
|
1459
|
+
|
|
1460
|
+
@staticmethod
|
|
1461
|
+
def get_next_input_positions_tensor(
|
|
1462
|
+
mrope_position_delta: int,
|
|
1463
|
+
context_len: int,
|
|
1464
|
+
seq_len: int,
|
|
1465
|
+
) -> torch.Tensor:
|
|
1466
|
+
return torch.arange(
|
|
1467
|
+
mrope_position_delta + context_len,
|
|
1468
|
+
mrope_position_delta + seq_len,
|
|
1469
|
+
).expand(3, -1)
|
|
1470
|
+
|
|
1471
|
+
@classmethod
|
|
1472
|
+
def omni_get_updates_use_audio_in_video(
|
|
1473
|
+
cls,
|
|
1474
|
+
thinker_config: PretrainedConfig,
|
|
1475
|
+
audio_len: int,
|
|
1476
|
+
video_grid_thw: Union[list[int], torch.Tensor],
|
|
1477
|
+
video_second_per_grid_t: float,
|
|
1478
|
+
) -> list[int]:
|
|
1479
|
+
"""Get video prompt updates when `use_audio_in_video` is True.
|
|
1480
|
+
|
|
1481
|
+
In this case, audio and vision update ids will be split into
|
|
1482
|
+
chunks and interleaved (details in `_omni_get_input_positions_tensor`).
|
|
1483
|
+
|
|
1484
|
+
<|video_bos|><|VIDEO|><|video_eos|> =>
|
|
1485
|
+
<|video_bos|><|audio_bos|>(... chunks ...)<|audio_eos|><|video_eos|>
|
|
1486
|
+
"""
|
|
1487
|
+
|
|
1488
|
+
audio_token_id = thinker_config.audio_token_index
|
|
1489
|
+
video_token_id = thinker_config.video_token_index
|
|
1490
|
+
audio_start_token_id = thinker_config.audio_start_token_id
|
|
1491
|
+
audio_end_token_id = thinker_config.audio_end_token_id
|
|
1492
|
+
seconds_per_chunk = thinker_config.seconds_per_chunk
|
|
1493
|
+
spatial_merge_size = thinker_config.vision_config.spatial_merge_size
|
|
1494
|
+
tokens_per_second = getattr(thinker_config.vision_config,
|
|
1495
|
+
"tokens_per_second", 25)
|
|
1496
|
+
|
|
1497
|
+
grid_t = video_grid_thw[0]
|
|
1498
|
+
grid_h = video_grid_thw[1]
|
|
1499
|
+
grid_w = video_grid_thw[2]
|
|
1500
|
+
t_ntoken_per_chunk = int(tokens_per_second * seconds_per_chunk)
|
|
1501
|
+
t_index = (torch.arange(grid_t) * video_second_per_grid_t *
|
|
1502
|
+
tokens_per_second).long()
|
|
1503
|
+
t_index_split_chunk = cls._split_list_into_ranges(
|
|
1504
|
+
t_index, t_ntoken_per_chunk)
|
|
1505
|
+
|
|
1506
|
+
updates = [audio_start_token_id]
|
|
1507
|
+
added_audio_len = 0
|
|
1508
|
+
for t_chunk in t_index_split_chunk:
|
|
1509
|
+
vision_ntoken_per_chunk = len(t_chunk) * grid_h * grid_w // (
|
|
1510
|
+
spatial_merge_size**2)
|
|
1511
|
+
updates.extend([video_token_id] * vision_ntoken_per_chunk)
|
|
1512
|
+
|
|
1513
|
+
audio_chunk_size = min(t_ntoken_per_chunk,
|
|
1514
|
+
audio_len - added_audio_len)
|
|
1515
|
+
updates.extend(audio_chunk_size * [audio_token_id])
|
|
1516
|
+
added_audio_len += audio_chunk_size
|
|
1517
|
+
if added_audio_len < audio_len:
|
|
1518
|
+
updates.extend((audio_len - added_audio_len) * [audio_token_id])
|
|
1519
|
+
updates.extend([audio_end_token_id])
|
|
1520
|
+
|
|
1521
|
+
return updates
|
|
1522
|
+
|
|
1523
|
+
|
|
1524
|
+
@CustomOp.register("dual_chunk_rotary_embedding")
|
|
1525
|
+
class DualChunkRotaryEmbedding(CustomOp):
|
|
1526
|
+
"""Rotary positional embedding for Dual Chunk Attention."""
