vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1197) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +53 -0
  3. vllm/_custom_ops.py +1828 -0
  4. vllm/_ipex_ops.py +244 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +115 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +308 -0
  20. vllm/attention/backends/blocksparse_attn.py +461 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
  23. vllm/attention/backends/flash_attn.py +1003 -0
  24. vllm/attention/backends/flashinfer.py +1104 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +313 -0
  27. vllm/attention/backends/ipex_attn.py +398 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1385 -0
  30. vllm/attention/backends/pallas.py +351 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +975 -0
  34. vllm/attention/backends/torch_sdpa.py +703 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +802 -0
  38. vllm/attention/layer.py +468 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +906 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/prefix_prefill.py +902 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  54. vllm/attention/ops/triton_decode_attention.py +674 -0
  55. vllm/attention/ops/triton_flash_attention.py +979 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  57. vllm/attention/ops/triton_unified_attention.py +334 -0
  58. vllm/attention/selector.py +187 -0
  59. vllm/attention/utils/fa_utils.py +55 -0
  60. vllm/beam_search.py +87 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +1185 -0
  63. vllm/benchmarks/endpoint_request_func.py +381 -0
  64. vllm/benchmarks/latency.py +168 -0
  65. vllm/benchmarks/serve.py +1135 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +70 -0
  68. vllm/collect_env.py +820 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +89 -0
  71. vllm/compilation/backends.py +563 -0
  72. vllm/compilation/base_piecewise_backend.py +72 -0
  73. vllm/compilation/collective_fusion.py +127 -0
  74. vllm/compilation/compiler_interface.py +544 -0
  75. vllm/compilation/counter.py +38 -0
  76. vllm/compilation/cuda_piecewise_backend.py +214 -0
  77. vllm/compilation/decorators.py +250 -0
  78. vllm/compilation/fix_functionalization.py +191 -0
  79. vllm/compilation/fusion.py +618 -0
  80. vllm/compilation/fx_utils.py +62 -0
  81. vllm/compilation/inductor_pass.py +115 -0
  82. vllm/compilation/monitor.py +39 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +137 -0
  85. vllm/compilation/pass_manager.py +78 -0
  86. vllm/compilation/sequence_parallelism.py +268 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +67 -0
  89. vllm/compilation/wrapper.py +135 -0
  90. vllm/config.py +4746 -0
  91. vllm/connections.py +174 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +399 -0
  95. vllm/core/block/common.py +371 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  97. vllm/core/block/interfaces.py +319 -0
  98. vllm/core/block/naive_block.py +466 -0
  99. vllm/core/block/prefix_caching_block.py +1135 -0
  100. vllm/core/block/utils.py +28 -0
  101. vllm/core/block_manager.py +521 -0
  102. vllm/core/evictor.py +157 -0
  103. vllm/core/interfaces.py +135 -0
  104. vllm/core/placeholder_block_space_manager.py +100 -0
  105. vllm/core/scheduler.py +2093 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +281 -0
  108. vllm/distributed/__init__.py +6 -0
  109. vllm/distributed/communication_op.py +41 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +264 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +176 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  120. vllm/distributed/device_communicators/pynccl.py +218 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  125. vllm/distributed/kv_events.py +356 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +12 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  152. vllm/distributed/parallel_state.py +1296 -0
  153. vllm/distributed/tpu_distributed_utils.py +177 -0
  154. vllm/distributed/utils.py +536 -0
  155. vllm/engine/__init__.py +0 -0
  156. vllm/engine/arg_utils.py +1708 -0
  157. vllm/engine/async_llm_engine.py +1200 -0
  158. vllm/engine/async_timeout.py +173 -0
  159. vllm/engine/llm_engine.py +2097 -0
  160. vllm/engine/metrics.py +629 -0
  161. vllm/engine/metrics_types.py +94 -0
  162. vllm/engine/multiprocessing/__init__.py +148 -0
  163. vllm/engine/multiprocessing/client.py +681 -0
  164. vllm/engine/multiprocessing/engine.py +460 -0
  165. vllm/engine/output_processor/__init__.py +0 -0
  166. vllm/engine/output_processor/interfaces.py +75 -0
  167. vllm/engine/output_processor/multi_step.py +216 -0
  168. vllm/engine/output_processor/single_step.py +145 -0
  169. vllm/engine/output_processor/stop_checker.py +131 -0
  170. vllm/engine/output_processor/util.py +28 -0
  171. vllm/engine/protocol.py +317 -0
  172. vllm/entrypoints/__init__.py +0 -0
  173. vllm/entrypoints/api_server.py +178 -0
  174. vllm/entrypoints/chat_utils.py +1299 -0
  175. vllm/entrypoints/cli/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  177. vllm/entrypoints/cli/benchmark/base.py +39 -0
  178. vllm/entrypoints/cli/benchmark/latency.py +30 -0
  179. vllm/entrypoints/cli/benchmark/main.py +54 -0
  180. vllm/entrypoints/cli/benchmark/serve.py +30 -0
  181. vllm/entrypoints/cli/benchmark/throughput.py +30 -0
  182. vllm/entrypoints/cli/collect_env.py +35 -0
  183. vllm/entrypoints/cli/main.py +65 -0
  184. vllm/entrypoints/cli/openai.py +205 -0
  185. vllm/entrypoints/cli/run_batch.py +62 -0
  186. vllm/entrypoints/cli/serve.py +328 -0
  187. vllm/entrypoints/cli/types.py +25 -0
  188. vllm/entrypoints/launcher.py +147 -0
  189. vllm/entrypoints/llm.py +1544 -0
  190. vllm/entrypoints/logger.py +50 -0
  191. vllm/entrypoints/openai/__init__.py +0 -0
  192. vllm/entrypoints/openai/api_server.py +1387 -0
  193. vllm/entrypoints/openai/cli_args.py +315 -0
  194. vllm/entrypoints/openai/logits_processors.py +90 -0
  195. vllm/entrypoints/openai/protocol.py +1913 -0
  196. vllm/entrypoints/openai/run_batch.py +463 -0
  197. vllm/entrypoints/openai/serving_chat.py +1221 -0
  198. vllm/entrypoints/openai/serving_classification.py +160 -0
  199. vllm/entrypoints/openai/serving_completion.py +592 -0
  200. vllm/entrypoints/openai/serving_embedding.py +201 -0
  201. vllm/entrypoints/openai/serving_engine.py +986 -0
  202. vllm/entrypoints/openai/serving_models.py +315 -0
  203. vllm/entrypoints/openai/serving_pooling.py +232 -0
  204. vllm/entrypoints/openai/serving_score.py +433 -0
  205. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  206. vllm/entrypoints/openai/serving_transcription.py +424 -0
  207. vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
  208. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  209. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  210. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  211. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  212. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  213. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  214. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  215. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  216. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  217. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  218. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  219. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  220. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  221. vllm/entrypoints/score_utils.py +50 -0
  222. vllm/entrypoints/ssl.py +75 -0
  223. vllm/entrypoints/utils.py +233 -0
  224. vllm/env_override.py +41 -0
  225. vllm/envs.py +944 -0
  226. vllm/executor/__init__.py +0 -0
  227. vllm/executor/executor_base.py +401 -0
  228. vllm/executor/mp_distributed_executor.py +244 -0
  229. vllm/executor/msgspec_utils.py +30 -0
  230. vllm/executor/multiproc_worker_utils.py +313 -0
  231. vllm/executor/ray_distributed_executor.py +701 -0
  232. vllm/executor/ray_utils.py +399 -0
  233. vllm/executor/uniproc_executor.py +139 -0
  234. vllm/forward_context.py +179 -0
  235. vllm/inputs/__init__.py +41 -0
  236. vllm/inputs/data.py +331 -0
  237. vllm/inputs/parse.py +151 -0
  238. vllm/inputs/preprocess.py +909 -0
  239. vllm/inputs/registry.py +237 -0
  240. vllm/jsontree.py +80 -0
  241. vllm/logger.py +212 -0
  242. vllm/logging_utils/__init__.py +8 -0
  243. vllm/logging_utils/dump_input.py +85 -0
  244. vllm/logging_utils/formatter.py +18 -0
  245. vllm/logits_process.py +119 -0
  246. vllm/lora/__init__.py +0 -0
  247. vllm/lora/fully_sharded_layers.py +355 -0
  248. vllm/lora/layers.py +1285 -0
  249. vllm/lora/lora.py +199 -0
  250. vllm/lora/models.py +818 -0
  251. vllm/lora/ops/__init__.py +0 -0
  252. vllm/lora/ops/torch_ops/__init__.py +16 -0
  253. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  254. vllm/lora/ops/triton_ops/__init__.py +12 -0
  255. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  256. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  257. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  258. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  259. vllm/lora/ops/triton_ops/utils.py +120 -0
  260. vllm/lora/ops/xla_ops/__init__.py +7 -0
  261. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  262. vllm/lora/peft_helper.py +136 -0
  263. vllm/lora/punica_wrapper/__init__.py +10 -0
  264. vllm/lora/punica_wrapper/punica_base.py +485 -0
  265. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  266. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  267. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  268. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  269. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  270. vllm/lora/punica_wrapper/utils.py +164 -0
  271. vllm/lora/request.py +99 -0
  272. vllm/lora/resolver.py +85 -0
  273. vllm/lora/utils.py +240 -0
  274. vllm/lora/worker_manager.py +259 -0
  275. vllm/model_executor/__init__.py +16 -0
  276. vllm/model_executor/custom_op.py +152 -0
  277. vllm/model_executor/guided_decoding/__init__.py +181 -0
  278. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  279. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  280. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  281. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  282. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  283. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  284. vllm/model_executor/guided_decoding/utils.py +242 -0
  285. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  286. vllm/model_executor/layers/__init__.py +0 -0
  287. vllm/model_executor/layers/activation.py +369 -0
  288. vllm/model_executor/layers/fused_moe/__init__.py +54 -0
  289. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
  290. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  455. vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
  456. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
  457. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
  458. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
  459. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
  460. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
  461. vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
  462. vllm/model_executor/layers/fused_moe/layer.py +1535 -0
  463. vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
  464. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  465. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  466. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  467. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  468. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
  469. vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
  470. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
  471. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
  472. vllm/model_executor/layers/fused_moe/utils.py +98 -0
  473. vllm/model_executor/layers/layernorm.py +288 -0
  474. vllm/model_executor/layers/lightning_attn.py +652 -0
  475. vllm/model_executor/layers/linear.py +1524 -0
  476. vllm/model_executor/layers/logits_processor.py +197 -0
  477. vllm/model_executor/layers/mamba/__init__.py +0 -0
  478. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  479. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  480. vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
  481. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  482. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  483. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  484. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  485. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  486. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  487. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  488. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  489. vllm/model_executor/layers/pooler.py +350 -0
  490. vllm/model_executor/layers/quantization/__init__.py +157 -0
  491. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  492. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  493. vllm/model_executor/layers/quantization/awq.py +194 -0
  494. vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
  495. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  496. vllm/model_executor/layers/quantization/base_config.py +151 -0
  497. vllm/model_executor/layers/quantization/bitblas.py +461 -0
  498. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  505. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  506. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
  507. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
  508. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  509. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  510. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  511. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  512. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  513. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  514. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  515. vllm/model_executor/layers/quantization/experts_int8.py +196 -0
