vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1197) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +53 -0
  3. vllm/_custom_ops.py +1828 -0
  4. vllm/_ipex_ops.py +244 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +115 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +308 -0
  20. vllm/attention/backends/blocksparse_attn.py +461 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
  23. vllm/attention/backends/flash_attn.py +1003 -0
  24. vllm/attention/backends/flashinfer.py +1104 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +313 -0
  27. vllm/attention/backends/ipex_attn.py +398 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1385 -0
  30. vllm/attention/backends/pallas.py +351 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +975 -0
  34. vllm/attention/backends/torch_sdpa.py +703 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +802 -0
  38. vllm/attention/layer.py +468 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +906 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/prefix_prefill.py +902 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  54. vllm/attention/ops/triton_decode_attention.py +674 -0
  55. vllm/attention/ops/triton_flash_attention.py +979 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  57. vllm/attention/ops/triton_unified_attention.py +334 -0
  58. vllm/attention/selector.py +187 -0
  59. vllm/attention/utils/fa_utils.py +55 -0
  60. vllm/beam_search.py +87 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +1185 -0
  63. vllm/benchmarks/endpoint_request_func.py +381 -0
  64. vllm/benchmarks/latency.py +168 -0
  65. vllm/benchmarks/serve.py +1135 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +70 -0
  68. vllm/collect_env.py +820 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +89 -0
  71. vllm/compilation/backends.py +563 -0
  72. vllm/compilation/base_piecewise_backend.py +72 -0
  73. vllm/compilation/collective_fusion.py +127 -0
  74. vllm/compilation/compiler_interface.py +544 -0
  75. vllm/compilation/counter.py +38 -0
  76. vllm/compilation/cuda_piecewise_backend.py +214 -0
  77. vllm/compilation/decorators.py +250 -0
  78. vllm/compilation/fix_functionalization.py +191 -0
  79. vllm/compilation/fusion.py +618 -0
  80. vllm/compilation/fx_utils.py +62 -0
  81. vllm/compilation/inductor_pass.py +115 -0
  82. vllm/compilation/monitor.py +39 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +137 -0
  85. vllm/compilation/pass_manager.py +78 -0
  86. vllm/compilation/sequence_parallelism.py +268 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +67 -0
  89. vllm/compilation/wrapper.py +135 -0
  90. vllm/config.py +4746 -0
  91. vllm/connections.py +174 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +399 -0
  95. vllm/core/block/common.py +371 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  97. vllm/core/block/interfaces.py +319 -0
  98. vllm/core/block/naive_block.py +466 -0
  99. vllm/core/block/prefix_caching_block.py +1135 -0
  100. vllm/core/block/utils.py +28 -0
  101. vllm/core/block_manager.py +521 -0
  102. vllm/core/evictor.py +157 -0
  103. vllm/core/interfaces.py +135 -0
  104. vllm/core/placeholder_block_space_manager.py +100 -0
  105. vllm/core/scheduler.py +2093 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +281 -0
  108. vllm/distributed/__init__.py +6 -0
  109. vllm/distributed/communication_op.py +41 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +264 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +176 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  120. vllm/distributed/device_communicators/pynccl.py +218 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  125. vllm/distributed/kv_events.py +356 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +12 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  152. vllm/distributed/parallel_state.py +1296 -0
  153. vllm/distributed/tpu_distributed_utils.py +177 -0
  154. vllm/distributed/utils.py +536 -0
  155. vllm/engine/__init__.py +0 -0
  156. vllm/engine/arg_utils.py +1708 -0
  157. vllm/engine/async_llm_engine.py +1200 -0
  158. vllm/engine/async_timeout.py +173 -0
  159. vllm/engine/llm_engine.py +2097 -0
  160. vllm/engine/metrics.py +629 -0
  161. vllm/engine/metrics_types.py +94 -0
  162. vllm/engine/multiprocessing/__init__.py +148 -0
  163. vllm/engine/multiprocessing/client.py +681 -0
  164. vllm/engine/multiprocessing/engine.py +460 -0
  165. vllm/engine/output_processor/__init__.py +0 -0
  166. vllm/engine/output_processor/interfaces.py +75 -0
  167. vllm/engine/output_processor/multi_step.py +216 -0
  168. vllm/engine/output_processor/single_step.py +145 -0
  169. vllm/engine/output_processor/stop_checker.py +131 -0
  170. vllm/engine/output_processor/util.py +28 -0