|
|
1527
|
+
|
|
1528
|
+
def __init__(
|
|
1529
|
+
self,
|
|
1530
|
+
head_size: int,
|
|
1531
|
+
rotary_dim: int,
|
|
1532
|
+
max_position_embeddings: int,
|
|
1533
|
+
base: float,
|
|
1534
|
+
is_neox_style: bool,
|
|
1535
|
+
dtype: torch.dtype,
|
|
1536
|
+
chunk_size: int,
|
|
1537
|
+
local_size: int,
|
|
1538
|
+
) -> None:
|
|
1539
|
+
super().__init__()
|
|
1540
|
+
self.head_size = head_size
|
|
1541
|
+
self.rotary_dim = rotary_dim
|
|
1542
|
+
self.max_position_embeddings = max_position_embeddings
|
|
1543
|
+
self.base = base
|
|
1544
|
+
self.is_neox_style = is_neox_style
|
|
1545
|
+
self.chunk_size = chunk_size
|
|
1546
|
+
self.local_size = local_size
|
|
1547
|
+
self.dtype = dtype
|
|
1548
|
+
self.device = torch.device(f"cuda:{torch.cuda.current_device()}")
|
|
1549
|
+
(q_cache, qc_cache, k_cache, qc_no_clamp_cache,
|
|
1550
|
+
q_inter_cache) = self._compute_cos_sin_cache()
|
|
1551
|
+
|
|
1552
|
+
self.register_buffer("cos_sin_q_cache", q_cache, persistent=False)
|
|
1553
|
+
self.register_buffer("cos_sin_qc_cache", qc_cache, persistent=False)
|
|
1554
|
+
self.register_buffer("cos_sin_k_cache", k_cache, persistent=False)
|
|
1555
|
+
self.register_buffer("cos_sin_qc_no_clamp_cache",
|
|
1556
|
+
qc_no_clamp_cache,
|
|
1557
|
+
persistent=False)
|
|
1558
|
+
self.register_buffer("cos_sin_q_inter_cache",
|
|
1559
|
+
q_inter_cache,
|
|
1560
|
+
persistent=False)
|
|
1561
|
+
|
|
1562
|
+
def _compute_inv_freq(self, base: float) -> torch.Tensor:
|
|
1563
|
+
"""Compute the inverse frequency."""
|
|
1564
|
+
# NOTE(woosuk): The HF implementation uses `torch.arange(...).float()`.
|
|
1565
|
+
# However, we use `torch.arange(..., dtype=torch.float)` instead to
|
|
1566
|
+
# avoid numerical issues with large base values (e.g., 10000000).
|
|
1567
|
+
# This may cause a slight numerical difference between the HF
|
|
1568
|
+
# implementation and ours.
|
|
1569
|
+
# NOTE(woosuk): To exactly match the HF implementation, we need to
|
|
1570
|
+
# use CPU to compute the cache and then move it to GPU. However, we
|
|
1571
|
+
# create the cache on GPU for faster initialization. This may cause
|
|
1572
|
+
# a slight numerical difference between the HF implementation and ours.
|
|
1573
|
+
inv_freq = 1.0 / (base**(torch.arange(
|
|
1574
|
+
0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim))
|
|
1575
|
+
return inv_freq
|
|
1576
|
+
|
|
1577
|
+
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
|
1578
|
+
"""Compute the cos and sin cache."""