  516. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  517. vllm/model_executor/layers/quantization/fp8.py +906 -0
  518. vllm/model_executor/layers/quantization/gguf.py +565 -0
  519. vllm/model_executor/layers/quantization/gptq.py +278 -0
  520. vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
  521. vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
  522. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  523. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  524. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  525. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  526. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  527. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  528. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  529. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  530. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  531. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
  532. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  533. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  534. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  535. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  536. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  537. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  538. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  539. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  540. vllm/model_executor/layers/quantization/marlin.py +261 -0
  541. vllm/model_executor/layers/quantization/modelopt.py +737 -0
  542. vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
  543. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  544. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  545. vllm/model_executor/layers/quantization/qqq.py +275 -0
  546. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  547. vllm/model_executor/layers/quantization/quark/quark.py +441 -0
  548. vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
  549. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  550. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  551. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  552. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
  553. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  554. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  555. vllm/model_executor/layers/quantization/schema.py +86 -0
  556. vllm/model_executor/layers/quantization/torchao.py +161 -0
  557. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  558. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  559. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  560. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
  764. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  765. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  766. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  767. vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
  768. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  769. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  770. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  771. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  772. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  773. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  774. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  775. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
  776. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  777. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  778. vllm/model_executor/layers/rejection_sampler.py +406 -0
  779. vllm/model_executor/layers/resampler.py +270 -0
  780. vllm/model_executor/layers/rotary_embedding.py +1862 -0
  781. vllm/model_executor/layers/sampler.py +1204 -0
  782. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  783. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  784. vllm/model_executor/layers/utils.py +95 -0
  785. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  786. vllm/model_executor/model_loader/__init__.py +76 -0
  787. vllm/model_executor/model_loader/base_loader.py +43 -0
  788. vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
  789. vllm/model_executor/model_loader/default_loader.py +282 -0
  790. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  791. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  792. vllm/model_executor/model_loader/neuron.py +476 -0
  793. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  794. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  795. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  796. vllm/model_executor/model_loader/tensorizer.py +600 -0
  797. vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
  798. vllm/model_executor/model_loader/tpu.py +112 -0
  799. vllm/model_executor/model_loader/utils.py +302 -0
  800. vllm/model_executor/model_loader/weight_utils.py +782 -0
  801. vllm/model_executor/models/__init__.py +28 -0
  802. vllm/model_executor/models/adapters.py +248 -0
  803. vllm/model_executor/models/aimv2.py +246 -0
  804. vllm/model_executor/models/arctic.py +559 -0
  805. vllm/model_executor/models/aria.py +657 -0
  806. vllm/model_executor/models/aya_vision.py +466 -0
  807. vllm/model_executor/models/baichuan.py +474 -0
  808. vllm/model_executor/models/bamba.py +543 -0
  809. vllm/model_executor/models/bart.py +938 -0
  810. vllm/model_executor/models/bert.py +523 -0
  811. vllm/model_executor/models/bert_with_rope.py +769 -0
  812. vllm/model_executor/models/blip.py +339 -0
  813. vllm/model_executor/models/blip2.py +718 -0
  814. vllm/model_executor/models/bloom.py +373 -0
  815. vllm/model_executor/models/chameleon.py +1136 -0
  816. vllm/model_executor/models/chatglm.py +478 -0
  817. vllm/model_executor/models/clip.py +407 -0
  818. vllm/model_executor/models/commandr.py +472 -0
  819. vllm/model_executor/models/constant_size_cache.py +137 -0
  820. vllm/model_executor/models/dbrx.py +472 -0
  821. vllm/model_executor/models/deepseek.py +486 -0
  822. vllm/model_executor/models/deepseek_mtp.py +269 -0
  823. vllm/model_executor/models/deepseek_v2.py +843 -0
  824. vllm/model_executor/models/deepseek_vl2.py +648 -0
  825. vllm/model_executor/models/eagle.py +260 -0
  826. vllm/model_executor/models/exaone.py +551 -0
  827. vllm/model_executor/models/fairseq2_llama.py +154 -0
  828. vllm/model_executor/models/falcon.py +510 -0
  829. vllm/model_executor/models/falcon_h1.py +685 -0
  830. vllm/model_executor/models/florence2.py +1103 -0
  831. vllm/model_executor/models/fuyu.py +389 -0
  832. vllm/model_executor/models/gemma.py +425 -0
  833. vllm/model_executor/models/gemma2.py +425 -0
  834. vllm/model_executor/models/gemma3.py +533 -0
  835. vllm/model_executor/models/gemma3_mm.py +709 -0
  836. vllm/model_executor/models/glm.py +23 -0
  837. vllm/model_executor/models/glm4.py +305 -0
  838. vllm/model_executor/models/glm4v.py +648 -0
  839. vllm/model_executor/models/gpt2.py +328 -0
  840. vllm/model_executor/models/gpt_bigcode.py +335 -0
  841. vllm/model_executor/models/gpt_j.py +339 -0
  842. vllm/model_executor/models/gpt_neox.py +332 -0
  843. vllm/model_executor/models/granite.py +493 -0
  844. vllm/model_executor/models/granite_speech.py +779 -0
  845. vllm/model_executor/models/granitemoe.py +437 -0
  846. vllm/model_executor/models/granitemoehybrid.py +586 -0
  847. vllm/model_executor/models/granitemoeshared.py +341 -0
  848. vllm/model_executor/models/gritlm.py +224 -0
  849. vllm/model_executor/models/grok1.py +546 -0
  850. vllm/model_executor/models/h2ovl.py +546 -0
  851. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  852. vllm/model_executor/models/idefics3.py +776 -0
  853. vllm/model_executor/models/interfaces.py +572 -0
  854. vllm/model_executor/models/interfaces_base.py +164 -0
  855. vllm/model_executor/models/intern_vit.py +480 -0
  856. vllm/model_executor/models/internlm2.py +455 -0
  857. vllm/model_executor/models/internlm2_ve.py +147 -0
  858. vllm/model_executor/models/internvl.py +1418 -0
  859. vllm/model_executor/models/jais.py +373 -0
  860. vllm/model_executor/models/jamba.py +592 -0
  861. vllm/model_executor/models/kimi_vl.py +577 -0
  862. vllm/model_executor/models/llama.py +644 -0
  863. vllm/model_executor/models/llama4.py +532 -0
  864. vllm/model_executor/models/llama_eagle.py +165 -0
  865. vllm/model_executor/models/llama_eagle3.py +263 -0
  866. vllm/model_executor/models/llava.py +866 -0
  867. vllm/model_executor/models/llava_next.py +586 -0
  868. vllm/model_executor/models/llava_next_video.py +471 -0
  869. vllm/model_executor/models/llava_onevision.py +956 -0
  870. vllm/model_executor/models/mamba.py +273 -0
  871. vllm/model_executor/models/mamba2.py +308 -0
  872. vllm/model_executor/models/mamba_cache.py +76 -0
  873. vllm/model_executor/models/medusa.py +219 -0
  874. vllm/model_executor/models/mimo.py +192 -0
  875. vllm/model_executor/models/mimo_mtp.py +285 -0
  876. vllm/model_executor/models/minicpm.py +592 -0
  877. vllm/model_executor/models/minicpm3.py +230 -0
  878. vllm/model_executor/models/minicpm_eagle.py +391 -0
  879. vllm/model_executor/models/minicpmo.py +759 -0
  880. vllm/model_executor/models/minicpmv.py +1287 -0
  881. vllm/model_executor/models/minimax_cache.py +36 -0
  882. vllm/model_executor/models/minimax_text_01.py +1301 -0
  883. vllm/model_executor/models/minimax_vl_01.py +364 -0
  884. vllm/model_executor/models/mistral3.py +604 -0
  885. vllm/model_executor/models/mixtral.py +488 -0
  886. vllm/model_executor/models/mixtral_quant.py +453 -0
  887. vllm/model_executor/models/mllama.py +1624 -0
  888. vllm/model_executor/models/mllama4.py +938 -0
  889. vllm/model_executor/models/mlp_speculator.py +206 -0
  890. vllm/model_executor/models/modernbert.py +331 -0
  891. vllm/model_executor/models/module_mapping.py +72 -0
  892. vllm/model_executor/models/molmo.py +1568 -0
  893. vllm/model_executor/models/moonvit.py +630 -0
  894. vllm/model_executor/models/mpt.py +331 -0
  895. vllm/model_executor/models/nemotron.py +508 -0
  896. vllm/model_executor/models/nemotron_h.py +573 -0
  897. vllm/model_executor/models/nemotron_nas.py +484 -0
  898. vllm/model_executor/models/nvlm_d.py +216 -0
  899. vllm/model_executor/models/olmo.py +389 -0
  900. vllm/model_executor/models/olmo2.py +414 -0
  901. vllm/model_executor/models/olmoe.py +468 -0
  902. vllm/model_executor/models/opt.py +412 -0
  903. vllm/model_executor/models/orion.py +349 -0
  904. vllm/model_executor/models/ovis.py +567 -0
  905. vllm/model_executor/models/paligemma.py +398 -0
  906. vllm/model_executor/models/persimmon.py +344 -0
  907. vllm/model_executor/models/phi.py +356 -0
  908. vllm/model_executor/models/phi3.py +19 -0
  909. vllm/model_executor/models/phi3_small.py +465 -0
  910. vllm/model_executor/models/phi3v.py +723 -0
  911. vllm/model_executor/models/phi4mm.py +1246 -0
  912. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  913. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  914. vllm/model_executor/models/phimoe.py +665 -0
  915. vllm/model_executor/models/pixtral.py +1316 -0
  916. vllm/model_executor/models/plamo2.py +738 -0
  917. vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
  918. vllm/model_executor/models/qwen.py +362 -0
  919. vllm/model_executor/models/qwen2.py +497 -0
  920. vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
  921. vllm/model_executor/models/qwen2_5_vl.py +1166 -0
  922. vllm/model_executor/models/qwen2_audio.py +410 -0
  923. vllm/model_executor/models/qwen2_moe.py +540 -0
  924. vllm/model_executor/models/qwen2_rm.py +132 -0
  925. vllm/model_executor/models/qwen2_vl.py +1405 -0
  926. vllm/model_executor/models/qwen3.py +321 -0
  927. vllm/model_executor/models/qwen3_moe.py +535 -0
  928. vllm/model_executor/models/qwen_vl.py +785 -0
  929. vllm/model_executor/models/registry.py +622 -0
  930. vllm/model_executor/models/roberta.py +276 -0
  931. vllm/model_executor/models/siglip.py +524 -0
  932. vllm/model_executor/models/skyworkr1v.py +951 -0
  933. vllm/model_executor/models/smolvlm.py +52 -0
  934. vllm/model_executor/models/solar.py +506 -0
  935. vllm/model_executor/models/stablelm.py +343 -0
  936. vllm/model_executor/models/starcoder2.py +356 -0
  937. vllm/model_executor/models/tarsier.py +643 -0
  938. vllm/model_executor/models/telechat2.py +140 -0
  939. vllm/model_executor/models/teleflm.py +79 -0
  940. vllm/model_executor/models/transformers.py +508 -0
  941. vllm/model_executor/models/ultravox.py +656 -0
  942. vllm/model_executor/models/utils.py +731 -0
  943. vllm/model_executor/models/vision.py +147 -0
  944. vllm/model_executor/models/whisper.py +747 -0
  945. vllm/model_executor/models/zamba2.py +1009 -0
  946. vllm/model_executor/parameter.py +459 -0
  947. vllm/model_executor/pooling_metadata.py +72 -0
  948. vllm/model_executor/sampling_metadata.py +597 -0
  949. vllm/model_executor/utils.py +77 -0
  950. vllm/multimodal/__init__.py +33 -0
  951. vllm/multimodal/audio.py +106 -0
  952. vllm/multimodal/base.py +219 -0
  953. vllm/multimodal/hasher.py +118 -0
  954. vllm/multimodal/image.py +97 -0
  955. vllm/multimodal/inputs.py +876 -0
  956. vllm/multimodal/parse.py +461 -0
  957. vllm/multimodal/processing.py +1895 -0
  958. vllm/multimodal/profiling.py +258 -0
  959. vllm/multimodal/registry.py +331 -0
  960. vllm/multimodal/utils.py +436 -0
  961. vllm/multimodal/video.py +198 -0
  962. vllm/outputs.py +512 -0
  963. vllm/platforms/__init__.py +291 -0
  964. vllm/platforms/cpu.py +266 -0
  965. vllm/platforms/cuda.py +526 -0
  966. vllm/platforms/hpu.py +106 -0
  967. vllm/platforms/interface.py +538 -0
  968. vllm/platforms/neuron.py +150 -0