  171. vllm/engine/protocol.py +317 -0
  172. vllm/entrypoints/__init__.py +0 -0
  173. vllm/entrypoints/api_server.py +178 -0
  174. vllm/entrypoints/chat_utils.py +1299 -0
  175. vllm/entrypoints/cli/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  177. vllm/entrypoints/cli/benchmark/base.py +39 -0
  178. vllm/entrypoints/cli/benchmark/latency.py +30 -0
  179. vllm/entrypoints/cli/benchmark/main.py +54 -0
  180. vllm/entrypoints/cli/benchmark/serve.py +30 -0
  181. vllm/entrypoints/cli/benchmark/throughput.py +30 -0
  182. vllm/entrypoints/cli/collect_env.py +35 -0
  183. vllm/entrypoints/cli/main.py +65 -0
  184. vllm/entrypoints/cli/openai.py +205 -0
  185. vllm/entrypoints/cli/run_batch.py +62 -0
  186. vllm/entrypoints/cli/serve.py +328 -0
  187. vllm/entrypoints/cli/types.py +25 -0
  188. vllm/entrypoints/launcher.py +147 -0
  189. vllm/entrypoints/llm.py +1544 -0
  190. vllm/entrypoints/logger.py +50 -0
  191. vllm/entrypoints/openai/__init__.py +0 -0
  192. vllm/entrypoints/openai/api_server.py +1387 -0
  193. vllm/entrypoints/openai/cli_args.py +315 -0
  194. vllm/entrypoints/openai/logits_processors.py +90 -0
  195. vllm/entrypoints/openai/protocol.py +1913 -0
  196. vllm/entrypoints/openai/run_batch.py +463 -0
  197. vllm/entrypoints/openai/serving_chat.py +1221 -0
  198. vllm/entrypoints/openai/serving_classification.py +160 -0
  199. vllm/entrypoints/openai/serving_completion.py +592 -0
  200. vllm/entrypoints/openai/serving_embedding.py +201 -0
  201. vllm/entrypoints/openai/serving_engine.py +986 -0
  202. vllm/entrypoints/openai/serving_models.py +315 -0
  203. vllm/entrypoints/openai/serving_pooling.py +232 -0
  204. vllm/entrypoints/openai/serving_score.py +433 -0
  205. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  206. vllm/entrypoints/openai/serving_transcription.py +424 -0
  207. vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
  208. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  209. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  210. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  211. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  212. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  213. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  214. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  215. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  216. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  217. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  218. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  219. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  220. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  221. vllm/entrypoints/score_utils.py +50 -0
  222. vllm/entrypoints/ssl.py +75 -0
  223. vllm/entrypoints/utils.py +233 -0
  224. vllm/env_override.py +41 -0
  225. vllm/envs.py +944 -0
  226. vllm/executor/__init__.py +0 -0
  227. vllm/executor/executor_base.py +401 -0
  228. vllm/executor/mp_distributed_executor.py +244 -0
  229. vllm/executor/msgspec_utils.py +30 -0
  230. vllm/executor/multiproc_worker_utils.py +313 -0
  231. vllm/executor/ray_distributed_executor.py +701 -0
  232. vllm/executor/ray_utils.py +399 -0
  233. vllm/executor/uniproc_executor.py +139 -0
  234. vllm/forward_context.py +179 -0
  235. vllm/inputs/__init__.py +41 -0
  236. vllm/inputs/data.py +331 -0
  237. vllm/inputs/parse.py +151 -0
  238. vllm/inputs/preprocess.py +909 -0
  239. vllm/inputs/registry.py +237 -0
  240. vllm/jsontree.py +80 -0
  241. vllm/logger.py +212 -0
  242. vllm/logging_utils/__init__.py +8 -0
  243. vllm/logging_utils/dump_input.py +85 -0
  244. vllm/logging_utils/formatter.py +18 -0
  245. vllm/logits_process.py +119 -0
  246. vllm/lora/__init__.py +0 -0
  247. vllm/lora/fully_sharded_layers.py +355 -0
  248. vllm/lora/layers.py +1285 -0
  249. vllm/lora/lora.py +199 -0
  250. vllm/lora/models.py +818 -0
  251. vllm/lora/ops/__init__.py +0 -0
  252. vllm/lora/ops/torch_ops/__init__.py +16 -0
  253. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  254. vllm/lora/ops/triton_ops/__init__.py +12 -0
  255. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  256. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  257. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  258. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  259. vllm/lora/ops/triton_ops/utils.py +120 -0
  260. vllm/lora/ops/xla_ops/__init__.py +7 -0
  261. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  262. vllm/lora/peft_helper.py +136 -0
  263. vllm/lora/punica_wrapper/__init__.py +10 -0
  264. vllm/lora/punica_wrapper/punica_base.py +485 -0
