vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +53 -0
- vllm/_custom_ops.py +1828 -0
- vllm/_ipex_ops.py +244 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +106 -0
- vllm/adapter_commons/request.py +26 -0
- vllm/adapter_commons/utils.py +93 -0
- vllm/adapter_commons/worker_manager.py +39 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +34 -0
- vllm/assets/video.py +115 -0
- vllm/attention/__init__.py +20 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +308 -0
- vllm/attention/backends/blocksparse_attn.py +461 -0
- vllm/attention/backends/cpu_mla.py +307 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
- vllm/attention/backends/flash_attn.py +1003 -0
- vllm/attention/backends/flashinfer.py +1104 -0
- vllm/attention/backends/flashmla.py +244 -0
- vllm/attention/backends/hpu_attn.py +313 -0
- vllm/attention/backends/ipex_attn.py +398 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1385 -0
- vllm/attention/backends/pallas.py +351 -0
- vllm/attention/backends/placeholder_attn.py +400 -0
- vllm/attention/backends/rocm_aiter_mla.py +435 -0
- vllm/attention/backends/rocm_flash_attn.py +975 -0
- vllm/attention/backends/torch_sdpa.py +703 -0
- vllm/attention/backends/triton_mla.py +115 -0
- vllm/attention/backends/utils.py +610 -0
- vllm/attention/backends/xformers.py +802 -0
- vllm/attention/layer.py +468 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
- vllm/attention/ops/blocksparse_attention/interface.py +239 -0
- vllm/attention/ops/blocksparse_attention/utils.py +246 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
- vllm/attention/ops/flashmla.py +116 -0
- vllm/attention/ops/hpu_paged_attn.py +88 -0
- vllm/attention/ops/ipex_attn.py +195 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/nki_flash_attn.py +906 -0
- vllm/attention/ops/paged_attn.py +256 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +100 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +674 -0
- vllm/attention/ops/triton_flash_attention.py +979 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_unified_attention.py +334 -0
- vllm/attention/selector.py +187 -0
- vllm/attention/utils/fa_utils.py +55 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +1185 -0
- vllm/benchmarks/endpoint_request_func.py +381 -0
- vllm/benchmarks/latency.py +168 -0
- vllm/benchmarks/serve.py +1135 -0
- vllm/benchmarks/throughput.py +609 -0
- vllm/benchmarks/utils.py +70 -0
- vllm/collect_env.py +820 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +89 -0
- vllm/compilation/backends.py +563 -0
- vllm/compilation/base_piecewise_backend.py +72 -0
- vllm/compilation/collective_fusion.py +127 -0
- vllm/compilation/compiler_interface.py +544 -0
- vllm/compilation/counter.py +38 -0
- vllm/compilation/cuda_piecewise_backend.py +214 -0
- vllm/compilation/decorators.py +250 -0
- vllm/compilation/fix_functionalization.py +191 -0
- vllm/compilation/fusion.py +618 -0
- vllm/compilation/fx_utils.py +62 -0
- vllm/compilation/inductor_pass.py +115 -0
- vllm/compilation/monitor.py +39 -0
- vllm/compilation/multi_output_match.py +109 -0
- vllm/compilation/noop_elimination.py +137 -0
- vllm/compilation/pass_manager.py +78 -0
- vllm/compilation/sequence_parallelism.py +268 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +67 -0
- vllm/compilation/wrapper.py +135 -0
- vllm/config.py +4746 -0
- vllm/connections.py +174 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +399 -0
- vllm/core/block/common.py +371 -0
- vllm/core/block/cpu_gpu_block_allocator.py +441 -0
- vllm/core/block/interfaces.py +319 -0
- vllm/core/block/naive_block.py +466 -0
- vllm/core/block/prefix_caching_block.py +1135 -0
- vllm/core/block/utils.py +28 -0
- vllm/core/block_manager.py +521 -0
- vllm/core/evictor.py +157 -0
- vllm/core/interfaces.py +135 -0
- vllm/core/placeholder_block_space_manager.py +100 -0
- vllm/core/scheduler.py +2093 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +281 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +264 -0
- vllm/distributed/device_communicators/base_device_communicator.py +260 -0
- vllm/distributed/device_communicators/cpu_communicator.py +145 -0
- vllm/distributed/device_communicators/cuda_communicator.py +176 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
- vllm/distributed/device_communicators/hpu_communicator.py +46 -0
- vllm/distributed/device_communicators/neuron_communicator.py +20 -0
- vllm/distributed/device_communicators/pynccl.py +218 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
- vllm/distributed/device_communicators/shm_broadcast.py +585 -0
- vllm/distributed/device_communicators/tpu_communicator.py +103 -0
- vllm/distributed/device_communicators/xpu_communicator.py +55 -0
- vllm/distributed/kv_events.py +356 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +12 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
- vllm/distributed/parallel_state.py +1296 -0
- vllm/distributed/tpu_distributed_utils.py +177 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1708 -0
- vllm/engine/async_llm_engine.py +1200 -0
- vllm/engine/async_timeout.py +173 -0
- vllm/engine/llm_engine.py +2097 -0
- vllm/engine/metrics.py +629 -0
- vllm/engine/metrics_types.py +94 -0
- vllm/engine/multiprocessing/__init__.py +148 -0
- vllm/engine/multiprocessing/client.py +681 -0
- vllm/engine/multiprocessing/engine.py +460 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +75 -0
- vllm/engine/output_processor/multi_step.py +216 -0
- vllm/engine/output_processor/single_step.py +145 -0
- vllm/engine/output_processor/stop_checker.py +131 -0
- vllm/engine/output_processor/util.py +28 -0
- vllm/engine/protocol.py +317 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1299 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +39 -0
- vllm/entrypoints/cli/benchmark/latency.py +30 -0
- vllm/entrypoints/cli/benchmark/main.py +54 -0
- vllm/entrypoints/cli/benchmark/serve.py +30 -0
- vllm/entrypoints/cli/benchmark/throughput.py +30 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +65 -0
- vllm/entrypoints/cli/openai.py +205 -0
- vllm/entrypoints/cli/run_batch.py +62 -0
- vllm/entrypoints/cli/serve.py +328 -0
- vllm/entrypoints/cli/types.py +25 -0
- vllm/entrypoints/launcher.py +147 -0
- vllm/entrypoints/llm.py +1544 -0
- vllm/entrypoints/logger.py +50 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1387 -0
- vllm/entrypoints/openai/cli_args.py +315 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +1913 -0
- vllm/entrypoints/openai/run_batch.py +463 -0
- vllm/entrypoints/openai/serving_chat.py +1221 -0
- vllm/entrypoints/openai/serving_classification.py +160 -0
- vllm/entrypoints/openai/serving_completion.py +592 -0
- vllm/entrypoints/openai/serving_embedding.py +201 -0
- vllm/entrypoints/openai/serving_engine.py +986 -0
- vllm/entrypoints/openai/serving_models.py +315 -0
- vllm/entrypoints/openai/serving_pooling.py +232 -0
- vllm/entrypoints/openai/serving_score.py +433 -0
- vllm/entrypoints/openai/serving_tokenization.py +157 -0
- vllm/entrypoints/openai/serving_transcription.py +424 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/score_utils.py +50 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/utils.py +233 -0
- vllm/env_override.py +41 -0
- vllm/envs.py +944 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +401 -0
- vllm/executor/mp_distributed_executor.py +244 -0
- vllm/executor/msgspec_utils.py +30 -0
- vllm/executor/multiproc_worker_utils.py +313 -0
- vllm/executor/ray_distributed_executor.py +701 -0
- vllm/executor/ray_utils.py +399 -0
- vllm/executor/uniproc_executor.py +139 -0
- vllm/forward_context.py +179 -0
- vllm/inputs/__init__.py +41 -0
- vllm/inputs/data.py +331 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +909 -0
- vllm/inputs/registry.py +237 -0
- vllm/jsontree.py +80 -0
- vllm/logger.py +212 -0
- vllm/logging_utils/__init__.py +8 -0
- vllm/logging_utils/dump_input.py +85 -0
- vllm/logging_utils/formatter.py +18 -0
- vllm/logits_process.py +119 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +355 -0
- vllm/lora/layers.py +1285 -0
- vllm/lora/lora.py +199 -0
- vllm/lora/models.py +818 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
- vllm/lora/ops/triton_ops/utils.py +120 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +145 -0
- vllm/lora/peft_helper.py +136 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +485 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +290 -0
- vllm/lora/punica_wrapper/punica_hpu.py +145 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +405 -0
- vllm/lora/punica_wrapper/utils.py +164 -0
- vllm/lora/request.py +99 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +240 -0
- vllm/lora/worker_manager.py +259 -0
- vllm/model_executor/__init__.py +16 -0
- vllm/model_executor/custom_op.py +152 -0
- vllm/model_executor/guided_decoding/__init__.py +181 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
- vllm/model_executor/guided_decoding/guided_fields.py +41 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
- vllm/model_executor/guided_decoding/utils.py +242 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +369 -0
- vllm/model_executor/layers/fused_moe/__init__.py +54 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
- vllm/model_executor/layers/fused_moe/layer.py +1535 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/utils.py +98 -0
- vllm/model_executor/layers/layernorm.py +288 -0
- vllm/model_executor/layers/lightning_attn.py +652 -0
- vllm/model_executor/layers/linear.py +1524 -0
- vllm/model_executor/layers/logits_processor.py +197 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
- vllm/model_executor/layers/pooler.py +350 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/auto_round.py +310 -0
- vllm/model_executor/layers/quantization/awq.py +194 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +151 -0
- vllm/model_executor/layers/quantization/bitblas.py +461 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
- vllm/model_executor/layers/quantization/experts_int8.py +196 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +906 -0
- vllm/model_executor/layers/quantization/gguf.py +565 -0
- vllm/model_executor/layers/quantization/gptq.py +278 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +139 -0
- vllm/model_executor/layers/quantization/marlin.py +261 -0
- vllm/model_executor/layers/quantization/modelopt.py +737 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
- vllm/model_executor/layers/quantization/qqq.py +275 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +441 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +161 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
- vllm/model_executor/layers/rejection_sampler.py +406 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding.py +1862 -0
- vllm/model_executor/layers/sampler.py +1204 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
- vllm/model_executor/layers/utils.py +95 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +76 -0
- vllm/model_executor/model_loader/base_loader.py +43 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
- vllm/model_executor/model_loader/default_loader.py +282 -0
- vllm/model_executor/model_loader/dummy_loader.py +27 -0
- vllm/model_executor/model_loader/gguf_loader.py +120 -0
- vllm/model_executor/model_loader/neuron.py +476 -0
- vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
- vllm/model_executor/model_loader/tensorizer.py +600 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
- vllm/model_executor/model_loader/tpu.py +112 -0
- vllm/model_executor/model_loader/utils.py +302 -0
- vllm/model_executor/model_loader/weight_utils.py +782 -0
- vllm/model_executor/models/__init__.py +28 -0
- vllm/model_executor/models/adapters.py +248 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +657 -0
- vllm/model_executor/models/aya_vision.py +466 -0
- vllm/model_executor/models/baichuan.py +474 -0
- vllm/model_executor/models/bamba.py +543 -0
- vllm/model_executor/models/bart.py +938 -0
- vllm/model_executor/models/bert.py +523 -0
- vllm/model_executor/models/bert_with_rope.py +769 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +718 -0
- vllm/model_executor/models/bloom.py +373 -0
- vllm/model_executor/models/chameleon.py +1136 -0
- vllm/model_executor/models/chatglm.py +478 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/commandr.py +472 -0
- vllm/model_executor/models/constant_size_cache.py +137 -0
- vllm/model_executor/models/dbrx.py +472 -0
- vllm/model_executor/models/deepseek.py +486 -0
- vllm/model_executor/models/deepseek_mtp.py +269 -0
- vllm/model_executor/models/deepseek_v2.py +843 -0
- vllm/model_executor/models/deepseek_vl2.py +648 -0
- vllm/model_executor/models/eagle.py +260 -0
- vllm/model_executor/models/exaone.py +551 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +510 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/florence2.py +1103 -0
- vllm/model_executor/models/fuyu.py +389 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +425 -0
- vllm/model_executor/models/gemma3.py +533 -0
- vllm/model_executor/models/gemma3_mm.py +709 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4v.py +648 -0
- vllm/model_executor/models/gpt2.py +328 -0
- vllm/model_executor/models/gpt_bigcode.py +335 -0
- vllm/model_executor/models/gpt_j.py +339 -0
- vllm/model_executor/models/gpt_neox.py +332 -0
- vllm/model_executor/models/granite.py +493 -0
- vllm/model_executor/models/granite_speech.py +779 -0
- vllm/model_executor/models/granitemoe.py +437 -0
- vllm/model_executor/models/granitemoehybrid.py +586 -0
- vllm/model_executor/models/granitemoeshared.py +341 -0
- vllm/model_executor/models/gritlm.py +224 -0
- vllm/model_executor/models/grok1.py +546 -0
- vllm/model_executor/models/h2ovl.py +546 -0
- vllm/model_executor/models/idefics2_vision_model.py +389 -0
- vllm/model_executor/models/idefics3.py +776 -0
- vllm/model_executor/models/interfaces.py +572 -0
- vllm/model_executor/models/interfaces_base.py +164 -0
- vllm/model_executor/models/intern_vit.py +480 -0
- vllm/model_executor/models/internlm2.py +455 -0
- vllm/model_executor/models/internlm2_ve.py +147 -0
- vllm/model_executor/models/internvl.py +1418 -0
- vllm/model_executor/models/jais.py +373 -0
- vllm/model_executor/models/jamba.py +592 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +644 -0
- vllm/model_executor/models/llama4.py +532 -0
- vllm/model_executor/models/llama_eagle.py +165 -0
- vllm/model_executor/models/llama_eagle3.py +263 -0
- vllm/model_executor/models/llava.py +866 -0
- vllm/model_executor/models/llava_next.py +586 -0
- vllm/model_executor/models/llava_next_video.py +471 -0
- vllm/model_executor/models/llava_onevision.py +956 -0
- vllm/model_executor/models/mamba.py +273 -0
- vllm/model_executor/models/mamba2.py +308 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +219 -0