  969. vllm/platforms/rocm.py +435 -0
  970. vllm/platforms/tpu.py +216 -0
  971. vllm/platforms/xpu.py +156 -0
  972. vllm/plugins/__init__.py +94 -0
  973. vllm/plugins/lora_resolvers/README.md +15 -0
  974. vllm/plugins/lora_resolvers/__init__.py +0 -0
  975. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  976. vllm/pooling_params.py +54 -0
  977. vllm/profiler/__init__.py +0 -0
  978. vllm/profiler/layerwise_profile.py +375 -0
  979. vllm/profiler/utils.py +148 -0
  980. vllm/prompt_adapter/__init__.py +0 -0
  981. vllm/prompt_adapter/layers.py +83 -0
  982. vllm/prompt_adapter/models.py +358 -0
  983. vllm/prompt_adapter/request.py +37 -0
  984. vllm/prompt_adapter/utils.py +98 -0
  985. vllm/prompt_adapter/worker_manager.py +179 -0
  986. vllm/py.typed +2 -0
  987. vllm/reasoning/__init__.py +15 -0
  988. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  989. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  990. vllm/reasoning/granite_reasoning_parser.py +363 -0
  991. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  992. vllm/sampling_params.py +602 -0
  993. vllm/scalar_type.py +347 -0
  994. vllm/scripts.py +15 -0
  995. vllm/sequence.py +1568 -0
  996. vllm/spec_decode/__init__.py +0 -0
  997. vllm/spec_decode/batch_expansion.py +506 -0
  998. vllm/spec_decode/draft_model_runner.py +349 -0
  999. vllm/spec_decode/interfaces.py +99 -0
  1000. vllm/spec_decode/medusa_worker.py +138 -0
  1001. vllm/spec_decode/metrics.py +213 -0
  1002. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1003. vllm/spec_decode/mqa_scorer.py +160 -0
  1004. vllm/spec_decode/multi_step_worker.py +423 -0
  1005. vllm/spec_decode/ngram_worker.py +196 -0
  1006. vllm/spec_decode/proposer_worker_base.py +59 -0
  1007. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1008. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1009. vllm/spec_decode/target_model_runner.py +45 -0
  1010. vllm/spec_decode/top1_proposer.py +275 -0
  1011. vllm/spec_decode/util.py +277 -0
  1012. vllm/test_utils.py +130 -0
  1013. vllm/third_party/__init__.py +0 -0
  1014. vllm/third_party/pynvml.py +6140 -0
  1015. vllm/tracing.py +131 -0
  1016. vllm/transformers_utils/__init__.py +24 -0
  1017. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1018. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1019. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1020. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1021. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1022. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1023. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1024. vllm/transformers_utils/config.py +887 -0
  1025. vllm/transformers_utils/configs/__init__.py +61 -0
  1026. vllm/transformers_utils/configs/arctic.py +207 -0
  1027. vllm/transformers_utils/configs/chatglm.py +72 -0
  1028. vllm/transformers_utils/configs/cohere2.py +195 -0
  1029. vllm/transformers_utils/configs/dbrx.py +280 -0
  1030. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1031. vllm/transformers_utils/configs/eagle.py +85 -0
  1032. vllm/transformers_utils/configs/exaone.py +190 -0
  1033. vllm/transformers_utils/configs/falcon.py +90 -0
  1034. vllm/transformers_utils/configs/h2ovl.py +16 -0
  1035. vllm/transformers_utils/configs/internvl.py +54 -0
  1036. vllm/transformers_utils/configs/jais.py +238 -0
  1037. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1038. vllm/transformers_utils/configs/medusa.py +63 -0
  1039. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1040. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1041. vllm/transformers_utils/configs/mllama.py +31 -0
  1042. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1043. vllm/transformers_utils/configs/moonvit.py +33 -0
  1044. vllm/transformers_utils/configs/mpt.py +180 -0
  1045. vllm/transformers_utils/configs/nemotron.py +205 -0
  1046. vllm/transformers_utils/configs/nemotron_h.py +258 -0
  1047. vllm/transformers_utils/configs/nvlm_d.py +15 -0
  1048. vllm/transformers_utils/configs/ovis.py +184 -0
  1049. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1050. vllm/transformers_utils/configs/solar.py +247 -0
  1051. vllm/transformers_utils/configs/telechat2.py +64 -0
  1052. vllm/transformers_utils/configs/ultravox.py +108 -0
  1053. vllm/transformers_utils/detokenizer.py +168 -0
  1054. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1055. vllm/transformers_utils/processor.py +221 -0
  1056. vllm/transformers_utils/processors/__init__.py +8 -0
  1057. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1058. vllm/transformers_utils/processors/ovis.py +420 -0
  1059. vllm/transformers_utils/s3_utils.py +162 -0
  1060. vllm/transformers_utils/tokenizer.py +302 -0
  1061. vllm/transformers_utils/tokenizer_base.py +149 -0
  1062. vllm/transformers_utils/tokenizer_group.py +120 -0
  1063. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1064. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1065. vllm/transformers_utils/utils.py +99 -0
  1066. vllm/triton_utils/__init__.py +14 -0
  1067. vllm/triton_utils/importing.py +50 -0
  1068. vllm/usage/__init__.py +0 -0
  1069. vllm/usage/usage_lib.py +256 -0
  1070. vllm/utils.py +2910 -0
  1071. vllm/v1/__init__.py +0 -0
  1072. vllm/v1/attention/__init__.py +0 -0
  1073. vllm/v1/attention/backends/__init__.py +0 -0
  1074. vllm/v1/attention/backends/cpu_attn.py +163 -0
  1075. vllm/v1/attention/backends/flash_attn.py +869 -0
  1076. vllm/v1/attention/backends/flashinfer.py +651 -0
  1077. vllm/v1/attention/backends/flex_attention.py +477 -0
  1078. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1079. vllm/v1/attention/backends/mla/common.py +931 -0
  1080. vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
  1081. vllm/v1/attention/backends/mla/flashmla.py +152 -0
  1082. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
  1083. vllm/v1/attention/backends/mla/triton_mla.py +120 -0
  1084. vllm/v1/attention/backends/pallas.py +240 -0
  1085. vllm/v1/attention/backends/triton_attn.py +285 -0
  1086. vllm/v1/attention/backends/utils.py +52 -0
  1087. vllm/v1/core/__init__.py +0 -0
  1088. vllm/v1/core/block_pool.py +349 -0
  1089. vllm/v1/core/encoder_cache_manager.py +150 -0
  1090. vllm/v1/core/kv_cache_coordinator.py +363 -0
  1091. vllm/v1/core/kv_cache_manager.py +392 -0
  1092. vllm/v1/core/kv_cache_utils.py +996 -0
  1093. vllm/v1/core/sched/__init__.py +0 -0
  1094. vllm/v1/core/sched/interface.py +150 -0
  1095. vllm/v1/core/sched/output.py +154 -0
  1096. vllm/v1/core/sched/scheduler.py +1044 -0
  1097. vllm/v1/core/sched/utils.py +23 -0
  1098. vllm/v1/core/single_type_kv_cache_manager.py +403 -0
  1099. vllm/v1/engine/__init__.py +173 -0
  1100. vllm/v1/engine/async_llm.py +558 -0
  1101. vllm/v1/engine/coordinator.py +253 -0
  1102. vllm/v1/engine/core.py +961 -0
  1103. vllm/v1/engine/core_client.py +1129 -0
  1104. vllm/v1/engine/detokenizer.py +261 -0
  1105. vllm/v1/engine/exceptions.py +17 -0
  1106. vllm/v1/engine/llm_engine.py +317 -0
  1107. vllm/v1/engine/logprobs.py +199 -0
  1108. vllm/v1/engine/mm_input_cache.py +91 -0
  1109. vllm/v1/engine/output_processor.py +428 -0
  1110. vllm/v1/engine/parallel_sampling.py +133 -0
  1111. vllm/v1/engine/processor.py +407 -0
  1112. vllm/v1/executor/__init__.py +0 -0
  1113. vllm/v1/executor/abstract.py +113 -0
  1114. vllm/v1/executor/multiproc_executor.py +537 -0
  1115. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1116. vllm/v1/kv_cache_interface.py +194 -0
  1117. vllm/v1/metrics/__init__.py +0 -0
  1118. vllm/v1/metrics/loggers.py +523 -0
  1119. vllm/v1/metrics/prometheus.py +82 -0
  1120. vllm/v1/metrics/ray_wrappers.py +131 -0
  1121. vllm/v1/metrics/reader.py +246 -0
  1122. vllm/v1/metrics/stats.py +239 -0
  1123. vllm/v1/outputs.py +116 -0
  1124. vllm/v1/request.py +193 -0
  1125. vllm/v1/sample/__init__.py +0 -0
  1126. vllm/v1/sample/metadata.py +44 -0
  1127. vllm/v1/sample/ops/__init__.py +0 -0
  1128. vllm/v1/sample/ops/bad_words.py +39 -0
  1129. vllm/v1/sample/ops/penalties.py +59 -0
  1130. vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
  1131. vllm/v1/sample/rejection_sampler.py +631 -0
  1132. vllm/v1/sample/sampler.py +286 -0
  1133. vllm/v1/sample/tpu/__init__.py +0 -0
  1134. vllm/v1/sample/tpu/metadata.py +124 -0
  1135. vllm/v1/sample/tpu/sampler.py +145 -0
  1136. vllm/v1/serial_utils.py +315 -0
  1137. vllm/v1/spec_decode/__init__.py +0 -0
  1138. vllm/v1/spec_decode/eagle.py +432 -0
  1139. vllm/v1/spec_decode/medusa.py +62 -0
  1140. vllm/v1/spec_decode/metadata.py +62 -0
  1141. vllm/v1/spec_decode/metrics.py +178 -0
  1142. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1143. vllm/v1/spec_decode/utils.py +46 -0
  1144. vllm/v1/structured_output/__init__.py +222 -0
  1145. vllm/v1/structured_output/backend_guidance.py +245 -0
  1146. vllm/v1/structured_output/backend_types.py +134 -0
  1147. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1148. vllm/v1/structured_output/request.py +86 -0
  1149. vllm/v1/structured_output/utils.py +175 -0
  1150. vllm/v1/utils.py +743 -0
  1151. vllm/v1/worker/__init__.py +0 -0
  1152. vllm/v1/worker/block_table.py +142 -0
  1153. vllm/v1/worker/cpu_model_runner.py +86 -0
  1154. vllm/v1/worker/cpu_worker.py +152 -0
  1155. vllm/v1/worker/gpu_input_batch.py +681 -0
  1156. vllm/v1/worker/gpu_model_runner.py +2320 -0
  1157. vllm/v1/worker/gpu_worker.py +393 -0
  1158. vllm/v1/worker/lora_model_runner_mixin.py +173 -0
  1159. vllm/v1/worker/tpu_model_runner.py +1673 -0
  1160. vllm/v1/worker/tpu_worker.py +299 -0
  1161. vllm/v1/worker/utils.py +111 -0
  1162. vllm/v1/worker/worker_base.py +65 -0
  1163. vllm/version.py +41 -0
  1164. vllm/vllm_flash_attn/.gitkeep +0 -0
  1165. vllm/worker/__init__.py +0 -0
  1166. vllm/worker/cache_engine.py +145 -0
  1167. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1168. vllm/worker/cpu_model_runner.py +671 -0
  1169. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1170. vllm/worker/cpu_worker.py +450 -0
  1171. vllm/worker/enc_dec_model_runner.py +555 -0
  1172. vllm/worker/hpu_model_runner.py +2320 -0
  1173. vllm/worker/hpu_worker.py +484 -0
  1174. vllm/worker/model_runner.py +2178 -0
  1175. vllm/worker/model_runner_base.py +282 -0
  1176. vllm/worker/multi_step_hpu_worker.py +123 -0
  1177. vllm/worker/multi_step_model_runner.py +911 -0
  1178. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1179. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1180. vllm/worker/multi_step_tpu_worker.py +108 -0
  1181. vllm/worker/multi_step_worker.py +197 -0
  1182. vllm/worker/neuron_model_runner.py +460 -0
  1183. vllm/worker/neuron_worker.py +193 -0
  1184. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1185. vllm/worker/pooling_model_runner.py +211 -0
  1186. vllm/worker/tpu_model_runner.py +909 -0
  1187. vllm/worker/tpu_worker.py +337 -0
  1188. vllm/worker/utils.py +53 -0
  1189. vllm/worker/worker.py +577 -0
  1190. vllm/worker/worker_base.py +646 -0
  1191. vllm/worker/xpu_model_runner.py +606 -0
  1192. vllm/worker/xpu_worker.py +186 -0
  1193. vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
  1194. vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
  1195. vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
  1196. vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
  1197. vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1524 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import itertools
5
+ from abc import abstractmethod
6
+ from typing import Any, Literal, Optional, Union
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ from torch.nn.parameter import Parameter, UninitializedParameter
11
+
12
+ from vllm.distributed import (divide, get_tensor_model_parallel_rank,
13
+ get_tensor_model_parallel_world_size,
14
+ split_tensor_along_last_dim,
15
+ tensor_model_parallel_all_gather,
16
+ tensor_model_parallel_all_reduce)
17
+ from vllm.logger import init_logger
18
+ from vllm.model_executor.layers.quantization.base_config import (
19
+ QuantizationConfig, QuantizeMethodBase)
20
+ from vllm.model_executor.layers.utils import dispatch_unquantized_gemm
21
+ # yapf: disable
22
+ from vllm.model_executor.parameter import (BasevLLMParameter,
23
+ BlockQuantScaleParameter,
24
+ PackedColumnParameter,
25
+ PackedvLLMParameter,
26
+ PerTensorScaleParameter,
27
+ RowvLLMParameter)
28
+ # yapf: enable
29
+ from vllm.model_executor.utils import set_weight_attrs
30
+
31
+ logger = init_logger(__name__)
32
+
33
+ WEIGHT_LOADER_V2_SUPPORTED = [
34
+ "CompressedTensorsLinearMethod",
35
+ "BitBLASLinearMethod",
36
+ "GPTQBitBLASLinearMethod",
37
+ "AWQMarlinLinearMethod",
38
+ "AWQLinearMethod",
39
+ "GPTQMarlinLinearMethod",
40
+ "Fp8LinearMethod",
41
+ "MarlinLinearMethod",
42
+ "QQQLinearMethod",
43
+ "GPTQMarlin24LinearMethod",
44
+ "TPUInt8LinearMethod",
45
+ "GPTQLinearMethod",
46
+ "FBGEMMFp8LinearMethod",
47
+ "ModelOptFp8LinearMethod",
48
+ "IPEXAWQLinearMethod",
49
+ "IPEXGPTQLinearMethod",
50
+ "HQQMarlinMethod",
51
+ "QuarkLinearMethod",
52
+ "ModelOptNvFp4LinearMethod",
53
+ ]
54
+
55
+
56
+ def adjust_bitblas_shard(param, shard_size, shard_offset):
57
+ bitblas_tile_size = getattr(param, "bitblas_tile_size", None)
58
+ if bitblas_tile_size is not None:
59
+ return (shard_size // bitblas_tile_size,
60
+ shard_offset // bitblas_tile_size)
61
+
62
+ return shard_size, shard_offset
63
+
64
+
65
+ def adjust_marlin_shard(param, shard_size, shard_offset):
66
+ marlin_tile_size = getattr(param, "marlin_tile_size", None)
67
+ if marlin_tile_size is None:
68
+ return shard_size, shard_offset
69
+
70
+ return shard_size * marlin_tile_size, shard_offset * marlin_tile_size
71
+
72
+
73
+ def adjust_bitsandbytes_4bit_shard(param: Parameter,
74
+ shard_offsets: dict[str, tuple[int, int]],
75
+ loaded_shard_id: str) -> tuple[int, int]:
76
+ """Adjust the quantization offsets and sizes for BitsAndBytes sharding."""
