vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +53 -0
- vllm/_custom_ops.py +1828 -0
- vllm/_ipex_ops.py +244 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +106 -0
- vllm/adapter_commons/request.py +26 -0
- vllm/adapter_commons/utils.py +93 -0
- vllm/adapter_commons/worker_manager.py +39 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +34 -0
- vllm/assets/video.py +115 -0
- vllm/attention/__init__.py +20 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +308 -0
- vllm/attention/backends/blocksparse_attn.py +461 -0
- vllm/attention/backends/cpu_mla.py +307 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
- vllm/attention/backends/flash_attn.py +1003 -0
- vllm/attention/backends/flashinfer.py +1104 -0
- vllm/attention/backends/flashmla.py +244 -0
- vllm/attention/backends/hpu_attn.py +313 -0
- vllm/attention/backends/ipex_attn.py +398 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1385 -0
- vllm/attention/backends/pallas.py +351 -0
- vllm/attention/backends/placeholder_attn.py +400 -0
- vllm/attention/backends/rocm_aiter_mla.py +435 -0
- vllm/attention/backends/rocm_flash_attn.py +975 -0
- vllm/attention/backends/torch_sdpa.py +703 -0
- vllm/attention/backends/triton_mla.py +115 -0
- vllm/attention/backends/utils.py +610 -0
- vllm/attention/backends/xformers.py +802 -0
- vllm/attention/layer.py +468 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
- vllm/attention/ops/blocksparse_attention/interface.py +239 -0
- vllm/attention/ops/blocksparse_attention/utils.py +246 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
- vllm/attention/ops/flashmla.py +116 -0
- vllm/attention/ops/hpu_paged_attn.py +88 -0
- vllm/attention/ops/ipex_attn.py +195 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/nki_flash_attn.py +906 -0
- vllm/attention/ops/paged_attn.py +256 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +100 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +674 -0
- vllm/attention/ops/triton_flash_attention.py +979 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_unified_attention.py +334 -0
- vllm/attention/selector.py +187 -0
- vllm/attention/utils/fa_utils.py +55 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +1185 -0
- vllm/benchmarks/endpoint_request_func.py +381 -0
- vllm/benchmarks/latency.py +168 -0
- vllm/benchmarks/serve.py +1135 -0
- vllm/benchmarks/throughput.py +609 -0
- vllm/benchmarks/utils.py +70 -0
- vllm/collect_env.py +820 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +89 -0
- vllm/compilation/backends.py +563 -0
- vllm/compilation/base_piecewise_backend.py +72 -0
- vllm/compilation/collective_fusion.py +127 -0
- vllm/compilation/compiler_interface.py +544 -0
- vllm/compilation/counter.py +38 -0
- vllm/compilation/cuda_piecewise_backend.py +214 -0
- vllm/compilation/decorators.py +250 -0
- vllm/compilation/fix_functionalization.py +191 -0
- vllm/compilation/fusion.py +618 -0
- vllm/compilation/fx_utils.py +62 -0
- vllm/compilation/inductor_pass.py +115 -0
- vllm/compilation/monitor.py +39 -0
- vllm/compilation/multi_output_match.py +109 -0
- vllm/compilation/noop_elimination.py +137 -0
- vllm/compilation/pass_manager.py +78 -0
- vllm/compilation/sequence_parallelism.py +268 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +67 -0
- vllm/compilation/wrapper.py +135 -0
- vllm/config.py +4746 -0
- vllm/connections.py +174 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +399 -0
- vllm/core/block/common.py +371 -0
- vllm/core/block/cpu_gpu_block_allocator.py +441 -0
- vllm/core/block/interfaces.py +319 -0
- vllm/core/block/naive_block.py +466 -0
- vllm/core/block/prefix_caching_block.py +1135 -0
- vllm/core/block/utils.py +28 -0
- vllm/core/block_manager.py +521 -0
- vllm/core/evictor.py +157 -0
- vllm/core/interfaces.py +135 -0
- vllm/core/placeholder_block_space_manager.py +100 -0
- vllm/core/scheduler.py +2093 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +281 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +264 -0
- vllm/distributed/device_communicators/base_device_communicator.py +260 -0
- vllm/distributed/device_communicators/cpu_communicator.py +145 -0
- vllm/distributed/device_communicators/cuda_communicator.py +176 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
- vllm/distributed/device_communicators/hpu_communicator.py +46 -0
- vllm/distributed/device_communicators/neuron_communicator.py +20 -0
- vllm/distributed/device_communicators/pynccl.py +218 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
- vllm/distributed/device_communicators/shm_broadcast.py +585 -0
- vllm/distributed/device_communicators/tpu_communicator.py +103 -0
- vllm/distributed/device_communicators/xpu_communicator.py +55 -0
- vllm/distributed/kv_events.py +356 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +12 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
- vllm/distributed/parallel_state.py +1296 -0
- vllm/distributed/tpu_distributed_utils.py +177 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1708 -0
- vllm/engine/async_llm_engine.py +1200 -0
- vllm/engine/async_timeout.py +173 -0
- vllm/engine/llm_engine.py +2097 -0
- vllm/engine/metrics.py +629 -0
- vllm/engine/metrics_types.py +94 -0
- vllm/engine/multiprocessing/__init__.py +148 -0
- vllm/engine/multiprocessing/client.py +681 -0
- vllm/engine/multiprocessing/engine.py +460 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +75 -0
- vllm/engine/output_processor/multi_step.py +216 -0
- vllm/engine/output_processor/single_step.py +145 -0
- vllm/engine/output_processor/stop_checker.py +131 -0
- vllm/engine/output_processor/util.py +28 -0
- vllm/engine/protocol.py +317 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1299 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +39 -0
- vllm/entrypoints/cli/benchmark/latency.py +30 -0
- vllm/entrypoints/cli/benchmark/main.py +54 -0
- vllm/entrypoints/cli/benchmark/serve.py +30 -0
- vllm/entrypoints/cli/benchmark/throughput.py +30 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +65 -0
- vllm/entrypoints/cli/openai.py +205 -0
- vllm/entrypoints/cli/run_batch.py +62 -0
- vllm/entrypoints/cli/serve.py +328 -0
- vllm/entrypoints/cli/types.py +25 -0
- vllm/entrypoints/launcher.py +147 -0
- vllm/entrypoints/llm.py +1544 -0
- vllm/entrypoints/logger.py +50 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1387 -0
- vllm/entrypoints/openai/cli_args.py +315 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +1913 -0
- vllm/entrypoints/openai/run_batch.py +463 -0
- vllm/entrypoints/openai/serving_chat.py +1221 -0
- vllm/entrypoints/openai/serving_classification.py +160 -0
- vllm/entrypoints/openai/serving_completion.py +592 -0
- vllm/entrypoints/openai/serving_embedding.py +201 -0
- vllm/entrypoints/openai/serving_engine.py +986 -0
- vllm/entrypoints/openai/serving_models.py +315 -0
- vllm/entrypoints/openai/serving_pooling.py +232 -0
- vllm/entrypoints/openai/serving_score.py +433 -0
- vllm/entrypoints/openai/serving_tokenization.py +157 -0
- vllm/entrypoints/openai/serving_transcription.py +424 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/score_utils.py +50 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/utils.py +233 -0
- vllm/env_override.py +41 -0
- vllm/envs.py +944 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +401 -0
- vllm/executor/mp_distributed_executor.py +244 -0
- vllm/executor/msgspec_utils.py +30 -0
- vllm/executor/multiproc_worker_utils.py +313 -0
- vllm/executor/ray_distributed_executor.py +701 -0
- vllm/executor/ray_utils.py +399 -0
- vllm/executor/uniproc_executor.py +139 -0
- vllm/forward_context.py +179 -0
- vllm/inputs/__init__.py +41 -0
- vllm/inputs/data.py +331 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +909 -0
- vllm/inputs/registry.py +237 -0
- vllm/jsontree.py +80 -0
- vllm/logger.py +212 -0
- vllm/logging_utils/__init__.py +8 -0
- vllm/logging_utils/dump_input.py +85 -0
- vllm/logging_utils/formatter.py +18 -0
- vllm/logits_process.py +119 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +355 -0
- vllm/lora/layers.py +1285 -0
- vllm/lora/lora.py +199 -0
- vllm/lora/models.py +818 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
- vllm/lora/ops/triton_ops/utils.py +120 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +145 -0
- vllm/lora/peft_helper.py +136 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +485 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +290 -0
- vllm/lora/punica_wrapper/punica_hpu.py +145 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +405 -0
- vllm/lora/punica_wrapper/utils.py +164 -0
- vllm/lora/request.py +99 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +240 -0
- vllm/lora/worker_manager.py +259 -0
- vllm/model_executor/__init__.py +16 -0
- vllm/model_executor/custom_op.py +152 -0
- vllm/model_executor/guided_decoding/__init__.py +181 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
- vllm/model_executor/guided_decoding/guided_fields.py +41 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
- vllm/model_executor/guided_decoding/utils.py +242 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +369 -0
- vllm/model_executor/layers/fused_moe/__init__.py +54 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
- vllm/model_executor/layers/fused_moe/layer.py +1535 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/utils.py +98 -0
- vllm/model_executor/layers/layernorm.py +288 -0
- vllm/model_executor/layers/lightning_attn.py +652 -0
- vllm/model_executor/layers/linear.py +1524 -0
- vllm/model_executor/layers/logits_processor.py +197 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
- vllm/model_executor/layers/pooler.py +350 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/auto_round.py +310 -0
- vllm/model_executor/layers/quantization/awq.py +194 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +151 -0
- vllm/model_executor/layers/quantization/bitblas.py +461 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
- vllm/model_executor/layers/quantization/experts_int8.py +196 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +906 -0
- vllm/model_executor/layers/quantization/gguf.py +565 -0
- vllm/model_executor/layers/quantization/gptq.py +278 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +139 -0
- vllm/model_executor/layers/quantization/marlin.py +261 -0
- vllm/model_executor/layers/quantization/modelopt.py +737 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
- vllm/model_executor/layers/quantization/qqq.py +275 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +441 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +161 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
- vllm/model_executor/layers/rejection_sampler.py +406 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding.py +1862 -0
- vllm/model_executor/layers/sampler.py +1204 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
- vllm/model_executor/layers/utils.py +95 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +76 -0
- vllm/model_executor/model_loader/base_loader.py +43 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
- vllm/model_executor/model_loader/default_loader.py +282 -0
- vllm/model_executor/model_loader/dummy_loader.py +27 -0
- vllm/model_executor/model_loader/gguf_loader.py +120 -0
- vllm/model_executor/model_loader/neuron.py +476 -0
- vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
- vllm/model_executor/model_loader/tensorizer.py +600 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
- vllm/model_executor/model_loader/tpu.py +112 -0
- vllm/model_executor/model_loader/utils.py +302 -0
- vllm/model_executor/model_loader/weight_utils.py +782 -0
- vllm/model_executor/models/__init__.py +28 -0
- vllm/model_executor/models/adapters.py +248 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +657 -0
- vllm/model_executor/models/aya_vision.py +466 -0
- vllm/model_executor/models/baichuan.py +474 -0
- vllm/model_executor/models/bamba.py +543 -0
- vllm/model_executor/models/bart.py +938 -0
- vllm/model_executor/models/bert.py +523 -0
- vllm/model_executor/models/bert_with_rope.py +769 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +718 -0
- vllm/model_executor/models/bloom.py +373 -0
- vllm/model_executor/models/chameleon.py +1136 -0
- vllm/model_executor/models/chatglm.py +478 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/commandr.py +472 -0
- vllm/model_executor/models/constant_size_cache.py +137 -0
- vllm/model_executor/models/dbrx.py +472 -0
- vllm/model_executor/models/deepseek.py +486 -0
- vllm/model_executor/models/deepseek_mtp.py +269 -0
- vllm/model_executor/models/deepseek_v2.py +843 -0
- vllm/model_executor/models/deepseek_vl2.py +648 -0
- vllm/model_executor/models/eagle.py +260 -0
- vllm/model_executor/models/exaone.py +551 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +510 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/florence2.py +1103 -0
- vllm/model_executor/models/fuyu.py +389 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +425 -0
- vllm/model_executor/models/gemma3.py +533 -0
- vllm/model_executor/models/gemma3_mm.py +709 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4v.py +648 -0
- vllm/model_executor/models/gpt2.py +328 -0
- vllm/model_executor/models/gpt_bigcode.py +335 -0
- vllm/model_executor/models/gpt_j.py +339 -0
- vllm/model_executor/models/gpt_neox.py +332 -0
- vllm/model_executor/models/granite.py +493 -0
- vllm/model_executor/models/granite_speech.py +779 -0
- vllm/model_executor/models/granitemoe.py +437 -0
- vllm/model_executor/models/granitemoehybrid.py +586 -0
- vllm/model_executor/models/granitemoeshared.py +341 -0
- vllm/model_executor/models/gritlm.py +224 -0