- vllm/model_executor/models/mimo.py +192 -0
- vllm/model_executor/models/mimo_mtp.py +285 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +391 -0
- vllm/model_executor/models/minicpmo.py +759 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +36 -0
- vllm/model_executor/models/minimax_text_01.py +1301 -0
- vllm/model_executor/models/minimax_vl_01.py +364 -0
- vllm/model_executor/models/mistral3.py +604 -0
- vllm/model_executor/models/mixtral.py +488 -0
- vllm/model_executor/models/mixtral_quant.py +453 -0
- vllm/model_executor/models/mllama.py +1624 -0
- vllm/model_executor/models/mllama4.py +938 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +331 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1568 -0
- vllm/model_executor/models/moonvit.py +630 -0
- vllm/model_executor/models/mpt.py +331 -0
- vllm/model_executor/models/nemotron.py +508 -0
- vllm/model_executor/models/nemotron_h.py +573 -0
- vllm/model_executor/models/nemotron_nas.py +484 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +389 -0
- vllm/model_executor/models/olmo2.py +414 -0
- vllm/model_executor/models/olmoe.py +468 -0
- vllm/model_executor/models/opt.py +412 -0
- vllm/model_executor/models/orion.py +349 -0
- vllm/model_executor/models/ovis.py +567 -0
- vllm/model_executor/models/paligemma.py +398 -0
- vllm/model_executor/models/persimmon.py +344 -0
- vllm/model_executor/models/phi.py +356 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3_small.py +465 -0
- vllm/model_executor/models/phi3v.py +723 -0
- vllm/model_executor/models/phi4mm.py +1246 -0
- vllm/model_executor/models/phi4mm_audio.py +1233 -0
- vllm/model_executor/models/phi4mm_utils.py +1884 -0
- vllm/model_executor/models/phimoe.py +665 -0
- vllm/model_executor/models/pixtral.py +1316 -0
- vllm/model_executor/models/plamo2.py +738 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
- vllm/model_executor/models/qwen.py +362 -0
- vllm/model_executor/models/qwen2.py +497 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
- vllm/model_executor/models/qwen2_5_vl.py +1166 -0
- vllm/model_executor/models/qwen2_audio.py +410 -0
- vllm/model_executor/models/qwen2_moe.py +540 -0
- vllm/model_executor/models/qwen2_rm.py +132 -0
- vllm/model_executor/models/qwen2_vl.py +1405 -0
- vllm/model_executor/models/qwen3.py +321 -0
- vllm/model_executor/models/qwen3_moe.py +535 -0
- vllm/model_executor/models/qwen_vl.py +785 -0
- vllm/model_executor/models/registry.py +622 -0
- vllm/model_executor/models/roberta.py +276 -0
- vllm/model_executor/models/siglip.py +524 -0
- vllm/model_executor/models/skyworkr1v.py +951 -0
- vllm/model_executor/models/smolvlm.py +52 -0
- vllm/model_executor/models/solar.py +506 -0
- vllm/model_executor/models/stablelm.py +343 -0
- vllm/model_executor/models/starcoder2.py +356 -0
- vllm/model_executor/models/tarsier.py +643 -0
- vllm/model_executor/models/telechat2.py +140 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/transformers.py +508 -0
- vllm/model_executor/models/ultravox.py +656 -0
- vllm/model_executor/models/utils.py +731 -0
- vllm/model_executor/models/vision.py +147 -0
- vllm/model_executor/models/whisper.py +747 -0
- vllm/model_executor/models/zamba2.py +1009 -0
- vllm/model_executor/parameter.py +459 -0
- vllm/model_executor/pooling_metadata.py +72 -0
- vllm/model_executor/sampling_metadata.py +597 -0
- vllm/model_executor/utils.py +77 -0
- vllm/multimodal/__init__.py +33 -0
- vllm/multimodal/audio.py +106 -0
- vllm/multimodal/base.py +219 -0
- vllm/multimodal/hasher.py +118 -0
- vllm/multimodal/image.py +97 -0
- vllm/multimodal/inputs.py +876 -0
- vllm/multimodal/parse.py +461 -0
- vllm/multimodal/processing.py +1895 -0
- vllm/multimodal/profiling.py +258 -0
- vllm/multimodal/registry.py +331 -0
- vllm/multimodal/utils.py +436 -0
- vllm/multimodal/video.py +198 -0
- vllm/outputs.py +512 -0
- vllm/platforms/__init__.py +291 -0
- vllm/platforms/cpu.py +266 -0
- vllm/platforms/cuda.py +526 -0
- vllm/platforms/hpu.py +106 -0
- vllm/platforms/interface.py +538 -0
- vllm/platforms/neuron.py +150 -0
- vllm/platforms/rocm.py +435 -0
- vllm/platforms/tpu.py +216 -0
- vllm/platforms/xpu.py +156 -0
- vllm/plugins/__init__.py +94 -0
- vllm/plugins/lora_resolvers/README.md +15 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +54 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +83 -0
- vllm/prompt_adapter/models.py +358 -0
- vllm/prompt_adapter/request.py +37 -0
- vllm/prompt_adapter/utils.py +98 -0
- vllm/prompt_adapter/worker_manager.py +179 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +15 -0
- vllm/reasoning/abs_reasoning_parsers.py +192 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/qwen3_reasoning_parser.py +151 -0
- vllm/sampling_params.py +602 -0
- vllm/scalar_type.py +347 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +1568 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +506 -0
- vllm/spec_decode/draft_model_runner.py +349 -0
- vllm/spec_decode/interfaces.py +99 -0
- vllm/spec_decode/medusa_worker.py +138 -0
- vllm/spec_decode/metrics.py +213 -0
- vllm/spec_decode/mlp_speculator_worker.py +94 -0
- vllm/spec_decode/mqa_scorer.py +160 -0
- vllm/spec_decode/multi_step_worker.py +423 -0
- vllm/spec_decode/ngram_worker.py +196 -0
- vllm/spec_decode/proposer_worker_base.py +59 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
- vllm/spec_decode/spec_decode_worker.py +1326 -0
- vllm/spec_decode/target_model_runner.py +45 -0
- vllm/spec_decode/top1_proposer.py +275 -0
- vllm/spec_decode/util.py +277 -0
- vllm/test_utils.py +130 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +131 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +60 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/config.py +887 -0
- vllm/transformers_utils/configs/__init__.py +61 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/cohere2.py +195 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +85 -0
- vllm/transformers_utils/configs/exaone.py +190 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/h2ovl.py +16 -0
- vllm/transformers_utils/configs/internvl.py +54 -0
- vllm/transformers_utils/configs/jais.py +238 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/minimax_text_01.py +70 -0
- vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
- vllm/transformers_utils/configs/mllama.py +31 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/mpt.py +180 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +258 -0
- vllm/transformers_utils/configs/nvlm_d.py +15 -0
- vllm/transformers_utils/configs/ovis.py +184 -0
- vllm/transformers_utils/configs/skyworkr1v.py +54 -0
- vllm/transformers_utils/configs/solar.py +247 -0
- vllm/transformers_utils/configs/telechat2.py +64 -0
- vllm/transformers_utils/configs/ultravox.py +108 -0
- vllm/transformers_utils/detokenizer.py +168 -0
- vllm/transformers_utils/detokenizer_utils.py +189 -0
- vllm/transformers_utils/processor.py +221 -0
- vllm/transformers_utils/processors/__init__.py +8 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/s3_utils.py +162 -0
- vllm/transformers_utils/tokenizer.py +302 -0
- vllm/transformers_utils/tokenizer_base.py +149 -0
- vllm/transformers_utils/tokenizer_group.py +120 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +493 -0
- vllm/transformers_utils/utils.py +99 -0
- vllm/triton_utils/__init__.py +14 -0
- vllm/triton_utils/importing.py +50 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +256 -0
- vllm/utils.py +2910 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +163 -0
- vllm/v1/attention/backends/flash_attn.py +869 -0
- vllm/v1/attention/backends/flashinfer.py +651 -0
- vllm/v1/attention/backends/flex_attention.py +477 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +931 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
- vllm/v1/attention/backends/mla/flashmla.py +152 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
- vllm/v1/attention/backends/mla/triton_mla.py +120 -0
- vllm/v1/attention/backends/pallas.py +240 -0
- vllm/v1/attention/backends/triton_attn.py +285 -0
- vllm/v1/attention/backends/utils.py +52 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +349 -0
- vllm/v1/core/encoder_cache_manager.py +150 -0
- vllm/v1/core/kv_cache_coordinator.py +363 -0
- vllm/v1/core/kv_cache_manager.py +392 -0
- vllm/v1/core/kv_cache_utils.py +996 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +150 -0
- vllm/v1/core/sched/output.py +154 -0
- vllm/v1/core/sched/scheduler.py +1044 -0
- vllm/v1/core/sched/utils.py +23 -0
- vllm/v1/core/single_type_kv_cache_manager.py +403 -0
- vllm/v1/engine/__init__.py +173 -0
- vllm/v1/engine/async_llm.py +558 -0
- vllm/v1/engine/coordinator.py +253 -0
- vllm/v1/engine/core.py +961 -0
- vllm/v1/engine/core_client.py +1129 -0
- vllm/v1/engine/detokenizer.py +261 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +317 -0
- vllm/v1/engine/logprobs.py +199 -0
- vllm/v1/engine/mm_input_cache.py +91 -0
- vllm/v1/engine/output_processor.py +428 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +407 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +113 -0
- vllm/v1/executor/multiproc_executor.py +537 -0
- vllm/v1/executor/ray_distributed_executor.py +62 -0
- vllm/v1/kv_cache_interface.py +194 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +523 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +131 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +239 -0
- vllm/v1/outputs.py +116 -0
- vllm/v1/request.py +193 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/penalties.py +59 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +286 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +145 -0
- vllm/v1/serial_utils.py +315 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +432 -0
- vllm/v1/spec_decode/medusa.py +62 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +178 -0
- vllm/v1/spec_decode/ngram_proposer.py +132 -0
- vllm/v1/spec_decode/utils.py +46 -0
- vllm/v1/structured_output/__init__.py +222 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +318 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +175 -0
- vllm/v1/utils.py +743 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +142 -0
- vllm/v1/worker/cpu_model_runner.py +86 -0
- vllm/v1/worker/cpu_worker.py +152 -0
- vllm/v1/worker/gpu_input_batch.py +681 -0
- vllm/v1/worker/gpu_model_runner.py +2320 -0
- vllm/v1/worker/gpu_worker.py +393 -0
- vllm/v1/worker/lora_model_runner_mixin.py +173 -0
- vllm/v1/worker/tpu_model_runner.py +1673 -0
- vllm/v1/worker/tpu_worker.py +299 -0
- vllm/v1/worker/utils.py +111 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +145 -0
- vllm/worker/cpu_enc_dec_model_runner.py +326 -0
- vllm/worker/cpu_model_runner.py +671 -0
- vllm/worker/cpu_pooling_model_runner.py +125 -0
- vllm/worker/cpu_worker.py +450 -0
- vllm/worker/enc_dec_model_runner.py +555 -0
- vllm/worker/hpu_model_runner.py +2320 -0
- vllm/worker/hpu_worker.py +484 -0
- vllm/worker/model_runner.py +2178 -0
- vllm/worker/model_runner_base.py +282 -0
- vllm/worker/multi_step_hpu_worker.py +123 -0
- vllm/worker/multi_step_model_runner.py +911 -0
- vllm/worker/multi_step_neuron_model_runner.py +84 -0
- vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
- vllm/worker/multi_step_tpu_worker.py +108 -0
- vllm/worker/multi_step_worker.py +197 -0
- vllm/worker/neuron_model_runner.py +460 -0
- vllm/worker/neuron_worker.py +193 -0
- vllm/worker/neuronx_distributed_model_runner.py +294 -0
- vllm/worker/pooling_model_runner.py +211 -0
- vllm/worker/tpu_model_runner.py +909 -0
- vllm/worker/tpu_worker.py +337 -0
- vllm/worker/utils.py +53 -0
- vllm/worker/worker.py +577 -0
- vllm/worker/worker_base.py +646 -0
- vllm/worker/xpu_model_runner.py +606 -0
- vllm/worker/xpu_worker.py +186 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1524 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
import itertools
|
|
5
|
+
from abc import abstractmethod
|
|
6
|
+
from typing import Any, Literal, Optional, Union
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
import torch.nn as nn
|
|
10
|
+
from torch.nn.parameter import Parameter, UninitializedParameter
|
|
11
|
+
|
|
12
|
+
from vllm.distributed import (divide, get_tensor_model_parallel_rank,
|
|
13
|
+
get_tensor_model_parallel_world_size,
|
|
14
|
+
split_tensor_along_last_dim,
|
|
15
|
+
tensor_model_parallel_all_gather,
|
|
16
|
+
tensor_model_parallel_all_reduce)
|
|
17
|
+
from vllm.logger import init_logger
|
|
18
|
+
from vllm.model_executor.layers.quantization.base_config import (
|
|
19
|
+
QuantizationConfig, QuantizeMethodBase)
|
|
20
|
+
from vllm.model_executor.layers.utils import dispatch_unquantized_gemm
|
|
21
|
+
# yapf: disable
|
|
22
|
+
from vllm.model_executor.parameter import (BasevLLMParameter,
|
|
23
|
+
BlockQuantScaleParameter,
|
|
24
|
+
PackedColumnParameter,
|
|
25
|
+
PackedvLLMParameter,
|
|
26
|
+
PerTensorScaleParameter,
|
|
27
|
+
RowvLLMParameter)
|
|
28
|
+
# yapf: enable
|
|
29
|
+
from vllm.model_executor.utils import set_weight_attrs
|
|
30
|
+
|
|
31
|
+
logger = init_logger(__name__)
|
|
32
|
+
|
|
33
|
+
WEIGHT_LOADER_V2_SUPPORTED = [
|
|
34
|
+
"CompressedTensorsLinearMethod",
|
|
35
|
+
"BitBLASLinearMethod",
|
|
36
|
+
"GPTQBitBLASLinearMethod",
|
|
37
|
+
"AWQMarlinLinearMethod",
|
|
38
|
+
"AWQLinearMethod",
|
|
39
|
+
"GPTQMarlinLinearMethod",
|
|
40
|
+
"Fp8LinearMethod",
|
|
41
|
+
"MarlinLinearMethod",
|
|
42
|
+
"QQQLinearMethod",
|
|
43
|
+
"GPTQMarlin24LinearMethod",
|
|
44
|
+
"TPUInt8LinearMethod",
|
|
45
|
+
"GPTQLinearMethod",
|
|
46
|
+
"FBGEMMFp8LinearMethod",
|
|
47
|
+
"ModelOptFp8LinearMethod",
|
|
48
|
+
"IPEXAWQLinearMethod",
|
|
49
|
+
"IPEXGPTQLinearMethod",
|
|
50
|
+
"HQQMarlinMethod",
|
|
51
|
+
"QuarkLinearMethod",
|
|
52
|
+
"ModelOptNvFp4LinearMethod",
|
|
53
|
+
]
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
def adjust_bitblas_shard(param, shard_size, shard_offset):
|
|
57
|
+
bitblas_tile_size = getattr(param, "bitblas_tile_size", None)
|
|
58
|
+
if bitblas_tile_size is not None:
|
|
59
|
+
return (shard_size // bitblas_tile_size,
|
|
60
|
+
shard_offset // bitblas_tile_size)
|
|
61
|
+
|
|
62
|
+
return shard_size, shard_offset
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
def adjust_marlin_shard(param, shard_size, shard_offset):
|
|
66
|
+
marlin_tile_size = getattr(param, "marlin_tile_size", None)
|
|
67
|
+
if marlin_tile_size is None:
|
|
68
|
+
return shard_size, shard_offset
|
|
69
|
+
|
|
70
|
+
return shard_size * marlin_tile_size, shard_offset * marlin_tile_size
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def adjust_bitsandbytes_4bit_shard(param: Parameter,
|
|
74
|
+
shard_offsets: dict[str, tuple[int, int]],
|
|
75
|
+
loaded_shard_id: str) -> tuple[int, int]:
|
|
76
|
+
"""Adjust the quantization offsets and sizes for BitsAndBytes sharding."""