77
+
78
+ total, _ = shard_offsets["total"]
79
+ orig_offset, orig_size = shard_offsets[loaded_shard_id]
80
+
81
+ quantized_total = param.data.shape[0]
82
+ quantized_offset = orig_offset * quantized_total // total
83
+ quantized_size = orig_size * quantized_total // total
84
+
85
+ return quantized_size, quantized_offset
86
+
87
+
88
+ def adjust_scalar_to_fused_array(param, loaded_weight, shard_id):
89
+ """For fused modules (QKV and MLP) we have an array of length
90
+ N that holds 1 scale for each "logical" matrix. So the param
91
+ is an array of length N. The loaded_weight corresponds to
92
+ one of the shards on disk. Here, we slice the param based on
93
+ the shard_id for loading.
94
+ """
95
+ qkv_idxs = {"q": 0, "k": 1, "v": 2}
96
+
97
+ if isinstance(shard_id, str):
98
+ shard_id = qkv_idxs[shard_id]
99
+ elif not isinstance(shard_id, int):
100
+ raise ValueError(f"Unknown Shard Id {shard_id}")
101
+
102
+ # AutoFP8 scales do not have a shape
103
+ # compressed-tensors scales do have a shape
104
+ if len(loaded_weight.shape) != 0:
105
+ assert loaded_weight.shape[0] == 1
106
+ loaded_weight = loaded_weight[0]
107
+
108
+ return param[shard_id], loaded_weight
109
+
110
+
111
+ # TODO(Isotr0py): We might need a more flexible structure to handle
112
+ # bitsandbytes shard offsets.
113
+ def left_shift_bitsandbytes_4bit_shard(bnb_weight_attrs: dict[str, Any]):
114
+ """
115
+ Separate the BitsAndBytes 4-bit shard.
116
+
117
+ For example, given bnb weight attributes as below:
118
+ {
119
+ 'bnb_shard_offsets': array([0, 4, 8, 16]),
120
+ 'bnb_quant_state': {0: ..., 1: ..., 2: ...},
121
+ }
122
+
123
+ The function will return:
124
+ {
125
+ 'bnb_shard_offsets': array([0, 4]),
126
+ 'bnb_quant_state': {0: ...},
127
+ }
128
+ and
129
+ {
130
+ 'bnb_shard_offsets': array([0, 4, 12]),
131
+ 'bnb_quant_state': {0: ..., 1: ...},
132
+ }
133
+ """
134
+ shard_offsets = bnb_weight_attrs["bnb_shard_offsets"]
135
+ offset_l = shard_offsets[:2]
136
+ offset_r = shard_offsets[1:] - shard_offsets[1]
137
+ quant_state_l = {0: bnb_weight_attrs["bnb_quant_state"][0]}
138
+ quant_state_r = {
139
+ i - 1: bnb_weight_attrs["bnb_quant_state"][i]
140
+ for i in range(1,
141
+ len(shard_offsets) - 1)
142
+ }
143
+ left = dict(bnb_shard_offsets=offset_l, bnb_quant_state=quant_state_l)
144
+ right = dict(bnb_shard_offsets=offset_r, bnb_quant_state=quant_state_r)
145
+ return left, right
146
+
147
+
148
+ class LinearMethodBase(QuantizeMethodBase):
149
+ """Base class for different (maybe quantized) linear methods."""
150
+
151
+ @abstractmethod
152
+ def create_weights(self, layer: torch.nn.Module,
153
+ input_size_per_partition: int,
154
+ output_partition_sizes: list[int], input_size: int,
155
+ output_size: int, params_dtype: torch.dtype,
156
+ **extra_weight_attrs):
157
+ """Create weights for a linear layer.
158
+ The weights will be set as attributes of the layer.
159
+
160
+ Args:
161
+ layer: The layer that is using the LinearMethodBase factory.
162
+ input_size_per_partition: Size of the weight input dim on rank X.
163
+ output_partition_sizes: Sizes of the output dim of each logical
164
+ weight on rank X. E.g., output_partition_sizes for QKVLinear
165
+ is a list contains the width of Wq, Wk, Wv on rank X.
166
+ input_size: Size of the input dim of the weight across all ranks.
167
+ output_size: Size of the output dim of the weight across all ranks.
168
+ params_dtype: Datatype of the parameters.
169
+ """
170
+ raise NotImplementedError
171
+
172
+ @abstractmethod
173
+ def apply(self,
174
+ layer: torch.nn.Module,
175
+ x: torch.Tensor,
176
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
177
+ """Apply the weights in layer to the input tensor.
178
+ Expects create_weights to have been called before on the layer."""
179
+ raise NotImplementedError
180
+
181
+
182
+ class UnquantizedLinearMethod(LinearMethodBase):
183
+ """Linear method without quantization."""
184
+
185
+ def create_weights(self, layer: torch.nn.Module,
186
+ input_size_per_partition: int,
187
+ output_partition_sizes: list[int], input_size: int,
188
+ output_size: int, params_dtype: torch.dtype,
189
+ **extra_weight_attrs):
190
+ weight = Parameter(torch.empty(sum(output_partition_sizes),
191
+ input_size_per_partition,
192
+ dtype=params_dtype),
193
+ requires_grad=False)
194
+ set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
195
+ layer.register_parameter("weight", weight)
196
+ set_weight_attrs(weight, extra_weight_attrs)
197
+
198
+ def apply(self,
199
+ layer: torch.nn.Module,
200
+ x: torch.Tensor,
201
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
202
+
203
+ return dispatch_unquantized_gemm()(x, layer.weight, bias)
204
+
205
+
206
+ class LinearBase(torch.nn.Module):
207
+ """Base linear layer.
208
+
209
+ Args:
210
+ input_size: input dimension of the linear layer.
211
+ output_size: output dimension of the linear layer.
212
+ bias: If true, add bias.
213
+ skip_bias_add: If true, skip adding bias but instead return it.
214
+ params_dtype: Data type for the parameters.
215
+ quant_config: Quantization configure.
216
+ return_bias: If true, return bias together with outputs in forward pass.
217
+ """
218
+
219
+ def __init__(
220
+ self,
221
+ input_size: int,
222
+ output_size: int,
223
+ skip_bias_add: bool = False,
224
+ params_dtype: Optional[torch.dtype] = None,
225
+ quant_config: Optional[QuantizationConfig] = None,
226
+ prefix: str = "",
227
+ *,
228
+ return_bias: bool = True,
229
+ ):
230
+ super().__init__()
231
+
232
+ # Keep input parameters
233
+ self.input_size = input_size
234
+ self.output_size = output_size
235
+ self.skip_bias_add = skip_bias_add
236
+ if params_dtype is None:
237
+ params_dtype = torch.get_default_dtype()
238
+ self.params_dtype = params_dtype
239
+ if quant_config is None:
240
+ self.quant_method: Optional[
241
+ QuantizeMethodBase] = UnquantizedLinearMethod()
242
+ else:
243
+ self.quant_method = quant_config.get_quant_method(self,
244
+ prefix=prefix)
245
+ self.return_bias = return_bias
246
+
247
+ def forward(
248
+ self, x: torch.Tensor
249
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
250
+ raise NotImplementedError
251
+
252
+
253
+ class ReplicatedLinear(LinearBase):
254
+ """Replicated linear layer.
255
+
256
+ Args:
257
+ input_size: input dimension of the linear layer.
258
+ output_size: output dimension of the linear layer.
259
+ bias: If true, add bias.
260
+ skip_bias_add: If true, skip adding bias but instead return it.
261
+ params_dtype: Data type for the parameters.
262
+ quant_config: Quantization configure.
263
+ prefix: The name of the layer in the state dict, including all parents
264
+ (e.g. model.layers.0.qkv_proj)
265
+ return_bias: If true, return bias together with outputs in forward pass.
266
+ """
267
+
268
+ def __init__(
269
+ self,
270
+ input_size: int,
271
+ output_size: int,
272
+ bias: bool = True,
273
+ skip_bias_add: bool = False,
274
+ params_dtype: Optional[torch.dtype] = None,
275
+ quant_config: Optional[QuantizationConfig] = None,
276
+ prefix: str = "",
277
+ *,
278
+ return_bias: bool = True,
279
+ ):
280
+ super().__init__(input_size,
281
+ output_size,
282
+ skip_bias_add,
283
+ params_dtype,
284
+ quant_config,
285
+ prefix=prefix,
286
+ return_bias=return_bias)
287
+
288
+ # All the linear layer supports quant method.
289
+ assert self.quant_method is not None
290
+ self.quant_method.create_weights(self,
291
+ self.input_size, [self.output_size],
292
+ self.input_size,
293
+ self.output_size,
294
+ self.params_dtype,
295
+ weight_loader=self.weight_loader)
296
+
297
+ if bias:
298
+ self.bias = Parameter(
299
+ torch.empty(self.output_size, dtype=self.params_dtype))
300
+ set_weight_attrs(self.bias, {
301
+ "output_dim": 0,
302
+ "weight_loader": self.weight_loader,
303
+ })
304
+ else:
305
+ self.register_parameter("bias", None)
306
+
307
+ def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
308
+ # If the weight on disk does not have a shape, give it one
309
+ # (such scales for AutoFp8).
310
+ # Special case for GGUF
311
+
312
+ is_gguf_weight = getattr(param, "is_gguf_weight", False)
313
+ is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
314
+ if is_gguf_weight_type:
315
+ param.weight_type = loaded_weight.item()
316
+
317
+ # Materialize GGUF UninitializedParameter
318
+ if is_gguf_weight and isinstance(param, UninitializedParameter):
319
+ param.materialize(loaded_weight.shape, dtype=loaded_weight.dtype)
320
+
321
+ if len(loaded_weight.shape) == 0:
322
+ loaded_weight = loaded_weight.reshape(1)
323
+
324
+ assert param.size() == loaded_weight.size(), (
325
+ f"Tried to load weights of size {loaded_weight.size()}"
326
+ f"to a parameter of size {param.size()}")
327
+ param.data.copy_(loaded_weight)
328
+
329
+ def forward(
330
+ self, x: torch.Tensor
331
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
332
+ bias = self.bias if not self.skip_bias_add else None
333
+ assert self.quant_method is not None
334
+ output = self.quant_method.apply(self, x, bias)
335
+ output_bias = self.bias if self.skip_bias_add else None
336
+ if not self.return_bias:
337
+ return output
338
+ return output, output_bias
339
+
340
+ def extra_repr(self) -> str:
341
+ s = f"in_features={self.input_size}"
342
+ s += f", output_features={self.output_size}"
343
+ s += f", bias={self.bias is not None}"
344
+ return s
345
+
346
+
347
+ class ColumnParallelLinear(LinearBase):
348
+ """Linear layer with column parallelism.
349
+
350
+ The linear layer is defined as Y = XA + b. A is parallelized along
351
+ its second dimension as A = [A_1, ..., A_p].
352
+
353
+ Args:
354
+ input_size: first dimension of matrix A.
355
+ output_size: second dimension of matrix A.
356
+ bias: If true, add bias.
357
+ gather_output: If true, call all-gather on output and make Y available
358
+ to all GPUs, otherwise, every GPU will have its output
359
+ which is Y_i = XA_i
360
+ skip_bias_add: This was added to enable performance optimizations where
361
+ bias can be fused with other element-wise operations. we
362
+ skip adding bias but instead return it.
363
+ params_dtype: Data type for the parameters.
364
+ quant_config: Quantization configure.
365
+ output_sizes: list of output sizes packed into one output, like for QKV
366
+ the list would be size 3.