|
|
1579
|
+
inv_freq = self._compute_inv_freq(self.base)
|
|
1580
|
+
chunk_len = self.chunk_size - self.local_size
|
|
1581
|
+
q_t = torch.arange(chunk_len, dtype=torch.float)
|
|
1582
|
+
qc_t = (torch.arange(chunk_len, dtype=torch.float) +
|
|
1583
|
+
chunk_len).clamp(max=self.chunk_size)
|
|
1584
|
+
k_t = torch.arange(self.max_position_embeddings,
|
|
1585
|
+
dtype=torch.float) % chunk_len
|
|
1586
|
+
|
|
1587
|
+
# count from chunk_len, no clamp(self.chunk_size) restriction
|
|
1588
|
+
qc_no_clamp_t = torch.arange(chunk_len, dtype=torch.float) + chunk_len
|
|
1589
|
+
# count from self.chunk_size for q_inter's rope
|
|
1590
|
+
q_inter_t = torch.arange(chunk_len,
|
|
1591
|
+
dtype=torch.float) + self.chunk_size
|
|
1592
|
+
|
|
1593
|
+
q_freqs = torch.outer(q_t, inv_freq)
|
|
1594
|
+
qc_freqs = torch.outer(qc_t, inv_freq)
|
|
1595
|
+
k_freqs = torch.outer(k_t, inv_freq)
|
|
1596
|
+
qc_no_clamp_freqs = torch.outer(qc_no_clamp_t, inv_freq)
|
|
1597
|
+
q_inter_freqs = torch.outer(q_inter_t, inv_freq)
|
|
1598
|
+
|
|
1599
|
+
q_cos = q_freqs.cos()
|
|
1600
|
+
q_sin = q_freqs.sin()
|
|
1601
|
+
qc_cos = qc_freqs.cos()
|
|
1602
|
+
qc_sin = qc_freqs.sin()
|
|
1603
|
+
k_cos = k_freqs.cos()
|
|
1604
|
+
k_sin = k_freqs.sin()
|
|
1605
|
+
|
|
1606
|
+
qc_no_clamp_cos = qc_no_clamp_freqs.cos()
|
|
1607
|
+
qc_no_clamp_sin = qc_no_clamp_freqs.sin()
|
|
1608
|
+
q_inter_cos = q_inter_freqs.cos()
|
|
1609
|
+
q_inter_sin = q_inter_freqs.sin()
|
|
1610
|
+
|
|
1611
|
+
q_cache = torch.cat((q_cos, q_sin), dim=-1).to(dtype=self.dtype,
|
|
1612
|
+
device=self.device)
|
|
1613
|
+
qc_cache = torch.cat((qc_cos, qc_sin), dim=-1).to(dtype=self.dtype,
|
|
1614
|
+
device=self.device)
|
|
1615
|
+
k_cache = torch.cat((k_cos, k_sin), dim=-1).to(dtype=self.dtype,
|
|
1616
|
+
device=self.device)
|
|
1617
|
+
qc_no_clamp_cache = torch.cat((qc_no_clamp_cos, qc_no_clamp_sin),
|
|
1618
|
+
dim=-1).to(dtype=self.dtype,
|
|
1619
|
+
device=self.device)
|
|
1620
|
+
q_inter_cache = torch.cat((q_inter_cos, q_inter_sin),
|
|
1621
|
+
dim=-1).to(dtype=self.dtype,
|
|
1622
|
+
device=self.device)
|
|
1623
|
+
return q_cache, qc_cache, k_cache, qc_no_clamp_cache, q_inter_cache
|
|
1624
|
+
|
|
1625
|
+
def forward(
|
|
1626
|
+
self,
|
|
1627
|
+
positions: torch.Tensor,
|
|
1628
|
+
query: torch.Tensor,
|
|
1629
|
+
key: torch.Tensor,
|
|
1630
|
+
offsets: Optional[torch.Tensor] = None,
|
|
1631
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
1632
|
+
query = query.view(*query.shape[:-1], -1, self.head_size)
|
|
1633
|
+
key = key.view(*key.shape[:-1], -1, self.head_size)
|
|
1634
|
+
query_rot = query[..., :self.rotary_dim]
|
|
1635
|
+
key_rot = key[..., :self.rotary_dim]
|
|
1636
|
+
if self.rotary_dim < self.head_size:
|
|
1637
|
+
query_pass = query[..., self.rotary_dim:]
|
|
1638
|
+
key_pass = key[..., self.rotary_dim:]
|
|
1639
|
+
else:
|
|
1640
|
+
query_pass = None
|
|
1641
|
+
key_pass = None
|
|
1642
|
+
|
|
1643
|
+
positions_with_offsets = (torch.add(positions, offsets)
|
|
1644
|
+
if offsets is not None else positions)
|
|
1645
|
+
key = self._apply_rotary_embedding(
|
|
1646
|
+