- vllm/model_executor/models/grok1.py +546 -0
- vllm/model_executor/models/h2ovl.py +546 -0
- vllm/model_executor/models/idefics2_vision_model.py +389 -0
- vllm/model_executor/models/idefics3.py +776 -0
- vllm/model_executor/models/interfaces.py +572 -0
- vllm/model_executor/models/interfaces_base.py +164 -0
- vllm/model_executor/models/intern_vit.py +480 -0
- vllm/model_executor/models/internlm2.py +455 -0
- vllm/model_executor/models/internlm2_ve.py +147 -0
- vllm/model_executor/models/internvl.py +1418 -0
- vllm/model_executor/models/jais.py +373 -0
- vllm/model_executor/models/jamba.py +592 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +644 -0
- vllm/model_executor/models/llama4.py +532 -0
- vllm/model_executor/models/llama_eagle.py +165 -0
- vllm/model_executor/models/llama_eagle3.py +263 -0
- vllm/model_executor/models/llava.py +866 -0
- vllm/model_executor/models/llava_next.py +586 -0
- vllm/model_executor/models/llava_next_video.py +471 -0
- vllm/model_executor/models/llava_onevision.py +956 -0
- vllm/model_executor/models/mamba.py +273 -0
- vllm/model_executor/models/mamba2.py +308 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +219 -0
- vllm/model_executor/models/mimo.py +192 -0
- vllm/model_executor/models/mimo_mtp.py +285 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +391 -0
- vllm/model_executor/models/minicpmo.py +759 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +36 -0
- vllm/model_executor/models/minimax_text_01.py +1301 -0
- vllm/model_executor/models/minimax_vl_01.py +364 -0
- vllm/model_executor/models/mistral3.py +604 -0
- vllm/model_executor/models/mixtral.py +488 -0
- vllm/model_executor/models/mixtral_quant.py +453 -0
- vllm/model_executor/models/mllama.py +1624 -0
- vllm/model_executor/models/mllama4.py +938 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +331 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1568 -0
- vllm/model_executor/models/moonvit.py +630 -0
- vllm/model_executor/models/mpt.py +331 -0
- vllm/model_executor/models/nemotron.py +508 -0
- vllm/model_executor/models/nemotron_h.py +573 -0
- vllm/model_executor/models/nemotron_nas.py +484 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +389 -0
- vllm/model_executor/models/olmo2.py +414 -0
- vllm/model_executor/models/olmoe.py +468 -0
- vllm/model_executor/models/opt.py +412 -0
- vllm/model_executor/models/orion.py +349 -0
- vllm/model_executor/models/ovis.py +567 -0
- vllm/model_executor/models/paligemma.py +398 -0
- vllm/model_executor/models/persimmon.py +344 -0
- vllm/model_executor/models/phi.py +356 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3_small.py +465 -0
- vllm/model_executor/models/phi3v.py +723 -0
- vllm/model_executor/models/phi4mm.py +1246 -0
- vllm/model_executor/models/phi4mm_audio.py +1233 -0
- vllm/model_executor/models/phi4mm_utils.py +1884 -0
- vllm/model_executor/models/phimoe.py +665 -0
- vllm/model_executor/models/pixtral.py +1316 -0
- vllm/model_executor/models/plamo2.py +738 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
- vllm/model_executor/models/qwen.py +362 -0
- vllm/model_executor/models/qwen2.py +497 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
- vllm/model_executor/models/qwen2_5_vl.py +1166 -0
- vllm/model_executor/models/qwen2_audio.py +410 -0
- vllm/model_executor/models/qwen2_moe.py +540 -0
- vllm/model_executor/models/qwen2_rm.py +132 -0
- vllm/model_executor/models/qwen2_vl.py +1405 -0
- vllm/model_executor/models/qwen3.py +321 -0
- vllm/model_executor/models/qwen3_moe.py +535 -0
- vllm/model_executor/models/qwen_vl.py +785 -0
- vllm/model_executor/models/registry.py +622 -0
- vllm/model_executor/models/roberta.py +276 -0
- vllm/model_executor/models/siglip.py +524 -0
- vllm/model_executor/models/skyworkr1v.py +951 -0
- vllm/model_executor/models/smolvlm.py +52 -0
- vllm/model_executor/models/solar.py +506 -0
- vllm/model_executor/models/stablelm.py +343 -0
- vllm/model_executor/models/starcoder2.py +356 -0
- vllm/model_executor/models/tarsier.py +643 -0
- vllm/model_executor/models/telechat2.py +140 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/transformers.py +508 -0
- vllm/model_executor/models/ultravox.py +656 -0
- vllm/model_executor/models/utils.py +731 -0
- vllm/model_executor/models/vision.py +147 -0
- vllm/model_executor/models/whisper.py +747 -0
- vllm/model_executor/models/zamba2.py +1009 -0
- vllm/model_executor/parameter.py +459 -0
- vllm/model_executor/pooling_metadata.py +72 -0
- vllm/model_executor/sampling_metadata.py +597 -0
- vllm/model_executor/utils.py +77 -0
- vllm/multimodal/__init__.py +33 -0
- vllm/multimodal/audio.py +106 -0
- vllm/multimodal/base.py +219 -0
- vllm/multimodal/hasher.py +118 -0
- vllm/multimodal/image.py +97 -0
- vllm/multimodal/inputs.py +876 -0
- vllm/multimodal/parse.py +461 -0
- vllm/multimodal/processing.py +1895 -0
- vllm/multimodal/profiling.py +258 -0
- vllm/multimodal/registry.py +331 -0
- vllm/multimodal/utils.py +436 -0
- vllm/multimodal/video.py +198 -0
- vllm/outputs.py +512 -0
- vllm/platforms/__init__.py +291 -0
- vllm/platforms/cpu.py +266 -0
- vllm/platforms/cuda.py +526 -0
- vllm/platforms/hpu.py +106 -0
- vllm/platforms/interface.py +538 -0
- vllm/platforms/neuron.py +150 -0
- vllm/platforms/rocm.py +435 -0
- vllm/platforms/tpu.py +216 -0
- vllm/platforms/xpu.py +156 -0
- vllm/plugins/__init__.py +94 -0
- vllm/plugins/lora_resolvers/README.md +15 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +54 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +83 -0
- vllm/prompt_adapter/models.py +358 -0
- vllm/prompt_adapter/request.py +37 -0
- vllm/prompt_adapter/utils.py +98 -0
- vllm/prompt_adapter/worker_manager.py +179 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +15 -0
- vllm/reasoning/abs_reasoning_parsers.py +192 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/qwen3_reasoning_parser.py +151 -0
- vllm/sampling_params.py +602 -0
- vllm/scalar_type.py +347 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +1568 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +506 -0
- vllm/spec_decode/draft_model_runner.py +349 -0
- vllm/spec_decode/interfaces.py +99 -0
- vllm/spec_decode/medusa_worker.py +138 -0
- vllm/spec_decode/metrics.py +213 -0
- vllm/spec_decode/mlp_speculator_worker.py +94 -0
- vllm/spec_decode/mqa_scorer.py +160 -0
- vllm/spec_decode/multi_step_worker.py +423 -0
- vllm/spec_decode/ngram_worker.py +196 -0
- vllm/spec_decode/proposer_worker_base.py +59 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
- vllm/spec_decode/spec_decode_worker.py +1326 -0
- vllm/spec_decode/target_model_runner.py +45 -0
- vllm/spec_decode/top1_proposer.py +275 -0
- vllm/spec_decode/util.py +277 -0
- vllm/test_utils.py +130 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +131 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +60 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/config.py +887 -0
- vllm/transformers_utils/configs/__init__.py +61 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/cohere2.py +195 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +85 -0
- vllm/transformers_utils/configs/exaone.py +190 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/h2ovl.py +16 -0
- vllm/transformers_utils/configs/internvl.py +54 -0
- vllm/transformers_utils/configs/jais.py +238 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/minimax_text_01.py +70 -0
- vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
- vllm/transformers_utils/configs/mllama.py +31 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/mpt.py +180 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +258 -0
- vllm/transformers_utils/configs/nvlm_d.py +15 -0
- vllm/transformers_utils/configs/ovis.py +184 -0
- vllm/transformers_utils/configs/skyworkr1v.py +54 -0
- vllm/transformers_utils/configs/solar.py +247 -0
- vllm/transformers_utils/configs/telechat2.py +64 -0
- vllm/transformers_utils/configs/ultravox.py +108 -0
- vllm/transformers_utils/detokenizer.py +168 -0
- vllm/transformers_utils/detokenizer_utils.py +189 -0
- vllm/transformers_utils/processor.py +221 -0
- vllm/transformers_utils/processors/__init__.py +8 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/s3_utils.py +162 -0
- vllm/transformers_utils/tokenizer.py +302 -0
- vllm/transformers_utils/tokenizer_base.py +149 -0
- vllm/transformers_utils/tokenizer_group.py +120 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +493 -0
- vllm/transformers_utils/utils.py +99 -0
- vllm/triton_utils/__init__.py +14 -0
- vllm/triton_utils/importing.py +50 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +256 -0
- vllm/utils.py +2910 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +163 -0
- vllm/v1/attention/backends/flash_attn.py +869 -0
- vllm/v1/attention/backends/flashinfer.py +651 -0
- vllm/v1/attention/backends/flex_attention.py +477 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +931 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
- vllm/v1/attention/backends/mla/flashmla.py +152 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
- vllm/v1/attention/backends/mla/triton_mla.py +120 -0
- vllm/v1/attention/backends/pallas.py +240 -0
- vllm/v1/attention/backends/triton_attn.py +285 -0
- vllm/v1/attention/backends/utils.py +52 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +349 -0
- vllm/v1/core/encoder_cache_manager.py +150 -0
- vllm/v1/core/kv_cache_coordinator.py +363 -0
- vllm/v1/core/kv_cache_manager.py +392 -0
- vllm/v1/core/kv_cache_utils.py +996 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +150 -0
- vllm/v1/core/sched/output.py +154 -0
- vllm/v1/core/sched/scheduler.py +1044 -0
- vllm/v1/core/sched/utils.py +23 -0
- vllm/v1/core/single_type_kv_cache_manager.py +403 -0
- vllm/v1/engine/__init__.py +173 -0
- vllm/v1/engine/async_llm.py +558 -0
- vllm/v1/engine/coordinator.py +253 -0
- vllm/v1/engine/core.py +961 -0
- vllm/v1/engine/core_client.py +1129 -0
- vllm/v1/engine/detokenizer.py +261 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +317 -0
- vllm/v1/engine/logprobs.py +199 -0
- vllm/v1/engine/mm_input_cache.py +91 -0
- vllm/v1/engine/output_processor.py +428 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +407 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +113 -0
- vllm/v1/executor/multiproc_executor.py +537 -0
- vllm/v1/executor/ray_distributed_executor.py +62 -0
- vllm/v1/kv_cache_interface.py +194 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +523 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +131 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +239 -0
- vllm/v1/outputs.py +116 -0
- vllm/v1/request.py +193 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/penalties.py +59 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +286 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +145 -0
- vllm/v1/serial_utils.py +315 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +432 -0
- vllm/v1/spec_decode/medusa.py +62 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +178 -0
- vllm/v1/spec_decode/ngram_proposer.py +132 -0
- vllm/v1/spec_decode/utils.py +46 -0
- vllm/v1/structured_output/__init__.py +222 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +318 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +175 -0
- vllm/v1/utils.py +743 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +142 -0
- vllm/v1/worker/cpu_model_runner.py +86 -0
- vllm/v1/worker/cpu_worker.py +152 -0
- vllm/v1/worker/gpu_input_batch.py +681 -0
- vllm/v1/worker/gpu_model_runner.py +2320 -0
- vllm/v1/worker/gpu_worker.py +393 -0
- vllm/v1/worker/lora_model_runner_mixin.py +173 -0
- vllm/v1/worker/tpu_model_runner.py +1673 -0
- vllm/v1/worker/tpu_worker.py +299 -0
- vllm/v1/worker/utils.py +111 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +145 -0
- vllm/worker/cpu_enc_dec_model_runner.py +326 -0
- vllm/worker/cpu_model_runner.py +671 -0
- vllm/worker/cpu_pooling_model_runner.py +125 -0
- vllm/worker/cpu_worker.py +450 -0
- vllm/worker/enc_dec_model_runner.py +555 -0
- vllm/worker/hpu_model_runner.py +2320 -0
- vllm/worker/hpu_worker.py +484 -0
- vllm/worker/model_runner.py +2178 -0
- vllm/worker/model_runner_base.py +282 -0
- vllm/worker/multi_step_hpu_worker.py +123 -0
- vllm/worker/multi_step_model_runner.py +911 -0
- vllm/worker/multi_step_neuron_model_runner.py +84 -0
- vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
- vllm/worker/multi_step_tpu_worker.py +108 -0
- vllm/worker/multi_step_worker.py +197 -0
- vllm/worker/neuron_model_runner.py +460 -0
- vllm/worker/neuron_worker.py +193 -0
- vllm/worker/neuronx_distributed_model_runner.py +294 -0
- vllm/worker/pooling_model_runner.py +211 -0
- vllm/worker/tpu_model_runner.py +909 -0
- vllm/worker/tpu_worker.py +337 -0
- vllm/worker/utils.py +53 -0
- vllm/worker/worker.py +577 -0
- vllm/worker/worker_base.py +646 -0
- vllm/worker/xpu_model_runner.py +606 -0
- vllm/worker/xpu_worker.py +186 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1624 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
|
|
5
|
+
#
|
|
6
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
7
|
+
# you may not use this file except in compliance with the License.
|
|
8
|
+
# You may obtain a copy of the License at
|
|
9
|
+
#
|
|
10
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
11
|
+
#
|
|
12
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
13
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
14
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
15
|
+
# See the License for the specific language governing permissions and
|
|
16
|
+
# limitations under the License.
|
|
17
|
+
"""PyTorch Mllama model."""