367
+ prefix: The name of the layer in the state dict, including all parents
368
+ (e.g. model.layers.0.qkv_proj)
369
+ """
370
+
371
+ def __init__(
372
+ self,
373
+ input_size: int,
374
+ output_size: int,
375
+ bias: bool = True,
376
+ gather_output: bool = False,
377
+ skip_bias_add: bool = False,
378
+ params_dtype: Optional[torch.dtype] = None,
379
+ quant_config: Optional[QuantizationConfig] = None,
380
+ output_sizes: Optional[list[int]] = None,
381
+ prefix: str = "",
382
+ *,
383
+ return_bias: bool = True,
384
+ ):
385
+ # Divide the weight matrix along the last dimension.
386
+ self.tp_size = get_tensor_model_parallel_world_size()
387
+ self.input_size_per_partition = input_size
388
+ self.output_size_per_partition = divide(output_size, self.tp_size)
389
+ self.output_partition_sizes = [self.output_size_per_partition]
390
+ # If QKV or MergedColumn, use output size of each partition.
391
+ if hasattr(self, "output_sizes"):
392
+ self.output_partition_sizes = [
393
+ divide(output_size, self.tp_size)
394
+ for output_size in self.output_sizes
395
+ ]
396
+
397
+ super().__init__(input_size,
398
+ output_size,
399
+ skip_bias_add,
400
+ params_dtype,
401
+ quant_config,
402
+ prefix,
403
+ return_bias=return_bias)
404
+
405
+ self.gather_output = gather_output
406
+
407
+ if output_sizes is None:
408
+ output_sizes = [output_size]
409
+
410
+ assert self.quant_method is not None
411
+ self.quant_method.create_weights(
412
+ layer=self,
413
+ input_size_per_partition=self.input_size_per_partition,
414
+ output_partition_sizes=self.output_partition_sizes,
415
+ input_size=self.input_size,
416
+ output_size=self.output_size,
417
+ params_dtype=self.params_dtype,
418
+ weight_loader=(
419
+ self.weight_loader_v2 if self.quant_method.__class__.__name__
420
+ in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader))
421
+ if bias:
422
+ self.bias = Parameter(
423
+ torch.empty(self.output_size_per_partition,
424
+ dtype=params_dtype))
425
+ set_weight_attrs(self.bias, {
426
+ "output_dim": 0,
427
+ "weight_loader": self.weight_loader,
428
+ })
429
+ else:
430
+ self.register_parameter("bias", None)
431
+
432
+ def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
433
+ tp_rank = get_tensor_model_parallel_rank()
434
+ output_dim = getattr(param, "output_dim", None)
435
+
436
+ is_sharded_weight = getattr(param, "is_sharded_weight", False)
437
+ use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
438
+ # bitsandbytes loads the weights of the specific portion
439
+ # no need to narrow
440
+ is_sharded_weight = is_sharded_weight or use_bitsandbytes_4bit
441
+
442
+ # Special case for GGUF
443
+ is_gguf_weight = getattr(param, "is_gguf_weight", False)
444
+ is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
445
+ if is_gguf_weight_type:
446
+ param.weight_type = loaded_weight.item()
447
+
448
+ # Materialize GGUF UninitializedParameter
449
+ if is_gguf_weight and isinstance(param, UninitializedParameter):
450
+ final_shape = list(loaded_weight.shape)
451
+ if output_dim is not None:
452
+ tp_size = get_tensor_model_parallel_world_size()
453
+ assert final_shape[output_dim] % tp_size == 0
454
+ final_shape[output_dim] = final_shape[output_dim] // tp_size
455
+ param.materialize(final_shape, dtype=loaded_weight.dtype)
456
+
457
+ param_data = param.data
458
+ if output_dim is not None and not is_sharded_weight:
459
+ shard_size = param_data.shape[output_dim]
460
+ start_idx = tp_rank * shard_size
461
+ loaded_weight = loaded_weight.narrow(output_dim, start_idx,
462
+ shard_size)
463
+
464
+ # Special case for loading scales off disk, which often do not
465
+ # have a shape (such as in the case of AutoFP8).
466
+ if len(loaded_weight.shape) == 0:
467
+ loaded_weight = loaded_weight.reshape(1)
468
+
469
+ assert param_data.shape == loaded_weight.shape
470
+ param_data.copy_(loaded_weight)
471
+
472
+ def weight_loader_v2(self, param: Parameter, loaded_weight: torch.Tensor):
473
+ # Special case for loading scales off disk, which often do not
474
+ # have a shape (such as in the case of AutoFP8).
475
+ if len(loaded_weight.shape) == 0:
476
+ assert loaded_weight.numel() == 1
477
+ loaded_weight = loaded_weight.reshape(1)
478
+ param.load_column_parallel_weight(loaded_weight=loaded_weight)
479
+
480
+ def forward(
481
+ self, input_
482
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
483
+ bias = self.bias if not self.skip_bias_add else None
484
+
485
+ # Matrix multiply.
486
+ assert self.quant_method is not None
487
+ output_parallel = self.quant_method.apply(self, input_, bias)
488
+ if self.gather_output:
489
+ # All-gather across the partitions.
490
+ output = tensor_model_parallel_all_gather(output_parallel)
491
+ else:
492
+ output = output_parallel
493
+ output_bias = self.bias if self.skip_bias_add else None
494
+ if not self.return_bias:
495
+ return output
496
+ return output, output_bias
497
+
498
+ def extra_repr(self) -> str:
499
+ s = f"in_features={self.input_size}"
500
+ s += f", output_features={self.output_size_per_partition}"
501
+ s += f", bias={self.bias is not None}"
502
+ s += f", tp_size={get_tensor_model_parallel_world_size()}"
503
+ s += f", gather_output={self.gather_output}"
504
+ return s
505
+
506
+
507
+ class MergedColumnParallelLinear(ColumnParallelLinear):
508
+ """Packed linear layers with column parallelism.
509
+
510
+ Similar to ColumnParallelLinear, but the weight matrix is concatenated
511
+ along the output dimension. When the weight matrix is loaded, the
512
+ different partitions are sharded separately.
513
+
514
+ Args:
515
+ input_size: input dimension of the linear layer.
516
+ output_sizes: list of output dimensions of the linear layer.
517
+ bias: If true, add bias.
518
+ gather_output: If true, call all-gather on output and make the output
519
+ available to all GPUs, otherwise, every GPU will have
520
+ its own output.
521
+ skip_bias_add: This was added to enable performance optimizations where
522
+ bias can be fused with other element-wise operations. we
523
+ skip adding bias but instead return it.
524
+ params_dtype: Data type for the parameters.
525
+ quant_config: Quantization configure.
526
+ prefix: The name of the layer in the state dict, including all parents
527
+ (e.g. model.layers.0.qkv_proj)
528
+ return_bias: If true, return bias together with outputs in forward pass.
529
+ """
530
+
531
+ def __init__(
532
+ self,
533
+ input_size: int,
534
+ output_sizes: list[int],
535
+ bias: bool = True,
536
+ gather_output: bool = False,
537
+ skip_bias_add: bool = False,
538
+ params_dtype: Optional[torch.dtype] = None,
539
+ quant_config: Optional[QuantizationConfig] = None,
540
+ prefix: str = "",
541
+ *,
542
+ return_bias: bool = True,
543
+ ):
544
+ self.output_sizes = output_sizes
545
+ tp_size = get_tensor_model_parallel_world_size()
546
+ assert all(output_size % tp_size == 0 for output_size in output_sizes)
547
+ super().__init__(input_size=input_size,
548
+ output_size=sum(output_sizes),
549
+ bias=bias,
550
+ gather_output=gather_output,
551
+ skip_bias_add=skip_bias_add,
552
+ params_dtype=params_dtype,
553
+ quant_config=quant_config,
554
+ prefix=prefix,
555
+ return_bias=return_bias)
556
+
557
+ def weight_loader(self,
558
+ param: Parameter,
559
+ loaded_weight: torch.Tensor,
560
+ loaded_shard_id: Optional[int] = None):
561
+
562
+ # Special case for GGUF
563
+ # initialize GGUF param after we know the quantize type
564
+ is_gguf_weight = getattr(param, "is_gguf_weight", False)
565
+ is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
566
+ if is_gguf_weight_type:
567
+ if loaded_shard_id is not None:
568
+ param.data[loaded_shard_id].copy_(loaded_weight)
569
+ param.shard_weight_type[loaded_shard_id] = loaded_weight.item()
570
+ else:
571
+ param.shard_weight_type = {
572
+ i: loaded_weight.item()
573
+ for i, _ in enumerate(self.output_sizes)
574
+ }
575
+ return
576
+
577
+ if is_gguf_weight:
578
+ tp_size = get_tensor_model_parallel_world_size()
579
+ tp_rank = get_tensor_model_parallel_rank()
580
+
581
+ output_dim = getattr(param, "output_dim", None)
582
+ shard_size = loaded_weight.size(output_dim) // tp_size
583
+ start_idx = tp_rank * shard_size
584
+
585
+ if loaded_shard_id is not None:
586
+ loaded_weight = loaded_weight.narrow(output_dim, start_idx,
587
+ shard_size)
588
+ param.shard_id.append(loaded_shard_id)
589
+ param.shard_id_map[loaded_shard_id] = len(param.data_container)
590
+ param.data_container.append(loaded_weight)
591
+ return
592
+
593
+ param_data = param.data
594
+ output_dim = getattr(param, "output_dim", None)
595
+ # Special case for AQLM codebooks.
596
+ is_metadata = getattr(param, "is_metadata", False)
597
+ # Special case for per-tensor scale to load scalar into fused array.
598
+ needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False)
599
+
600
+ if loaded_shard_id is None:
601
+ # Loaded weight is already fused on disk (mlp).
602
+ # (e.g., Phi-3's gate_up_proj).
603
+ if output_dim is None:
604
+ if needs_scalar_to_array:
605
+ param_data, loaded_weight = adjust_scalar_to_fused_array(
606
+ param_data, loaded_weight, 0)
607
+
608
+ assert param_data.shape == loaded_weight.shape
609
+ param_data.copy_(loaded_weight)
610
+ return
611
+ current_shard_offset = 0
612
+ use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
613
+ False)
614
+ shard_offsets: list[tuple[int, int, int]] = []
615
+ for i, output_size in enumerate(self.output_sizes):
616
+ shard_offsets.append((i, current_shard_offset, output_size))
617
+ current_shard_offset += output_size
618
+ packed_dim = getattr(param, "packed_dim", None)
619
+ for shard_id, shard_offset, shard_size in shard_offsets:
620
+ # Special case for Quantization.
621
+ # If quantized, we need to adjust the offset and size to account
622
+ # for the packing.
623
+ if packed_dim == output_dim:
624
+ shard_size = shard_size // param.pack_factor
625
+ shard_offset = shard_offset // param.pack_factor
626
+ # Special case for Marlin.
627
+ shard_size, shard_offset = adjust_marlin_shard(
628
+ param, shard_size, shard_offset)
629
+
630
+ shard_size, shard_offset = adjust_bitblas_shard(
631
+ param, shard_size, shard_offset)
632
+
633
+ if use_bitsandbytes_4bit:
634
+ index = list(itertools.accumulate([0] + self.output_sizes))
635
+ orig_offsets = {
636
+ str(i): (index[i], size)
637
+ for i, size in enumerate(self.output_sizes)
638
+ }
639
+ orig_offsets["total"] = (self.output_size, 0)
640
+ shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
641
+ param, orig_offsets, str(shard_id))
642
+
643
+ loaded_weight_shard = loaded_weight.narrow(
644
+ output_dim, shard_offset, shard_size)
645
+ self.weight_loader(param, loaded_weight_shard, shard_id)
646
+ return
647
+
648
+ assert loaded_shard_id < len(self.output_sizes)
649
+ tp_rank = get_tensor_model_parallel_rank()
650
+ tp_size = get_tensor_model_parallel_world_size()
651
+ if output_dim is not None:
652
+ shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
653
+ shard_size = self.output_sizes[loaded_shard_id] // tp_size
654
+ # Special case for quantization.
655
+ # If quantized, we need to adjust the offset and size to account
656
+ # for the packing.
657
+ packed_dim = getattr(param, "packed_dim", None)
658
+ if packed_dim == output_dim:
659
+ shard_size = shard_size // param.pack_factor
660
+ shard_offset = shard_offset // param.pack_factor
661
+ # Special case for Marlin.