self.cos_sin_k_cache[positions_with_offsets], key_rot, key_pass)
|
|
1647
|
+
chunk_len = self.chunk_size - self.local_size
|
|
1648
|
+
query = self._apply_rotary_embedding(
|
|
1649
|
+
self.cos_sin_q_cache[positions_with_offsets % chunk_len],
|
|
1650
|
+
query_rot, query_pass)
|
|
1651
|
+
query_succ = self._apply_rotary_embedding(
|
|
1652
|
+
self.cos_sin_qc_cache[positions_with_offsets % chunk_len],
|
|
1653
|
+
query_rot, query_pass)
|
|
1654
|
+
query_inter = self._apply_rotary_embedding(
|
|
1655
|
+
self.cos_sin_qc_cache[chunk_len - 1].repeat(positions.shape[0], 1),
|
|
1656
|
+
query_rot, query_pass)
|
|
1657
|
+
query_succ_critical = self._apply_rotary_embedding(
|
|
1658
|
+
self.cos_sin_qc_no_clamp_cache[positions_with_offsets % chunk_len],
|
|
1659
|
+
query_rot, query_pass)
|
|
1660
|
+
query_inter_critical = self._apply_rotary_embedding(
|
|
1661
|
+
self.cos_sin_q_inter_cache[positions_with_offsets % chunk_len],
|
|
1662
|
+
query_rot, query_pass)
|
|
1663
|
+
|
|
1664
|
+
# merge query into one tensor to simplify the interfaces
|
|
1665
|
+
query = torch.cat((
|
|
1666
|
+
query,
|
|
1667
|
+
query_succ,
|
|
1668
|
+
query_inter,
|
|
1669
|
+
query_succ_critical,
|
|
1670
|
+
query_inter_critical,
|
|
1671
|
+
),
|
|
1672
|
+
dim=-1)
|
|
1673
|
+
return query, key
|
|
1674
|
+
|
|
1675
|
+
def _apply_rotary_embedding(self, cos_sin, hidden_rot, hidden_pass):
|
|
1676
|
+
cos, sin = cos_sin.chunk(2, dim=-1)
|
|
1677
|
+
if self.is_neox_style:
|
|
1678
|
+
# NOTE(woosuk): Here we assume that the positions tensor has the
|
|
1679
|
+
# shape [batch_size, seq_len].
|
|
1680
|
+
cos = cos.repeat(1, 1, 2).unsqueeze(-2)
|
|
1681
|
+
sin = sin.repeat(1, 1, 2).unsqueeze(-2)
|
|
1682
|
+
else:
|
|
1683
|
+
cos = cos.repeat_interleave(2, dim=-1).unsqueeze(-2)
|
|
1684
|
+
sin = sin.repeat_interleave(2, dim=-1).unsqueeze(-2)
|
|
1685
|
+
rotate_fn = _rotate_neox if self.is_neox_style else _rotate_gptj
|
|
1686
|
+
hidden_rot = hidden_rot * cos + rotate_fn(hidden_rot) * sin
|
|
1687
|
+
|
|
1688
|
+
if self.rotary_dim < self.head_size:
|
|
1689
|
+
hidden = torch.cat((hidden_rot, hidden_pass), dim=-1)
|
|
1690
|
+
else:
|
|
1691
|
+
hidden = hidden_rot
|
|
1692
|
+
return hidden.flatten(-2).squeeze(0)
|
|
1693
|
+
|
|
1694
|
+
def extra_repr(self) -> str:
|
|
1695
|
+
s = f"head_size={self.head_size}, rotary_dim={self.rotary_dim}"
|
|
1696
|
+
s += f", max_position_embeddings={self.max_position_embeddings}"
|
|
1697
|
+
s += f", base={self.base}, is_neox_style={self.is_neox_style}"
|
|
1698
|
+
s += f", chunk_size={self.chunk_size}, local_size={self.local_size}"
|
|
1699
|
+
return s
|
|
1700
|
+
|
|
1701
|
+
|
|
1702
|
+
_ROPE_DICT: dict[tuple, RotaryEmbedding] = {}
|
|
1703
|
+
|
|
1704
|
+
|
|
1705
|
+
def get_rope(
|
|
1706
|
+
head_size: int,
|
|
1707
|
+
rotary_dim: int,
|
|
1708
|
+
max_position: int,
|
|
1709
|
+
base: float,
|
|
1710
|
+
is_neox_style: bool = True,
|
|
1711
|
+
rope_scaling: Optional[dict[str, Any]] = None,
|
|
1712
|
+
dtype: Optional[torch.dtype] = None,
|
|
1713
|
+
partial_rotary_factor: float = 1.0,
|
|
1714
|
+
dual_chunk_attention_config: Optional[dict[str, Any]] = None,