|
|
18
|
+
import math
|
|
19
|
+
from collections.abc import Iterable, Mapping, Sequence
|
|
20
|
+
from typing import Literal, Optional, TypedDict, Union
|
|
21
|
+
|
|
22
|
+
import numpy as np
|
|
23
|
+
import torch
|
|
24
|
+
import torch.nn.functional as F
|
|
25
|
+
import transformers.models.mllama.configuration_mllama as config_mllama
|
|
26
|
+
from PIL.Image import Image
|
|
27
|
+
from torch import nn
|
|
28
|
+
from transformers import BatchFeature, MllamaConfig
|
|
29
|
+
from transformers.modeling_outputs import (BaseModelOutput,
|
|
30
|
+
CausalLMOutputWithPast)
|
|
31
|
+
from transformers.models.mllama.image_processing_mllama import (
|
|
32
|
+
get_optimal_tiled_canvas)
|
|
33
|
+
from transformers.models.mllama.processing_mllama import (
|
|
34
|
+
MllamaProcessor, get_cross_attention_token_mask)
|
|
35
|
+
|
|
36
|
+
import vllm.distributed.parallel_state as ps
|
|
37
|
+
from vllm.attention import Attention, AttentionMetadata, AttentionType
|
|
38
|
+
from vllm.attention.ops.paged_attn import PagedAttention
|
|
39
|
+
from vllm.attention.selector import _Backend
|
|
40
|
+
from vllm.config import VllmConfig
|
|
41
|
+
from vllm.distributed import get_pp_group, get_tp_group
|
|
42
|
+
from vllm.forward_context import get_forward_context
|
|
43
|
+
from vllm.logger import init_logger
|
|
44
|
+
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
45
|
+
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
46
|
+
QKVCrossParallelLinear,
|
|
47
|
+
QKVParallelLinear,
|
|
48
|
+
RowParallelLinear)
|
|
49
|
+
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
50
|
+
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
51
|
+
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
52
|
+
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
|
53
|
+
from vllm.model_executor.model_loader.weight_utils import (
|
|
54
|
+
default_weight_loader, maybe_remap_kv_scale_name)
|
|
55
|
+
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
|
56
|
+
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
57
|
+
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
58
|
+
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalEncDecInputs,
|
|
59
|
+
MultiModalFieldConfig, MultiModalKwargs)
|
|
60
|
+
from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
|
|
61
|
+
MultiModalDataItems)
|
|
62
|
+
from vllm.multimodal.processing import (BaseProcessingInfo,
|
|
63
|
+
EncDecMultiModalProcessor,
|
|
64
|
+
PromptReplacement, PromptUpdate)
|
|
65
|
+
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
66
|
+
|
|
67
|
+
from .clip import CLIPMLP
|
|
68
|
+
from .interfaces import SupportsMultiModal, SupportsV0Only
|
|
69
|
+
from .llama import LlamaDecoderLayer, LlamaMLP
|
|
70
|
+
from .utils import maybe_prefix
|
|
71
|
+
|
|
72
|
+
logger = init_logger(__name__)
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
class MllamaImagePixelInputs(TypedDict):
|
|
76
|
+
type: Literal["pixel_values"]
|
|
77
|
+
data: torch.Tensor
|
|
78
|
+
"""Shape: """
|
|
79
|
+
"""(batch_size, max_num_image, max_num_chunk, num_channel, height, width)"""
|
|
80
|
+
aspect_ratio_ids: torch.Tensor
|
|
81
|
+
"""Shape: `(batch_size, max_num_image)`"""
|
|
82
|
+
aspect_ratio_mask: torch.Tensor
|
|
83
|
+
"""Shape: `(batch_size, max_num_image, max_num_tiles)`"""
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
# TODO: support LlamaImageEmbeddingInputs
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
def calc_token_per_chunk(image_size: int) -> int:
|
|
90
|
+
assert image_size % 14 == 0, "chunk size should be multiple of 14"
|
|
91
|
+
token_per_chunk = (image_size // 14)**2 + 1
|
|
92
|
+
return token_per_chunk
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
class MllamaProcessingInfo(BaseProcessingInfo):
|
|
96
|
+
|
|
97
|
+
def get_hf_config(self) -> MllamaConfig:
|
|
98
|
+
return self.ctx.get_hf_config(MllamaConfig)
|
|
99
|
+
|
|
100
|
+
def get_hf_processor(self, **kwargs: object) -> MllamaProcessor:
|
|
101
|
+
return self.ctx.get_hf_processor(MllamaProcessor, **kwargs)
|
|
102
|
+
|
|
103
|
+
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
|
104
|
+
return {"image": None}
|
|
105
|
+
|
|
106
|
+
def get_token_per_chunk_from_config(self) -> int:
|
|
107
|
+
image_size = self.get_hf_config().vision_config.image_size
|
|
108
|
+
return calc_token_per_chunk(image_size)
|
|
109
|
+
|
|
110
|
+
def get_num_tiles_per_image(self, image_height: int,
|
|
111
|
+
image_width: int) -> int:
|
|
112
|
+
vision_config = self.get_hf_config().vision_config
|
|
113
|
+
max_num_tiles = vision_config.max_num_tiles
|
|
114
|
+
image_size = vision_config.image_size
|
|
115
|
+
tiled_height, tiled_width = get_optimal_tiled_canvas(
|
|
116
|
+
image_height,
|
|
117
|
+
image_width,
|
|
118
|
+
max_num_tiles,
|
|
119
|
+
tile_size=image_size,
|
|
120
|
+
)
|
|
121
|
+
num_tiles_height = tiled_height // image_size
|
|
122
|
+
num_tiles_width = tiled_width // image_size
|
|
123
|
+
return num_tiles_height * num_tiles_width
|
|
124
|
+
|
|
125
|
+
def get_image_size_with_most_features(self) -> ImageSize:
|
|
126
|
+
vision_config = self.get_hf_config().vision_config
|
|
127
|
+
image_size = vision_config.image_size
|
|
128
|
+
max_num_tiles = vision_config.max_num_tiles
|
|
129
|
+
# Result in the max possible feature size (h:w = 16:1)
|
|
130
|
+
return ImageSize(height=max_num_tiles * image_size, width=image_size)
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
class MllamaDummyInputsBuilder(BaseDummyInputsBuilder[MllamaProcessingInfo]):
|
|
134
|
+
|
|
135
|
+
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
136
|
+
num_images = mm_counts.get("image", 0)
|
|
137
|
+
|
|
138
|
+
processor = self.info.get_hf_processor()
|
|
139
|
+
image_token = processor.image_token
|
|
140
|
+
|
|
141
|
+
return image_token * num_images
|
|
142
|
+
|
|
143
|
+
def get_dummy_mm_data(
|
|
144
|
+
self,
|
|
145
|
+
seq_len: int,
|
|
146
|
+
mm_counts: Mapping[str, int],
|
|
147
|
+
) -> MultiModalDataDict:
|
|
148
|
+
num_images = mm_counts.get("image", 0)
|
|
149
|
+
|
|
150
|
+
target_width, target_height = \
|
|
151
|
+
self.info.get_image_size_with_most_features()
|
|
152
|
+
|
|
153
|
+
return {
|
|
154
|
+
"image":
|
|
155
|
+
self._get_dummy_images(width=target_width,
|
|
156
|
+
height=target_height,
|
|
157
|
+
num_images=num_images)
|
|
158
|
+
}
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
class MllamaMultiModalProcessor(EncDecMultiModalProcessor[MllamaProcessingInfo]
|
|
162
|
+
):
|
|
163
|
+
|
|
164
|
+
def apply(
|
|
165
|
+
self,
|
|
166
|
+
prompt: Union[str, list[int]],
|
|
167
|
+
mm_data: MultiModalDataDict,
|
|
168
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
169
|
+
return_mm_hashes: bool = False,
|
|
170
|
+
) -> MultiModalEncDecInputs:
|
|
171
|
+
mm_inputs = super().apply(prompt, mm_data, hf_processor_mm_kwargs,
|
|
172
|
+
return_mm_hashes)
|
|
173
|
+
|
|
174
|
+
image_token_id = self.info.get_hf_config().image_token_index
|
|
175
|
+
# Check that the number of image tokens in the decoder prompt matches
|
|
176
|
+
# the number of images provided in mm_data
|
|
177
|
+
num_image_tokens = mm_inputs['prompt_token_ids'].count(image_token_id)
|
|
178
|
+
image_data = mm_data.get("image", [])
|
|
179
|
+
num_images = 1 if isinstance(image_data, Image) else len(image_data)
|
|
180
|
+
if num_image_tokens != num_images:
|
|
181
|
+
raise ValueError(
|
|
182
|
+
f"The number of image tokens ({num_image_tokens}) must be"
|
|
183
|
+
f" the same as the number of images ({num_images})")
|
|
184
|
+
|
|
185
|
+
# Given prompt: <IMG0> P0 P1 <IMG1> <IMG2> P3 P4 D5 D6...., (P-prefill, D-decode) # noqa: E501
|
|
186
|
+
# P0 & P1 do cross attention with placeholder of <IMG0>
|
|
187
|
+
# P3 P4 D5 D6 do cross attention with placeholder of <IMG1> and <IMG2>
|
|
188
|
+
# Example input to encoder and decoder:
|
|
189
|
+
# {
|
|
190
|
+
# 'encoder': {
|
|
191
|
+
# 'type': 'token',
|
|
192
|
+
# 'prompt_token_ids': [128256, 128256, ..., 128256],
|
|
193
|
+
# 'prompt': '<|image|><|image|>...<|image|>',
|
|
194
|
+
# 'multi_modal_data': {'image': <PIL.Image.Image image mode=RGB size=1770x1180 at 0x7FDE2C624880>}, # noqa: E501
|
|
195
|
+
# },
|
|
196
|
+
# 'decoder': {
|
|
197
|
+
# 'type': 'token',
|
|
198
|
+
# 'prompt_token_ids': [128000, 128256, 128000, 3923, 374, 279, 2262, 315, 420, 2217, 30], # noqa: E501
|
|
199
|
+
# 'prompt': '<|image|><|begin_of_text|>What is the content of this image?', # noqa: E501
|
|
200
|
+
# 'multi_modal_data': {'image': <PIL.Image.Image image mode=RGB size=1770x1180 at 0x7FDE2C624880>}, # noqa: E501
|
|
201
|
+
# },
|
|
202
|
+
# }
|
|
203
|
+
|
|
204
|
+
if mm_data:
|
|
205
|
+
hf_processor = self.info.get_hf_processor()
|
|
206
|
+
image_token: str = hf_processor.image_token
|
|
207
|
+
|
|
208
|
+
# Since only the last group of consecutive images
|
|
209
|
+
# are attended by the decoded tokens, we only need to
|
|
210
|
+
# get the number of tokens for those images.
|
|
211
|
+
token_per_chunk = self.info.get_token_per_chunk_from_config()
|
|
212
|
+
num_decode_images = self._get_num_image_in_last_group(
|
|
213
|
+
mm_inputs["prompt_token_ids"])
|
|
214
|
+
num_encode_images = num_images - num_decode_images
|
|
215
|
+
|
|
216
|
+
# Set encoder prompt length based on the number of tiles.
|
|
217
|
+
# This tells the block manager to allocate correct number
|
|
218
|
+
# of slots for encoder tokens.
|
|
219
|
+
num_tiles = mm_inputs["mm_kwargs"]["num_tiles"]
|
|
220
|
+
decode_tiles = num_tiles[num_encode_images:num_images].sum().item()
|
|
221
|
+
num_tokens = decode_tiles * token_per_chunk
|
|
222
|
+
mm_inputs["encoder_prompt_token_ids"] = [image_token_id
|
|
223
|
+
] * num_tokens
|
|
224
|
+
mm_inputs["encoder_prompt"] = image_token * num_tokens
|
|
225
|
+
|
|
226
|
+
return mm_inputs
|
|
227
|
+
|
|
228
|
+
def _get_num_image_in_last_group(self, prompt_token_ids: list[int]) -> int:
|
|
229
|
+
num_images = 0
|
|
230
|
+
for token_id in prompt_token_ids[::-1]:
|
|
231
|
+
if token_id == self.info.get_hf_config().image_token_index:
|
|
232
|
+
num_images += 1
|
|
233
|
+
elif num_images > 0:
|
|
234
|
+
break
|
|
235
|
+
return num_images
|
|
236
|
+
|
|
237
|
+
def _call_hf_processor(
|
|
238
|
+
self,
|
|
239
|
+
prompt: str,
|
|
240
|
+
mm_data: Mapping[str, object],
|
|
241
|
+
mm_kwargs: Mapping[str, object],
|
|
242
|
+
) -> BatchFeature:
|
|
243
|
+
tokenizer = self.info.get_tokenizer()
|
|
244
|
+
if mm_data:
|
|
245
|
+
num_tiles = [
|
|
246
|
+
self.info.get_num_tiles_per_image(img.height, img.width)
|
|
247
|
+
for img in mm_data["images"]
|
|
248
|
+
]
|
|
249
|
+
processed_outputs = super()._call_hf_processor(
|
|
250
|
+
prompt, mm_data, mm_kwargs)
|
|
251
|
+
processed_outputs["num_tiles"] = torch.tensor(num_tiles)
|
|
252
|
+
for k in ('pixel_values', 'aspect_ratio_ids', "aspect_ratio_mask"):
|
|
253
|
+
processed_outputs[k] = processed_outputs[k].squeeze(0)
|
|
254
|
+
|
|
255
|
+
processed_token_ids = processed_outputs.pop("input_ids")
|
|
256
|
+
start_idx, end_idx = 0, processed_token_ids.size(1)
|
|
257
|
+
processed_prompt_text = tokenizer.decode(processed_token_ids[0])
|
|
258
|
+
|
|
259
|
+
hf_processor = self.info.get_hf_processor()
|
|
260
|
+
bos_token = hf_processor.bos_token
|
|
261
|
+
# Remove the bos_token from the start of prompt,
|
|
262
|
+
# because we all know there would be image_token.
|
|
263
|
+
if processed_prompt_text.startswith(bos_token):
|
|
264
|
+
start_idx += 1
|
|
265
|
+
# Remove the bos_token from the end of prompt,
|
|
266
|
+
# because text is empty in this case.
|
|
267
|
+
if processed_prompt_text.endswith(bos_token):
|
|
268
|
+
end_idx -= 1
|
|
269
|
+
processed_outputs[
|
|
270
|
+
"input_ids"] = processed_token_ids[:, start_idx:end_idx]
|
|
271
|
+
else:
|
|
272
|
+
processed_outputs = tokenizer(prompt,
|
|
273
|
+
add_special_tokens=False,
|
|
274
|
+
return_tensors="pt")
|
|
275
|
+
return processed_outputs
|
|
276
|
+
|
|
277
|
+
def _get_mm_fields_config(
|
|
278
|
+
self,
|
|
279
|
+
hf_inputs: BatchFeature,
|
|
280
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
281
|
+
) -> Mapping[str, MultiModalFieldConfig]:
|
|
282
|
+
return dict(
|
|
283
|
+
pixel_values=MultiModalFieldConfig.batched("image"),
|
|
284
|
+
aspect_ratio_ids=MultiModalFieldConfig.batched("image"),
|
|
285
|
+
aspect_ratio_mask=MultiModalFieldConfig.batched("image"),
|
|
286
|
+
num_tiles=MultiModalFieldConfig.batched("image"),
|
|
287
|
+
)
|
|
288
|
+
|
|
289
|
+
def create_encoder_prompt(
|
|
290
|
+
self,
|
|
291
|
+
prompt: Union[str, list[int]],
|
|
292
|
+
mm_data: MultiModalDataDict,
|
|
293
|
+
) -> Union[str, list[int]]:
|
|
294
|
+
data = mm_data.get("image", [])
|
|
295
|
+
num_images = 1 if isinstance(data, Image) else len(data)
|
|
296
|
+
image_token_id = self.info.get_hf_config().image_token_index
|
|
297
|
+
return [image_token_id] * num_images
|
|
298
|
+
|
|
299
|
+
def _get_prompt_updates(
|
|
300
|
+
self,
|
|
301
|
+
mm_items: MultiModalDataItems,
|
|
302
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
303
|
+
out_mm_kwargs: MultiModalKwargs,
|
|
304
|
+
) -> Sequence[PromptUpdate]:
|
|
305
|
+
token_per_chunk = self.info.get_token_per_chunk_from_config()
|
|
306
|
+
image_token_id = self.info.get_hf_config().image_token_index
|
|
307
|
+
|
|
308
|
+
def get_replacement_mllama(item_idx):
|
|
309
|
+
images = mm_items.get_items("image", ImageProcessorItems)
|
|
310
|
+
image_size = images.get_image_size(item_idx)
|
|
311
|
+
num_tile = self.info.get_num_tiles_per_image(
|
|
312
|
+
image_height=image_size.height,
|
|
313
|
+
image_width=image_size.width,
|
|
314
|
+
)
|
|
315
|
+
num_tokens = num_tile * token_per_chunk
|
|
316
|
+
return [image_token_id] * num_tokens
|
|
317
|
+
|
|
318
|
+
return [
|
|
319
|
+
PromptReplacement(
|
|
320
|
+
modality="image",
|
|
321
|
+
target=[image_token_id],
|
|
322
|
+
replacement=get_replacement_mllama,
|
|
323
|
+
)
|
|
324
|
+
]
|
|
325
|
+
|
|
326
|
+
|
|
327
|
+
def _prepare_aspect_ratio_attention_mask(
|
|
328
|
+
aspect_ratio_mask: torch.Tensor,
|
|
329
|
+
num_patches: int,
|
|
330
|
+
target_length: int,
|
|
331
|
+
dtype: torch.dtype,
|
|
332
|
+
) -> torch.Tensor:
|
|
333
|
+
# Expand aspect ratio mask to target_length
|
|
334
|
+
batch_size, max_num_tiles = aspect_ratio_mask.shape
|
|
335
|
+
attention_mask = aspect_ratio_mask.view(batch_size, max_num_tiles, 1,
|
|
336
|
+
1).to(dtype)
|
|
337
|
+
attention_mask = attention_mask.repeat(1, 1, target_length, 1)
|
|
338
|
+
|
|
339
|
+
# Mask padding patches
|
|
340
|
+
pad_patches = target_length - num_patches
|
|
341
|
+
attention_mask[:, :, -pad_patches:] = 0
|
|
342
|
+
|
|
343
|
+
# Invert the mask (0 -> 1, 1 -> 0)
|
|
344
|
+
attention_mask = 1 - attention_mask
|
|
345
|
+
|
|
346
|
+
# Reshape to 2D and create 4D attention mask
|
|
347
|
+
# (batch_size, 1, max_num_tiles*target_length, max_num_tiles*target_length)
|
|
348
|
+
attention_mask = attention_mask.reshape(batch_size,
|
|
349
|
+
max_num_tiles * target_length, 1)
|
|
350
|
+
attention_mask = attention_mask @ attention_mask.transpose(
|
|
351
|
+
-1, -2) * torch.finfo(dtype).min
|
|
352
|
+
attention_mask = attention_mask.unsqueeze(1)
|
|
353
|
+
|
|
354
|
+
return attention_mask
|
|
355
|
+
|
|
356
|
+
|
|
357
|
+
class ColumnParallelConv2dPatch(torch.nn.Module):
|
|
358
|
+
"""Conv2D Patching layer with model parallelism.