662
+ shard_size, shard_offset = adjust_marlin_shard(
663
+ param, shard_size, shard_offset)
664
+ shard_size, shard_offset = adjust_bitblas_shard(
665
+ param, shard_size, shard_offset)
666
+
667
+ use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
668
+ False)
669
+ is_sharded_weight = getattr(param, "is_sharded_weight", False)
670
+ # bitsandbytes loads the weights of the specific portion
671
+ # no need to narrow
672
+ is_sharded_weight = is_sharded_weight or use_bitsandbytes_4bit
673
+
674
+ if use_bitsandbytes_4bit:
675
+ shard_size = loaded_weight.shape[output_dim]
676
+ shard_offset = loaded_weight.shape[output_dim] * \
677
+ loaded_shard_id
678
+
679
+ param_data = param_data.narrow(output_dim, shard_offset,
680
+ shard_size)
681
+ start_idx = tp_rank * shard_size
682
+ if not is_sharded_weight:
683
+ loaded_weight = loaded_weight.narrow(output_dim, start_idx,
684
+ shard_size)
685
+ # Special case for AQLM codebooks.
686
+ elif is_metadata:
687
+ # metadata indicates fixed size concatenated along dim 0
688
+ shard_size = loaded_weight.shape[0]
689
+ shard_offset = loaded_shard_id * shard_size
690
+ param_data = param_data.narrow(0, shard_offset, shard_size)
691
+
692
+ # Special case for per-tensor scales in fused case.
693
+ elif needs_scalar_to_array:
694
+ param_data, loaded_weight = adjust_scalar_to_fused_array(
695
+ param_data, loaded_weight, loaded_shard_id)
696
+
697
+ else:
698
+ ignore_warning = getattr(param, "ignore_warning", False)
699
+ if not ignore_warning:
700
+ logger.warning(
701
+ "Loading a weight without `output_dim` attribute in "
702
+ "MergedColumnParallelLinear, assume the weight is "
703
+ "the same for all partitions.")
704
+
705
+ assert param_data.shape == loaded_weight.shape
706
+ param_data.copy_(loaded_weight)
707
+
708
+ def _load_fused_module_from_checkpoint(self, param: BasevLLMParameter,
709
+ loaded_weight: torch.Tensor):
710
+ """
711
+ Handle special case for models where MLP layers are already
712
+ fused on disk. In this case, we have no shard id. This function
713
+ determmines the shard id by splitting these layers and then calls
714
+ the weight loader using the shard id.
715
+
716
+ An example of a model with these fused layers:
717
+ https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
718
+ """
719
+
720
+ current_shard_offset = 0
721
+ shard_offsets: list[tuple[int, int, int]] = []
722
+ for i, output_size in enumerate(self.output_sizes):
723
+ shard_offsets.append((i, current_shard_offset, output_size))
724
+ current_shard_offset += output_size
725
+
726
+ for shard_id, shard_offset, shard_size in shard_offsets:
727
+ # Special case for Quantization.
728
+ # If quantized, we need to adjust the offset and size to account
729
+ # for the packing.
730
+ if isinstance(param, (PackedColumnParameter, PackedvLLMParameter
731
+ )) and param.packed_dim == param.output_dim:
732
+ shard_size, shard_offset = \
733
+ param.adjust_shard_indexes_for_packing(
734
+ shard_size=shard_size, shard_offset=shard_offset)
735
+
736
+ loaded_weight_shard = loaded_weight.narrow(param.output_dim,
737
+ shard_offset,
738
+ shard_size)
739
+ self.weight_loader_v2(param, loaded_weight_shard, shard_id)
740
+
741
+ def weight_loader_v2(self,
742
+ param: BasevLLMParameter,
743
+ loaded_weight: torch.Tensor,
744
+ loaded_shard_id: Optional[int] = None):
745
+ if loaded_shard_id is None:
746
+ if isinstance(param, PerTensorScaleParameter):
747
+ param.load_merged_column_weight(loaded_weight=loaded_weight,
748
+ shard_id=0)
749
+ return
750
+ elif type(param) in (RowvLLMParameter, BasevLLMParameter):
751
+ param.load_merged_column_weight(loaded_weight=loaded_weight)
752
+ return
753
+ # TODO: @dsikka - move to parameter.py
754
+ self._load_fused_module_from_checkpoint(param, loaded_weight)
755
+ return
756
+
757
+ assert loaded_shard_id < len(self.output_sizes)
758
+
759
+ tp_size = get_tensor_model_parallel_world_size()
760
+
761
+ if isinstance(param, BlockQuantScaleParameter):
762
+ from vllm.model_executor.layers.quantization.fp8 import (
763
+ Fp8LinearMethod, Fp8MoEMethod)
764
+ assert self.quant_method is not None
765
+ assert isinstance(self.quant_method,
766
+ (Fp8LinearMethod, Fp8MoEMethod))
767
+ weight_block_size = self.quant_method.quant_config.weight_block_size
768
+ assert weight_block_size is not None
769
+ block_n, _ = weight_block_size[0], weight_block_size[1]
770
+ shard_offset = (
771
+ (sum(self.output_sizes[:loaded_shard_id]) + block_n - 1) //
772
+ block_n) // tp_size
773
+ shard_size = ((self.output_sizes[loaded_shard_id] + block_n - 1) //
774
+ block_n // tp_size)
775
+ else:
776
+ shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
777
+ shard_size = self.output_sizes[loaded_shard_id] // tp_size
778
+
779
+ param.load_merged_column_weight(loaded_weight=loaded_weight,
780
+ shard_id=loaded_shard_id,
781
+ shard_offset=shard_offset,
782
+ shard_size=shard_size)
783
+
784
+
785
+ class QKVParallelLinear(ColumnParallelLinear):
786
+ """Linear layers for the attention's QKV transformation.
787
+
788
+ Linear layers for the linear transformation of the query, key, and value
789
+ vectors in the attention layer. The weight matrix is concatenated along
790
+ the output dimension. The layer is parallelized along the head dimension.
791
+ When the number of key/value heads is smaller than the number of query
792
+ heads (e.g., multi-query/grouped-query attention), the key/value head may
793
+ be replicated while the query heads are partitioned.
794
+
795
+ Args:
796
+ hidden_size: input hidden state size of the transformer.
797
+ head_size: size of each attention head.
798
+ total_num_heads: total number of attention query heads.
799
+ total_num_kv_heads: total number of attention key/value heads. If
800
+ None, assume total_num_kv_heads = total_num_heads.
801
+ bias: If true, add bias.
802
+ skip_bias_add: This was added to enable performance optimizations where
803
+ bias can be fused with other element-wise operations. we
804
+ skip adding bias but instead return it.
805
+ params_dtype: Data type for the parameters.
806
+ quant_config: Quantization configure.
807
+ prefix: The name of the layer in the state dict, including all parents
808
+ (e.g. model.layers.0.qkv_proj)
809
+ return_bias: If true, return bias together with outputs in forward pass.
810
+ """
811
+
812
+ def __init__(
813
+ self,
814
+ hidden_size: int,
815
+ head_size: int,
816
+ total_num_heads: int,
817
+ total_num_kv_heads: Optional[int] = None,
818
+ bias: bool = True,
819
+ skip_bias_add: bool = False,
820
+ params_dtype: Optional[torch.dtype] = None,
821
+ quant_config: Optional[QuantizationConfig] = None,
822
+ prefix: str = "",
823
+ *,
824
+ return_bias: bool = True,
825
+ ):
826
+ self.hidden_size = hidden_size
827
+ self.head_size = head_size
828
+ self.total_num_heads = total_num_heads
829
+ if total_num_kv_heads is None:
830
+ total_num_kv_heads = total_num_heads
831
+ self.total_num_kv_heads = total_num_kv_heads
832
+ # Divide the weight matrix along the last dimension.
833
+ tp_size = get_tensor_model_parallel_world_size()
834
+ self.num_heads = divide(self.total_num_heads, tp_size)
835
+ if tp_size >= self.total_num_kv_heads:
836
+ self.num_kv_heads = 1
837
+ self.num_kv_head_replicas = divide(tp_size,
838
+ self.total_num_kv_heads)
839
+ else:
840
+ self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
841
+ self.num_kv_head_replicas = 1
842
+ input_size = self.hidden_size
843
+ output_size = (self.num_heads +
844
+ 2 * self.num_kv_heads) * tp_size * self.head_size
845
+ self.output_sizes = [
846
+ self.num_heads * self.head_size * tp_size, # q_proj
847
+ self.num_kv_heads * self.head_size * tp_size, # k_proj
848
+ self.num_kv_heads * self.head_size * tp_size, # v_proj
849
+ ]
850
+
851
+ super().__init__(input_size=input_size,
852
+ output_size=output_size,
853
+ bias=bias,
854
+ gather_output=False,
855
+ skip_bias_add=skip_bias_add,
856
+ params_dtype=params_dtype,
857
+ quant_config=quant_config,
858
+ prefix=prefix,
859
+ return_bias=return_bias)
860
+
861
+ def _get_shard_offset_mapping(self, loaded_shard_id: str):
862
+ shard_offset_mapping = {
863
+ "q": 0,
864
+ "k": self.num_heads * self.head_size,
865
+ "v": (self.num_heads + self.num_kv_heads) * self.head_size,
866
+ "total": (self.num_heads + 2 * self.num_kv_heads) * self.head_size
867
+ }
868
+ return shard_offset_mapping.get(loaded_shard_id)
869
+
870
+ def _get_shard_size_mapping(self, loaded_shard_id: str):
871
+ shard_size_mapping = {
872
+ "q": self.num_heads * self.head_size,
873
+ "k": self.num_kv_heads * self.head_size,
874
+ "v": self.num_kv_heads * self.head_size,
875
+ }
876
+ return shard_size_mapping.get(loaded_shard_id)
877
+
878
+ def _load_fused_module_from_checkpoint(self, param: BasevLLMParameter,
879
+ loaded_weight: torch.Tensor):
880
+ """
881
+ Handle special case for models where QKV layers are already
882
+ fused on disk. In this case, we have no shard id. This function
883
+ determmines the shard id by splitting these layers and then calls
884
+ the weight loader using the shard id.
885
+
886
+ An example of a model with these fused layers:
887
+ https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
888
+ """
889
+ shard_offsets = [
890
+ # (shard_id, shard_offset, shard_size)
891
+ ("q", 0, self.total_num_heads * self.head_size),
892
+ ("k", self.total_num_heads * self.head_size,
893
+ self.total_num_kv_heads * self.head_size),
894
+ ("v",
895
+ (self.total_num_heads + self.total_num_kv_heads) * self.head_size,
896
+ self.total_num_kv_heads * self.head_size),
897
+ ]
898
+
899
+ for shard_id, shard_offset, shard_size in shard_offsets:
900
+ # Special case for Quantization.
901
+ # If quantized, we need to adjust the offset and size to account
902
+ # for the packing.
903
+ if isinstance(param, (PackedColumnParameter, PackedvLLMParameter
904
+ )) and param.packed_dim == param.output_dim:
905
+ shard_size, shard_offset = \
906
+ param.adjust_shard_indexes_for_packing(
907
+ shard_size=shard_size, shard_offset=shard_offset)
908
+
909
+ loaded_weight_shard = loaded_weight.narrow(param.output_dim,
910
+ shard_offset,
911
+ shard_size)
912
+ self.weight_loader_v2(param, loaded_weight_shard, shard_id)
913
+
914
+ def weight_loader_v2(self,
915
+ param: BasevLLMParameter,
916
+ loaded_weight: torch.Tensor,
917
+ loaded_shard_id: Optional[str] = None):
918
+ if loaded_shard_id is None: # special case for certain models
919
+ if isinstance(param, PerTensorScaleParameter):
920
+ param.load_qkv_weight(loaded_weight=loaded_weight, shard_id=0)
921
+ return
922
+ elif type(param) in (RowvLLMParameter, BasevLLMParameter):
923
+ param.load_qkv_weight(loaded_weight=loaded_weight)
924
+ return
925
+ # TODO: @dsikka - move to parameter.py
926
+ self._load_fused_module_from_checkpoint(param, loaded_weight)
927
+ return
928
+
929
+ assert loaded_shard_id in ["q", "k", "v"]
930
+
931
+ shard_offset = self._get_shard_offset_mapping(loaded_shard_id)
932
+ shard_size = self._get_shard_size_mapping(loaded_shard_id)
933
+
934
+ # Note(simon): This is needed for Qwen3's fp8 quantization.