  265. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  266. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  267. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  268. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  269. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  270. vllm/lora/punica_wrapper/utils.py +164 -0
  271. vllm/lora/request.py +99 -0
  272. vllm/lora/resolver.py +85 -0
  273. vllm/lora/utils.py +240 -0
  274. vllm/lora/worker_manager.py +259 -0
  275. vllm/model_executor/__init__.py +16 -0
  276. vllm/model_executor/custom_op.py +152 -0
  277. vllm/model_executor/guided_decoding/__init__.py +181 -0
  278. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  279. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  280. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  281. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  282. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  283. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  284. vllm/model_executor/guided_decoding/utils.py +242 -0
  285. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  286. vllm/model_executor/layers/__init__.py +0 -0
  287. vllm/model_executor/layers/activation.py +369 -0
  288. vllm/model_executor/layers/fused_moe/__init__.py +54 -0
  289. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
  290. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  455. vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
  456. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
  457. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
  458. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
  459. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
  460. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
  461. vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
  462. vllm/model_executor/layers/fused_moe/layer.py +1535 -0
  463. vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
  464. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  465. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  466. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  467. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  468. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
  469. vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
  470. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
  471. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
  472. vllm/model_executor/layers/fused_moe/utils.py +98 -0
  473. vllm/model_executor/layers/layernorm.py +288 -0
  474. vllm/model_executor/layers/lightning_attn.py +652 -0
  475. vllm/model_executor/layers/linear.py +1524 -0
  476. vllm/model_executor/layers/logits_processor.py +197 -0
  477. vllm/model_executor/layers/mamba/__init__.py +0 -0
  478. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  479. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  480. vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
  481. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  482. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  483. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  484. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  485. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  486. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  487. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  488. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  489. vllm/model_executor/layers/pooler.py +350 -0
  490. vllm/model_executor/layers/quantization/__init__.py +157 -0
  491. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  492. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  493. vllm/model_executor/layers/quantization/awq.py +194 -0
  494. vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
  495. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  496. vllm/model_executor/layers/quantization/base_config.py +151 -0
  497. vllm/model_executor/layers/quantization/bitblas.py +461 -0
  498. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  505. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  506. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
  507. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
  508. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  509. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  510. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  511. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  512. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  513. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  514. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  515. vllm/model_executor/layers/quantization/experts_int8.py +196 -0
  516. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  517. vllm/model_executor/layers/quantization/fp8.py +906 -0
  518. vllm/model_executor/layers/quantization/gguf.py +565 -0