|
|
359
|
+
Column parallel over unfolded input.
|
|
360
|
+
Arguments:
|
|
361
|
+
in_channels: Input channels.
|
|
362
|
+
out_channels: Output channels.
|
|
363
|
+
kernel_size: Size of convolution kernel.
|
|
364
|
+
stride (default 1): Stride for convolution.
|
|
365
|
+
bias (default False): Use bias in Conv2d.
|
|
366
|
+
Input: (bsz, in_channels, width, height)
|
|
367
|
+
Output: (bsz, num_tokens, out_channels)
|
|
368
|
+
"""
|
|
369
|
+
|
|
370
|
+
def __init__(
|
|
371
|
+
self,
|
|
372
|
+
in_channels: int,
|
|
373
|
+
out_channels: int,
|
|
374
|
+
kernel_size: Union[int, tuple[int, int]],
|
|
375
|
+
stride: Union[int, tuple[int, int]],
|
|
376
|
+
bias: bool = False,
|
|
377
|
+
) -> None:
|
|
378
|
+
super().__init__()
|
|
379
|
+
if isinstance(kernel_size, int):
|
|
380
|
+
kernel_size = (kernel_size, kernel_size)
|
|
381
|
+
self._unfold = torch.nn.Unfold(kernel_size=kernel_size, stride=stride)
|
|
382
|
+
self._linear = ColumnParallelLinear(
|
|
383
|
+
in_channels * kernel_size[0] * kernel_size[1],
|
|
384
|
+
out_channels,
|
|
385
|
+
bias=bias,
|
|
386
|
+
)
|
|
387
|
+
|
|
388
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
389
|
+
x = self._unfold(x)
|
|
390
|
+
x = x.permute(0, 2, 1)
|
|
391
|
+
x, _ = self._linear(x)
|
|
392
|
+
return x
|
|
393
|
+
|
|
394
|
+
|
|
395
|
+
class MllamaPrecomputedAspectRatioEmbedding(nn.Module):
|
|
396
|
+
|
|
397
|
+
def __init__(self,
|
|
398
|
+
config: config_mllama.MllamaVisionConfig,
|
|
399
|
+
is_gated: bool = True):
|
|
400
|
+
super().__init__()
|
|
401
|
+
self.max_num_tiles = config.max_num_tiles
|
|
402
|
+
self.hidden_size = config.hidden_size
|
|
403
|
+
self.max_aspect_ratio_id = config.max_aspect_ratio_id
|
|
404
|
+
self.is_gated = is_gated
|
|
405
|
+
|
|
406
|
+
self.embedding = nn.Embedding(self.max_aspect_ratio_id + 1,
|
|
407
|
+
self.max_num_tiles * self.hidden_size)
|
|
408
|
+
if is_gated:
|
|
409
|
+
self.gate = nn.Parameter(torch.zeros(1))
|
|
410
|
+
|
|
411
|
+
def forward(self, hidden_state: torch.Tensor,
|
|
412
|
+
aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
|
|
413
|
+
embeddings = self.embedding(aspect_ratio_ids)
|
|
414
|
+
embeddings = embeddings.reshape(-1, self.max_num_tiles, 1,
|
|
415
|
+
self.hidden_size)
|
|
416
|
+
|
|
417
|
+
if self.is_gated:
|
|
418
|
+
embeddings = embeddings * self.gate.tanh()
|
|
419
|
+
|
|
420
|
+
hidden_state = hidden_state + embeddings
|
|
421
|
+
return hidden_state
|
|
422
|
+
|
|
423
|
+
|
|
424
|
+
class MllamaPrecomputedPositionEmbedding(nn.Module):
|
|
425
|
+
|
|
426
|
+
def __init__(self, config: config_mllama.MllamaVisionConfig):
|
|
427
|
+
super().__init__()
|
|
428
|
+
self.max_num_tiles = config.max_num_tiles
|
|
429
|
+
self.max_aspect_ratio_id = config.max_aspect_ratio_id
|
|
430
|
+
self.num_patches = (config.image_size // config.patch_size)**2 + 1
|
|
431
|
+
self.hidden_size = config.hidden_size
|
|
432
|
+
self.scale = config.hidden_size**-0.5
|
|
433
|
+
|
|
434
|
+
self.gate = nn.Parameter(torch.zeros(1))
|
|
435
|
+
|
|
436
|
+
# position embedding
|
|
437
|
+
position_embedding = torch.randn(self.num_patches, self.hidden_size)
|
|
438
|
+
self.embedding = nn.Parameter(self.scale * position_embedding)
|
|
439
|
+
|
|
440
|
+
# tile position embedding
|
|
441
|
+
self.tile_embedding = nn.Embedding(
|
|
442
|
+
self.max_aspect_ratio_id + 1,
|
|
443
|
+
self.max_num_tiles * self.num_patches * self.hidden_size)
|
|
444
|
+
|
|
445
|
+
def forward(self, hidden_state: torch.Tensor,
|
|
446
|
+
aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
|
|
447
|
+
# position embeddings
|
|
448
|
+
gated_position_embedding = (1 - self.gate.tanh()) * self.embedding
|
|
449
|
+
hidden_state = hidden_state + gated_position_embedding.view(
|
|
450
|
+
1, 1, self.num_patches, self.hidden_size)
|
|
451
|
+
|
|
452
|
+
# precomputed tile position embeddings
|
|
453
|
+
tile_position_embedding = self.tile_embedding(aspect_ratio_ids)
|
|
454
|
+
batch_size = hidden_state.shape[0]
|
|
455
|
+
tile_position_embedding = tile_position_embedding.reshape(
|
|
456
|
+
batch_size, self.max_num_tiles, self.num_patches, self.hidden_size)
|
|
457
|
+
gated_tile_position_embedding = self.gate.tanh(
|
|
458
|
+
) * tile_position_embedding
|
|
459
|
+
hidden_state = hidden_state + gated_tile_position_embedding
|
|
460
|
+
|
|
461
|
+
return hidden_state
|
|
462
|
+
|
|
463
|
+
|
|
464
|
+
# TODO: support other attention backends for attention in vision model
|
|
465
|
+
class MllamaVisionSdpaAttention(nn.Module):
|
|
466
|
+
|
|
467
|
+
def __init__(self,
|
|
468
|
+
config: config_mllama.MllamaVisionConfig,
|
|
469
|
+
quant_config: Optional[QuantizationConfig] = None,
|
|
470
|
+
prefix: str = ""):
|
|
471
|
+
super().__init__()
|
|
472
|
+
|
|
473
|
+
tensor_parallel_size = get_tp_group().world_size
|
|
474
|
+
self.embed_dim = config.hidden_size
|
|
475
|
+
self.num_heads = config.attention_heads
|
|
476
|
+
self.head_dim = config.hidden_size // config.attention_heads
|
|
477
|
+
self.num_local_heads = self.num_heads // tensor_parallel_size
|
|
478
|
+
self.q_size = self.num_local_heads * self.head_dim
|
|
479
|
+
self.kv_size = self.num_local_heads * self.head_dim
|
|
480
|
+
|
|
481
|
+
self.qkv_proj = QKVParallelLinear(
|
|
482
|
+
self.embed_dim,
|
|
483
|
+
self.head_dim,
|
|
484
|
+
self.num_heads,
|
|
485
|
+
bias=False,
|
|
486
|
+
quant_config=quant_config,
|
|
487
|
+
prefix=f"{prefix}.qkv_proj",
|
|
488
|
+
)
|
|
489
|
+
self.o_proj = RowParallelLinear(
|
|
490
|
+
self.num_heads * self.head_dim,
|
|
491
|
+
self.embed_dim,
|
|
492
|
+
bias=False,
|
|
493
|
+
input_is_parallel=True,
|
|
494
|
+
quant_config=quant_config,
|
|
495
|
+
prefix=f"{prefix}.o_proj",
|
|
496
|
+
)
|
|
497
|
+
|
|
498
|
+
def forward(
|
|
499
|
+
self,
|
|
500
|
+
hidden_state: torch.Tensor,
|
|
501
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
502
|
+
) -> torch.Tensor:
|
|
503
|
+
qkv, _ = self.qkv_proj(hidden_state)
|
|
504
|
+
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
505
|
+
q = q.view(q.shape[0], q.shape[1], self.num_local_heads,
|
|
506
|
+
self.head_dim).transpose(1, 2)
|
|
507
|
+
k = k.view(k.shape[0], k.shape[1], self.num_local_heads,
|
|
508
|
+
self.head_dim).transpose(1, 2)
|
|
509
|
+
v = v.view(v.shape[0], v.shape[1], self.num_local_heads,
|
|
510
|
+
self.head_dim).transpose(1, 2)
|
|
511
|
+
|
|
512
|
+
# TODO: remove padding in image encoder
|
|
513
|
+
attn_output = F.scaled_dot_product_attention(q,
|
|
514
|
+
k,
|
|
515
|
+
v,
|
|
516
|
+
attn_mask=attention_mask,
|
|
517
|
+
dropout_p=0.0)
|
|
518
|
+
|
|
519
|
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
520
|
+
attn_output = attn_output.reshape(attn_output.shape[0],
|
|
521
|
+
attn_output.shape[1], -1)
|
|
522
|
+
output, _ = self.o_proj(attn_output)
|
|
523
|
+
return output
|
|
524
|
+
|
|
525
|
+
|
|
526
|
+
class MllamaVisionEncoderLayer(nn.Module):
|
|
527
|
+
|
|
528
|
+
def __init__(
|
|
529
|
+
self,
|
|
530
|
+
config: config_mllama.MllamaVisionConfig,
|
|
531
|
+
quant_config: Optional[QuantizationConfig],
|
|
532
|
+
prefix: str = "",
|
|
533
|
+
is_gated: bool = False,
|
|
534
|
+
) -> None:
|
|
535
|
+
super().__init__()
|
|
536
|
+
|
|
537
|
+
self.hidden_size = config.hidden_size
|
|
538
|
+
self.num_attention_heads = config.attention_heads
|
|
539
|
+
self.is_gated = is_gated
|
|
540
|
+
self.intermediate_size = config.intermediate_size
|
|
541
|
+
|
|
542
|
+
self.self_attn = MllamaVisionSdpaAttention(
|
|
543
|
+
config, quant_config=quant_config, prefix=f"{prefix}.self_attn")
|
|
544
|
+
self.mlp = CLIPMLP(config,
|
|
545
|
+
quant_config=quant_config,
|
|
546
|
+
prefix=f"{prefix}.mlp")
|
|
547
|
+
|
|
548
|
+
self.input_layernorm = nn.LayerNorm(self.hidden_size,
|
|
549
|
+
eps=config.norm_eps)
|
|
550
|
+
self.post_attention_layernorm = nn.LayerNorm(self.hidden_size,
|
|
551
|
+
eps=config.norm_eps)
|
|
552
|
+
|
|
553
|
+
# there used to be an if else here, no code path
|
|
554
|
+
if is_gated:
|
|
555
|
+
self.gate_attn = nn.Parameter(torch.ones(1) * math.pi / 4)
|
|
556
|
+
self.gate_ffn = nn.Parameter(torch.ones(1) * math.pi / 4)
|
|
557
|
+
|
|
558
|
+
def forward(
|
|
559
|
+
self,
|
|
560
|
+
hidden_state: torch.Tensor,
|
|
561
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
562
|
+
):
|
|
563
|
+
# Self Attention
|
|
564
|
+
residual = hidden_state
|
|
565
|
+
hidden_state = self.input_layernorm(hidden_state)
|
|
566
|
+
hidden_state = self.self_attn(hidden_state,
|
|
567
|
+
attention_mask=attention_mask)
|
|
568
|
+
gate_attn = 1 if not self.is_gated else self.gate_attn.tanh()
|
|
569
|
+
hidden_state = residual + gate_attn * hidden_state
|
|
570
|
+
|
|
571
|
+
# Feed forward
|
|
572
|
+
residual = hidden_state
|
|
573
|
+
hidden_state = self.post_attention_layernorm(hidden_state)
|
|
574
|
+
hidden_state = self.mlp(hidden_state)
|
|
575
|
+
gate_ffn = 1 if not self.is_gated else self.gate_ffn.tanh()
|
|
576
|
+
hidden_state = residual + gate_ffn * hidden_state
|
|
577
|
+
|
|
578
|
+
return hidden_state
|
|
579
|
+
|
|
580
|
+
|
|
581
|
+
class MllamaVisionEncoder(nn.Module):
|
|
582
|
+
|
|
583
|
+
def __init__(
|
|
584
|
+
self,
|
|
585
|
+
config: config_mllama.MllamaVisionConfig,
|
|
586
|
+
quant_config: Optional[QuantizationConfig],
|
|
587
|
+
num_layers: int = 32,
|
|
588
|
+
is_gated: bool = False,
|
|
589
|
+
output_hidden_states=None,
|
|
590
|
+
prefix: str = "",
|
|
591
|
+
) -> None:
|
|
592
|
+
super().__init__()
|
|
593
|
+
self.config = config
|
|
594
|
+
self.layers = nn.ModuleList([
|
|
595
|
+
MllamaVisionEncoderLayer(config,
|
|
596
|
+
quant_config=quant_config,
|
|
597
|
+
is_gated=is_gated,
|
|
598
|
+
prefix=f"{prefix}.layers.{layer_idx}")
|
|
599
|
+
for layer_idx in range(num_layers)
|
|
600
|
+
])
|
|
601
|
+
self.output_hidden_states = output_hidden_states or []
|
|
602
|
+
|
|
603
|
+
def forward(
|
|
604
|
+
self,
|
|
605
|
+
hidden_states: torch.Tensor,
|
|
606
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
607
|
+
) -> Union[BaseModelOutput]:
|
|
608
|
+
encoder_states = ()
|
|
609
|
+
|
|
610
|
+
for i, encoder_layer in enumerate(self.layers):
|
|
611
|
+
if i in self.output_hidden_states:
|
|
612
|
+
encoder_states = encoder_states + (hidden_states, )
|
|
613
|
+
hidden_states = encoder_layer(
|
|
614
|
+
hidden_states,
|
|
615
|
+
attention_mask,
|
|
616
|
+
)
|
|
617
|
+
|
|
618
|
+
if len(self.layers) - 1 in self.output_hidden_states:
|
|
619
|
+
encoder_states = encoder_states + (hidden_states, )
|
|
620
|
+
|
|
621
|
+
return hidden_states, encoder_states
|
|
622
|
+
|
|
623
|
+
|
|
624
|
+
class MllamaVisionModel(nn.Module):
|
|
625
|
+
|
|
626
|
+
def __init__(
|
|
627
|
+
self,
|
|
628
|
+
config: config_mllama.MllamaVisionConfig,
|
|
629
|
+
quant_config: Optional[QuantizationConfig],
|
|
630
|
+
prefix: str = "",
|
|
631
|
+
) -> None:
|
|
632
|
+
super().__init__()
|
|
633
|
+
|
|
634
|
+
self.image_size = config.image_size
|
|
635
|
+
self.patch_size = config.patch_size
|
|
636
|
+
self.max_num_tiles = config.max_num_tiles
|
|
637
|
+
self.hidden_size = config.hidden_size
|
|
638
|
+
self.in_channels = config.num_channels
|
|
639
|
+
self.intermediate_layers_indices = config.intermediate_layers_indices
|
|
640
|
+
|
|
641
|
+
self.num_patches = (self.image_size // self.patch_size)**2 + 1
|
|
642
|
+
self.scale = config.hidden_size**-0.5