|
|
77
|
+
|
|
78
|
+
total, _ = shard_offsets["total"]
|
|
79
|
+
orig_offset, orig_size = shard_offsets[loaded_shard_id]
|
|
80
|
+
|
|
81
|
+
quantized_total = param.data.shape[0]
|
|
82
|
+
quantized_offset = orig_offset * quantized_total // total
|
|
83
|
+
quantized_size = orig_size * quantized_total // total
|
|
84
|
+
|
|
85
|
+
return quantized_size, quantized_offset
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def adjust_scalar_to_fused_array(param, loaded_weight, shard_id):
|
|
89
|
+
"""For fused modules (QKV and MLP) we have an array of length
|
|
90
|
+
N that holds 1 scale for each "logical" matrix. So the param
|
|
91
|
+
is an array of length N. The loaded_weight corresponds to
|
|
92
|
+
one of the shards on disk. Here, we slice the param based on
|
|
93
|
+
the shard_id for loading.
|
|
94
|
+
"""
|
|
95
|
+
qkv_idxs = {"q": 0, "k": 1, "v": 2}
|
|
96
|
+
|
|
97
|
+
if isinstance(shard_id, str):
|
|
98
|
+
shard_id = qkv_idxs[shard_id]
|
|
99
|
+
elif not isinstance(shard_id, int):
|
|
100
|
+
raise ValueError(f"Unknown Shard Id {shard_id}")
|
|
101
|
+
|
|
102
|
+
# AutoFP8 scales do not have a shape
|
|
103
|
+
# compressed-tensors scales do have a shape
|
|
104
|
+
if len(loaded_weight.shape) != 0:
|
|
105
|
+
assert loaded_weight.shape[0] == 1
|
|
106
|
+
loaded_weight = loaded_weight[0]
|
|
107
|
+
|
|
108
|
+
return param[shard_id], loaded_weight
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
# TODO(Isotr0py): We might need a more flexible structure to handle
|
|
112
|
+
# bitsandbytes shard offsets.
|
|
113
|
+
def left_shift_bitsandbytes_4bit_shard(bnb_weight_attrs: dict[str, Any]):
|
|
114
|
+
"""
|
|
115
|
+
Separate the BitsAndBytes 4-bit shard.
|
|
116
|
+
|
|
117
|
+
For example, given bnb weight attributes as below:
|
|
118
|
+
{
|
|
119
|
+
'bnb_shard_offsets': array([0, 4, 8, 16]),
|
|
120
|
+
'bnb_quant_state': {0: ..., 1: ..., 2: ...},
|
|
121
|
+
}
|
|
122
|
+
|
|
123
|
+
The function will return:
|
|
124
|
+
{
|
|
125
|
+
'bnb_shard_offsets': array([0, 4]),
|
|
126
|
+
'bnb_quant_state': {0: ...},
|
|
127
|
+
}
|
|
128
|
+
and
|
|
129
|
+
{
|
|
130
|
+
'bnb_shard_offsets': array([0, 4, 12]),
|
|
131
|
+
'bnb_quant_state': {0: ..., 1: ...},
|
|
132
|
+
}
|
|
133
|
+
"""
|
|
134
|
+
shard_offsets = bnb_weight_attrs["bnb_shard_offsets"]
|
|
135
|
+
offset_l = shard_offsets[:2]
|
|
136
|
+
offset_r = shard_offsets[1:] - shard_offsets[1]
|
|
137
|
+
quant_state_l = {0: bnb_weight_attrs["bnb_quant_state"][0]}
|
|
138
|
+
quant_state_r = {
|
|
139
|
+
i - 1: bnb_weight_attrs["bnb_quant_state"][i]
|
|
140
|
+
for i in range(1,
|
|
141
|
+
len(shard_offsets) - 1)
|
|
142
|
+
}
|
|
143
|
+
left = dict(bnb_shard_offsets=offset_l, bnb_quant_state=quant_state_l)
|
|
144
|
+
right = dict(bnb_shard_offsets=offset_r, bnb_quant_state=quant_state_r)
|
|
145
|
+
return left, right
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
class LinearMethodBase(QuantizeMethodBase):
|
|
149
|
+
"""Base class for different (maybe quantized) linear methods."""
|
|
150
|
+
|
|
151
|
+
@abstractmethod
|
|
152
|
+
def create_weights(self, layer: torch.nn.Module,
|
|
153
|
+
input_size_per_partition: int,
|
|
154
|
+
output_partition_sizes: list[int], input_size: int,
|
|
155
|
+
output_size: int, params_dtype: torch.dtype,
|
|
156
|
+
**extra_weight_attrs):
|
|
157
|
+
"""Create weights for a linear layer.
|
|
158
|
+
The weights will be set as attributes of the layer.
|
|
159
|
+
|
|
160
|
+
Args:
|
|
161
|
+
layer: The layer that is using the LinearMethodBase factory.
|
|
162
|
+
input_size_per_partition: Size of the weight input dim on rank X.
|
|
163
|
+
output_partition_sizes: Sizes of the output dim of each logical
|
|
164
|
+
weight on rank X. E.g., output_partition_sizes for QKVLinear
|
|
165
|
+
is a list contains the width of Wq, Wk, Wv on rank X.
|
|
166
|
+
input_size: Size of the input dim of the weight across all ranks.
|
|
167
|
+
output_size: Size of the output dim of the weight across all ranks.
|
|
168
|
+
params_dtype: Datatype of the parameters.
|
|
169
|
+
"""
|
|
170
|
+
raise NotImplementedError
|
|
171
|
+
|
|
172
|
+
@abstractmethod
|
|
173
|
+
def apply(self,
|
|
174
|
+
layer: torch.nn.Module,
|
|
175
|
+
x: torch.Tensor,
|
|
176
|
+
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
177
|
+
"""Apply the weights in layer to the input tensor.
|
|
178
|
+
Expects create_weights to have been called before on the layer."""
|
|
179
|
+
raise NotImplementedError
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
class UnquantizedLinearMethod(LinearMethodBase):
|
|
183
|
+
"""Linear method without quantization."""
|
|
184
|
+
|
|
185
|
+
def create_weights(self, layer: torch.nn.Module,
|
|
186
|
+
input_size_per_partition: int,
|
|
187
|
+
output_partition_sizes: list[int], input_size: int,
|
|
188
|
+
output_size: int, params_dtype: torch.dtype,
|
|
189
|
+
**extra_weight_attrs):
|
|
190
|
+
weight = Parameter(torch.empty(sum(output_partition_sizes),
|
|
191
|
+
input_size_per_partition,
|
|
192
|
+
dtype=params_dtype),
|
|
193
|
+
requires_grad=False)
|
|
194
|
+
set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
|
|
195
|
+
layer.register_parameter("weight", weight)
|
|
196
|
+
set_weight_attrs(weight, extra_weight_attrs)
|
|
197
|
+
|
|
198
|
+
def apply(self,
|
|
199
|
+
layer: torch.nn.Module,
|
|
200
|
+
x: torch.Tensor,
|
|
201
|
+
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
202
|
+
|
|
203
|
+
return dispatch_unquantized_gemm()(x, layer.weight, bias)
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
class LinearBase(torch.nn.Module):
|
|
207
|
+
"""Base linear layer.
|
|
208
|
+
|
|
209
|
+
Args:
|
|
210
|
+
input_size: input dimension of the linear layer.
|
|
211
|
+
output_size: output dimension of the linear layer.
|
|
212
|
+
bias: If true, add bias.
|
|
213
|
+
skip_bias_add: If true, skip adding bias but instead return it.
|
|
214
|
+
params_dtype: Data type for the parameters.
|
|
215
|
+
quant_config: Quantization configure.
|
|
216
|
+
return_bias: If true, return bias together with outputs in forward pass.
|
|
217
|
+
"""
|
|
218
|
+
|
|
219
|
+
def __init__(
|
|
220
|
+
self,
|
|
221
|
+
input_size: int,
|
|
222
|
+
output_size: int,
|
|
223
|
+
skip_bias_add: bool = False,
|
|
224
|
+
params_dtype: Optional[torch.dtype] = None,
|
|
225
|
+
quant_config: Optional[QuantizationConfig] = None,
|
|
226
|
+
prefix: str = "",
|
|
227
|
+
*,
|
|
228
|
+
return_bias: bool = True,
|
|
229
|
+
):
|
|
230
|
+
super().__init__()
|
|
231
|
+
|
|
232
|
+
# Keep input parameters
|
|
233
|
+
self.input_size = input_size
|
|
234
|
+
self.output_size = output_size
|
|
235
|
+
self.skip_bias_add = skip_bias_add
|
|
236
|
+
if params_dtype is None:
|
|
237
|
+
params_dtype = torch.get_default_dtype()
|
|
238
|
+
self.params_dtype = params_dtype
|
|
239
|
+
if quant_config is None:
|
|
240
|
+
self.quant_method: Optional[
|
|
241
|
+
QuantizeMethodBase] = UnquantizedLinearMethod()
|
|
242
|
+
else:
|
|
243
|
+
self.quant_method = quant_config.get_quant_method(self,
|
|
244
|
+
prefix=prefix)
|
|
245
|
+
self.return_bias = return_bias
|
|
246
|
+
|
|
247
|
+
def forward(
|
|
248
|
+
self, x: torch.Tensor
|
|
249
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
|
|
250
|
+
raise NotImplementedError
|
|
251
|
+
|
|
252
|
+
|
|
253
|
+
class ReplicatedLinear(LinearBase):
|
|
254
|
+
"""Replicated linear layer.
|
|
255
|
+
|
|
256
|
+
Args:
|
|
257
|
+
input_size: input dimension of the linear layer.
|
|
258
|
+
output_size: output dimension of the linear layer.
|
|
259
|
+
bias: If true, add bias.
|
|
260
|
+
skip_bias_add: If true, skip adding bias but instead return it.
|
|
261
|
+
params_dtype: Data type for the parameters.
|
|
262
|
+
quant_config: Quantization configure.
|
|
263
|
+
prefix: The name of the layer in the state dict, including all parents
|
|
264
|
+
(e.g. model.layers.0.qkv_proj)
|
|
265
|
+
return_bias: If true, return bias together with outputs in forward pass.
|
|
266
|
+
"""
|
|
267
|
+
|
|
268
|
+
def __init__(
|
|
269
|
+
self,
|
|
270
|
+
input_size: int,
|
|
271
|
+
output_size: int,
|
|
272
|
+
bias: bool = True,
|
|
273
|
+
skip_bias_add: bool = False,
|
|
274
|
+
params_dtype: Optional[torch.dtype] = None,
|
|
275
|
+
quant_config: Optional[QuantizationConfig] = None,
|
|
276
|
+
prefix: str = "",
|
|
277
|
+
*,
|
|
278
|
+
return_bias: bool = True,
|
|
279
|
+
):
|
|
280
|
+
super().__init__(input_size,
|
|
281
|
+
output_size,
|
|
282
|
+
skip_bias_add,
|
|
283
|
+
params_dtype,
|
|
284
|
+
quant_config,
|
|
285
|
+
prefix=prefix,
|
|
286
|
+
return_bias=return_bias)
|
|
287
|
+
|
|
288
|
+
# All the linear layer supports quant method.
|
|
289
|
+
assert self.quant_method is not None
|
|
290
|
+
self.quant_method.create_weights(self,
|
|
291
|
+
self.input_size, [self.output_size],
|
|
292
|
+
self.input_size,
|
|
293
|
+
self.output_size,
|
|
294
|
+
self.params_dtype,
|
|
295
|
+
weight_loader=self.weight_loader)
|
|
296
|
+
|
|
297
|
+
if bias:
|
|
298
|
+
self.bias = Parameter(
|
|
299
|
+
torch.empty(self.output_size, dtype=self.params_dtype))
|
|
300
|
+
set_weight_attrs(self.bias, {
|
|
301
|
+
"output_dim": 0,
|
|
302
|
+
"weight_loader": self.weight_loader,
|
|
303
|
+
})
|
|
304
|
+
else:
|
|
305
|
+
self.register_parameter("bias", None)
|
|
306
|
+
|
|
307
|
+
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
|
308
|
+
# If the weight on disk does not have a shape, give it one
|
|
309
|
+
# (such scales for AutoFp8).
|
|
310
|
+
# Special case for GGUF
|
|
311
|
+
|
|
312
|
+
is_gguf_weight = getattr(param, "is_gguf_weight", False)
|
|
313
|
+
is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
|
|
314
|
+
if is_gguf_weight_type:
|
|
315
|
+
param.weight_type = loaded_weight.item()
|
|
316
|
+
|
|
317
|
+
# Materialize GGUF UninitializedParameter
|
|
318
|
+
if is_gguf_weight and isinstance(param, UninitializedParameter):
|
|
319
|
+
param.materialize(loaded_weight.shape, dtype=loaded_weight.dtype)
|
|
320
|
+
|
|
321
|
+
if len(loaded_weight.shape) == 0:
|
|
322
|
+
loaded_weight = loaded_weight.reshape(1)
|
|
323
|
+
|
|
324
|
+
assert param.size() == loaded_weight.size(), (
|
|
325
|
+
f"Tried to load weights of size {loaded_weight.size()}"
|
|
326
|
+
f"to a parameter of size {param.size()}")
|
|
327
|
+
param.data.copy_(loaded_weight)
|
|
328
|
+
|
|
329
|
+
def forward(
|
|
330
|
+
self, x: torch.Tensor
|
|
331
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
|
|
332
|
+
bias = self.bias if not self.skip_bias_add else None
|
|
333
|
+
assert self.quant_method is not None
|
|
334
|
+
output = self.quant_method.apply(self, x, bias)
|
|
335
|
+
output_bias = self.bias if self.skip_bias_add else None
|
|
336
|
+
if not self.return_bias:
|
|
337
|
+
return output
|
|
338
|
+
return output, output_bias
|
|
339
|
+
|
|
340
|
+
def extra_repr(self) -> str:
|
|
341
|
+
s = f"in_features={self.input_size}"
|
|
342
|
+
s += f", output_features={self.output_size}"
|
|
343
|
+
s += f", bias={self.bias is not None}"
|
|
344
|
+
return s
|
|
345
|
+
|
|
346
|
+
|
|
347
|
+
class ColumnParallelLinear(LinearBase):
|
|
348
|
+
"""Linear layer with column parallelism.