  519. vllm/model_executor/layers/quantization/gptq.py +278 -0
  520. vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
  521. vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
  522. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  523. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  524. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  525. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  526. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  527. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  528. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  529. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  530. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  531. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
  532. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  533. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  534. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  535. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  536. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  537. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  538. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  539. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  540. vllm/model_executor/layers/quantization/marlin.py +261 -0
  541. vllm/model_executor/layers/quantization/modelopt.py +737 -0
  542. vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
  543. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  544. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  545. vllm/model_executor/layers/quantization/qqq.py +275 -0
  546. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  547. vllm/model_executor/layers/quantization/quark/quark.py +441 -0
  548. vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
  549. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  550. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  551. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  552. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
  553. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  554. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  555. vllm/model_executor/layers/quantization/schema.py +86 -0
  556. vllm/model_executor/layers/quantization/torchao.py +161 -0
  557. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  558. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  559. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  560. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
  764. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  765. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  766. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  767. vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
  768. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  769. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  770. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  771. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  772. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  773. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  774. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  775. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
  776. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  777. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  778. vllm/model_executor/layers/rejection_sampler.py +406 -0
  779. vllm/model_executor/layers/resampler.py +270 -0
  780. vllm/model_executor/layers/rotary_embedding.py +1862 -0
  781. vllm/model_executor/layers/sampler.py +1204 -0
  782. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  783. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  784. vllm/model_executor/layers/utils.py +95 -0
  785. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  786. vllm/model_executor/model_loader/__init__.py +76 -0
  787. vllm/model_executor/model_loader/base_loader.py +43 -0
  788. vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
  789. vllm/model_executor/model_loader/default_loader.py +282 -0
  790. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  791. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  792. vllm/model_executor/model_loader/neuron.py +476 -0
  793. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  794. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  795. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  796. vllm/model_executor/model_loader/tensorizer.py +600 -0
  797. vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
  798. vllm/model_executor/model_loader/tpu.py +112 -0
  799. vllm/model_executor/model_loader/utils.py +302 -0
  800. vllm/model_executor/model_loader/weight_utils.py +782 -0