|
|
643
|
+
|
|
644
|
+
self.patch_embedding = ColumnParallelConv2dPatch(
|
|
645
|
+
in_channels=config.num_channels,
|
|
646
|
+
out_channels=self.hidden_size,
|
|
647
|
+
kernel_size=self.patch_size,
|
|
648
|
+
stride=self.patch_size,
|
|
649
|
+
bias=False,
|
|
650
|
+
)
|
|
651
|
+
|
|
652
|
+
self.class_embedding = nn.Parameter(self.scale *
|
|
653
|
+
torch.randn(self.hidden_size))
|
|
654
|
+
self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding(
|
|
655
|
+
config)
|
|
656
|
+
|
|
657
|
+
self.pre_tile_positional_embedding = \
|
|
658
|
+
MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True)
|
|
659
|
+
self.post_tile_positional_embedding = \
|
|
660
|
+
MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True)
|
|
661
|
+
|
|
662
|
+
# layer norms
|
|
663
|
+
self.layernorm_pre = nn.LayerNorm(self.hidden_size)
|
|
664
|
+
self.layernorm_post = nn.LayerNorm(self.hidden_size)
|
|
665
|
+
|
|
666
|
+
# encoders
|
|
667
|
+
self.transformer = MllamaVisionEncoder(
|
|
668
|
+
config,
|
|
669
|
+
quant_config,
|
|
670
|
+
config.num_hidden_layers,
|
|
671
|
+
is_gated=False,
|
|
672
|
+
output_hidden_states=config.intermediate_layers_indices,
|
|
673
|
+
prefix=f"{prefix}.transformer",
|
|
674
|
+
)
|
|
675
|
+
self.global_transformer = MllamaVisionEncoder(
|
|
676
|
+
config,
|
|
677
|
+
quant_config,
|
|
678
|
+
config.num_global_layers,
|
|
679
|
+
is_gated=True,
|
|
680
|
+
prefix=f"{prefix}.global_transformer",
|
|
681
|
+
)
|
|
682
|
+
|
|
683
|
+
def apply_class_embedding(self,
|
|
684
|
+
hidden_state: torch.Tensor) -> torch.Tensor:
|
|
685
|
+
batch_size, _, hidden_size = hidden_state.shape
|
|
686
|
+
class_embedding = self.class_embedding.expand(batch_size, 1,
|
|
687
|
+
hidden_size)
|
|
688
|
+
hidden_state = torch.cat([class_embedding, hidden_state], dim=1)
|
|
689
|
+
return hidden_state
|
|
690
|
+
|
|
691
|
+
def forward(self, pixel_values: torch.Tensor,
|
|
692
|
+
aspect_ratio_ids: torch.Tensor,
|
|
693
|
+
aspect_ratio_mask: torch.Tensor) -> torch.Tensor:
|
|
694
|
+
batch_size, num_concurrent_media, num_tiles, num_channels, \
|
|
695
|
+
height, width = pixel_values.shape
|
|
696
|
+
|
|
697
|
+
pixel_values = pixel_values.reshape(
|
|
698
|
+
batch_size * num_concurrent_media * num_tiles, num_channels,
|
|
699
|
+
height, width)
|
|
700
|
+
aspect_ratio_ids = aspect_ratio_ids.reshape(
|
|
701
|
+
batch_size * num_concurrent_media, -1)
|
|
702
|
+
|
|
703
|
+
# patch embedding
|
|
704
|
+
patch_embeds = self.patch_embedding(
|
|
705
|
+
pixel_values.to(self.layernorm_pre.weight.dtype))
|
|
706
|
+
hidden_state = patch_embeds
|
|
707
|
+
hidden_state = ps.get_tp_group().all_gather(hidden_state)
|
|
708
|
+
|
|
709
|
+
# tile embeddings
|
|
710
|
+
_, num_patches, dim = hidden_state.shape
|
|
711
|
+
hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
|
|
712
|
+
num_tiles, -1, dim)
|
|
713
|
+
hidden_state = self.pre_tile_positional_embedding(
|
|
714
|
+
hidden_state, aspect_ratio_ids)
|
|
715
|
+
|
|
716
|
+
# apply cls token
|
|
717
|
+
hidden_state = hidden_state.reshape(
|
|
718
|
+
batch_size * num_concurrent_media * num_tiles, num_patches, dim)
|
|
719
|
+
hidden_state = self.apply_class_embedding(hidden_state)
|
|
720
|
+
num_patches += 1
|
|
721
|
+
|
|
722
|
+
# apply position embeddings
|
|
723
|
+
hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
|
|
724
|
+
num_tiles, num_patches, dim)
|
|
725
|
+
hidden_state = self.gated_positional_embedding(hidden_state,
|
|
726
|
+
aspect_ratio_ids)
|
|
727
|
+
|
|
728
|
+
# apply encoder
|
|
729
|
+
hidden_state = self.layernorm_pre(hidden_state)
|
|
730
|
+
|
|
731
|
+
# Compute the number of tokens to pad
|
|
732
|
+
num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8
|
|
733
|
+
# Compute padding tuple for pad function
|
|
734
|
+
padding = (
|
|
735
|
+
0, 0, 0, num_padding_patches
|
|
736
|
+
) # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2)
|
|
737
|
+
# Pad the tensor
|
|
738
|
+
hidden_state = F.pad(hidden_state, padding, mode="constant", value=0)
|
|
739
|
+
slice_index = -num_padding_patches if num_padding_patches > 0 else None
|
|
740
|
+
|
|
741
|
+
attention_mask = aspect_ratio_mask.reshape(
|
|
742
|
+
batch_size * num_concurrent_media, -1)
|
|
743
|
+
attention_mask = _prepare_aspect_ratio_attention_mask(
|
|
744
|
+
aspect_ratio_mask=attention_mask,
|
|
745
|
+
num_patches=self.num_patches,
|
|
746
|
+
target_length=hidden_state.shape[2],
|
|
747
|
+
dtype=self.layernorm_pre.weight.dtype,
|
|
748
|
+
)
|
|
749
|
+
|
|
750
|
+
hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1,
|
|
751
|
+
dim)
|
|
752
|
+
output = self.transformer(
|
|
753
|
+
hidden_state,
|
|
754
|
+
attention_mask=attention_mask,
|
|
755
|
+
)
|
|
756
|
+
hidden_state, intermediate_hidden_states = output[0], output[1]
|
|
757
|
+
intermediate_hidden_states = torch.stack(intermediate_hidden_states,
|
|
758
|
+
dim=-1)
|
|
759
|
+
|
|
760
|
+
# apply global encoder
|
|
761
|
+
hidden_state = self.layernorm_post(hidden_state)
|
|
762
|
+
hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
|
|
763
|
+
num_tiles,
|
|
764
|
+
num_patches + num_padding_patches,
|
|
765
|
+
dim)
|
|
766
|
+
hidden_state = self.post_tile_positional_embedding(
|
|
767
|
+
hidden_state, aspect_ratio_ids)
|
|
768
|
+
hidden_state = hidden_state.reshape(
|
|
769
|
+
batch_size * num_concurrent_media,
|
|
770
|
+
num_tiles * (num_patches + num_padding_patches), dim)
|
|
771
|
+
hidden_state = self.global_transformer(
|
|
772
|
+
hidden_state, attention_mask=attention_mask)[0]
|
|
773
|
+
hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
|
|
774
|
+
num_tiles,
|
|
775
|
+
num_patches + num_padding_patches,
|
|
776
|
+
dim)
|
|
777
|
+
hidden_state = hidden_state[:, :, :slice_index]
|
|
778
|
+
|
|
779
|
+
# adding intermediate layer outputs
|
|
780
|
+
hidden_state = hidden_state.reshape(batch_size, num_concurrent_media,
|
|
781
|
+
num_tiles, num_patches, dim)
|
|
782
|
+
intermediate_hidden_states = intermediate_hidden_states.reshape(
|
|
783
|
+
batch_size * num_concurrent_media, num_tiles,
|
|
784
|
+
num_patches + num_padding_patches, -1)
|
|
785
|
+
intermediate_hidden_states = intermediate_hidden_states[:, :, :
|
|
786
|
+
slice_index]
|
|
787
|
+
intermediate_hidden_states = intermediate_hidden_states.reshape(
|
|
788
|
+
batch_size, num_concurrent_media, num_tiles, num_patches, -1)
|
|
789
|
+
hidden_state = torch.cat([hidden_state, intermediate_hidden_states],
|
|
790
|
+
dim=-1)
|
|
791
|
+
return hidden_state
|
|
792
|
+
|
|
793
|
+
|
|
794
|
+
class MllamaTextRMSNorm(nn.Module):
|
|
795
|
+
|
|
796
|
+
def __init__(self, hidden_size, eps=1e-6):
|
|
797
|
+
"""
|
|
798
|
+
MllamaTextRMSNorm is equivalent to T5LayerNorm
|
|
799
|
+
"""
|
|
800
|
+
super().__init__()
|
|
801
|
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
802
|
+
self.variance_epsilon = eps
|
|
803
|
+
|
|
804
|
+
def forward(self, hidden_states):
|
|
805
|
+
input_dtype = hidden_states.dtype
|
|
806
|
+
hidden_states = hidden_states.to(torch.float32)
|
|
807
|
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
808
|
+
hidden_states = hidden_states * torch.rsqrt(variance +
|
|
809
|
+
self.variance_epsilon)
|
|
810
|
+
return self.weight * hidden_states.to(input_dtype)
|
|
811
|
+
|
|
812
|
+
def extra_repr(self):
|
|
813
|
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
|
814
|
+
|
|
815
|
+
|
|
816
|
+
class MllamaTextCrossAttention(nn.Module):
|
|
817
|
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
818
|
+
|
|
819
|
+
def __init__(
|
|
820
|
+
self,
|
|
821
|
+
config: Optional[config_mllama.MllamaTextConfig] = None,
|
|
822
|
+
layer_idx: Optional[int] = None,
|
|
823
|
+
quant_config: Optional[QuantizationConfig] = None,
|
|
824
|
+
prefix: str = "",
|
|
825
|
+
):
|
|
826
|
+
super().__init__()
|
|
827
|
+
self.config = config
|
|
828
|
+
self.pipeline_parallel_rank = get_pp_group().rank_in_group
|
|
829
|
+
self.tensor_parallel_size = get_tp_group().world_size
|
|
830
|
+
self.num_heads = config.num_attention_heads
|
|
831
|
+
self.num_key_value_heads = config.num_key_value_heads
|
|
832
|
+
|
|
833
|
+
self.num_local_heads = self.num_heads // self.tensor_parallel_size
|
|
834
|
+
self.num_local_key_value_heads = \
|
|
835
|
+
self.num_key_value_heads // self.tensor_parallel_size
|
|
836
|
+
self.hidden_size = config.hidden_size
|
|
837
|
+
self.head_dim = config.hidden_size // self.num_heads
|
|
838
|
+
self.num_key_value_heads = config.num_key_value_heads
|
|
839
|
+
|
|
840
|
+
self.layer_idx = layer_idx
|
|
841
|
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
842
|
+
self.q_local_size = self.num_local_heads * self.head_dim
|
|
843
|
+
self.kv_local_size = self.num_local_key_value_heads * self.head_dim
|
|
844
|
+
|
|
845
|
+
self.qkv_proj = QKVCrossParallelLinear(
|
|
846
|
+
self.hidden_size,
|
|
847
|
+
self.head_dim,
|
|
848
|
+
self.num_heads,
|
|
849
|
+
self.num_key_value_heads,
|
|
850
|
+
bias=False,
|
|
851
|
+
quant_config=quant_config,
|
|
852
|
+
prefix=f"{prefix}.qkv_proj",
|
|
853
|
+
)
|
|
854
|
+
|
|
855
|
+
self.o_proj = RowParallelLinear(
|
|
856
|
+
self.num_heads * self.head_dim,
|
|
857
|
+
self.hidden_size,
|
|
858
|
+
bias=False,
|
|
859
|
+
input_is_parallel=True,
|
|
860
|
+
quant_config=quant_config,
|
|
861
|
+
prefix=f"{prefix}.o_proj",
|
|
862
|
+
)
|
|
863
|
+
# vllm.model_executor.layers.layernorm.RMSNorm has precision issue,
|
|
864
|
+
# use huggingface's instead
|
|
865
|
+
self.q_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
|
866
|
+
self.k_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
|
867
|
+
self.scaling = self.head_dim**-0.5
|
|
868
|
+
|
|
869
|
+
self.attn = Attention(
|
|
870
|
+
self.num_local_heads,
|
|
871
|
+
self.head_dim,
|
|
872
|
+
self.scaling,
|
|
873
|
+
self.num_local_key_value_heads,
|
|
874
|
+
prefix=f"{prefix}.attn",
|
|
875
|
+
attn_type=AttentionType.ENCODER_DECODER,
|
|
876
|
+
)
|
|
877
|
+
|
|
878
|
+
def forward(
|
|
879
|
+
self,
|
|
880
|
+
hidden_states: torch.Tensor,
|
|
881
|
+
attention_mask: Optional[torch.Tensor],
|
|
882
|
+
kv_range_for_decode: Optional[list[tuple[int, int]]],
|
|
883
|
+
cross_attention_states: Optional[torch.Tensor],
|
|
884
|
+
) -> torch.Tensor:
|
|
885
|
+
q, k, v = self.qkv_proj(hidden_states, cross_attention_states)
|
|
886
|
+
if cross_attention_states is not None:
|
|
887
|
+
k = k.view(-1, self.num_local_key_value_heads, self.head_dim)
|
|
888
|
+
v = v.view(-1, self.num_local_key_value_heads, self.head_dim)
|
|
889
|
+
k = self.k_norm(k)
|
|
890
|
+
|
|
891
|
+
q = q.view(-1, self.num_local_heads, self.head_dim)
|
|
892
|
+
q = self.q_norm(q)
|
|
893
|
+
|
|
894
|
+
if attention_mask is not None:
|
|
895
|
+
output = self._attention_with_mask(q, k, v, attention_mask,
|
|
896
|
+
kv_range_for_decode)
|
|
897
|
+
else:
|
|
898
|
+
output = self.attn(
|
|
899
|
+
q.view(-1, self.num_local_heads * self.head_dim), k, v)
|
|
900
|
+
out, _ = self.o_proj(output)
|
|
901
|
+
return out
|
|
902
|
+
|
|
903
|
+
def _attention_with_mask(
|
|
904
|
+
self,
|
|
905
|
+
q: torch.Tensor,
|
|
906
|
+
k: torch.Tensor,
|
|
907
|
+
v: torch.Tensor,
|
|
908
|
+
attention_mask: torch.Tensor,
|
|
909
|
+
kv_range_for_decode: list[tuple[int, int]],
|
|
910
|
+
) -> torch.Tensor:
|
|
911
|
+
kv_cache = self.attn.kv_cache[self.pipeline_parallel_rank]