|
|
349
|
+
|
|
350
|
+
The linear layer is defined as Y = XA + b. A is parallelized along
|
|
351
|
+
its second dimension as A = [A_1, ..., A_p].
|
|
352
|
+
|
|
353
|
+
Args:
|
|
354
|
+
input_size: first dimension of matrix A.
|
|
355
|
+
output_size: second dimension of matrix A.
|
|
356
|
+
bias: If true, add bias.
|
|
357
|
+
gather_output: If true, call all-gather on output and make Y available
|
|
358
|
+
to all GPUs, otherwise, every GPU will have its output
|
|
359
|
+
which is Y_i = XA_i
|
|
360
|
+
skip_bias_add: This was added to enable performance optimizations where
|
|
361
|
+
bias can be fused with other element-wise operations. we
|
|
362
|
+
skip adding bias but instead return it.
|
|
363
|
+
params_dtype: Data type for the parameters.
|
|
364
|
+
quant_config: Quantization configure.
|
|
365
|
+
output_sizes: list of output sizes packed into one output, like for QKV
|
|
366
|
+
the list would be size 3.
|
|
367
|
+
prefix: The name of the layer in the state dict, including all parents
|
|
368
|
+
(e.g. model.layers.0.qkv_proj)
|
|
369
|
+
"""
|
|
370
|
+
|
|
371
|
+
def __init__(
|
|
372
|
+
self,
|
|
373
|
+
input_size: int,
|
|
374
|
+
output_size: int,
|
|
375
|
+
bias: bool = True,
|
|
376
|
+
gather_output: bool = False,
|
|
377
|
+
skip_bias_add: bool = False,
|
|
378
|
+
params_dtype: Optional[torch.dtype] = None,
|
|
379
|
+
quant_config: Optional[QuantizationConfig] = None,
|
|
380
|
+
output_sizes: Optional[list[int]] = None,
|
|
381
|
+
prefix: str = "",
|
|
382
|
+
*,
|
|
383
|
+
return_bias: bool = True,
|
|
384
|
+
):
|
|
385
|
+
# Divide the weight matrix along the last dimension.
|
|
386
|
+
self.tp_size = get_tensor_model_parallel_world_size()
|
|
387
|
+
self.input_size_per_partition = input_size
|
|
388
|
+
self.output_size_per_partition = divide(output_size, self.tp_size)
|
|
389
|
+
self.output_partition_sizes = [self.output_size_per_partition]
|
|
390
|
+
# If QKV or MergedColumn, use output size of each partition.
|
|
391
|
+
if hasattr(self, "output_sizes"):
|
|
392
|
+
self.output_partition_sizes = [
|
|
393
|
+
divide(output_size, self.tp_size)
|
|
394
|
+
for output_size in self.output_sizes
|
|
395
|
+
]
|
|
396
|
+
|
|
397
|
+
super().__init__(input_size,
|
|
398
|
+
output_size,
|
|
399
|
+
skip_bias_add,
|
|
400
|
+
params_dtype,
|
|
401
|
+
quant_config,
|
|
402
|
+
prefix,
|
|
403
|
+
return_bias=return_bias)
|
|
404
|
+
|
|
405
|
+
self.gather_output = gather_output
|
|
406
|
+
|
|
407
|
+
if output_sizes is None:
|
|
408
|
+
output_sizes = [output_size]
|
|
409
|
+
|
|
410
|
+
assert self.quant_method is not None
|
|
411
|
+
self.quant_method.create_weights(
|
|
412
|
+
layer=self,
|
|
413
|
+
input_size_per_partition=self.input_size_per_partition,
|
|
414
|
+
output_partition_sizes=self.output_partition_sizes,
|
|
415
|
+
input_size=self.input_size,
|
|
416
|
+
output_size=self.output_size,
|
|
417
|
+
params_dtype=self.params_dtype,
|
|
418
|
+
weight_loader=(
|
|
419
|
+
self.weight_loader_v2 if self.quant_method.__class__.__name__
|
|
420
|
+
in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader))
|
|
421
|
+
if bias:
|
|
422
|
+
self.bias = Parameter(
|
|
423
|
+
torch.empty(self.output_size_per_partition,
|
|
424
|
+
dtype=params_dtype))
|
|
425
|
+
set_weight_attrs(self.bias, {
|
|
426
|
+
"output_dim": 0,
|
|
427
|
+
"weight_loader": self.weight_loader,
|
|
428
|
+
})
|
|
429
|
+
else:
|
|
430
|
+
self.register_parameter("bias", None)
|
|
431
|
+
|
|
432
|
+
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
|
433
|
+
tp_rank = get_tensor_model_parallel_rank()
|
|
434
|
+
output_dim = getattr(param, "output_dim", None)
|
|
435
|
+
|
|
436
|
+
is_sharded_weight = getattr(param, "is_sharded_weight", False)
|
|
437
|
+
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
|
|
438
|
+
# bitsandbytes loads the weights of the specific portion
|
|
439
|
+
# no need to narrow
|
|
440
|
+
is_sharded_weight = is_sharded_weight or use_bitsandbytes_4bit
|
|
441
|
+
|
|
442
|
+
# Special case for GGUF
|
|
443
|
+
is_gguf_weight = getattr(param, "is_gguf_weight", False)
|
|
444
|
+
is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
|
|
445
|
+
if is_gguf_weight_type:
|
|
446
|
+
param.weight_type = loaded_weight.item()
|
|
447
|
+
|
|
448
|
+
# Materialize GGUF UninitializedParameter
|
|
449
|
+
if is_gguf_weight and isinstance(param, UninitializedParameter):
|
|
450
|
+
final_shape = list(loaded_weight.shape)
|
|
451
|
+
if output_dim is not None:
|
|
452
|
+
tp_size = get_tensor_model_parallel_world_size()
|
|
453
|
+
assert final_shape[output_dim] % tp_size == 0
|
|
454
|
+
final_shape[output_dim] = final_shape[output_dim] // tp_size
|
|
455
|
+
param.materialize(final_shape, dtype=loaded_weight.dtype)
|
|
456
|
+
|
|
457
|
+
param_data = param.data
|
|
458
|
+
if output_dim is not None and not is_sharded_weight:
|
|
459
|
+
shard_size = param_data.shape[output_dim]
|
|
460
|
+
start_idx = tp_rank * shard_size
|
|
461
|
+
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
|
|
462
|
+
shard_size)
|
|
463
|
+
|
|
464
|
+
# Special case for loading scales off disk, which often do not
|
|
465
|
+
# have a shape (such as in the case of AutoFP8).
|
|
466
|
+
if len(loaded_weight.shape) == 0:
|
|
467
|
+
loaded_weight = loaded_weight.reshape(1)
|
|
468
|
+
|
|
469
|
+
assert param_data.shape == loaded_weight.shape
|
|
470
|
+
param_data.copy_(loaded_weight)
|
|
471
|
+
|
|
472
|
+
def weight_loader_v2(self, param: Parameter, loaded_weight: torch.Tensor):
|
|
473
|
+
# Special case for loading scales off disk, which often do not
|
|
474
|
+
# have a shape (such as in the case of AutoFP8).
|
|
475
|
+
if len(loaded_weight.shape) == 0:
|
|
476
|
+
assert loaded_weight.numel() == 1
|
|
477
|
+
loaded_weight = loaded_weight.reshape(1)
|
|
478
|
+
param.load_column_parallel_weight(loaded_weight=loaded_weight)
|
|
479
|
+
|
|
480
|
+
def forward(
|
|
481
|
+
self, input_
|
|
482
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
|
|
483
|
+
bias = self.bias if not self.skip_bias_add else None
|
|
484
|
+
|
|
485
|
+
# Matrix multiply.
|
|
486
|
+
assert self.quant_method is not None
|
|
487
|
+
output_parallel = self.quant_method.apply(self, input_, bias)
|
|
488
|
+
if self.gather_output:
|
|
489
|
+
# All-gather across the partitions.
|
|
490
|
+
output = tensor_model_parallel_all_gather(output_parallel)
|
|
491
|
+
else:
|
|
492
|
+
output = output_parallel
|
|
493
|
+
output_bias = self.bias if self.skip_bias_add else None
|
|
494
|
+
if not self.return_bias:
|
|
495
|
+
return output
|
|
496
|
+
return output, output_bias
|
|
497
|
+
|
|
498
|
+
def extra_repr(self) -> str:
|
|
499
|
+
s = f"in_features={self.input_size}"
|
|
500
|
+
s += f", output_features={self.output_size_per_partition}"
|
|
501
|
+
s += f", bias={self.bias is not None}"
|
|
502
|
+
s += f", tp_size={get_tensor_model_parallel_world_size()}"
|
|
503
|
+
s += f", gather_output={self.gather_output}"
|
|
504
|
+
return s
|
|
505
|
+
|
|
506
|
+
|
|
507
|
+
class MergedColumnParallelLinear(ColumnParallelLinear):
|
|
508
|
+
"""Packed linear layers with column parallelism.
|
|
509
|
+
|
|
510
|
+
Similar to ColumnParallelLinear, but the weight matrix is concatenated
|
|
511
|
+
along the output dimension. When the weight matrix is loaded, the
|
|
512
|
+
different partitions are sharded separately.
|
|
513
|
+
|
|
514
|
+
Args:
|
|
515
|
+
input_size: input dimension of the linear layer.
|
|
516
|
+
output_sizes: list of output dimensions of the linear layer.
|
|
517
|
+
bias: If true, add bias.
|
|
518
|
+
gather_output: If true, call all-gather on output and make the output
|
|
519
|
+
available to all GPUs, otherwise, every GPU will have
|
|
520
|
+
its own output.
|
|
521
|
+
skip_bias_add: This was added to enable performance optimizations where
|
|
522
|
+
bias can be fused with other element-wise operations. we
|
|
523
|
+
skip adding bias but instead return it.
|
|
524
|
+
params_dtype: Data type for the parameters.
|
|
525
|
+
quant_config: Quantization configure.
|
|
526
|
+
prefix: The name of the layer in the state dict, including all parents
|
|
527
|
+
(e.g. model.layers.0.qkv_proj)
|
|
528
|
+
return_bias: If true, return bias together with outputs in forward pass.