  801. vllm/model_executor/models/__init__.py +28 -0
  802. vllm/model_executor/models/adapters.py +248 -0
  803. vllm/model_executor/models/aimv2.py +246 -0
  804. vllm/model_executor/models/arctic.py +559 -0
  805. vllm/model_executor/models/aria.py +657 -0
  806. vllm/model_executor/models/aya_vision.py +466 -0
  807. vllm/model_executor/models/baichuan.py +474 -0
  808. vllm/model_executor/models/bamba.py +543 -0
  809. vllm/model_executor/models/bart.py +938 -0
  810. vllm/model_executor/models/bert.py +523 -0
  811. vllm/model_executor/models/bert_with_rope.py +769 -0
  812. vllm/model_executor/models/blip.py +339 -0
  813. vllm/model_executor/models/blip2.py +718 -0
  814. vllm/model_executor/models/bloom.py +373 -0
  815. vllm/model_executor/models/chameleon.py +1136 -0
  816. vllm/model_executor/models/chatglm.py +478 -0
  817. vllm/model_executor/models/clip.py +407 -0
  818. vllm/model_executor/models/commandr.py +472 -0
  819. vllm/model_executor/models/constant_size_cache.py +137 -0
  820. vllm/model_executor/models/dbrx.py +472 -0
  821. vllm/model_executor/models/deepseek.py +486 -0
  822. vllm/model_executor/models/deepseek_mtp.py +269 -0
  823. vllm/model_executor/models/deepseek_v2.py +843 -0
  824. vllm/model_executor/models/deepseek_vl2.py +648 -0
  825. vllm/model_executor/models/eagle.py +260 -0
  826. vllm/model_executor/models/exaone.py +551 -0
  827. vllm/model_executor/models/fairseq2_llama.py +154 -0
  828. vllm/model_executor/models/falcon.py +510 -0
  829. vllm/model_executor/models/falcon_h1.py +685 -0
  830. vllm/model_executor/models/florence2.py +1103 -0
  831. vllm/model_executor/models/fuyu.py +389 -0
  832. vllm/model_executor/models/gemma.py +425 -0
  833. vllm/model_executor/models/gemma2.py +425 -0
  834. vllm/model_executor/models/gemma3.py +533 -0
  835. vllm/model_executor/models/gemma3_mm.py +709 -0
  836. vllm/model_executor/models/glm.py +23 -0
  837. vllm/model_executor/models/glm4.py +305 -0
  838. vllm/model_executor/models/glm4v.py +648 -0
  839. vllm/model_executor/models/gpt2.py +328 -0
  840. vllm/model_executor/models/gpt_bigcode.py +335 -0
  841. vllm/model_executor/models/gpt_j.py +339 -0
  842. vllm/model_executor/models/gpt_neox.py +332 -0
  843. vllm/model_executor/models/granite.py +493 -0
  844. vllm/model_executor/models/granite_speech.py +779 -0
  845. vllm/model_executor/models/granitemoe.py +437 -0
  846. vllm/model_executor/models/granitemoehybrid.py +586 -0
  847. vllm/model_executor/models/granitemoeshared.py +341 -0
  848. vllm/model_executor/models/gritlm.py +224 -0
  849. vllm/model_executor/models/grok1.py +546 -0
  850. vllm/model_executor/models/h2ovl.py +546 -0
  851. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  852. vllm/model_executor/models/idefics3.py +776 -0
  853. vllm/model_executor/models/interfaces.py +572 -0
  854. vllm/model_executor/models/interfaces_base.py +164 -0
  855. vllm/model_executor/models/intern_vit.py +480 -0
  856. vllm/model_executor/models/internlm2.py +455 -0
  857. vllm/model_executor/models/internlm2_ve.py +147 -0
  858. vllm/model_executor/models/internvl.py +1418 -0
  859. vllm/model_executor/models/jais.py +373 -0
  860. vllm/model_executor/models/jamba.py +592 -0
  861. vllm/model_executor/models/kimi_vl.py +577 -0
  862. vllm/model_executor/models/llama.py +644 -0
  863. vllm/model_executor/models/llama4.py +532 -0
  864. vllm/model_executor/models/llama_eagle.py +165 -0
  865. vllm/model_executor/models/llama_eagle3.py +263 -0
  866. vllm/model_executor/models/llava.py +866 -0
  867. vllm/model_executor/models/llava_next.py +586 -0
  868. vllm/model_executor/models/llava_next_video.py +471 -0
  869. vllm/model_executor/models/llava_onevision.py +956 -0
  870. vllm/model_executor/models/mamba.py +273 -0
  871. vllm/model_executor/models/mamba2.py +308 -0
  872. vllm/model_executor/models/mamba_cache.py +76 -0
  873. vllm/model_executor/models/medusa.py +219 -0
  874. vllm/model_executor/models/mimo.py +192 -0
  875. vllm/model_executor/models/mimo_mtp.py +285 -0
  876. vllm/model_executor/models/minicpm.py +592 -0
  877. vllm/model_executor/models/minicpm3.py +230 -0
  878. vllm/model_executor/models/minicpm_eagle.py +391 -0
  879. vllm/model_executor/models/minicpmo.py +759 -0
  880. vllm/model_executor/models/minicpmv.py +1287 -0
  881. vllm/model_executor/models/minimax_cache.py +36 -0
  882. vllm/model_executor/models/minimax_text_01.py +1301 -0
  883. vllm/model_executor/models/minimax_vl_01.py +364 -0
  884. vllm/model_executor/models/mistral3.py +604 -0
  885. vllm/model_executor/models/mixtral.py +488 -0
  886. vllm/model_executor/models/mixtral_quant.py +453 -0
  887. vllm/model_executor/models/mllama.py +1624 -0
  888. vllm/model_executor/models/mllama4.py +938 -0