|
|
912
|
+
attn_metadata: AttentionMetadata = get_forward_context().attn_metadata
|
|
913
|
+
# Skip writing kv-cache for the initial profiling run.
|
|
914
|
+
# TODO (NickLucche) replace with custom attn bias and use standard attn
|
|
915
|
+
if len(kv_cache.shape) > 1:
|
|
916
|
+
i = torch.ones(1, dtype=torch.float32)
|
|
917
|
+
if self.attn.backend in (_Backend.FLASH_ATTN,
|
|
918
|
+
_Backend.FLASH_ATTN_VLLM_V1):
|
|
919
|
+
cached_k = torch.cat([k[s:e] for s, e in kv_range_for_decode])
|
|
920
|
+
cached_v = torch.cat([v[s:e] for s, e in kv_range_for_decode])
|
|
921
|
+
torch.ops._C_cache_ops.reshape_and_cache_flash(
|
|
922
|
+
cached_k,
|
|
923
|
+
cached_v,
|
|
924
|
+
kv_cache[0],
|
|
925
|
+
kv_cache[1],
|
|
926
|
+
attn_metadata.
|
|
927
|
+
cross_slot_mapping, # type: ignore[union-attr]
|
|
928
|
+
"auto",
|
|
929
|
+
i,
|
|
930
|
+
i,
|
|
931
|
+
)
|
|
932
|
+
elif self.attn.backend in (_Backend.XFORMERS, _Backend.ROCM_FLASH,
|
|
933
|
+
_Backend.TORCH_SDPA):
|
|
934
|
+
key_cache, value_cache = PagedAttention.split_kv_cache(
|
|
935
|
+
kv_cache, self.num_local_key_value_heads, self.head_dim)
|
|
936
|
+
cached_k = torch.cat([k[s:e] for s, e in kv_range_for_decode])
|
|
937
|
+
cached_v = torch.cat([v[s:e] for s, e in kv_range_for_decode])
|
|
938
|
+
PagedAttention.write_to_paged_cache(
|
|
939
|
+
cached_k, cached_v, key_cache, value_cache,
|
|
940
|
+
attn_metadata.cross_slot_mapping, "auto", i, i)
|
|
941
|
+
else:
|
|
942
|
+
raise ValueError(
|
|
943
|
+
f"Unsupported Attention backend {self.attn.backend} "
|
|
944
|
+
"enum found. Expected the Attention backend to be "
|
|
945
|
+
"FLASH_ATTN, FLASH_ATTN_VLLM_V1, "
|
|
946
|
+
"XFORMERS or TORCH_SDPA.")
|
|
947
|
+
|
|
948
|
+
# We have to call torch.sdpa for prefill when using a
|
|
949
|
+
# custom cross-attention mask. Because the mask is not a
|
|
950
|
+
# standard causal mask, neither a block diagonal mask which
|
|
951
|
+
# can be optimized by xformers.BlockDiagonalMask.
|
|
952
|
+
# The mask is specially calculated for supporting multi
|
|
953
|
+
# images and interleaved images.
|
|
954
|
+
q_len = q.shape[0]
|
|
955
|
+
kv_len = k.shape[0]
|
|
956
|
+
q = q.transpose(0, 1).view(self.num_local_key_value_heads,
|
|
957
|
+
self.num_key_value_groups, q_len,
|
|
958
|
+
self.head_dim).contiguous()
|
|
959
|
+
k = k.transpose(0,
|
|
960
|
+
1)[:,
|
|
961
|
+
None, :, :].expand(self.num_local_key_value_heads,
|
|
962
|
+
self.num_key_value_groups,
|
|
963
|
+
kv_len,
|
|
964
|
+
self.head_dim).contiguous()
|
|
965
|
+
v = v.transpose(0,
|
|
966
|
+
1)[:,
|
|
967
|
+
None, :, :].expand(self.num_local_key_value_heads,
|
|
968
|
+
self.num_key_value_groups,
|
|
969
|
+
kv_len,
|
|
970
|
+
self.head_dim).contiguous()
|
|
971
|
+
attention_mask = attention_mask.view(1, 1, q_len, kv_len)
|
|
972
|
+
output = F.scaled_dot_product_attention(q,
|
|
973
|
+
k,
|
|
974
|
+
v,
|
|
975
|
+
attn_mask=attention_mask,
|
|
976
|
+
is_causal=False)
|
|
977
|
+
output = output.permute(2, 0, 1, 3).reshape(
|
|
978
|
+
q_len, self.num_local_heads * self.head_dim)
|
|
979
|
+
return output
|
|
980
|
+
|
|
981
|
+
|
|
982
|
+
class MllamaCrossAttentionDecoderLayer(torch.nn.Module):
|
|
983
|
+
"""Cross-attention transformer block with tanh-gated attention
|
|
984
|
+
and feedforward."""
|
|
985
|
+
|
|
986
|
+
def __init__(
|
|
987
|
+
self,
|
|
988
|
+
config: config_mllama.MllamaTextConfig,
|
|
989
|
+
layer_idx: int,
|
|
990
|
+
quant_config: Optional[QuantizationConfig],
|
|
991
|
+
prefix: str = "",
|
|
992
|
+
) -> None:
|
|
993
|
+
super().__init__()
|
|
994
|
+
|
|
995
|
+
self.layer_idx = layer_idx
|
|
996
|
+
self.cross_attn = MllamaTextCrossAttention(
|
|
997
|
+
config=config,
|
|
998
|
+
layer_idx=layer_idx,
|
|
999
|
+
quant_config=quant_config,
|
|
1000
|
+
prefix=f"{prefix}.cross_attn",
|
|
1001
|
+
)
|
|
1002
|
+
|
|
1003
|
+
self.input_layernorm = RMSNorm(config.hidden_size,
|
|
1004
|
+
eps=config.rms_norm_eps)
|
|
1005
|
+
self.cross_attn_attn_gate = torch.nn.Parameter(torch.zeros(1))
|
|
1006
|
+
|
|
1007
|
+
self.mlp = LlamaMLP(
|
|
1008
|
+
hidden_size=config.hidden_size,
|
|
1009
|
+
intermediate_size=config.intermediate_size,
|
|
1010
|
+
hidden_act=config.hidden_act,
|
|
1011
|
+
quant_config=quant_config,
|
|
1012
|
+
prefix=f"{prefix}.mlp",
|
|
1013
|
+
)
|
|
1014
|
+
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
|
1015
|
+
eps=config.rms_norm_eps)
|
|
1016
|
+
self.cross_attn_mlp_gate = torch.nn.Parameter(torch.zeros(1))
|
|
1017
|
+
|
|
1018
|
+
def forward(
|
|
1019
|
+
self,
|
|
1020
|
+
hidden_states: torch.Tensor,
|
|
1021
|
+
cross_attention_states: torch.Tensor,
|
|
1022
|
+
cross_attention_mask: torch.Tensor,
|
|
1023
|
+
kv_range_for_decode: Optional[list[tuple[int, int]]],
|
|
1024
|
+
full_text_row_masked_out_mask: torch.Tensor,
|
|
1025
|
+
) -> torch.Tensor:
|
|
1026
|
+
residual = hidden_states
|
|
1027
|
+
hidden_states = self.input_layernorm(hidden_states)
|
|
1028
|
+
|
|
1029
|
+
hidden_states = self.cross_attn(
|
|
1030
|
+
hidden_states=hidden_states,
|
|
1031
|
+
attention_mask=cross_attention_mask,
|
|
1032
|
+
kv_range_for_decode=kv_range_for_decode,
|
|
1033
|
+
cross_attention_states=cross_attention_states,
|
|
1034
|
+
)
|
|
1035
|
+
hidden_states = full_text_row_masked_out_mask * hidden_states
|
|
1036
|
+
hidden_states = residual + self.cross_attn_attn_gate.tanh(
|
|
1037
|
+
) * hidden_states
|
|
1038
|
+
|
|
1039
|
+
residual = hidden_states
|
|
1040
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
1041
|
+
hidden_states = self.mlp(hidden_states)
|
|
1042
|
+
hidden_states = full_text_row_masked_out_mask * hidden_states
|
|
1043
|
+
hidden_states = residual + self.cross_attn_mlp_gate.tanh(
|
|
1044
|
+
) * hidden_states
|
|
1045
|
+
return hidden_states
|
|
1046
|
+
|
|
1047
|
+
|
|
1048
|
+
class MllamaTextModel(nn.Module):
|
|
1049
|
+
config_class = config_mllama.MllamaTextConfig
|
|
1050
|
+
base_model_prefix = "model"
|
|
1051
|
+
|
|
1052
|
+
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
1053
|
+
super().__init__()
|
|
1054
|
+
|
|
1055
|
+
config = vllm_config.model_config.hf_config.text_config
|
|
1056
|
+
cache_config = vllm_config.cache_config
|
|
1057
|
+
quant_config = vllm_config.quant_config
|
|
1058
|
+
|
|
1059
|
+
self.vocab_size = config.vocab_size
|
|
1060
|
+
self.embed_tokens = VocabParallelEmbedding(config.vocab_size + 8,
|
|
1061
|
+
config.hidden_size)
|
|
1062
|
+
self.cross_attention_layers = config.cross_attention_layers
|
|
1063
|
+
|
|
1064
|
+
layers = []
|
|
1065
|
+
for layer_idx in range(config.num_hidden_layers):
|
|
1066
|
+
if layer_idx in self.cross_attention_layers:
|
|
1067
|
+
layers.append(
|
|
1068
|
+
MllamaCrossAttentionDecoderLayer(
|
|
1069
|
+
config,
|
|
1070
|
+
layer_idx,
|
|
1071
|
+
quant_config=quant_config,
|
|
1072
|
+
prefix=f"{prefix}.layers.{layer_idx}",
|
|
1073
|
+
))
|
|
1074
|
+
else:
|
|
1075
|
+
# TODO: force LlamaDecoderLayer to config.attention_bias=False
|
|
1076
|
+
layers.append(
|
|
1077
|
+
LlamaDecoderLayer(
|
|
1078
|
+
config,
|
|
1079
|
+
cache_config=cache_config,
|
|
1080
|
+
quant_config=quant_config,
|
|
1081
|
+
prefix=f"{prefix}.layers.{layer_idx}",
|
|
1082
|
+
))
|
|
1083
|
+
|
|
1084
|
+
self.layers = nn.ModuleList(layers)
|
|
1085
|
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
1086
|
+
|
|
1087
|
+
def forward(
|
|
1088
|
+
self,
|
|
1089
|
+
input_ids: torch.LongTensor,
|
|
1090
|
+
positions: Optional[torch.LongTensor],
|
|
1091
|
+
cross_attention_states: Optional[torch.LongTensor],
|
|
1092
|
+
cross_attention_mask: Optional[torch.LongTensor],
|
|
1093
|
+
kv_range_for_decode: Optional[list[tuple[int, int]]],
|
|
1094
|
+
full_text_row_masked_out_mask: Optional[tuple[torch.Tensor,
|
|
1095
|
+
torch.Tensor]],
|
|
1096
|
+
skip_cross_attention: bool,
|
|
1097
|
+
) -> torch.Tensor:
|
|
1098
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
|
1099
|
+
hidden_states = inputs_embeds
|
|
1100
|
+
|
|
1101
|
+
for idx, decoder_layer in enumerate(self.layers):
|
|
1102
|
+
if idx in self.cross_attention_layers:
|
|
1103
|
+
if not skip_cross_attention:
|
|
1104
|
+
hidden_states = decoder_layer(
|
|
1105
|
+
hidden_states=hidden_states,
|
|
1106
|
+
cross_attention_states=cross_attention_states,
|
|
1107
|
+
cross_attention_mask=cross_attention_mask,
|
|
1108
|
+
kv_range_for_decode=kv_range_for_decode,
|
|
1109
|
+
full_text_row_masked_out_mask=
|
|
1110
|
+
full_text_row_masked_out_mask,
|
|
1111
|
+
)
|
|
1112
|
+
else:
|
|
1113
|
+
hidden_states, residual = decoder_layer(
|
|
1114
|
+
positions=positions,
|
|
1115
|
+
hidden_states=hidden_states,
|
|
1116
|
+
residual=None,
|
|
1117
|
+
)
|
|
1118
|
+
hidden_states = hidden_states + residual
|
|
1119
|
+
hidden_states = self.norm(hidden_states)
|
|
1120
|
+
return hidden_states
|
|
1121
|
+
|
|
1122
|
+
|
|
1123
|
+
class MllamaForCausalLM(nn.Module):
|
|
1124
|
+
config_class = config_mllama.MllamaTextConfig
|
|
1125
|
+
base_model_prefix = "language_model"
|
|
1126
|
+
_no_split_modules = [
|
|
1127
|
+
"MllamaCrossAttentionDecoderLayer", "MllamaSelfAttentionDecoderLayer"
|
|
1128
|
+
]
|
|
1129
|
+
|
|
1130
|
+
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
1131
|
+
super().__init__()
|
|
1132
|
+
|
|
1133
|
+
config = vllm_config.model_config.hf_config.text_config
|
|
1134
|
+
quant_config = vllm_config.quant_config
|
|
1135
|
+
|
|
1136
|
+
self.vocab_size = config.vocab_size
|
|
1137
|
+
self.model = MllamaTextModel(vllm_config=vllm_config,
|
|
1138
|
+
prefix=f"{prefix}.model")
|
|
1139
|
+
self.lm_head = ParallelLMHead(
|
|
1140
|
+
config.vocab_size,
|
|
1141
|
+
config.hidden_size,
|
|
1142
|
+
org_num_embeddings=config.vocab_size,
|
|
1143
|
+
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
|
|
1144
|
+
quant_config=quant_config,
|
|
1145
|
+
prefix=f"{prefix}.lm_head",
|
|
1146
|
+
)
|
|
1147
|
+
|
|
1148
|
+
def forward(
|
|
1149
|
+
self,
|
|
1150
|
+
input_ids: torch.LongTensor,
|
|
1151
|
+
positions: Optional[torch.LongTensor],
|
|
1152
|
+
cross_attention_states: Optional[torch.LongTensor],
|
|
1153
|
+
cross_attention_mask: Optional[torch.LongTensor],
|
|
1154
|
+
kv_range_for_decode: Optional[list[tuple[int, int]]],
|
|
1155
|
+