|
|
529
|
+
"""
|
|
530
|
+
|
|
531
|
+
def __init__(
|
|
532
|
+
self,
|
|
533
|
+
input_size: int,
|
|
534
|
+
output_sizes: list[int],
|
|
535
|
+
bias: bool = True,
|
|
536
|
+
gather_output: bool = False,
|
|
537
|
+
skip_bias_add: bool = False,
|
|
538
|
+
params_dtype: Optional[torch.dtype] = None,
|
|
539
|
+
quant_config: Optional[QuantizationConfig] = None,
|
|
540
|
+
prefix: str = "",
|
|
541
|
+
*,
|
|
542
|
+
return_bias: bool = True,
|
|
543
|
+
):
|
|
544
|
+
self.output_sizes = output_sizes
|
|
545
|
+
tp_size = get_tensor_model_parallel_world_size()
|
|
546
|
+
assert all(output_size % tp_size == 0 for output_size in output_sizes)
|
|
547
|
+
super().__init__(input_size=input_size,
|
|
548
|
+
output_size=sum(output_sizes),
|
|
549
|
+
bias=bias,
|
|
550
|
+
gather_output=gather_output,
|
|
551
|
+
skip_bias_add=skip_bias_add,
|
|
552
|
+
params_dtype=params_dtype,
|
|
553
|
+
quant_config=quant_config,
|
|
554
|
+
prefix=prefix,
|
|
555
|
+
return_bias=return_bias)
|
|
556
|
+
|
|
557
|
+
def weight_loader(self,
|
|
558
|
+
param: Parameter,
|
|
559
|
+
loaded_weight: torch.Tensor,
|
|
560
|
+
loaded_shard_id: Optional[int] = None):
|
|
561
|
+
|
|
562
|
+
# Special case for GGUF
|
|
563
|
+
# initialize GGUF param after we know the quantize type
|
|
564
|
+
is_gguf_weight = getattr(param, "is_gguf_weight", False)
|
|
565
|
+
is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
|
|
566
|
+
if is_gguf_weight_type:
|
|
567
|
+
if loaded_shard_id is not None:
|
|
568
|
+
param.data[loaded_shard_id].copy_(loaded_weight)
|
|
569
|
+
param.shard_weight_type[loaded_shard_id] = loaded_weight.item()
|
|
570
|
+
else:
|
|
571
|
+
param.shard_weight_type = {
|
|
572
|
+
i: loaded_weight.item()
|
|
573
|
+
for i, _ in enumerate(self.output_sizes)
|
|
574
|
+
}
|
|
575
|
+
return
|
|
576
|
+
|
|
577
|
+
if is_gguf_weight:
|
|
578
|
+
tp_size = get_tensor_model_parallel_world_size()
|
|
579
|
+
tp_rank = get_tensor_model_parallel_rank()
|
|
580
|
+
|
|
581
|
+
output_dim = getattr(param, "output_dim", None)
|
|
582
|
+
shard_size = loaded_weight.size(output_dim) // tp_size
|
|
583
|
+
start_idx = tp_rank * shard_size
|
|
584
|
+
|
|
585
|
+
if loaded_shard_id is not None:
|
|
586
|
+
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
|
|
587
|
+
shard_size)
|
|
588
|
+
param.shard_id.append(loaded_shard_id)
|
|
589
|
+
param.shard_id_map[loaded_shard_id] = len(param.data_container)
|
|
590
|
+
param.data_container.append(loaded_weight)
|
|
591
|
+
return
|
|
592
|
+
|
|
593
|
+
param_data = param.data
|
|
594
|
+
output_dim = getattr(param, "output_dim", None)
|
|
595
|
+
# Special case for AQLM codebooks.
|
|
596
|
+
is_metadata = getattr(param, "is_metadata", False)
|
|
597
|
+
# Special case for per-tensor scale to load scalar into fused array.
|
|
598
|
+
needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False)
|
|
599
|
+
|
|
600
|
+
if loaded_shard_id is None:
|
|
601
|
+
# Loaded weight is already fused on disk (mlp).
|
|
602
|
+
# (e.g., Phi-3's gate_up_proj).
|
|
603
|
+
if output_dim is None:
|
|
604
|
+
if needs_scalar_to_array:
|
|
605
|
+
param_data, loaded_weight = adjust_scalar_to_fused_array(
|
|
606
|
+
param_data, loaded_weight, 0)
|
|
607
|
+
|
|
608
|
+
assert param_data.shape == loaded_weight.shape
|
|
609
|
+
param_data.copy_(loaded_weight)
|
|
610
|
+
return
|
|
611
|
+
current_shard_offset = 0
|
|
612
|
+
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
|
|
613
|
+
False)
|
|
614
|
+
shard_offsets: list[tuple[int, int, int]] = []
|
|
615
|
+
for i, output_size in enumerate(self.output_sizes):
|
|
616
|
+
shard_offsets.append((i, current_shard_offset, output_size))
|
|
617
|
+
current_shard_offset += output_size
|
|
618
|
+
packed_dim = getattr(param, "packed_dim", None)
|
|
619
|
+
for shard_id, shard_offset, shard_size in shard_offsets:
|
|
620
|
+
# Special case for Quantization.
|
|
621
|
+
# If quantized, we need to adjust the offset and size to account
|
|
622
|
+
# for the packing.
|
|
623
|
+
if packed_dim == output_dim:
|
|
624
|
+
shard_size = shard_size // param.pack_factor
|
|
625
|
+
shard_offset = shard_offset // param.pack_factor
|
|
626
|
+
# Special case for Marlin.
|
|
627
|
+
shard_size, shard_offset = adjust_marlin_shard(
|
|
628
|
+
param, shard_size, shard_offset)
|
|
629
|
+
|
|
630
|
+
shard_size, shard_offset = adjust_bitblas_shard(
|
|
631
|
+
param, shard_size, shard_offset)
|
|
632
|
+
|
|
633
|
+
if use_bitsandbytes_4bit:
|
|
634
|
+
index = list(itertools.accumulate([0] + self.output_sizes))
|
|
635
|
+
orig_offsets = {
|
|
636
|
+
str(i): (index[i], size)
|
|
637
|
+
for i, size in enumerate(self.output_sizes)
|
|
638
|
+
}
|
|
639
|
+
orig_offsets["total"] = (self.output_size, 0)
|
|
640
|
+
shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
|
|
641
|
+
param, orig_offsets, str(shard_id))
|
|
642
|
+
|
|
643
|
+
loaded_weight_shard = loaded_weight.narrow(
|
|
644
|
+
output_dim, shard_offset, shard_size)
|
|
645
|
+
self.weight_loader(param, loaded_weight_shard, shard_id)
|
|
646
|
+
return
|
|
647
|
+
|
|
648
|
+
assert loaded_shard_id < len(self.output_sizes)
|
|
649
|
+
tp_rank = get_tensor_model_parallel_rank()
|
|
650
|
+
tp_size = get_tensor_model_parallel_world_size()
|
|
651
|
+
if output_dim is not None:
|
|
652
|
+
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
|
|
653
|
+
shard_size = self.output_sizes[loaded_shard_id] // tp_size
|
|
654
|
+
# Special case for quantization.
|
|
655
|
+
# If quantized, we need to adjust the offset and size to account
|
|
656
|
+
# for the packing.
|
|
657
|
+
packed_dim = getattr(param, "packed_dim", None)
|
|
658
|
+
if packed_dim == output_dim:
|
|
659
|
+
shard_size = shard_size // param.pack_factor
|
|
660
|
+
shard_offset = shard_offset // param.pack_factor
|
|
661
|
+
# Special case for Marlin.
|
|
662
|
+
shard_size, shard_offset = adjust_marlin_shard(
|
|
663
|
+
param, shard_size, shard_offset)
|
|
664
|
+
shard_size, shard_offset = adjust_bitblas_shard(
|
|
665
|
+
param, shard_size, shard_offset)
|
|
666
|
+
|
|
667
|
+
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
|
|
668
|
+
False)
|
|
669
|
+
is_sharded_weight = getattr(param, "is_sharded_weight", False)
|
|
670
|
+
# bitsandbytes loads the weights of the specific portion
|
|
671
|
+
# no need to narrow
|
|
672
|
+
is_sharded_weight = is_sharded_weight or use_bitsandbytes_4bit
|
|
673
|
+
|
|
674
|
+
if use_bitsandbytes_4bit:
|
|
675
|
+
shard_size = loaded_weight.shape[output_dim]
|
|
676
|
+
shard_offset = loaded_weight.shape[output_dim] * \
|
|
677
|
+
loaded_shard_id
|
|
678
|
+
|
|
679
|
+
param_data = param_data.narrow(output_dim, shard_offset,
|
|
680
|
+
shard_size)
|
|
681
|
+
start_idx = tp_rank * shard_size
|
|
682
|
+
if not is_sharded_weight:
|
|
683
|
+
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
|
|
684
|
+
shard_size)
|
|
685
|
+
# Special case for AQLM codebooks.
|
|
686
|
+
elif is_metadata:
|
|
687
|
+
# metadata indicates fixed size concatenated along dim 0
|
|
688
|
+
shard_size = loaded_weight.shape[0]
|
|
689
|
+
shard_offset = loaded_shard_id * shard_size
|
|
690
|
+
param_data = param_data.narrow(0, shard_offset, shard_size)
|
|
691
|
+
|
|
692
|
+
# Special case for per-tensor scales in fused case.
|
|
693
|
+
elif needs_scalar_to_array:
|
|
694
|
+
param_data, loaded_weight = adjust_scalar_to_fused_array(
|
|
695
|
+
param_data, loaded_weight, loaded_shard_id)
|
|
696
|
+
|
|
697
|
+
else:
|
|
698
|
+
ignore_warning = getattr(param, "ignore_warning", False)
|
|
699
|
+
if not ignore_warning:
|
|
700
|
+
logger.warning(
|
|
701
|
+
"Loading a weight without `output_dim` attribute in "
|
|
702
|
+
"MergedColumnParallelLinear, assume the weight is "
|
|
703
|
+
"the same for all partitions.")
|
|
704
|
+
|
|
705
|
+
assert param_data.shape == loaded_weight.shape
|
|
706
|
+
param_data.copy_(loaded_weight)
|
|
707
|
+
|
|
708
|
+
def _load_fused_module_from_checkpoint(self, param: BasevLLMParameter,
|
|
709
|
+
loaded_weight: torch.Tensor):
|
|
710
|
+
"""
|
|
711
|
+
Handle special case for models where MLP layers are already
|
|
712
|
+
fused on disk. In this case, we have no shard id. This function
|
|
713
|
+
determmines the shard id by splitting these layers and then calls
|
|
714
|
+
the weight loader using the shard id.
|
|
715
|
+
|
|
716
|
+
An example of a model with these fused layers:
|
|
717
|
+
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
|
|
718
|
+
"""
|
|
719
|
+
|
|
720
|
+
current_shard_offset = 0
|
|
721
|
+
shard_offsets: list[tuple[int, int, int]] = []
|
|
722
|
+
for i, output_size in enumerate(self.output_sizes):
|
|
723
|
+
shard_offsets.append((i, current_shard_offset, output_size))
|
|
724
|
+
current_shard_offset += output_size
|
|
725
|
+
|
|
726
|
+
for shard_id, shard_offset, shard_size in shard_offsets:
|
|
727
|
+
# Special case for Quantization.
|
|
728
|
+
# If quantized, we need to adjust the offset and size to account
|
|
729
|
+
# for the packing.
|
|
730
|
+
if isinstance(param, (PackedColumnParameter, PackedvLLMParameter
|
|
731
|
+
)) and param.packed_dim == param.output_dim:
|
|
732
|
+
shard_size, shard_offset = \
|
|
733
|
+
param.adjust_shard_indexes_for_packing(
|
|
734
|
+
shard_size=shard_size, shard_offset=shard_offset)
|
|
735
|
+
|
|
736
|
+
loaded_weight_shard = loaded_weight.narrow(param.output_dim,
|
|
737
|
+
shard_offset,
|
|
738
|
+
shard_size)
|
|
739
|
+
self.weight_loader_v2(param, loaded_weight_shard, shard_id)
|
|
740
|
+
|
|
741
|
+
def weight_loader_v2(self,
|
|
742
|
+
param: BasevLLMParameter,
|
|
743
|
+
loaded_weight: torch.Tensor,
|
|
744
|
+
loaded_shard_id: Optional[int] = None):
|
|
745
|
+
if loaded_shard_id is None:
|
|
746
|
+
if isinstance(param, PerTensorScaleParameter):
|
|
747
|
+
param.load_merged_column_weight(loaded_weight=loaded_weight,
|
|
748
|
+
shard_id=0)
|
|
749
|
+
return
|
|
750
|
+
elif type(param) in (RowvLLMParameter, BasevLLMParameter):
|
|
751
|
+
param.load_merged_column_weight(loaded_weight=loaded_weight)
|
|
752
|
+
return
|
|
753
|
+
# TODO: @dsikka - move to parameter.py
|
|
754
|
+
self._load_fused_module_from_checkpoint(param, loaded_weight)
|
|
755
|
+
return
|
|
756
|
+
|
|
757
|
+
assert loaded_shard_id < len(self.output_sizes)
|
|
758
|
+
|
|
759
|
+
tp_size = get_tensor_model_parallel_world_size()
|
|
760
|
+
|
|
761
|
+
if isinstance(param, BlockQuantScaleParameter):
|
|
762
|
+
from vllm.model_executor.layers.quantization.fp8 import (
|
|
763
|
+
Fp8LinearMethod, Fp8MoEMethod)
|
|
764
|
+
assert self.quant_method is not None
|
|
765
|
+
assert isinstance(self.quant_method,
|
|
766
|
+
(Fp8LinearMethod, Fp8MoEMethod))
|
|
767
|
+
weight_block_size = self.quant_method.quant_config.weight_block_size
|
|
768
|
+
assert weight_block_size is not None
|
|
769
|
+
block_n, _ = weight_block_size[0], weight_block_size[1]
|
|
770
|
+
shard_offset = (
|
|
771
|
+
(sum(self.output_sizes[:loaded_shard_id]) + block_n - 1) //
|
|
772
|
+
block_n) // tp_size
|
|
773
|
+
shard_size = ((self.output_sizes[loaded_shard_id] + block_n - 1) //
|
|
774
|
+
block_n // tp_size)
|
|
775
|
+
else:
|
|
776
|
+
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
|
|
777
|
+
shard_size = self.output_sizes[loaded_shard_id] // tp_size
|
|
778
|
+
|
|
779
|
+
param.load_merged_column_weight(loaded_weight=loaded_weight,
|
|
780
|
+
shard_id=loaded_shard_id,
|
|
781
|
+
shard_offset=shard_offset,
|
|
782
|
+
shard_size=shard_size)
|
|
783
|
+
|
|
784
|
+
|
|
785
|
+
class QKVParallelLinear(ColumnParallelLinear):
|
|
786
|
+
"""Linear layers for the attention's QKV transformation.
|
|
787
|
+
|
|
788
|
+
Linear layers for the linear transformation of the query, key, and value
|
|
789
|
+
vectors in the attention layer. The weight matrix is concatenated along
|
|
790
|
+
the output dimension. The layer is parallelized along the head dimension.
|
|
791
|
+
When the number of key/value heads is smaller than the number of query
|
|
792
|
+
heads (e.g., multi-query/grouped-query attention), the key/value head may
|
|
793
|
+
be replicated while the query heads are partitioned.
|
|
794
|
+
|
|
795
|
+
Args:
|
|
796
|
+
hidden_size: input hidden state size of the transformer.
|
|
797
|
+
head_size: size of each attention head.
|
|
798
|
+
total_num_heads: total number of attention query heads.
|
|
799
|
+
total_num_kv_heads: total number of attention key/value heads. If
|
|
800
|
+
None, assume total_num_kv_heads = total_num_heads.
|
|
801
|
+
bias: If true, add bias.
|
|
802
|
+
skip_bias_add: This was added to enable performance optimizations where
|
|
803
|
+
bias can be fused with other element-wise operations. we
|
|
804
|
+
skip adding bias but instead return it.
|
|
805
|
+
params_dtype: Data type for the parameters.
|
|
806
|
+
quant_config: Quantization configure.