  889. vllm/model_executor/models/mlp_speculator.py +206 -0
  890. vllm/model_executor/models/modernbert.py +331 -0
  891. vllm/model_executor/models/module_mapping.py +72 -0
  892. vllm/model_executor/models/molmo.py +1568 -0
  893. vllm/model_executor/models/moonvit.py +630 -0
  894. vllm/model_executor/models/mpt.py +331 -0
  895. vllm/model_executor/models/nemotron.py +508 -0
  896. vllm/model_executor/models/nemotron_h.py +573 -0
  897. vllm/model_executor/models/nemotron_nas.py +484 -0
  898. vllm/model_executor/models/nvlm_d.py +216 -0
  899. vllm/model_executor/models/olmo.py +389 -0
  900. vllm/model_executor/models/olmo2.py +414 -0
  901. vllm/model_executor/models/olmoe.py +468 -0
  902. vllm/model_executor/models/opt.py +412 -0
  903. vllm/model_executor/models/orion.py +349 -0
  904. vllm/model_executor/models/ovis.py +567 -0
  905. vllm/model_executor/models/paligemma.py +398 -0
  906. vllm/model_executor/models/persimmon.py +344 -0
  907. vllm/model_executor/models/phi.py +356 -0
  908. vllm/model_executor/models/phi3.py +19 -0
  909. vllm/model_executor/models/phi3_small.py +465 -0
  910. vllm/model_executor/models/phi3v.py +723 -0
  911. vllm/model_executor/models/phi4mm.py +1246 -0
  912. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  913. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  914. vllm/model_executor/models/phimoe.py +665 -0
  915. vllm/model_executor/models/pixtral.py +1316 -0
  916. vllm/model_executor/models/plamo2.py +738 -0
  917. vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
  918. vllm/model_executor/models/qwen.py +362 -0
  919. vllm/model_executor/models/qwen2.py +497 -0
  920. vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
  921. vllm/model_executor/models/qwen2_5_vl.py +1166 -0
  922. vllm/model_executor/models/qwen2_audio.py +410 -0
  923. vllm/model_executor/models/qwen2_moe.py +540 -0
  924. vllm/model_executor/models/qwen2_rm.py +132 -0
  925. vllm/model_executor/models/qwen2_vl.py +1405 -0
  926. vllm/model_executor/models/qwen3.py +321 -0
  927. vllm/model_executor/models/qwen3_moe.py +535 -0
  928. vllm/model_executor/models/qwen_vl.py +785 -0
  929. vllm/model_executor/models/registry.py +622 -0
  930. vllm/model_executor/models/roberta.py +276 -0
  931. vllm/model_executor/models/siglip.py +524 -0
  932. vllm/model_executor/models/skyworkr1v.py +951 -0
  933. vllm/model_executor/models/smolvlm.py +52 -0
  934. vllm/model_executor/models/solar.py +506 -0
  935. vllm/model_executor/models/stablelm.py +343 -0
  936. vllm/model_executor/models/starcoder2.py +356 -0
  937. vllm/model_executor/models/tarsier.py +643 -0
  938. vllm/model_executor/models/telechat2.py +140 -0
  939. vllm/model_executor/models/teleflm.py +79 -0
  940. vllm/model_executor/models/transformers.py +508 -0
  941. vllm/model_executor/models/ultravox.py +656 -0
  942. vllm/model_executor/models/utils.py +731 -0
  943. vllm/model_executor/models/vision.py +147 -0
  944. vllm/model_executor/models/whisper.py +747 -0
  945. vllm/model_executor/models/zamba2.py +1009 -0
  946. vllm/model_executor/parameter.py +459 -0
  947. vllm/model_executor/pooling_metadata.py +72 -0
  948. vllm/model_executor/sampling_metadata.py +597 -0
  949. vllm/model_executor/utils.py +77 -0
  950. vllm/multimodal/__init__.py +33 -0
  951. vllm/multimodal/audio.py +106 -0
  952. vllm/multimodal/base.py +219 -0
  953. vllm/multimodal/hasher.py +118 -0
  954. vllm/multimodal/image.py +97 -0
  955. vllm/multimodal/inputs.py +876 -0
  956. vllm/multimodal/parse.py +461 -0
  957. vllm/multimodal/processing.py +1895 -0
  958. vllm/multimodal/profiling.py +258 -0
  959. vllm/multimodal/registry.py +331 -0
  960. vllm/multimodal/utils.py +436 -0
  961. vllm/multimodal/video.py +198 -0
  962. vllm/outputs.py +512 -0
  963. vllm/platforms/__init__.py +291 -0
  964. vllm/platforms/cpu.py +266 -0
  965. vllm/platforms/cuda.py +526 -0
  966. vllm/platforms/hpu.py +106 -0
  967. vllm/platforms/interface.py +538 -0
  968. vllm/platforms/neuron.py +150 -0
  969. vllm/platforms/rocm.py +435 -0
  970. vllm/platforms/tpu.py +216 -0
  971. vllm/platforms/xpu.py +156 -0
  972. vllm/plugins/__init__.py +94 -0
  973. vllm/plugins/lora_resolvers/README.md +15 -0
  974. vllm/plugins/lora_resolvers/__init__.py +0 -0
  975. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  976. vllm/pooling_params.py +54 -0
  977. vllm/profiler/__init__.py +0 -0
  978. vllm/profiler/layerwise_profile.py +375 -0
  979. vllm/profiler/utils.py +148 -0
  980. vllm/prompt_adapter/__init__.py +0 -0
  981. vllm/prompt_adapter/layers.py +83 -0
  982. vllm/prompt_adapter/models.py +358 -0
  983. vllm/prompt_adapter/request.py +37 -0
  984. vllm/prompt_adapter/utils.py +98 -0
  985. vllm/prompt_adapter/worker_manager.py +179 -0