full_text_row_masked_out_mask: Optional[tuple[torch.Tensor,
|
|
1156
|
+
torch.Tensor]],
|
|
1157
|
+
skip_cross_attention: bool,
|
|
1158
|
+
) -> torch.Tensor:
|
|
1159
|
+
hidden_states = self.model(
|
|
1160
|
+
input_ids=input_ids,
|
|
1161
|
+
positions=positions,
|
|
1162
|
+
cross_attention_states=cross_attention_states,
|
|
1163
|
+
cross_attention_mask=cross_attention_mask,
|
|
1164
|
+
kv_range_for_decode=kv_range_for_decode,
|
|
1165
|
+
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
1166
|
+
skip_cross_attention=skip_cross_attention,
|
|
1167
|
+
)
|
|
1168
|
+
return hidden_states
|
|
1169
|
+
|
|
1170
|
+
|
|
1171
|
+
@MULTIMODAL_REGISTRY.register_processor(MllamaMultiModalProcessor,
|
|
1172
|
+
info=MllamaProcessingInfo,
|
|
1173
|
+
dummy_inputs=MllamaDummyInputsBuilder)
|
|
1174
|
+
class MllamaForConditionalGeneration(nn.Module, SupportsMultiModal,
|
|
1175
|
+
SupportsV0Only):
|
|
1176
|
+
packed_modules_mapping = {
|
|
1177
|
+
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
|
1178
|
+
"gate_up_proj": ["gate_proj", "up_proj"]
|
|
1179
|
+
}
|
|
1180
|
+
|
|
1181
|
+
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
1182
|
+
super().__init__()
|
|
1183
|
+
config: MllamaConfig = vllm_config.model_config.hf_config
|
|
1184
|
+
quant_config = vllm_config.quant_config
|
|
1185
|
+
self.config = config
|
|
1186
|
+
self.quant_config = quant_config
|
|
1187
|
+
self.vocab_size = config.text_config.vocab_size
|
|
1188
|
+
self.hidden_size = config.text_config.hidden_size
|
|
1189
|
+
self.max_num_tiles = config.vision_config.max_num_tiles
|
|
1190
|
+
self.vision_output_dim = config.vision_config.vision_output_dim
|
|
1191
|
+
self.pad_token_id = \
|
|
1192
|
+
config.pad_token_id if config.pad_token_id is not None else -1
|
|
1193
|
+
self.image_size = config.vision_config.image_size
|
|
1194
|
+
self.image_token_id = config.image_token_index
|
|
1195
|
+
|
|
1196
|
+
self.vision_model = MllamaVisionModel(config.vision_config,
|
|
1197
|
+
quant_config,
|
|
1198
|
+
prefix=maybe_prefix(
|
|
1199
|
+
prefix, "vision_model"))
|
|
1200
|
+
self.language_model = MllamaForCausalLM(
|
|
1201
|
+
vllm_config=vllm_config,
|
|
1202
|
+
prefix=maybe_prefix(prefix, "language_model"),
|
|
1203
|
+
)
|
|
1204
|
+
self.multi_modal_projector = ColumnParallelLinear(
|
|
1205
|
+
config.vision_config.vision_output_dim,
|
|
1206
|
+
config.text_config.hidden_size,
|
|
1207
|
+
bias=True,
|
|
1208
|
+
quant_config=quant_config,
|
|
1209
|
+
gather_output=True,
|
|
1210
|
+
prefix=maybe_prefix(prefix, "multi_modal_projector"),
|
|
1211
|
+
)
|
|
1212
|
+
self.logits_processor = LogitsProcessor(config.output_hidden_states,
|
|
1213
|
+
config.text_config.vocab_size)
|
|
1214
|
+
|
|
1215
|
+
def compute_logits(
|
|
1216
|
+
self,
|
|
1217
|
+
hidden_states: torch.Tensor,
|
|
1218
|
+
sampling_metadata: SamplingMetadata,
|
|
1219
|
+
) -> Optional[torch.Tensor]:
|
|
1220
|
+
logits = self.logits_processor(self.language_model.lm_head,
|
|
1221
|
+
hidden_states, sampling_metadata)
|
|
1222
|
+
return logits
|
|
1223
|
+
|
|
1224
|
+
def unpack_data(self,
|
|
1225
|
+
image_data: Union[list[torch.Tensor], torch.Tensor],
|
|
1226
|
+
padding_value=0) -> torch.Tensor:
|
|
1227
|
+
if isinstance(image_data, torch.Tensor):
|
|
1228
|
+
# torch.Tensor
|
|
1229
|
+
return image_data
|
|
1230
|
+
else:
|
|
1231
|
+
assert isinstance(
|
|
1232
|
+
image_data[0],
|
|
1233
|
+
torch.Tensor), "Image data is not properly batched."
|
|
1234
|
+
# list[torch.Tensor]
|
|
1235
|
+
bsz = len(image_data)
|
|
1236
|
+
max_length = max(t.size(0) for t in image_data)
|
|
1237
|
+
trailing_dims = image_data[0].shape[1:]
|
|
1238
|
+
for data in image_data:
|
|
1239
|
+
cur_trailing_dims = data.shape[1:]
|
|
1240
|
+
assert cur_trailing_dims == trailing_dims
|
|
1241
|
+
output_tensor = torch.full((bsz, max_length, *trailing_dims),
|
|
1242
|
+
padding_value,
|
|
1243
|
+
dtype=image_data[0].dtype,
|
|
1244
|
+
device=image_data[0].device)
|
|
1245
|
+
for i, t in enumerate(image_data):
|
|
1246
|
+
output_tensor[i, :t.size(0)] = t
|
|
1247
|
+
return output_tensor
|
|
1248
|
+
|
|
1249
|
+
def _parse_and_validate_image_input(self, **kwargs: object):
|
|
1250
|
+
# tensor with the same shape will be batched together by
|
|
1251
|
+
# MultiModalKwargs.batch, so pixel_values here can be:
|
|
1252
|
+
# - list[torch.Tensor]:
|
|
1253
|
+
# with shape (num_image, num_tiles, 3, image_res, image_res)
|
|
1254
|
+
# - torch.Tensor:
|
|
1255
|
+
# with shape (bs, num_image, num_tiles, 3, image_res, image_res)
|
|
1256
|
+
pixel_values: Optional[Union[list[list[torch.Tensor]],
|
|
1257
|
+
list[torch.Tensor],
|
|
1258
|
+
torch.Tensor]] = kwargs.pop(
|
|
1259
|
+
"pixel_values", None)
|
|
1260
|
+
image_embeds: Optional[Union[list[list[torch.Tensor]],
|
|
1261
|
+
list[torch.Tensor],
|
|
1262
|
+
torch.Tensor]] = kwargs.pop(
|
|
1263
|
+
"image_embeds", None)
|
|
1264
|
+
aspect_ratio_ids: Optional[Union[list[list[torch.Tensor]],
|
|
1265
|
+
list[torch.Tensor],
|
|
1266
|
+
torch.Tensor]] = kwargs.pop(
|
|
1267
|
+
"aspect_ratio_ids", None)
|
|
1268
|
+
aspect_ratio_mask: Optional[Union[list[list[torch.Tensor]],
|
|
1269
|
+
list[torch.Tensor],
|
|
1270
|
+
torch.Tensor]] = kwargs.pop(
|
|
1271
|
+
"aspect_ratio_mask", None)
|
|
1272
|
+
|
|
1273
|
+
if pixel_values is None and image_embeds is None:
|
|
1274
|
+
return None
|
|
1275
|
+
|
|
1276
|
+
if pixel_values is not None and image_embeds is not None:
|
|
1277
|
+
raise ValueError(
|
|
1278
|
+
"Both pixel values and image embeds are provided.")
|
|
1279
|
+
|
|
1280
|
+
if pixel_values is not None:
|
|
1281
|
+
assert aspect_ratio_ids is not None
|
|
1282
|
+
assert aspect_ratio_mask is not None
|
|
1283
|
+
|
|
1284
|
+
return MllamaImagePixelInputs(
|
|
1285
|
+
type="pixel_values",
|
|
1286
|
+
data=self.unpack_data(pixel_values),
|
|
1287
|
+
aspect_ratio_ids=self.unpack_data(aspect_ratio_ids),
|
|
1288
|
+
aspect_ratio_mask=self.unpack_data(aspect_ratio_mask))
|
|
1289
|
+
|
|
1290
|
+
if image_embeds is not None:
|
|
1291
|
+
raise NotImplementedError
|
|
1292
|
+
|
|
1293
|
+
raise AssertionError("This line should be unreachable.")
|
|
1294
|
+
|
|
1295
|
+
def _get_and_validate_encoder_lens(
|
|
1296
|
+
self,
|
|
1297
|
+
encoder_seq_lens: list[int],
|
|
1298
|
+
num_tiles: list[list[int]],
|
|
1299
|
+
num_tokens_per_tile: int,
|
|
1300
|
+
) -> list[int]:
|
|
1301
|
+
# Get the actual number of encoder tokens for each sample.
|
|
1302
|
+
# Because attn_metadata.encoder_seq_lens only counts the last
|
|
1303
|
+
# group of images for each sample, which is used to cheat the
|
|
1304
|
+
# block manager to allocate blocks for those images only.
|
|
1305
|
+
# See MllamaMultiModalProcessor for more details.
|
|
1306
|
+
actual_encoder_seq_lens = [
|
|
1307
|
+
sum(num_tile) * num_tokens_per_tile for num_tile in num_tiles
|
|
1308
|
+
]
|
|
1309
|
+
|
|
1310
|
+
# remove 0 encoder len entries for text-only requests for these
|
|
1311
|
+
# assertions
|
|
1312
|
+
attn_metadata_lens = [x for x in encoder_seq_lens if x > 0]
|
|
1313
|
+
assert len(actual_encoder_seq_lens) == len(attn_metadata_lens)
|
|
1314
|
+
for actual_len, last_group_len in zip(actual_encoder_seq_lens,
|
|
1315
|
+
attn_metadata_lens):
|
|
1316
|
+
assert actual_len >= last_group_len
|
|
1317
|
+
|
|
1318
|
+
return actual_encoder_seq_lens
|
|
1319
|
+
|
|
1320
|
+
def flat_encoder_result(self, cross_attention_states: torch.Tensor,
|
|
1321
|
+
attn_metadata: AttentionMetadata,
|
|
1322
|
+
actual_encoder_seq_lens: list[int]):
|
|
1323
|
+
|
|
1324
|
+
cross_attention_states_flat = torch.zeros(
|
|
1325
|
+
sum(actual_encoder_seq_lens),
|
|
1326
|
+
cross_attention_states.shape[-1],
|
|
1327
|
+
device=cross_attention_states.device,
|
|
1328
|
+
dtype=cross_attention_states.dtype)
|
|
1329
|
+
start_pos = 0
|
|
1330
|
+
for seq_len, vision_token_in_batch in zip(actual_encoder_seq_lens,
|
|
1331
|
+
cross_attention_states):
|
|
1332
|
+
end_pos = start_pos + seq_len
|
|
1333
|
+
cross_attention_states_flat[
|
|
1334
|
+
start_pos:end_pos] = vision_token_in_batch[:seq_len]
|
|
1335
|
+
start_pos = end_pos
|
|
1336
|
+
cross_attention_states = cross_attention_states_flat
|
|
1337
|
+
return cross_attention_states
|
|
1338
|
+
|
|
1339
|
+
def get_language_model(self) -> torch.nn.Module:
|
|
1340
|
+
return self.language_model
|
|
1341
|
+
|
|
1342
|
+
def get_cross_attention_states(
|
|
1343
|
+
self,
|
|
1344
|
+
image_inputs: MllamaImagePixelInputs,
|
|
1345
|
+
attn_metadata: AttentionMetadata,
|
|
1346
|
+
actual_encoder_seq_lens: list[int],
|
|
1347
|
+
) -> tuple[torch.Tensor]:
|
|
1348
|
+
# NOTE: llama's reference implementation runs vision model on CPU
|
|
1349
|
+
pixel_values = image_inputs['data']
|
|
1350
|
+
aspect_ratio_ids = image_inputs['aspect_ratio_ids']
|
|
1351
|
+
aspect_ratio_mask = image_inputs['aspect_ratio_mask']
|
|
1352
|
+
cross_attention_states = self.vision_model(pixel_values,
|
|
1353
|
+
aspect_ratio_ids,
|
|
1354
|
+
aspect_ratio_mask)
|
|
1355
|
+
cross_attention_states, _ = self.multi_modal_projector(
|
|
1356
|
+
cross_attention_states)
|
|
1357
|
+
|
|
1358
|
+
bsz, _, _, _, image_token_dim = tuple(cross_attention_states.shape)
|
|
1359
|
+
cross_attention_states = cross_attention_states.view(
|
|
1360
|
+
bsz, -1, image_token_dim)
|
|
1361
|
+
|
|
1362
|
+
cross_attention_states = self.flat_encoder_result(
|
|
1363
|
+
cross_attention_states, attn_metadata, actual_encoder_seq_lens)
|
|
1364
|
+
|
|
1365
|
+
return cross_attention_states
|
|
1366
|
+
|
|
1367
|
+
def get_cross_attention_mask(
|
|
1368
|
+
self,
|
|
1369
|
+
input_ids: torch.Tensor,
|
|
1370
|
+
attn_metadata: AttentionMetadata,
|
|
1371
|
+
num_tiles: list[list[int]],
|
|
1372
|
+
num_tokens_per_tile: int,
|
|
1373
|
+
dtype: torch.dtype,
|
|
1374
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
1375
|
+
token_ids = input_ids.tolist()
|
|
1376
|
+
start = 0
|
|
1377
|
+
batch_token_ids = []
|
|
1378
|
+
for seq_len in attn_metadata.seq_lens:
|
|
1379
|
+
batch_token_ids.append(token_ids[start:start + seq_len])
|
|
1380
|
+
start += seq_len
|
|
1381
|
+
sparse_mask = [
|
|
1382
|
+
get_cross_attention_token_mask(t, self.image_token_id)
|
|
1383
|
+
for t in batch_token_ids
|
|
1384
|
+
]