|
|
807
|
+
prefix: The name of the layer in the state dict, including all parents
|
|
808
|
+
(e.g. model.layers.0.qkv_proj)
|
|
809
|
+
return_bias: If true, return bias together with outputs in forward pass.
|
|
810
|
+
"""
|
|
811
|
+
|
|
812
|
+
def __init__(
|
|
813
|
+
self,
|
|
814
|
+
hidden_size: int,
|
|
815
|
+
head_size: int,
|
|
816
|
+
total_num_heads: int,
|
|
817
|
+
total_num_kv_heads: Optional[int] = None,
|
|
818
|
+
bias: bool = True,
|
|
819
|
+
skip_bias_add: bool = False,
|
|
820
|
+
params_dtype: Optional[torch.dtype] = None,
|
|
821
|
+
quant_config: Optional[QuantizationConfig] = None,
|
|
822
|
+
prefix: str = "",
|
|
823
|
+
*,
|
|
824
|
+
return_bias: bool = True,
|
|
825
|
+
):
|
|
826
|
+
self.hidden_size = hidden_size
|
|
827
|
+
self.head_size = head_size
|
|
828
|
+
self.total_num_heads = total_num_heads
|
|
829
|
+
if total_num_kv_heads is None:
|
|
830
|
+
total_num_kv_heads = total_num_heads
|
|
831
|
+
self.total_num_kv_heads = total_num_kv_heads
|
|
832
|
+
# Divide the weight matrix along the last dimension.
|
|
833
|
+
tp_size = get_tensor_model_parallel_world_size()
|
|
834
|
+
self.num_heads = divide(self.total_num_heads, tp_size)
|
|
835
|
+
if tp_size >= self.total_num_kv_heads:
|
|
836
|
+
self.num_kv_heads = 1
|
|
837
|
+
self.num_kv_head_replicas = divide(tp_size,
|
|
838
|
+
self.total_num_kv_heads)
|
|
839
|
+
else:
|
|
840
|
+
self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
|
|
841
|
+
self.num_kv_head_replicas = 1
|
|
842
|
+
input_size = self.hidden_size
|
|
843
|
+
output_size = (self.num_heads +
|
|
844
|
+
2 * self.num_kv_heads) * tp_size * self.head_size
|
|
845
|
+
self.output_sizes = [
|
|
846
|
+
self.num_heads * self.head_size * tp_size, # q_proj
|
|
847
|
+
self.num_kv_heads * self.head_size * tp_size, # k_proj
|
|
848
|
+
self.num_kv_heads * self.head_size * tp_size, # v_proj
|
|
849
|
+
]
|
|
850
|
+
|
|
851
|
+
super().__init__(input_size=input_size,
|
|
852
|
+
output_size=output_size,
|
|
853
|
+
bias=bias,
|
|
854
|
+
gather_output=False,
|
|
855
|
+
skip_bias_add=skip_bias_add,
|
|
856
|
+
params_dtype=params_dtype,
|
|
857
|
+
quant_config=quant_config,
|
|
858
|
+
prefix=prefix,
|
|
859
|
+
return_bias=return_bias)
|
|
860
|
+
|
|
861
|
+
def _get_shard_offset_mapping(self, loaded_shard_id: str):
|
|
862
|
+
shard_offset_mapping = {
|
|
863
|
+
"q": 0,
|
|
864
|
+
"k": self.num_heads * self.head_size,
|
|
865
|
+
"v": (self.num_heads + self.num_kv_heads) * self.head_size,
|
|
866
|
+
"total": (self.num_heads + 2 * self.num_kv_heads) * self.head_size
|
|
867
|
+
}
|
|
868
|
+
return shard_offset_mapping.get(loaded_shard_id)
|
|
869
|
+
|
|
870
|
+
def _get_shard_size_mapping(self, loaded_shard_id: str):
|
|
871
|
+
shard_size_mapping = {
|
|
872
|
+
"q": self.num_heads * self.head_size,
|
|
873
|
+
"k": self.num_kv_heads * self.head_size,
|
|
874
|
+
"v": self.num_kv_heads * self.head_size,
|
|
875
|
+
}
|
|
876
|
+
return shard_size_mapping.get(loaded_shard_id)
|
|
877
|
+
|
|
878
|
+
def _load_fused_module_from_checkpoint(self, param: BasevLLMParameter,
|
|
879
|
+
loaded_weight: torch.Tensor):
|
|
880
|
+
"""
|
|
881
|
+
Handle special case for models where QKV layers are already
|
|
882
|
+
fused on disk. In this case, we have no shard id. This function
|
|
883
|
+
determmines the shard id by splitting these layers and then calls
|
|
884
|
+
the weight loader using the shard id.
|
|
885
|
+
|
|
886
|
+
An example of a model with these fused layers:
|
|
887
|
+
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
|
|
888
|
+
"""
|
|
889
|
+
shard_offsets = [
|
|
890
|
+
# (shard_id, shard_offset, shard_size)
|
|
891
|
+
("q", 0, self.total_num_heads * self.head_size),
|
|
892
|
+
("k", self.total_num_heads * self.head_size,
|
|
893
|
+
self.total_num_kv_heads * self.head_size),
|
|
894
|
+
("v",
|
|
895
|
+
(self.total_num_heads + self.total_num_kv_heads) * self.head_size,
|
|
896
|
+
self.total_num_kv_heads * self.head_size),
|
|
897
|
+
]
|
|
898
|
+
|
|
899
|
+
for shard_id, shard_offset, shard_size in shard_offsets:
|
|
900
|
+
# Special case for Quantization.
|
|
901
|
+
# If quantized, we need to adjust the offset and size to account
|
|
902
|
+
# for the packing.
|
|
903
|
+
if isinstance(param, (PackedColumnParameter, PackedvLLMParameter
|
|
904
|
+
)) and param.packed_dim == param.output_dim:
|
|
905
|
+
shard_size, shard_offset = \
|
|
906
|
+
param.adjust_shard_indexes_for_packing(
|
|
907
|
+
shard_size=shard_size, shard_offset=shard_offset)
|
|
908
|
+
|
|
909
|
+
loaded_weight_shard = loaded_weight.narrow(param.output_dim,
|
|
910
|
+
shard_offset,
|
|
911
|
+
shard_size)
|
|
912
|
+
self.weight_loader_v2(param, loaded_weight_shard, shard_id)
|
|
913
|
+
|
|
914
|
+
def weight_loader_v2(self,
|
|
915
|
+
param: BasevLLMParameter,
|
|
916
|
+
loaded_weight: torch.Tensor,
|
|
917
|
+
loaded_shard_id: Optional[str] = None):
|
|
918
|
+
if loaded_shard_id is None: # special case for certain models
|
|
919
|
+
if isinstance(param, PerTensorScaleParameter):
|
|
920
|
+
param.load_qkv_weight(loaded_weight=loaded_weight, shard_id=0)
|
|
921
|
+
return
|
|
922
|
+
elif type(param) in (RowvLLMParameter, BasevLLMParameter):
|
|
923
|
+
param.load_qkv_weight(loaded_weight=loaded_weight)
|
|
924
|
+
return
|
|
925
|
+
# TODO: @dsikka - move to parameter.py
|
|
926
|
+
self._load_fused_module_from_checkpoint(param, loaded_weight)
|
|
927
|
+
return
|
|
928
|
+
|
|
929
|
+
assert loaded_shard_id in ["q", "k", "v"]
|
|
930
|
+
|
|
931
|
+
shard_offset = self._get_shard_offset_mapping(loaded_shard_id)
|
|
932
|
+
shard_size = self._get_shard_size_mapping(loaded_shard_id)
|
|
933
|
+
|
|
934
|
+
# Note(simon): This is needed for Qwen3's fp8 quantization.
|
|
935
|
+
if isinstance(param, BlockQuantScaleParameter):
|
|
936
|
+
assert self.quant_method is not None
|
|
937
|
+
assert hasattr(self.quant_method, "quant_config")
|
|
938
|
+
weight_block_size = self.quant_method.quant_config.weight_block_size
|
|
939
|
+
block_n, _ = weight_block_size[0], weight_block_size[1]
|
|
940
|
+
shard_offset = (shard_offset + block_n - 1) // block_n
|
|
941
|
+
shard_size = (shard_size + block_n - 1) // block_n
|
|
942
|
+
|
|
943
|
+
param.load_qkv_weight(loaded_weight=loaded_weight,
|
|
944
|
+
num_heads=self.num_kv_head_replicas,
|
|
945
|
+
shard_id=loaded_shard_id,
|
|
946
|
+
shard_offset=shard_offset,
|
|
947
|
+
shard_size=shard_size)
|
|
948
|
+
|
|
949
|
+
def weight_loader(self,
|
|
950
|
+
param: Parameter,
|
|
951
|
+
loaded_weight: torch.Tensor,
|
|
952
|
+
loaded_shard_id: Optional[str] = None):
|
|
953
|
+
|
|
954
|
+
# Special case for GGUF
|
|
955
|
+
# initialize GGUF param after we know the quantize type
|
|
956
|
+
is_gguf_weight = getattr(param, "is_gguf_weight", False)
|
|
957
|
+
is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
|
|
958
|
+
if is_gguf_weight_type:
|
|
959
|
+
idx_map = {"q": 0, "k": 1, "v": 2}
|
|
960
|
+
if loaded_shard_id is not None:
|
|
961
|
+
param.data[idx_map[loaded_shard_id]].copy_(loaded_weight)
|
|
962
|
+
param.shard_weight_type[loaded_shard_id] = loaded_weight.item()
|
|
963
|
+
else:
|
|
964
|
+
param.shard_weight_type = {
|
|
965
|
+
k: loaded_weight.item()
|
|
966
|
+
for k in idx_map
|
|
967
|
+
}
|
|
968
|
+
return
|
|
969
|
+
|
|
970
|
+
if is_gguf_weight:
|
|
971
|
+
tp_size = get_tensor_model_parallel_world_size()
|
|
972
|
+
tp_rank = get_tensor_model_parallel_rank()
|
|
973
|
+
|
|
974
|
+
output_dim = getattr(param, "output_dim", None)
|
|
975
|
+
shard_size = loaded_weight.size(output_dim) // tp_size
|
|
976
|
+
start_idx = tp_rank * shard_size
|
|
977
|
+
|
|
978
|
+
if loaded_shard_id is not None:
|
|
979
|
+
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
|
|
980
|
+
shard_size)
|
|
981
|
+
param.shard_id.append(loaded_shard_id)
|
|
982
|
+
param.shard_id_map[loaded_shard_id] = len(param.data_container)
|
|
983
|
+
param.data_container.append(loaded_weight)
|
|
984
|
+
return
|
|
985
|
+
|
|
986
|
+
param_data = param.data
|
|
987
|
+
output_dim = getattr(param, "output_dim", None)
|
|
988
|
+
# Special case for AQLM codebooks.
|
|
989
|
+
is_metadata = getattr(param, "is_metadata", False)
|
|
990
|
+
|
|
991
|
+
# Special case for per-tensor scales in fused case.
|
|
992
|
+
needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False)
|
|
993
|
+
|
|
994
|
+
if loaded_shard_id is None:
|
|
995
|
+
# Loaded weight is already fused on disk (qkv).
|
|
996
|
+
# (e.g., Phi-3's qkv_proj).
|
|
997
|
+
if output_dim is None:
|
|
998
|
+
if needs_scalar_to_array:
|
|
999
|
+
param_data, loaded_weight = adjust_scalar_to_fused_array(
|
|
1000
|
+
param_data, loaded_weight, 0)
|
|
1001
|
+
|
|
1002
|
+
assert param_data.shape == loaded_weight.shape
|
|
1003
|
+
param_data.copy_(loaded_weight)
|
|
1004
|
+
return
|
|
1005
|
+
shard_offsets = [
|
|
1006
|
+
# (shard_id, shard_offset, shard_size)
|
|
1007
|
+
("q", 0, self.total_num_heads * self.head_size),
|
|
1008
|
+
("k", self.total_num_heads * self.head_size,
|
|
1009
|
+
self.total_num_kv_heads * self.head_size),
|
|
1010
|
+
("v", (self.total_num_heads + self.total_num_kv_heads) *
|
|
1011
|
+
self.head_size, self.total_num_kv_heads * self.head_size),
|
|
1012
|
+
]
|
|
1013
|
+
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
|
|
1014
|
+
False)
|
|
1015
|
+
|
|
1016
|
+
packed_dim = getattr(param, "packed_dim", None)
|
|
1017
|
+
for shard_id, shard_offset, shard_size in shard_offsets:
|
|
1018
|
+
# Special case for Quantized Weights.
|
|
1019
|
+
# If quantized, we need to adjust the offset and size to account
|
|
1020
|
+
# for the packing.
|
|
1021
|
+
if packed_dim == output_dim:
|
|
1022
|
+
shard_size = shard_size // param.pack_factor
|
|
1023
|
+
shard_offset = shard_offset // param.pack_factor
|
|
1024
|
+
|
|
1025
|
+
# Special case for Marlin.
|
|
1026
|
+
shard_size, shard_offset = adjust_marlin_shard(
|
|
1027
|
+
param, shard_size, shard_offset)
|
|
1028
|
+
|
|
1029
|
+
if use_bitsandbytes_4bit:
|
|
1030
|
+
orig_qkv_offsets = {
|
|
1031
|
+
"q": (0, self.total_num_heads * self.head_size),
|
|
1032
|
+
"k": (self.total_num_heads * self.head_size,
|
|
1033
|
+
self.total_num_kv_heads * self.head_size),
|
|
1034
|
+
"v":
|
|
1035
|
+
((self.total_num_heads + self.total_num_kv_heads) *
|
|
1036
|
+
self.head_size,
|
|
1037
|
+
self.total_num_kv_heads * self.head_size),
|
|
1038
|
+
"total":
|
|
1039
|
+
((self.total_num_heads + 2 * self.total_num_kv_heads) *
|
|
1040
|
+
self.head_size, 0)
|
|
1041
|
+
}
|
|
1042
|
+
|
|
1043
|
+
shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
|
|
1044
|
+
param, orig_qkv_offsets, shard_id)
|
|
1045
|
+
|
|
1046
|
+
loaded_weight_shard = loaded_weight.narrow(
|
|
1047
|
+
output_dim, shard_offset, shard_size)
|
|
1048
|
+
self.weight_loader(param, loaded_weight_shard, shard_id)
|
|
1049
|
+
return
|
|
1050
|
+
|
|
1051
|
+
tp_rank = get_tensor_model_parallel_rank()
|
|
1052
|
+
assert loaded_shard_id in ["q", "k", "v"]