|
|
1715
|
+
) -> RotaryEmbedding:
|
|
1716
|
+
if dtype is None:
|
|
1717
|
+
dtype = torch.get_default_dtype()
|
|
1718
|
+
if rope_scaling is not None:
|
|
1719
|
+
# Transforms every value that is a list into a tuple for caching calls
|
|
1720
|
+
rope_scaling_tuple = {
|
|
1721
|
+
k: tuple(v) if isinstance(v, list) else v
|
|
1722
|
+
for k, v in rope_scaling.items()
|
|
1723
|
+
}
|
|
1724
|
+
rope_scaling_args = tuple(rope_scaling_tuple.items())
|
|
1725
|
+
else:
|
|
1726
|
+
rope_scaling_args = None
|
|
1727
|
+
|
|
1728
|
+
if dual_chunk_attention_config is not None:
|
|
1729
|
+
dual_chunk_attention_tuple = {
|
|
1730
|
+
k: tuple(v) if isinstance(v, list) else v
|
|
1731
|
+
for k, v in dual_chunk_attention_config.items()
|
|
1732
|
+
if k != "sparse_attention_config"
|
|
1733
|
+
}
|
|
1734
|
+
dual_chunk_attention_args = tuple(dual_chunk_attention_tuple.items())
|
|
1735
|
+
else:
|
|
1736
|
+
dual_chunk_attention_args = None
|
|
1737
|
+
|
|
1738
|
+
if partial_rotary_factor < 1.0:
|
|
1739
|
+
rotary_dim = int(rotary_dim * partial_rotary_factor)
|
|
1740
|
+
key = (head_size, rotary_dim, max_position, base, is_neox_style,
|
|
1741
|
+
rope_scaling_args, dual_chunk_attention_args, dtype)
|
|
1742
|
+
if key in _ROPE_DICT:
|
|
1743
|
+
return _ROPE_DICT[key]
|
|
1744
|
+
|
|
1745
|
+
if dual_chunk_attention_config is not None:
|
|
1746
|
+
extra_kwargs = {
|
|
1747
|
+
k: v
|
|
1748
|
+
for k, v in dual_chunk_attention_config.items()
|
|
1749
|
+
if k in ("chunk_size", "local_size")
|
|
1750
|
+
}
|
|
1751
|
+
rotary_emb = DualChunkRotaryEmbedding(head_size, rotary_dim,
|
|
1752
|
+
max_position, base,
|
|
1753
|
+
is_neox_style, dtype,
|
|
1754
|
+
**extra_kwargs)
|
|
1755
|
+
elif not rope_scaling:
|
|
1756
|
+
rotary_emb = RotaryEmbedding(head_size, rotary_dim, max_position, base,
|
|
1757
|
+
is_neox_style, dtype)
|
|
1758
|
+
else:
|
|
1759
|
+
scaling_type = rope_scaling["rope_type"]
|
|
1760
|
+
|
|
1761
|
+
if scaling_type == "llama3":
|
|
1762
|
+
scaling_factor = rope_scaling["factor"]
|
|
1763
|
+
low_freq_factor = rope_scaling["low_freq_factor"]
|
|
1764
|
+
high_freq_factor = rope_scaling["high_freq_factor"]
|
|
1765
|
+
original_max_position = rope_scaling[
|
|
1766
|
+
"original_max_position_embeddings"]
|
|
1767
|
+
rotary_emb = Llama3RotaryEmbedding(head_size, rotary_dim,
|
|
1768
|
+
max_position, base,
|
|
1769
|
+
is_neox_style, dtype,
|
|
1770
|
+
scaling_factor, low_freq_factor,
|
|
1771
|
+
high_freq_factor,
|
|
1772
|
+
original_max_position)
|
|
1773
|
+
elif scaling_type == "mllama4":
|
|
1774
|
+
rotary_emb = Llama4VisionRotaryEmbedding(head_size, rotary_dim,
|
|
1775
|
+
max_position, base,
|
|
1776
|
+
is_neox_style, dtype)
|
|
1777
|
+
elif scaling_type == "default":
|
|
1778
|
+
if "mrope_section" in rope_scaling:
|
|
1779
|
+
rotary_emb = MRotaryEmbedding(
|
|
1780
|
+
head_size,
|
|
1781
|
+
rotary_dim,
|
|
1782
|
+
max_position,
|
|
1783
|
+
base,
|
|
1784
|
+
is_neox_style,
|
|
1785
|
+
dtype,
|
|
1786
|
+
mrope_section=rope_scaling["mrope_section"],
|
|
1787
|
+
)
|
|
1788
|
+
else:
|
|
1789
|
+
rotary_emb = RotaryEmbedding(
|
|
1790
|
+