|
|
1385
|
+
|
|
1386
|
+
# Skip generating cross-attention mask if all samples
|
|
1387
|
+
# are text-only or have only 1 leading image.
|
|
1388
|
+
if skip_attention_mask(sparse_mask):
|
|
1389
|
+
return None, None
|
|
1390
|
+
|
|
1391
|
+
dense_mask, tile_range_for_decode = \
|
|
1392
|
+
convert_sparse_cross_attention_mask_to_dense(
|
|
1393
|
+
sparse_mask, num_tiles, attn_metadata.seq_lens)
|
|
1394
|
+
cross_attention_mask = \
|
|
1395
|
+
convert_dense_cross_attention_mask_to_tensor(
|
|
1396
|
+
dense_mask, num_tokens_per_tile, input_ids.device, dtype)
|
|
1397
|
+
kv_range_for_decode = [[
|
|
1398
|
+
t[0] * num_tokens_per_tile, t[1] * num_tokens_per_tile
|
|
1399
|
+
] for t in tile_range_for_decode]
|
|
1400
|
+
|
|
1401
|
+
return cross_attention_mask, kv_range_for_decode
|
|
1402
|
+
|
|
1403
|
+
def get_full_text_row_masked_out_mask(
|
|
1404
|
+
self,
|
|
1405
|
+
attn_metadata: AttentionMetadata,
|
|
1406
|
+
device: torch.device,
|
|
1407
|
+
) -> torch.Tensor:
|
|
1408
|
+
full_text_row_masked_out_mask = torch.ones(
|
|
1409
|
+
(attn_metadata.num_prefill_tokens, 1), dtype=torch.bool)
|
|
1410
|
+
start_pos = 0
|
|
1411
|
+
for seq_len, encoder_seq_len in zip(attn_metadata.seq_lens,
|
|
1412
|
+
attn_metadata.encoder_seq_lens):
|
|
1413
|
+
if encoder_seq_len == 0:
|
|
1414
|
+
full_text_row_masked_out_mask[start_pos:start_pos +
|
|
1415
|
+
seq_len] = False
|
|
1416
|
+
start_pos += seq_len
|
|
1417
|
+
full_text_row_masked_out_mask = full_text_row_masked_out_mask.to(
|
|
1418
|
+
device)
|
|
1419
|
+
return full_text_row_masked_out_mask
|
|
1420
|
+
|
|
1421
|
+
def forward(
|
|
1422
|
+
self,
|
|
1423
|
+
input_ids: torch.Tensor,
|
|
1424
|
+
positions: torch.Tensor,
|
|
1425
|
+
**kwargs: object,
|
|
1426
|
+
) -> Union[CausalLMOutputWithPast]:
|
|
1427
|
+
attn_metadata = get_forward_context().attn_metadata
|
|
1428
|
+
if attn_metadata.num_prefill_tokens > 0 and \
|
|
1429
|
+
attn_metadata.num_decode_tokens > 0:
|
|
1430
|
+
raise ValueError("Chunk prefill not supported")
|
|
1431
|
+
image_inputs = self._parse_and_validate_image_input(**kwargs)
|
|
1432
|
+
cross_attention_states = None
|
|
1433
|
+
cross_attention_mask = None
|
|
1434
|
+
kv_range_for_decode = None
|
|
1435
|
+
|
|
1436
|
+
# For 1) text-only prefill and decode, 2) image-present decode.
|
|
1437
|
+
if image_inputs is None:
|
|
1438
|
+
full_text_row_masked_out_mask = (
|
|
1439
|
+
attn_metadata.encoder_seq_lens_tensor
|
|
1440
|
+
!= 0).reshape(-1, 1).to(input_ids.device)
|
|
1441
|
+
skip_cross_attention = attn_metadata.max_encoder_seq_len == 0
|
|
1442
|
+
|
|
1443
|
+
# For image-present prefill.
|
|
1444
|
+
else:
|
|
1445
|
+
skip_cross_attention = False
|
|
1446
|
+
|
|
1447
|
+
num_tiles = [t.tolist() for t in kwargs.pop("num_tiles")]
|
|
1448
|
+
num_tokens_per_tile = calc_token_per_chunk(self.image_size)
|
|
1449
|
+
|
|
1450
|
+
actual_encoder_seq_lens = self._get_and_validate_encoder_lens(
|
|
1451
|
+
attn_metadata.encoder_seq_lens,
|
|
1452
|
+
num_tiles,
|
|
1453
|
+
num_tokens_per_tile,
|
|
1454
|
+
)
|
|
1455
|
+
|
|
1456
|
+
cross_attention_states = self.get_cross_attention_states(
|
|
1457
|
+
image_inputs, attn_metadata, actual_encoder_seq_lens)
|
|
1458
|
+
|
|
1459
|
+
full_text_row_masked_out_mask = \
|
|
1460
|
+
self.get_full_text_row_masked_out_mask(
|
|
1461
|
+
attn_metadata, input_ids.device)
|
|
1462
|
+
|
|
1463
|
+
cross_attention_mask, kv_range_for_decode = \
|
|
1464
|
+
self.get_cross_attention_mask(
|
|
1465
|
+
input_ids, attn_metadata, num_tiles,
|
|
1466
|
+
num_tokens_per_tile, cross_attention_states.dtype)
|
|
1467
|
+
|
|
1468
|
+
outputs = self.language_model(
|
|
1469
|
+
input_ids=input_ids,
|
|
1470
|
+
positions=positions,
|
|
1471
|
+
cross_attention_states=cross_attention_states,
|
|
1472
|
+
cross_attention_mask=cross_attention_mask,
|
|
1473
|
+
kv_range_for_decode=kv_range_for_decode,
|
|
1474
|
+
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
1475
|
+
skip_cross_attention=skip_cross_attention,
|
|
1476
|
+
)
|
|
1477
|
+
|
|
1478
|
+
return outputs
|
|
1479
|
+
|
|
1480
|
+
def load_weights(self, weights: Iterable[tuple[str,
|
|
1481
|
+
torch.Tensor]]) -> set[str]:
|
|
1482
|
+
stacked_params_mapping = [
|
|
1483
|
+
# (param_name, shard_name, shard_id)
|
|
1484
|
+
(".qkv_proj", ".q_proj", "q"),
|
|
1485
|
+
(".qkv_proj", ".k_proj", "k"),
|
|
1486
|
+
(".qkv_proj", ".v_proj", "v"),
|
|
1487
|
+
(".gate_up_proj", ".gate_proj", 0),
|
|
1488
|
+
(".gate_up_proj", ".up_proj", 1),
|
|
1489
|
+
]
|
|
1490
|
+
params_dict = dict(self.named_parameters())
|
|
1491
|
+
updated_params: set[str] = set()
|
|
1492
|
+
for name, loaded_weight in weights:
|
|
1493
|
+
if 'patch_embedding.weight' in name:
|
|
1494
|
+
name = name.replace('patch_embedding.weight',
|
|
1495
|
+
'patch_embedding._linear.weight')
|
|
1496
|
+
loaded_weight = loaded_weight.view(loaded_weight.shape[0], -1)
|
|
1497
|
+
if (self.quant_config is not None and
|
|
1498
|
+
(scale_name := self.quant_config.get_cache_scale(name))):
|
|
1499
|
+
# Loading kv cache quantization scales
|
|
1500
|
+
param = params_dict[scale_name]
|
|
1501
|
+
weight_loader = getattr(param, "weight_loader",
|
|
1502
|
+
default_weight_loader)
|
|
1503
|
+
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
|
|
1504
|
+
loaded_weight[0])
|
|
1505
|
+
weight_loader(param, loaded_weight)
|
|
1506
|
+
updated_params.add(scale_name)
|
|
1507
|
+
continue
|
|
1508
|
+
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
1509
|
+
if weight_name not in name:
|
|
1510
|
+
continue
|
|
1511
|
+
name = name.replace(weight_name, param_name)
|
|
1512
|
+
param = params_dict[name]
|
|
1513
|
+
updated_params.add(name)
|
|
1514
|
+
weight_loader = param.weight_loader
|
|
1515
|
+
weight_loader(param, loaded_weight, shard_id)
|
|
1516
|
+
break
|
|
1517
|
+
else:
|
|
1518
|
+
orig_name = name
|
|
1519
|
+
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
1520
|
+
if name is None:
|
|
1521
|
+
logger.debug("Missing name %s, orig name %s", name,
|
|
1522
|
+
orig_name)
|
|
1523
|
+
continue
|
|
1524
|
+
|
|
1525
|
+
param = params_dict.pop(name)
|
|
1526
|
+
weight_loader = getattr(param, "weight_loader",
|
|
1527
|
+
default_weight_loader)
|
|
1528
|
+
weight_loader(param, loaded_weight)
|
|
1529
|
+
updated_params.add(name)
|
|
1530
|
+
return updated_params
|
|
1531
|
+
|
|
1532
|
+
def get_mm_mapping(self) -> MultiModelKeys:
|
|
1533
|
+
"""
|
|
1534
|
+
Get the module prefix in multimodal models
|
|
1535
|
+
"""
|
|
1536
|
+
return MultiModelKeys.from_string_field(
|
|
1537
|
+
language_model="language_model",
|
|
1538
|
+
connector="multi_modal_projector",
|
|
1539
|
+
tower_model="vision_model")
|
|
1540
|
+
|
|
1541
|
+
|
|
1542
|
+
def skip_attention_mask(sparse_mask: list[list[int]]) -> bool:
|
|
1543
|
+
for mask in sparse_mask:
|
|
1544
|
+
# Skip text-only samples.
|
|
1545
|
+
if len(mask) == 0:
|
|
1546
|
+
continue
|
|
1547
|
+
# If the sample contains more than 1 images,
|
|
1548
|
+
# we can't skip mask.
|
|
1549
|
+
if len(mask) != 1:
|
|
1550
|
+
return False
|
|
1551
|
+
# If the sample contains only 1 image,
|
|
1552
|
+
# but the image is not the leading one,
|
|
1553
|
+
# we can't skip mask.
|
|
1554
|
+
if mask[0][0] != 0 or mask[0][1] != -1:
|
|
1555
|
+
return False
|
|
1556
|
+
return True
|
|
1557
|
+
|
|
1558
|
+
|
|
1559
|
+
def convert_sparse_cross_attention_mask_to_dense(
|
|
1560
|
+
sparse_mask: list[list[list[int]]],
|
|
1561
|
+
num_tiles: list[list[int]],
|
|
1562
|
+
lengths: list[int],
|
|
1563
|
+
) -> tuple[np.ndarray, list[tuple[int, int]]]:
|
|
1564
|
+
total_length = sum(lengths)
|
|
1565
|
+
total_tiles = sum([sum(tiles) for tiles in num_tiles])
|
|
1566
|
+
dense_mask = np.zeros(shape=(total_length, total_tiles), dtype=np.int64)
|
|
1567
|
+
# A list of ranges, range[i] = [start, end] means that the i-th image will
|
|
1568
|
+
# use tiles[start, end] for cross-attention decoding.
|
|
1569
|
+
tile_range_for_decode = []
|
|
1570
|
+
|
|
1571
|
+
seq_start = 0
|
|
1572
|
+
tile_start = 0
|
|
1573
|
+
|
|
1574
|
+
# sparse_mask has an [] entry for each sequence that does not have images,
|
|
1575
|
+
# but num_tiles does not have these entries...
|
|
1576
|
+
num_tiles_idx = 0
|
|
1577
|
+
for masks, length in zip(sparse_mask, lengths):
|
|
1578
|
+
if len(masks) == 0:
|
|
1579
|
+
# Text only
|
|
1580
|
+
continue
|
|
1581
|
+
|
|
1582
|
+
tiles = num_tiles[num_tiles_idx]
|
|
1583
|
+
num_tiles_idx += 1
|
|
1584
|
+
ts, td = -1, 0
|
|
1585
|
+
for mask, tile in zip(masks, tiles):
|
|
1586
|
+
if len(mask) != 2:
|
|
1587
|
+
continue
|
|
1588
|
+
start, end = mask
|
|
1589
|
+
end = min(end, length)
|
|
1590
|
+
if end == -1:
|
|
1591
|
+
end = length
|
|
1592
|
+
if end == length:
|
|
1593
|
+
if ts == -1:
|
|
1594
|
+
ts = tile_start
|
|
1595
|
+
td += tile
|
|
1596
|
+
dense_mask[seq_start + start:seq_start + end,
|
|
1597
|
+
tile_start:tile_start + tile] = 1
|
|
1598
|
+
tile_start += tile
|
|
1599
|
+
assert ts != -1
|
|
1600
|
+
assert td != 0
|
|
1601
|
+
tile_range_for_decode.append((ts, ts + td))
|
|
1602
|
+
seq_start += length
|
|
1603
|
+
assert num_tiles_idx == len(num_tiles)
|
|
1604
|
+
|
|
1605
|
+
return dense_mask, tile_range_for_decode
|
|
1606
|
+
|
|
1607
|
+
|
|
1608
|
+
def convert_dense_cross_attention_mask_to_tensor(
|
|
1609
|
+
cross_attention_token_mask: np.ndarray,
|
|
1610
|
+
num_tokens_per_tile: int,
|
|
1611
|
+
device: torch.device,
|
|
1612
|
+
dtype: torch.dtype,
|
|
1613
|
+
) -> torch.Tensor:
|
|
1614
|
+
mask = torch.tensor(cross_attention_token_mask, dtype=dtype, device=device)
|
|
1615
|
+
mask = mask.repeat_interleave(num_tokens_per_tile, dim=1)
|
|
1616
|
+
|
|
1617
|
+
mask = 1.0 - mask
|
|
1618
|
+
mask = mask.masked_fill(mask.to(torch.bool), torch.finfo(dtype).min)
|
|
1619
|
+
|
|
1620
|
+
ninf = torch.finfo(dtype).min
|
|
1621
|
+
full_text_mask = ((mask != ninf).any(dim=-1).type_as(mask)[..., None])
|
|
1622
|
+
mask *= full_text_mask
|
|
1623
|
+
# (num_prompt_tokens, num_encoder_tokens)
|
|
1624
|
+
return mask
|