|
|
1053
|
+
|
|
1054
|
+
# If output dim is defined, use the default loading process.
|
|
1055
|
+
if output_dim is not None:
|
|
1056
|
+
if loaded_shard_id == "q":
|
|
1057
|
+
shard_offset = 0
|
|
1058
|
+
shard_size = self.num_heads * self.head_size
|
|
1059
|
+
elif loaded_shard_id == "k":
|
|
1060
|
+
shard_offset = self.num_heads * self.head_size
|
|
1061
|
+
shard_size = self.num_kv_heads * self.head_size
|
|
1062
|
+
elif loaded_shard_id == "v":
|
|
1063
|
+
shard_offset = (self.num_heads +
|
|
1064
|
+
self.num_kv_heads) * self.head_size
|
|
1065
|
+
shard_size = self.num_kv_heads * self.head_size
|
|
1066
|
+
# Special case for Quantized Weights.
|
|
1067
|
+
# If quantized, we need to adjust the offset and size to account
|
|
1068
|
+
# for the packing.
|
|
1069
|
+
packed_dim = getattr(param, "packed_dim", None)
|
|
1070
|
+
if packed_dim == output_dim:
|
|
1071
|
+
shard_size = shard_size // param.pack_factor
|
|
1072
|
+
shard_offset = shard_offset // param.pack_factor
|
|
1073
|
+
|
|
1074
|
+
# Special case for Marlin.
|
|
1075
|
+
shard_size, shard_offset = adjust_marlin_shard(
|
|
1076
|
+
param, shard_size, shard_offset)
|
|
1077
|
+
|
|
1078
|
+
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
|
|
1079
|
+
False)
|
|
1080
|
+
is_sharded_weight = getattr(param, "is_sharded_weight", False)
|
|
1081
|
+
# bitsandbytes loads the weights of the specific portion
|
|
1082
|
+
# no need to narrow
|
|
1083
|
+
is_sharded_weight = is_sharded_weight or use_bitsandbytes_4bit
|
|
1084
|
+
|
|
1085
|
+
if use_bitsandbytes_4bit:
|
|
1086
|
+
orig_qkv_offsets = {
|
|
1087
|
+
"q": (0, self.num_heads * self.head_size),
|
|
1088
|
+
"k": (self.num_heads * self.head_size,
|
|
1089
|
+
self.num_kv_heads * self.head_size),
|
|
1090
|
+
"v":
|
|
1091
|
+
((self.num_heads + self.num_kv_heads) * self.head_size,
|
|
1092
|
+
self.num_kv_heads * self.head_size),
|
|
1093
|
+
"total":
|
|
1094
|
+
((self.num_heads + 2 * self.num_kv_heads) * self.head_size,
|
|
1095
|
+
0)
|
|
1096
|
+
}
|
|
1097
|
+
shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
|
|
1098
|
+
param, orig_qkv_offsets, loaded_shard_id)
|
|
1099
|
+
|
|
1100
|
+
param_data = param_data.narrow(output_dim, shard_offset,
|
|
1101
|
+
shard_size)
|
|
1102
|
+
if loaded_shard_id == "q":
|
|
1103
|
+
shard_id = tp_rank
|
|
1104
|
+
else:
|
|
1105
|
+
shard_id = tp_rank // self.num_kv_head_replicas
|
|
1106
|
+
start_idx = shard_id * shard_size
|
|
1107
|
+
|
|
1108
|
+
if not is_sharded_weight:
|
|
1109
|
+
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
|
|
1110
|
+
shard_size)
|
|
1111
|
+
|
|
1112
|
+
# Special case for for AQLM codebooks.
|
|
1113
|
+
elif is_metadata:
|
|
1114
|
+
# metadata indicates fixed size concatenated along dim 0
|
|
1115
|
+
shard_size = loaded_weight.shape[0]
|
|
1116
|
+
shard_index = ["q", "k", "v"].index(loaded_shard_id)
|
|
1117
|
+
param_data = param_data.narrow(0, shard_index * shard_size,
|
|
1118
|
+
shard_size)
|
|
1119
|
+
# Special case for per-tensor scales in fused case.
|
|
1120
|
+
elif needs_scalar_to_array:
|
|
1121
|
+
param_data, loaded_weight = adjust_scalar_to_fused_array(
|
|
1122
|
+
param_data, loaded_weight, loaded_shard_id)
|
|
1123
|
+
else:
|
|
1124
|
+
ignore_warning = getattr(param, "ignore_warning", False)
|
|
1125
|
+
if not ignore_warning:
|
|
1126
|
+
logger.warning(
|
|
1127
|
+
"Loading a weight without `output_dim` attribute in "
|
|
1128
|
+
"QKVParallelLinear, assume the weight is the same "
|
|
1129
|
+
"for all partitions.")
|
|
1130
|
+
|
|
1131
|
+
assert param_data.shape == loaded_weight.shape
|
|
1132
|
+
param_data.copy_(loaded_weight)
|
|
1133
|
+
|
|
1134
|
+
|
|
1135
|
+
class RowParallelLinear(LinearBase):
|
|
1136
|
+
"""Linear layer with row parallelism.
|
|
1137
|
+
|
|
1138
|
+
The linear layer is defined as Y = XA + b. A is parallelized along
|
|
1139
|
+
its first dimension and X along its second dimension as:
|
|
1140
|
+
- -
|
|
1141
|
+
| A_1 |
|
|
1142
|
+
| . |
|
|
1143
|
+
A = | . | X = [X_1, ..., X_p]
|
|
1144
|
+
| . |
|
|
1145
|
+
| A_p |
|
|
1146
|
+
- -
|
|
1147
|
+
Arguments:
|
|
1148
|
+
input_size: first dimension of matrix A.
|
|
1149
|
+
output_size: second dimension of matrix A.
|
|
1150
|
+
bias: If true, add bias. Note that bias is not parallelized.
|
|
1151
|
+
input_is_parallel: If true, we assume that the input is already
|
|
1152
|
+
split across the GPUs and we do not split
|
|
1153
|
+
again.
|
|
1154
|
+
skip_bias_add: This was added to enable performance optimization where
|
|
1155
|
+
bias can be fused with other element-wise operations.
|
|
1156
|
+
We skip adding bias but instead return it.
|
|
1157
|
+
params_dtype: Data type for the parameters.
|
|
1158
|
+
reduce_results: If true, call all-reduce on output and make Y available
|
|
1159
|
+
to all GPUs, otherwise, every GPU will have its output
|
|
1160
|
+
which is Y = X_iA_i
|
|
1161
|
+
quant_config: Quantization configure.
|
|
1162
|
+
prefix: The name of the layer in the state dict, including all parents
|
|
1163
|
+
(e.g. model.layers.0.down_proj)
|
|
1164
|
+
return_bias: If true, return bias together with outputs in forward pass.
|
|
1165
|
+
"""
|
|
1166
|
+
|
|
1167
|
+
def __init__(
|
|
1168
|
+
self,
|
|
1169
|
+
input_size: int,
|
|
1170
|
+
output_size: int,
|
|
1171
|
+
bias: bool = True,
|
|
1172
|
+
input_is_parallel: bool = True,
|
|
1173
|
+
skip_bias_add: bool = False,
|
|
1174
|
+
params_dtype: Optional[torch.dtype] = None,
|
|
1175
|
+
reduce_results: bool = True,
|
|
1176
|
+
quant_config: Optional[QuantizationConfig] = None,
|
|
1177
|
+
prefix: str = "",
|
|
1178
|
+
*,
|
|
1179
|
+
return_bias: bool = True,
|
|
1180
|
+
):
|
|
1181
|
+
# Divide the weight matrix along the first dimension.
|
|
1182
|
+
self.tp_rank = get_tensor_model_parallel_rank()
|
|
1183
|
+
self.tp_size = get_tensor_model_parallel_world_size()
|
|
1184
|
+
self.input_size_per_partition = divide(input_size, self.tp_size)
|
|
1185
|
+
self.output_size_per_partition = output_size
|
|
1186
|
+
self.output_partition_sizes = [output_size]
|
|
1187
|
+
|
|
1188
|
+
super().__init__(input_size,
|
|
1189
|
+
output_size,
|
|
1190
|
+
skip_bias_add,
|
|
1191
|
+
params_dtype,
|
|
1192
|
+
quant_config,
|
|
1193
|
+
prefix,
|
|
1194
|
+
return_bias=return_bias)
|
|
1195
|
+
|
|
1196
|
+
self.input_is_parallel = input_is_parallel
|
|
1197
|
+
self.reduce_results = reduce_results
|
|
1198
|
+
|
|
1199
|
+
assert self.quant_method is not None
|
|
1200
|
+
self.quant_method.create_weights(
|
|
1201
|
+
layer=self,
|
|
1202
|
+
input_size_per_partition=self.input_size_per_partition,
|
|
1203
|
+
output_partition_sizes=self.output_partition_sizes,
|
|
1204
|
+
input_size=self.input_size,
|
|
1205
|
+
output_size=self.output_size,
|
|
1206
|
+
params_dtype=self.params_dtype,
|
|
1207
|
+
weight_loader=(
|
|
1208
|
+
self.weight_loader_v2 if self.quant_method.__class__.__name__
|
|
1209
|
+
in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader))
|
|
1210
|
+
if not reduce_results and (bias and not skip_bias_add):
|
|
1211
|
+
raise ValueError("When not reduce the results, adding bias to the "
|
|
1212
|
+
"results can lead to incorrect results")
|
|
1213
|
+
|
|
1214
|
+
if bias:
|
|
1215
|
+
self.bias = Parameter(
|
|
1216
|
+
torch.empty(self.output_size, dtype=params_dtype))
|
|
1217
|
+
set_weight_attrs(self.bias, {
|
|
1218
|
+
"output_dim": 0,
|
|
1219
|
+
"weight_loader": self.weight_loader,
|
|
1220
|
+
})
|
|
1221
|
+
else:
|
|
1222
|
+
self.register_parameter("bias", None)
|
|
1223
|
+
|
|
1224
|
+
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
|
1225
|
+
tp_rank = get_tensor_model_parallel_rank()
|
|
1226
|
+
tp_size = get_tensor_model_parallel_world_size()
|
|
1227
|
+
input_dim = getattr(param, "input_dim", None)
|
|
1228
|
+
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
|
|
1229
|
+
is_sharded_weight = getattr(param, "is_sharded_weight", False)
|
|
1230
|
+
# bitsandbytes loads the weights of the specific portion
|
|
1231
|
+
# no need to narrow
|
|
1232
|
+
is_sharded_weight = is_sharded_weight or use_bitsandbytes_4bit
|
|
1233
|
+
|
|
1234
|
+
# Special case for GGUF
|
|
1235
|
+
is_gguf_weight = getattr(param, "is_gguf_weight", False)
|
|
1236
|
+
is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
|
|
1237
|
+
if is_gguf_weight_type:
|
|
1238
|
+
param.weight_type = loaded_weight.item()
|
|
1239
|
+
|
|
1240
|
+
# Materialize GGUF UninitializedParameter
|
|
1241
|
+
if is_gguf_weight and isinstance(param, UninitializedParameter):
|
|
1242
|
+
weight_shape = list(loaded_weight.shape)
|
|
1243
|
+
if input_dim:
|
|
1244
|
+
weight_shape[input_dim] = weight_shape[input_dim] // tp_size
|
|
1245
|
+
param.materialize(tuple(weight_shape), dtype=loaded_weight.dtype)
|
|
1246
|
+
|
|
1247
|
+
param_data = param.data
|
|
1248
|
+
if input_dim is not None and not is_sharded_weight:
|
|
1249
|
+
shard_size = param_data.shape[input_dim]
|
|
1250
|
+
start_idx = tp_rank * shard_size
|
|
1251
|
+
loaded_weight = loaded_weight.narrow(input_dim, start_idx,
|
|
1252
|
+
shard_size)
|
|
1253
|
+
|
|
1254
|
+
# Special case for loading scales off disk, which often do not
|
|
1255
|
+
# have a shape (such as in the case of AutoFP8).
|
|
1256
|
+
if len(loaded_weight.shape) == 0:
|
|
1257
|
+
loaded_weight = loaded_weight.reshape(1)
|
|
1258
|
+
|
|
1259
|
+
assert param_data.shape == loaded_weight.shape
|
|
1260
|
+
param_data.copy_(loaded_weight)
|
|
1261
|
+
|
|
1262
|
+
def weight_loader_v2(self, param: BasevLLMParameter,
|
|
1263
|
+
loaded_weight: torch.Tensor):
|
|
1264
|
+
|
|
1265
|
+
# Special case for loading scales off disk, which often do not
|
|
1266
|
+
# have a shape (such as in the case of AutoFP8).
|
|
1267
|
+
if len(loaded_weight.shape) == 0:
|
|
1268
|
+
assert loaded_weight.numel() == 1
|
|
1269
|
+
loaded_weight = loaded_weight.reshape(1)
|
|
1270
|
+
|
|
1271
|
+
param.load_row_parallel_weight(loaded_weight=loaded_weight)
|
|
1272
|
+
|
|
1273
|
+
def forward(
|
|
1274
|
+
self, input_
|
|
1275
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
|
|
1276
|
+
if self.input_is_parallel:
|
|
1277
|
+
input_parallel = input_
|
|
1278
|
+
else:
|
|
1279
|
+
tp_rank = get_tensor_model_parallel_rank()
|
|
1280
|
+
splitted_input = split_tensor_along_last_dim(
|
|
1281
|
+
input_, num_partitions=self.tp_size)
|
|
1282
|
+
input_parallel = splitted_input[tp_rank].contiguous()
|
|
1283
|
+
|
|
1284
|
+
# Matrix multiply.
|
|
1285
|
+
assert self.quant_method is not None
|
|
1286
|
+
# Only fuse bias add into GEMM for rank 0 (this ensures that
|
|
1287
|
+
# bias will not get added more than once in TP>1 case)
|
|
1288
|
+
bias_ = None if (self.tp_rank > 0 or self.skip_bias_add) else self.bias
|
|
1289
|
+
output_parallel = self.quant_method.apply(self,
|
|
1290
|
+
input_parallel,
|
|
1291
|
+
bias=bias_)
|
|
1292
|
+
if self.reduce_results and self.tp_size > 1:
|
|
1293
|
+
output = tensor_model_parallel_all_reduce(output_parallel)
|
|
1294
|
+
else:
|
|
1295
|
+
output = output_parallel
|
|
1296
|
+
|
|
1297
|
+
output_bias = self.bias if self.skip_bias_add else None
|
|
1298
|
+
|
|
1299
|
+
if not self.return_bias:
|
|
1300
|
+
return output
|
|
1301
|
+
return output, output_bias
|
|
1302
|
+
|
|
1303
|
+
def extra_repr(self) -> str:
|
|
1304
|
+
s = f"input_features={self.input_size_per_partition}"
|
|
1305
|
+
s += f", output_features={self.output_size}"
|
|
1306
|
+
s += f", bias={self.bias is not None}"
|
|
1307
|
+
s += f", tp_size={self.tp_size}"
|
|
1308
|
+
s += f", reduce_results={self.reduce_results}"
|
|
1309
|
+
return s
|
|
1310
|
+
|
|
1311
|
+
|
|
1312
|
+
class QKVCrossParallelLinear(LinearBase):
|
|
1313
|
+
"""Linear layers for efficient cross-attention's QKV transformation.