935
+ if isinstance(param, BlockQuantScaleParameter):
936
+ assert self.quant_method is not None
937
+ assert hasattr(self.quant_method, "quant_config")
938
+ weight_block_size = self.quant_method.quant_config.weight_block_size
939
+ block_n, _ = weight_block_size[0], weight_block_size[1]
940
+ shard_offset = (shard_offset + block_n - 1) // block_n
941
+ shard_size = (shard_size + block_n - 1) // block_n
942
+
943
+ param.load_qkv_weight(loaded_weight=loaded_weight,
944
+ num_heads=self.num_kv_head_replicas,
945
+ shard_id=loaded_shard_id,
946
+ shard_offset=shard_offset,
947
+ shard_size=shard_size)
948
+
949
+ def weight_loader(self,
950
+ param: Parameter,
951
+ loaded_weight: torch.Tensor,
952
+ loaded_shard_id: Optional[str] = None):
953
+
954
+ # Special case for GGUF
955
+ # initialize GGUF param after we know the quantize type
956
+ is_gguf_weight = getattr(param, "is_gguf_weight", False)
957
+ is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
958
+ if is_gguf_weight_type:
959
+ idx_map = {"q": 0, "k": 1, "v": 2}
960
+ if loaded_shard_id is not None:
961
+ param.data[idx_map[loaded_shard_id]].copy_(loaded_weight)
962
+ param.shard_weight_type[loaded_shard_id] = loaded_weight.item()
963
+ else:
964
+ param.shard_weight_type = {
965
+ k: loaded_weight.item()
966
+ for k in idx_map
967
+ }
968
+ return
969
+
970
+ if is_gguf_weight:
971
+ tp_size = get_tensor_model_parallel_world_size()
972
+ tp_rank = get_tensor_model_parallel_rank()
973
+
974
+ output_dim = getattr(param, "output_dim", None)
975
+ shard_size = loaded_weight.size(output_dim) // tp_size
976
+ start_idx = tp_rank * shard_size
977
+
978
+ if loaded_shard_id is not None:
979
+ loaded_weight = loaded_weight.narrow(output_dim, start_idx,
980
+ shard_size)
981
+ param.shard_id.append(loaded_shard_id)
982
+ param.shard_id_map[loaded_shard_id] = len(param.data_container)
983
+ param.data_container.append(loaded_weight)
984
+ return
985
+
986
+ param_data = param.data
987
+ output_dim = getattr(param, "output_dim", None)
988
+ # Special case for AQLM codebooks.
989
+ is_metadata = getattr(param, "is_metadata", False)
990
+
991
+ # Special case for per-tensor scales in fused case.
992
+ needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False)
993
+
994
+ if loaded_shard_id is None:
995
+ # Loaded weight is already fused on disk (qkv).
996
+ # (e.g., Phi-3's qkv_proj).
997
+ if output_dim is None:
998
+ if needs_scalar_to_array:
999
+ param_data, loaded_weight = adjust_scalar_to_fused_array(
1000
+ param_data, loaded_weight, 0)
1001
+
1002
+ assert param_data.shape == loaded_weight.shape
1003
+ param_data.copy_(loaded_weight)
1004
+ return
1005
+ shard_offsets = [
1006
+ # (shard_id, shard_offset, shard_size)
1007
+ ("q", 0, self.total_num_heads * self.head_size),
1008
+ ("k", self.total_num_heads * self.head_size,
1009
+ self.total_num_kv_heads * self.head_size),
1010
+ ("v", (self.total_num_heads + self.total_num_kv_heads) *
1011
+ self.head_size, self.total_num_kv_heads * self.head_size),
1012
+ ]
1013
+ use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
1014
+ False)
1015
+
1016
+ packed_dim = getattr(param, "packed_dim", None)
1017
+ for shard_id, shard_offset, shard_size in shard_offsets:
1018
+ # Special case for Quantized Weights.
1019
+ # If quantized, we need to adjust the offset and size to account
1020
+ # for the packing.
1021
+ if packed_dim == output_dim:
1022
+ shard_size = shard_size // param.pack_factor
1023
+ shard_offset = shard_offset // param.pack_factor
1024
+
1025
+ # Special case for Marlin.
1026
+ shard_size, shard_offset = adjust_marlin_shard(
1027
+ param, shard_size, shard_offset)
1028
+
1029
+ if use_bitsandbytes_4bit:
1030
+ orig_qkv_offsets = {
1031
+ "q": (0, self.total_num_heads * self.head_size),
1032
+ "k": (self.total_num_heads * self.head_size,
1033
+ self.total_num_kv_heads * self.head_size),
1034
+ "v":
1035
+ ((self.total_num_heads + self.total_num_kv_heads) *
1036
+ self.head_size,
1037
+ self.total_num_kv_heads * self.head_size),
1038
+ "total":
1039
+ ((self.total_num_heads + 2 * self.total_num_kv_heads) *
1040
+ self.head_size, 0)
1041
+ }
1042
+
1043
+ shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
1044
+ param, orig_qkv_offsets, shard_id)
1045
+
1046
+ loaded_weight_shard = loaded_weight.narrow(
1047
+ output_dim, shard_offset, shard_size)
1048
+ self.weight_loader(param, loaded_weight_shard, shard_id)
1049
+ return
1050
+
1051
+ tp_rank = get_tensor_model_parallel_rank()
1052
+ assert loaded_shard_id in ["q", "k", "v"]
1053
+
1054
+ # If output dim is defined, use the default loading process.
1055
+ if output_dim is not None:
1056
+ if loaded_shard_id == "q":
1057
+ shard_offset = 0
1058
+ shard_size = self.num_heads * self.head_size
1059
+ elif loaded_shard_id == "k":
1060
+ shard_offset = self.num_heads * self.head_size
1061
+ shard_size = self.num_kv_heads * self.head_size
1062
+ elif loaded_shard_id == "v":
1063
+ shard_offset = (self.num_heads +
1064
+ self.num_kv_heads) * self.head_size
1065
+ shard_size = self.num_kv_heads * self.head_size
1066
+ # Special case for Quantized Weights.
1067
+ # If quantized, we need to adjust the offset and size to account
1068
+ # for the packing.
1069
+ packed_dim = getattr(param, "packed_dim", None)
1070
+ if packed_dim == output_dim:
1071
+ shard_size = shard_size // param.pack_factor
1072
+ shard_offset = shard_offset // param.pack_factor
1073
+
1074
+ # Special case for Marlin.
1075
+ shard_size, shard_offset = adjust_marlin_shard(
1076
+ param, shard_size, shard_offset)
1077
+
1078
+ use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
1079
+ False)
1080
+ is_sharded_weight = getattr(param, "is_sharded_weight", False)
1081
+ # bitsandbytes loads the weights of the specific portion
1082
+ # no need to narrow
1083
+ is_sharded_weight = is_sharded_weight or use_bitsandbytes_4bit
1084
+
1085
+ if use_bitsandbytes_4bit:
1086
+ orig_qkv_offsets = {
1087
+ "q": (0, self.num_heads * self.head_size),
1088
+ "k": (self.num_heads * self.head_size,
1089
+ self.num_kv_heads * self.head_size),
1090
+ "v":
1091
+ ((self.num_heads + self.num_kv_heads) * self.head_size,
1092
+ self.num_kv_heads * self.head_size),
1093
+ "total":
1094
+ ((self.num_heads + 2 * self.num_kv_heads) * self.head_size,
1095
+ 0)
1096
+ }
1097
+ shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
1098
+ param, orig_qkv_offsets, loaded_shard_id)
1099
+
1100
+ param_data = param_data.narrow(output_dim, shard_offset,
1101
+ shard_size)
1102
+ if loaded_shard_id == "q":
1103
+ shard_id = tp_rank
1104
+ else:
1105
+ shard_id = tp_rank // self.num_kv_head_replicas
1106
+ start_idx = shard_id * shard_size
1107
+
1108
+ if not is_sharded_weight:
1109
+ loaded_weight = loaded_weight.narrow(output_dim, start_idx,
1110
+ shard_size)
1111
+
1112
+ # Special case for for AQLM codebooks.
1113
+ elif is_metadata:
1114
+ # metadata indicates fixed size concatenated along dim 0
1115
+ shard_size = loaded_weight.shape[0]
1116
+ shard_index = ["q", "k", "v"].index(loaded_shard_id)
1117
+ param_data = param_data.narrow(0, shard_index * shard_size,
1118
+ shard_size)
1119
+ # Special case for per-tensor scales in fused case.
1120
+ elif needs_scalar_to_array:
1121
+ param_data, loaded_weight = adjust_scalar_to_fused_array(
1122
+ param_data, loaded_weight, loaded_shard_id)
1123
+ else:
1124
+ ignore_warning = getattr(param, "ignore_warning", False)
1125
+ if not ignore_warning:
1126
+ logger.warning(
1127
+ "Loading a weight without `output_dim` attribute in "
1128
+ "QKVParallelLinear, assume the weight is the same "
1129
+ "for all partitions.")
1130
+
1131
+ assert param_data.shape == loaded_weight.shape
1132
+ param_data.copy_(loaded_weight)
1133
+
1134
+
1135
+ class RowParallelLinear(LinearBase):
1136
+ """Linear layer with row parallelism.
1137
+
1138
+ The linear layer is defined as Y = XA + b. A is parallelized along
1139
+ its first dimension and X along its second dimension as:
1140
+ - -
1141
+ | A_1 |
1142
+ | . |
1143
+ A = | . | X = [X_1, ..., X_p]
1144
+ | . |
1145
+ | A_p |
1146
+ - -
1147
+ Arguments:
1148
+ input_size: first dimension of matrix A.
1149
+ output_size: second dimension of matrix A.
1150
+ bias: If true, add bias. Note that bias is not parallelized.
1151
+ input_is_parallel: If true, we assume that the input is already
1152
+ split across the GPUs and we do not split
1153
+ again.
1154
+ skip_bias_add: This was added to enable performance optimization where
1155
+ bias can be fused with other element-wise operations.
1156
+ We skip adding bias but instead return it.
1157
+ params_dtype: Data type for the parameters.
1158
+ reduce_results: If true, call all-reduce on output and make Y available
1159
+ to all GPUs, otherwise, every GPU will have its output
1160
+ which is Y = X_iA_i
1161
+ quant_config: Quantization configure.
1162
+ prefix: The name of the layer in the state dict, including all parents
1163
+ (e.g. model.layers.0.down_proj)
1164
+ return_bias: If true, return bias together with outputs in forward pass.
1165
+ """
1166
+
1167
+ def __init__(
1168
+ self,
1169
+ input_size: int,
1170
+ output_size: int,
1171
+ bias: bool = True,
1172
+ input_is_parallel: bool = True,
1173
+ skip_bias_add: bool = False,
1174
+ params_dtype: Optional[torch.dtype] = None,
1175
+ reduce_results: bool = True,
1176
+ quant_config: Optional[QuantizationConfig] = None,
1177
+ prefix: str = "",
1178
+ *,
1179
+ return_bias: bool = True,
1180
+ ):
1181
+ # Divide the weight matrix along the first dimension.
1182
+ self.tp_rank = get_tensor_model_parallel_rank()
1183
+ self.tp_size = get_tensor_model_parallel_world_size()
1184
+ self.input_size_per_partition = divide(input_size, self.tp_size)
1185
+ self.output_size_per_partition = output_size
1186
+ self.output_partition_sizes = [output_size]
1187
+
1188
+ super().__init__(input_size,
1189
+ output_size,
1190
+ skip_bias_add,
1191
+ params_dtype,
1192
+ quant_config,
1193
+ prefix,
1194
+ return_bias=return_bias)
1195
+
1196
+ self.input_is_parallel = input_is_parallel
1197
+ self.reduce_results = reduce_results
1198
+
1199
+ assert self.quant_method is not None
1200
+ self.quant_method.create_weights(
1201
+ layer=self,
1202
+ input_size_per_partition=self.input_size_per_partition,
1203
+ output_partition_sizes=self.output_partition_sizes,
1204
+ input_size=self.input_size,
1205
+ output_size=self.output_size,
1206
+ params_dtype=self.params_dtype,
1207
+ weight_loader=(
1208
+ self.weight_loader_v2 if self.quant_method.__class__.__name__
1209
+ in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader))
1210
+ if not reduce_results and (bias and not skip_bias_add):
1211
+ raise ValueError("When not reduce the results, adding bias to the "
1212
+ "results can lead to incorrect results")
1213
+
1214
+ if bias:
1215
+ self.bias = Parameter(
1216
+ torch.empty(self.output_size, dtype=params_dtype))
1217
+ set_weight_attrs(self.bias, {
1218
+ "output_dim": 0,
1219
+ "weight_loader": self.weight_loader,
1220
+ })
1221
+ else:
1222
+ self.register_parameter("bias", None)
1223
+
1224
+ def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
1225
+ tp_rank = get_tensor_model_parallel_rank()
1226
+ tp_size = get_tensor_model_parallel_world_size()
1227
+ input_dim = getattr(param, "input_dim", None)
1228
+ use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
1229
+ is_sharded_weight = getattr(param, "is_sharded_weight", False)
1230
+ # bitsandbytes loads the weights of the specific portion
1231
+ # no need to narrow
1232
+ is_sharded_weight = is_sharded_weight or use_bitsandbytes_4bit
1233
+
1234
+ # Special case for GGUF
1235
+ is_gguf_weight = getattr(param, "is_gguf_weight", False)
1236
+ is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
1237
+ if is_gguf_weight_type:
1238
+ param.weight_type = loaded_weight.item()
1239
+
1240
+ # Materialize GGUF UninitializedParameter
1241
+ if is_gguf_weight and isinstance(param, UninitializedParameter):
1242
+ weight_shape = list(loaded_weight.shape)
1243
+ if input_dim:
1244
+ weight_shape[input_dim] = weight_shape[input_dim] // tp_size
1245
+ param.materialize(tuple(weight_shape), dtype=loaded_weight.dtype)
1246
+
1247
+ param_data = param.data
1248
+ if input_dim is not None and not is_sharded_weight:
1249
+ shard_size = param_data.shape[input_dim]
1250
+ start_idx = tp_rank * shard_size
1251
+ loaded_weight = loaded_weight.narrow(input_dim, start_idx,
1252
+ shard_size)
1253
+
1254
+ # Special case for loading scales off disk, which often do not
1255
+ # have a shape (such as in the case of AutoFP8).