head_size,
|
|
1791
|
+
rotary_dim,
|
|
1792
|
+
max_position,
|
|
1793
|
+
base,
|
|
1794
|
+
is_neox_style,
|
|
1795
|
+
dtype,
|
|
1796
|
+
)
|
|
1797
|
+
elif scaling_type == "linear":
|
|
1798
|
+
scaling_factor = rope_scaling["factor"]
|
|
1799
|
+
rotary_emb = LinearScalingRotaryEmbedding(head_size, rotary_dim,
|
|
1800
|
+
max_position, base,
|
|
1801
|
+
is_neox_style,
|
|
1802
|
+
scaling_factor, dtype)
|
|
1803
|
+
elif scaling_type == "ntk":
|
|
1804
|
+
scaling_factor = rope_scaling["factor"]
|
|
1805
|
+
mixed_b = rope_scaling.get('mixed_b', None)
|
|
1806
|
+
rotary_emb = NTKScalingRotaryEmbedding(head_size, rotary_dim,
|
|
1807
|
+
max_position, base,
|
|
1808
|
+
is_neox_style,
|
|
1809
|
+
scaling_factor, dtype,
|
|
1810
|
+
mixed_b)
|
|
1811
|
+
elif scaling_type == "dynamic":
|
|
1812
|
+
scaling_factor = rope_scaling["factor"]
|
|
1813
|
+
rotary_emb = DynamicNTKScalingRotaryEmbedding(
|
|
1814
|
+
head_size, rotary_dim, max_position, base, is_neox_style,
|
|
1815
|
+
scaling_factor, dtype)
|
|
1816
|
+
elif scaling_type == "yarn":
|
|
1817
|
+
scaling_factor = rope_scaling["factor"]
|
|
1818
|
+
original_max_position = rope_scaling[
|
|
1819
|
+
"original_max_position_embeddings"]
|
|
1820
|
+
extra_kwargs = {
|
|
1821
|
+
k: v
|
|
1822
|
+
for k, v in rope_scaling.items()
|
|
1823
|
+
if k in ("extrapolation_factor", "attn_factor", "beta_fast",
|
|
1824
|
+
"beta_slow")
|
|
1825
|
+
}
|
|
1826
|
+
rotary_emb = YaRNScalingRotaryEmbedding(head_size, rotary_dim,
|
|
1827
|
+
original_max_position,
|
|
1828
|
+
base, is_neox_style,
|
|
1829
|
+
scaling_factor, dtype,
|
|
1830
|
+
**extra_kwargs)
|
|
1831
|
+
elif scaling_type == "deepseek_yarn":
|
|
1832
|
+
scaling_factor = rope_scaling["factor"]
|
|
1833
|
+
original_max_position = rope_scaling[
|
|
1834
|
+
"original_max_position_embeddings"]
|
|
1835
|
+
# assert max_position == original_max_position * scaling_factor
|
|
1836
|
+
extra_kwargs = {
|
|
1837
|
+
k: v
|
|
1838
|
+
for k, v in rope_scaling.items()
|
|
1839
|
+
if k in ("extrapolation_factor", "attn_factor", "beta_fast",
|
|
1840
|
+
"beta_slow", "mscale", "mscale_all_dim")
|
|
1841
|
+
}
|
|
1842
|
+
rotary_emb = DeepseekScalingRotaryEmbedding(
|
|
1843
|
+
head_size, rotary_dim, original_max_position, base,
|
|
1844
|
+
is_neox_style, scaling_factor, dtype, **extra_kwargs)
|
|
1845
|
+
elif scaling_type == "longrope":
|
|
1846
|
+
short_factor = rope_scaling["short_factor"]
|
|
1847
|
+
long_factor = rope_scaling["long_factor"]
|
|
1848
|
+
original_max_position = rope_scaling[
|
|
1849
|
+
"original_max_position_embeddings"]
|
|
1850
|
+
extra_kwargs = {
|
|
1851
|
+
k: v
|
|
1852
|
+
for k, v in rope_scaling.items()
|
|
1853
|
+
if k in ("short_mscale", "long_mscale")
|
|
1854
|
+
}
|
|
1855
|
+
rotary_emb = Phi3LongRoPEScaledRotaryEmbedding(
|
|
1856
|
+
head_size, rotary_dim, max_position, original_max_position,
|
|
1857
|
+
base, is_neox_style, dtype, short_factor, long_factor,
|
|
1858
|
+
**extra_kwargs)
|
|
1859
|
+
else:
|
|
1860
|
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
|
1861
|
+
_ROPE_DICT[key] = rotary_emb
|
|
1862
|
+
return rotary_emb
|