|
|
1314
|
+
|
|
1315
|
+
Args:
|
|
1316
|
+
hidden_size: input hidden state size of the transformer.
|
|
1317
|
+
head_size: size of each attention head.
|
|
1318
|
+
total_num_heads: total number of attention query heads.
|
|
1319
|
+
total_num_kv_heads: total number of attention key/value heads. If
|
|
1320
|
+
None, assume total_num_kv_heads = total_num_heads.
|
|
1321
|
+
bias: If true, add bias.
|
|
1322
|
+
skip_bias_add: This was added to enable performance optimizations where
|
|
1323
|
+
bias can be fused with other element-wise operations. we
|
|
1324
|
+
skip adding bias but instead return it.
|
|
1325
|
+
params_dtype: Data type for the parameters.
|
|
1326
|
+
quant_config: Quantization configure.
|
|
1327
|
+
prefix: The name of the layer in the state dict, including all parents
|
|
1328
|
+
(e.g. model.layers.0.qkv_proj)
|
|
1329
|
+
"""
|
|
1330
|
+
|
|
1331
|
+
def __init__(self,
|
|
1332
|
+
hidden_size: int,
|
|
1333
|
+
head_size: int,
|
|
1334
|
+
total_num_heads: int,
|
|
1335
|
+
total_num_kv_heads: Optional[int] = None,
|
|
1336
|
+
bias: bool = True,
|
|
1337
|
+
skip_bias_add: bool = False,
|
|
1338
|
+
params_dtype: Optional[torch.dtype] = None,
|
|
1339
|
+
quant_config: Optional[QuantizationConfig] = None,
|
|
1340
|
+
prefix: str = ""):
|
|
1341
|
+
# input_size and output_size are not used, just for alignment
|
|
1342
|
+
input_size = hidden_size
|
|
1343
|
+
output_size = (total_num_heads + (total_num_kv_heads or 0)) * head_size
|
|
1344
|
+
super().__init__(input_size=input_size,
|
|
1345
|
+
output_size=output_size,
|
|
1346
|
+
skip_bias_add=skip_bias_add,
|
|
1347
|
+
params_dtype=params_dtype,
|
|
1348
|
+
quant_config=quant_config,
|
|
1349
|
+
prefix=prefix)
|
|
1350
|
+
|
|
1351
|
+
self.quant_config = quant_config
|
|
1352
|
+
|
|
1353
|
+
# Empty placeholders for loading as a single module.
|
|
1354
|
+
placeholder_size = 0
|
|
1355
|
+
assert self.quant_method is not None
|
|
1356
|
+
self.quant_method.create_weights(self,
|
|
1357
|
+
placeholder_size, [placeholder_size],
|
|
1358
|
+
placeholder_size,
|
|
1359
|
+
placeholder_size,
|
|
1360
|
+
self.params_dtype,
|
|
1361
|
+
weight_loader=self.weight_loader)
|
|
1362
|
+
|
|
1363
|
+
# Use a dictionary to avoid submodules parameters auto-registration:
|
|
1364
|
+
# drop-in replacement for a `QKVParallelLinear` module.
|
|
1365
|
+
self.proj = dict()
|
|
1366
|
+
self.proj["q_proj_decoder"] = ColumnParallelLinear(
|
|
1367
|
+
input_size=hidden_size,
|
|
1368
|
+
output_size=total_num_heads * head_size,
|
|
1369
|
+
bias=bias,
|
|
1370
|
+
quant_config=quant_config,
|
|
1371
|
+
skip_bias_add=skip_bias_add,
|
|
1372
|
+
params_dtype=params_dtype,
|
|
1373
|
+
prefix=f"{prefix}.q_proj_decoder")
|
|
1374
|
+
|
|
1375
|
+
self.proj["kv_proj_encoder"] = QKVParallelLinear(
|
|
1376
|
+
hidden_size=hidden_size,
|
|
1377
|
+
head_size=head_size,
|
|
1378
|
+
total_num_heads=0,
|
|
1379
|
+
total_num_kv_heads=total_num_kv_heads,
|
|
1380
|
+
bias=bias,
|
|
1381
|
+
quant_config=quant_config,
|
|
1382
|
+
skip_bias_add=skip_bias_add,
|
|
1383
|
+
params_dtype=params_dtype,
|
|
1384
|
+
prefix=f"{prefix}.kv_proj_encoder")
|
|
1385
|
+
|
|
1386
|
+
# `kv_proj_encoder.num_kv_heads` accounts for sharding with tp>1.
|
|
1387
|
+
self.q_size = self.q_proj_decoder.output_size_per_partition
|
|
1388
|
+
self.kv_size = self.kv_proj_encoder.num_kv_heads * head_size
|
|
1389
|
+
|
|
1390
|
+
if bias:
|
|
1391
|
+
self.bias = torch.nn.Parameter()
|
|
1392
|
+
set_weight_attrs(self.bias, {
|
|
1393
|
+
"output_dim": 0,
|
|
1394
|
+
"weight_loader": self.weight_loader,
|
|
1395
|
+
})
|
|
1396
|
+
else:
|
|
1397
|
+
self.bias = None
|
|
1398
|
+
|
|
1399
|
+
def process_weights_after_loading(self):
|
|
1400
|
+
for layer in self.proj.values():
|
|
1401
|
+
if self.quant_method is not None:
|
|
1402
|
+
self.quant_method.process_weights_after_loading(layer)
|
|
1403
|
+
|
|
1404
|
+
@property
|
|
1405
|
+
def q_proj_decoder(self) -> ColumnParallelLinear:
|
|
1406
|
+
layer = self.proj["q_proj_decoder"]
|
|
1407
|
+
for name, param in self.named_parameters():
|
|
1408
|
+
target_param = getattr(layer, name, None)
|
|
1409
|
+
if target_param is not None:
|
|
1410
|
+
self.sync_weight_attrs(param,
|
|
1411
|
+
target_param,
|
|
1412
|
+
mode="q_proj_decoder")
|
|
1413
|
+
return layer
|
|
1414
|
+
|
|
1415
|
+
@property
|
|
1416
|
+
def kv_proj_encoder(self) -> QKVParallelLinear:
|
|
1417
|
+
layer = self.proj["kv_proj_encoder"]
|
|
1418
|
+
for name, param in self.named_parameters():
|
|
1419
|
+
target_param = getattr(layer, name, None)
|
|
1420
|
+
if target_param is not None:
|
|
1421
|
+
self.sync_weight_attrs(param,
|
|
1422
|
+
target_param,
|
|
1423
|
+
mode="kv_proj_encoder")
|
|
1424
|
+
return layer
|
|
1425
|
+
|
|
1426
|
+
def sync_weight_attrs(
|
|
1427
|
+
self,
|
|
1428
|
+
src_param: nn.Parameter,
|
|
1429
|
+
tgt_param: nn.Parameter,
|
|
1430
|
+
mode: Literal["q_proj_decoder", "kv_proj_encoder"],
|
|
1431
|
+
):
|
|
1432
|
+
missing_attrs_dict = {
|
|
1433
|
+
k: getattr(src_param, k)
|
|
1434
|
+
for k in (set(vars(src_param).keys()) -
|
|
1435
|
+
set(vars(tgt_param).keys()))
|
|
1436
|
+
}
|
|
1437
|
+
# TODO(Isotr0py): handle bitsandbytes 8bit
|
|
1438
|
+
use_bitsandbytes_4bit = getattr(src_param, "use_bitsandbytes_4bit",
|
|
1439
|
+
False)
|
|
1440
|
+
if (missing_attrs_dict and use_bitsandbytes_4bit):
|
|
1441
|
+
q_proj_attrs, kv_proj_attrs = left_shift_bitsandbytes_4bit_shard(
|
|
1442
|
+
missing_attrs_dict)
|
|
1443
|
+
if mode == "q_proj_decoder":
|
|
1444
|
+
set_weight_attrs(tgt_param, q_proj_attrs)
|
|
1445
|
+
elif mode == "kv_proj_encoder":
|
|
1446
|
+
set_weight_attrs(tgt_param, kv_proj_attrs)
|
|
1447
|
+
else:
|
|
1448
|
+
set_weight_attrs(tgt_param, missing_attrs_dict)
|
|
1449
|
+
|
|
1450
|
+
def _is_same_param(
|
|
1451
|
+
self,
|
|
1452
|
+
src_param: torch.nn.Parameter,
|
|
1453
|
+
map_param: torch.nn.Parameter,
|
|
1454
|
+
) -> bool:
|
|
1455
|
+
"""Check if two parameters are exactly pointing to same things."""
|
|
1456
|
+
# ignore weight_loader because it's always different
|
|
1457
|
+
key_to_ignore = ["weight_loader", "_weight_loader"]
|
|
1458
|
+
has_same_type_name = type(src_param) is type(map_param)
|
|
1459
|
+
src_param_attrs = {
|
|
1460
|
+
k: v
|
|
1461
|
+
for k, v in src_param.__dict__.items() if k not in key_to_ignore
|
|
1462
|
+
}
|
|
1463
|
+
map_param_attrs = {
|
|
1464
|
+
k: v
|
|
1465
|
+
for k, v in map_param.__dict__.items() if k not in key_to_ignore
|
|
1466
|
+
}
|
|
1467
|
+
has_same_attrs = src_param_attrs == map_param_attrs
|
|
1468
|
+
return has_same_type_name and has_same_attrs
|
|
1469
|
+
|
|
1470
|
+
def select_proj_params(
|
|
1471
|
+
self,
|
|
1472
|
+
layer: nn.Module,
|
|
1473
|
+
param: nn.Parameter,
|
|
1474
|
+
) -> nn.Parameter:
|
|
1475
|
+
"""
|
|
1476
|
+
Given the placeholder param,
|
|
1477
|
+
return the corresponding param in the proj layers.
|
|
1478
|
+
"""
|
|
1479
|
+
target_param_list = [
|
|
1480
|
+
v for _, v in layer.named_parameters()
|
|
1481
|
+
if self._is_same_param(param, v)
|
|
1482
|
+
]
|
|
1483
|
+
assert len(target_param_list) == 1
|
|
1484
|
+
target_param = target_param_list[0]
|
|
1485
|
+
return target_param
|
|
1486
|
+
|
|
1487
|
+
def forward( # type: ignore[override]
|
|
1488
|
+
self,
|
|
1489
|
+
decoder_hidden_states: torch.Tensor,
|
|
1490
|
+
encoder_hidden_states: torch.Tensor,
|
|
1491
|
+
) -> tuple[torch.Tensor, ...]:
|
|
1492
|
+
q, _ = self.q_proj_decoder(decoder_hidden_states)
|
|
1493
|
+
if encoder_hidden_states is None:
|
|
1494
|
+
# Encoder KV already cached.
|
|
1495
|
+
k = None
|
|
1496
|
+
v = None
|
|
1497
|
+
else:
|
|
1498
|
+
# Prefill phase, encoder KV cached here.
|
|
1499
|
+
kv_enc, _ = self.kv_proj_encoder(encoder_hidden_states)
|
|
1500
|
+
# Split kv in half
|
|
1501
|
+
k, v = kv_enc.split(self.kv_size, dim=-1)
|
|
1502
|
+
return q, k, v
|
|
1503
|
+
|
|
1504
|
+
def weight_loader(self,
|
|
1505
|
+
param: torch.nn.Parameter,
|
|
1506
|
+
loaded_weight: torch.Tensor,
|
|
1507
|
+
loaded_shard_id: Optional[str] = None):
|
|
1508
|
+
layer = (self.q_proj_decoder
|
|
1509
|
+
if loaded_shard_id == "q" else self.kv_proj_encoder)
|
|
1510
|
+
target_param = self.select_proj_params(layer, param)
|
|
1511
|
+
shard_id_args = (loaded_shard_id, ) if loaded_shard_id != "q" else ()
|
|
1512
|
+
if self.quant_method.__class__.__name__ in WEIGHT_LOADER_V2_SUPPORTED:
|
|
1513
|
+
layer.weight_loader_v2(target_param, loaded_weight, *shard_id_args)
|
|
1514
|
+
else:
|
|
1515
|
+
layer.weight_loader(target_param, loaded_weight, *shard_id_args)
|
|
1516
|
+
|
|
1517
|
+
def extra_repr(self) -> str:
|
|
1518
|
+
s = f"in_features={self.input_size}"
|
|
1519
|
+
s += f", q_size={self.q_size}"
|
|
1520
|
+
s += f", kv_size={self.kv_size}"
|
|
1521
|
+
s += f", bias={self.bias is not None}"
|
|
1522
|
+
s += f", tp_size={get_tensor_model_parallel_world_size()}"
|
|
1523
|
+
s += ", gather_output=False"
|
|
1524
|
+
return s
|