1256
+ if len(loaded_weight.shape) == 0:
1257
+ loaded_weight = loaded_weight.reshape(1)
1258
+
1259
+ assert param_data.shape == loaded_weight.shape
1260
+ param_data.copy_(loaded_weight)
1261
+
1262
+ def weight_loader_v2(self, param: BasevLLMParameter,
1263
+ loaded_weight: torch.Tensor):
1264
+
1265
+ # Special case for loading scales off disk, which often do not
1266
+ # have a shape (such as in the case of AutoFP8).
1267
+ if len(loaded_weight.shape) == 0:
1268
+ assert loaded_weight.numel() == 1
1269
+ loaded_weight = loaded_weight.reshape(1)
1270
+
1271
+ param.load_row_parallel_weight(loaded_weight=loaded_weight)
1272
+
1273
+ def forward(
1274
+ self, input_
1275
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
1276
+ if self.input_is_parallel:
1277
+ input_parallel = input_
1278
+ else:
1279
+ tp_rank = get_tensor_model_parallel_rank()
1280
+ splitted_input = split_tensor_along_last_dim(
1281
+ input_, num_partitions=self.tp_size)
1282
+ input_parallel = splitted_input[tp_rank].contiguous()
1283
+
1284
+ # Matrix multiply.
1285
+ assert self.quant_method is not None
1286
+ # Only fuse bias add into GEMM for rank 0 (this ensures that
1287
+ # bias will not get added more than once in TP>1 case)
1288
+ bias_ = None if (self.tp_rank > 0 or self.skip_bias_add) else self.bias
1289
+ output_parallel = self.quant_method.apply(self,
1290
+ input_parallel,
1291
+ bias=bias_)
1292
+ if self.reduce_results and self.tp_size > 1:
1293
+ output = tensor_model_parallel_all_reduce(output_parallel)
1294
+ else:
1295
+ output = output_parallel
1296
+
1297
+ output_bias = self.bias if self.skip_bias_add else None
1298
+
1299
+ if not self.return_bias:
1300
+ return output
1301
+ return output, output_bias
1302
+
1303
+ def extra_repr(self) -> str:
1304
+ s = f"input_features={self.input_size_per_partition}"
1305
+ s += f", output_features={self.output_size}"
1306
+ s += f", bias={self.bias is not None}"
1307
+ s += f", tp_size={self.tp_size}"
1308
+ s += f", reduce_results={self.reduce_results}"
1309
+ return s
1310
+
1311
+
1312
+ class QKVCrossParallelLinear(LinearBase):
1313
+ """Linear layers for efficient cross-attention's QKV transformation.
1314
+
1315
+ Args:
1316
+ hidden_size: input hidden state size of the transformer.
1317
+ head_size: size of each attention head.
1318
+ total_num_heads: total number of attention query heads.
1319
+ total_num_kv_heads: total number of attention key/value heads. If
1320
+ None, assume total_num_kv_heads = total_num_heads.
1321
+ bias: If true, add bias.
1322
+ skip_bias_add: This was added to enable performance optimizations where
1323
+ bias can be fused with other element-wise operations. we
1324
+ skip adding bias but instead return it.
1325
+ params_dtype: Data type for the parameters.
1326
+ quant_config: Quantization configure.
1327
+ prefix: The name of the layer in the state dict, including all parents
1328
+ (e.g. model.layers.0.qkv_proj)
1329
+ """
1330
+
1331
+ def __init__(self,
1332
+ hidden_size: int,
1333
+ head_size: int,
1334
+ total_num_heads: int,
1335
+ total_num_kv_heads: Optional[int] = None,
1336
+ bias: bool = True,
1337
+ skip_bias_add: bool = False,
1338
+ params_dtype: Optional[torch.dtype] = None,
1339
+ quant_config: Optional[QuantizationConfig] = None,
1340
+ prefix: str = ""):
1341
+ # input_size and output_size are not used, just for alignment
1342
+ input_size = hidden_size
1343
+ output_size = (total_num_heads + (total_num_kv_heads or 0)) * head_size
1344
+ super().__init__(input_size=input_size,
1345
+ output_size=output_size,
1346
+ skip_bias_add=skip_bias_add,
1347
+ params_dtype=params_dtype,
1348
+ quant_config=quant_config,
1349
+ prefix=prefix)
1350
+
1351
+ self.quant_config = quant_config
1352
+
1353
+ # Empty placeholders for loading as a single module.
1354
+ placeholder_size = 0
1355
+ assert self.quant_method is not None
1356
+ self.quant_method.create_weights(self,
1357
+ placeholder_size, [placeholder_size],
1358
+ placeholder_size,
1359
+ placeholder_size,
1360
+ self.params_dtype,
1361
+ weight_loader=self.weight_loader)
1362
+
1363
+ # Use a dictionary to avoid submodules parameters auto-registration:
1364
+ # drop-in replacement for a `QKVParallelLinear` module.
1365
+ self.proj = dict()
1366
+ self.proj["q_proj_decoder"] = ColumnParallelLinear(
1367
+ input_size=hidden_size,
1368
+ output_size=total_num_heads * head_size,
1369
+ bias=bias,
1370
+ quant_config=quant_config,
1371
+ skip_bias_add=skip_bias_add,
1372
+ params_dtype=params_dtype,
1373
+ prefix=f"{prefix}.q_proj_decoder")
1374
+
1375
+ self.proj["kv_proj_encoder"] = QKVParallelLinear(
1376
+ hidden_size=hidden_size,
1377
+ head_size=head_size,
1378
+ total_num_heads=0,
1379
+ total_num_kv_heads=total_num_kv_heads,
1380
+ bias=bias,
1381
+ quant_config=quant_config,
1382
+ skip_bias_add=skip_bias_add,
1383
+ params_dtype=params_dtype,
1384
+ prefix=f"{prefix}.kv_proj_encoder")
1385
+
1386
+ # `kv_proj_encoder.num_kv_heads` accounts for sharding with tp>1.
1387
+ self.q_size = self.q_proj_decoder.output_size_per_partition
1388
+ self.kv_size = self.kv_proj_encoder.num_kv_heads * head_size
1389
+
1390
+ if bias:
1391
+ self.bias = torch.nn.Parameter()
1392
+ set_weight_attrs(self.bias, {
1393
+ "output_dim": 0,
1394
+ "weight_loader": self.weight_loader,
1395
+ })
1396
+ else:
1397
+ self.bias = None
1398
+
1399
+ def process_weights_after_loading(self):
1400
+ for layer in self.proj.values():
1401
+ if self.quant_method is not None:
1402
+ self.quant_method.process_weights_after_loading(layer)
1403
+
1404
+ @property
1405
+ def q_proj_decoder(self) -> ColumnParallelLinear:
1406
+ layer = self.proj["q_proj_decoder"]
1407
+ for name, param in self.named_parameters():
1408
+ target_param = getattr(layer, name, None)
1409
+ if target_param is not None:
1410
+ self.sync_weight_attrs(param,
1411
+ target_param,
1412
+ mode="q_proj_decoder")
1413
+ return layer
1414
+
1415
+ @property
1416
+ def kv_proj_encoder(self) -> QKVParallelLinear:
1417
+ layer = self.proj["kv_proj_encoder"]
1418
+ for name, param in self.named_parameters():
1419
+ target_param = getattr(layer, name, None)
1420
+ if target_param is not None:
1421
+ self.sync_weight_attrs(param,
1422
+ target_param,
1423
+ mode="kv_proj_encoder")
1424
+ return layer
1425
+
1426
+ def sync_weight_attrs(
1427
+ self,
1428
+ src_param: nn.Parameter,
1429
+ tgt_param: nn.Parameter,
1430
+ mode: Literal["q_proj_decoder", "kv_proj_encoder"],
1431
+ ):
1432
+ missing_attrs_dict = {
1433
+ k: getattr(src_param, k)
1434
+ for k in (set(vars(src_param).keys()) -
1435
+ set(vars(tgt_param).keys()))
1436
+ }
1437
+ # TODO(Isotr0py): handle bitsandbytes 8bit
1438
+ use_bitsandbytes_4bit = getattr(src_param, "use_bitsandbytes_4bit",
1439
+ False)
1440
+ if (missing_attrs_dict and use_bitsandbytes_4bit):
1441
+ q_proj_attrs, kv_proj_attrs = left_shift_bitsandbytes_4bit_shard(
1442
+ missing_attrs_dict)
1443
+ if mode == "q_proj_decoder":
1444
+ set_weight_attrs(tgt_param, q_proj_attrs)
1445
+ elif mode == "kv_proj_encoder":
1446
+ set_weight_attrs(tgt_param, kv_proj_attrs)
1447
+ else:
1448
+ set_weight_attrs(tgt_param, missing_attrs_dict)
1449
+
1450
+ def _is_same_param(
1451
+ self,
1452
+ src_param: torch.nn.Parameter,
1453
+ map_param: torch.nn.Parameter,
1454
+ ) -> bool:
1455
+ """Check if two parameters are exactly pointing to same things."""
1456
+ # ignore weight_loader because it's always different
1457
+ key_to_ignore = ["weight_loader", "_weight_loader"]
1458
+ has_same_type_name = type(src_param) is type(map_param)
1459
+ src_param_attrs = {
1460
+ k: v
1461
+ for k, v in src_param.__dict__.items() if k not in key_to_ignore
1462
+ }
1463
+ map_param_attrs = {
1464
+ k: v
1465
+ for k, v in map_param.__dict__.items() if k not in key_to_ignore
1466
+ }
1467
+ has_same_attrs = src_param_attrs == map_param_attrs
1468
+ return has_same_type_name and has_same_attrs
1469
+
1470
+ def select_proj_params(
1471
+ self,
1472
+ layer: nn.Module,
1473
+ param: nn.Parameter,
1474
+ ) -> nn.Parameter:
1475
+ """
1476
+ Given the placeholder param,
1477
+ return the corresponding param in the proj layers.
1478
+ """
1479
+ target_param_list = [
1480
+ v for _, v in layer.named_parameters()
1481
+ if self._is_same_param(param, v)
1482
+ ]
1483
+ assert len(target_param_list) == 1
1484
+ target_param = target_param_list[0]
1485
+ return target_param
1486
+
1487
+ def forward( # type: ignore[override]
1488
+ self,
1489
+ decoder_hidden_states: torch.Tensor,
1490
+ encoder_hidden_states: torch.Tensor,
1491
+ ) -> tuple[torch.Tensor, ...]:
1492
+ q, _ = self.q_proj_decoder(decoder_hidden_states)
1493
+ if encoder_hidden_states is None:
1494
+ # Encoder KV already cached.
1495
+ k = None
1496
+ v = None
1497
+ else:
1498
+ # Prefill phase, encoder KV cached here.
1499
+ kv_enc, _ = self.kv_proj_encoder(encoder_hidden_states)
1500
+ # Split kv in half
1501
+ k, v = kv_enc.split(self.kv_size, dim=-1)
1502
+ return q, k, v
1503
+
1504
+ def weight_loader(self,
1505
+ param: torch.nn.Parameter,
1506
+ loaded_weight: torch.Tensor,
1507
+ loaded_shard_id: Optional[str] = None):
1508
+ layer = (self.q_proj_decoder
1509
+ if loaded_shard_id == "q" else self.kv_proj_encoder)
1510
+ target_param = self.select_proj_params(layer, param)
1511
+ shard_id_args = (loaded_shard_id, ) if loaded_shard_id != "q" else ()
1512
+ if self.quant_method.__class__.__name__ in WEIGHT_LOADER_V2_SUPPORTED:
1513
+ layer.weight_loader_v2(target_param, loaded_weight, *shard_id_args)
1514
+ else:
1515
+ layer.weight_loader(target_param, loaded_weight, *shard_id_args)
1516
+
1517
+ def extra_repr(self) -> str:
1518
+ s = f"in_features={self.input_size}"
1519
+ s += f", q_size={self.q_size}"
1520
+ s += f", kv_size={self.kv_size}"
1521
+ s += f", bias={self.bias is not None}"
1522
+ s += f", tp_size={get_tensor_model_parallel_world_size()}"
1523
+ s += ", gather_output=False"
1524
+ return s