  986. vllm/py.typed +2 -0
  987. vllm/reasoning/__init__.py +15 -0
  988. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  989. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  990. vllm/reasoning/granite_reasoning_parser.py +363 -0
  991. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  992. vllm/sampling_params.py +602 -0
  993. vllm/scalar_type.py +347 -0
  994. vllm/scripts.py +15 -0
  995. vllm/sequence.py +1568 -0
  996. vllm/spec_decode/__init__.py +0 -0
  997. vllm/spec_decode/batch_expansion.py +506 -0
  998. vllm/spec_decode/draft_model_runner.py +349 -0
  999. vllm/spec_decode/interfaces.py +99 -0
  1000. vllm/spec_decode/medusa_worker.py +138 -0
  1001. vllm/spec_decode/metrics.py +213 -0
  1002. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1003. vllm/spec_decode/mqa_scorer.py +160 -0
  1004. vllm/spec_decode/multi_step_worker.py +423 -0
  1005. vllm/spec_decode/ngram_worker.py +196 -0
  1006. vllm/spec_decode/proposer_worker_base.py +59 -0
  1007. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1008. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1009. vllm/spec_decode/target_model_runner.py +45 -0
  1010. vllm/spec_decode/top1_proposer.py +275 -0
  1011. vllm/spec_decode/util.py +277 -0
  1012. vllm/test_utils.py +130 -0
  1013. vllm/third_party/__init__.py +0 -0
  1014. vllm/third_party/pynvml.py +6140 -0
  1015. vllm/tracing.py +131 -0
  1016. vllm/transformers_utils/__init__.py +24 -0
  1017. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1018. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1019. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1020. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1021. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1022. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1023. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1024. vllm/transformers_utils/config.py +887 -0
  1025. vllm/transformers_utils/configs/__init__.py +61 -0
  1026. vllm/transformers_utils/configs/arctic.py +207 -0
  1027. vllm/transformers_utils/configs/chatglm.py +72 -0
  1028. vllm/transformers_utils/configs/cohere2.py +195 -0
  1029. vllm/transformers_utils/configs/dbrx.py +280 -0
  1030. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1031. vllm/transformers_utils/configs/eagle.py +85 -0
  1032. vllm/transformers_utils/configs/exaone.py +190 -0
  1033. vllm/transformers_utils/configs/falcon.py +90 -0
  1034. vllm/transformers_utils/configs/h2ovl.py +16 -0
  1035. vllm/transformers_utils/configs/internvl.py +54 -0
  1036. vllm/transformers_utils/configs/jais.py +238 -0
  1037. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1038. vllm/transformers_utils/configs/medusa.py +63 -0
  1039. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1040. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1041. vllm/transformers_utils/configs/mllama.py +31 -0
  1042. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1043. vllm/transformers_utils/configs/moonvit.py +33 -0
  1044. vllm/transformers_utils/configs/mpt.py +180 -0
  1045. vllm/transformers_utils/configs/nemotron.py +205 -0
  1046. vllm/transformers_utils/configs/nemotron_h.py +258 -0
  1047. vllm/transformers_utils/configs/nvlm_d.py +15 -0
  1048. vllm/transformers_utils/configs/ovis.py +184 -0
  1049. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1050. vllm/transformers_utils/configs/solar.py +247 -0
  1051. vllm/transformers_utils/configs/telechat2.py +64 -0
  1052. vllm/transformers_utils/configs/ultravox.py +108 -0
  1053. vllm/transformers_utils/detokenizer.py +168 -0
  1054. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1055. vllm/transformers_utils/processor.py +221 -0
  1056. vllm/transformers_utils/processors/__init__.py +8 -0
  1057. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1058. vllm/transformers_utils/processors/ovis.py +420 -0
  1059. vllm/transformers_utils/s3_utils.py +162 -0
  1060. vllm/transformers_utils/tokenizer.py +302 -0
  1061. vllm/transformers_utils/tokenizer_base.py +149 -0
  1062. vllm/transformers_utils/tokenizer_group.py +120 -0
  1063. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1064. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1065. vllm/transformers_utils/utils.py +99 -0
  1066. vllm/triton_utils/__init__.py +14 -0
  1067. vllm/triton_utils/importing.py +50 -0
  1068. vllm/usage/__init__.py +0 -0
  1069. vllm/usage/usage_lib.py +256 -0
  1070. vllm/utils.py +2910 -0
  1071. vllm/v1/__init__.py +0 -0
  1072. vllm/v1/attention/__init__.py +0 -0
  1073. vllm/v1/attention/backends/__init__.py +0 -0
  1074. vllm/v1/attention/backends/cpu_attn.py +163 -0
  1075. vllm/v1/attention/backends/flash_attn.py +869 -0
  1076. vllm/v1/attention/backends/flashinfer.py +651 -0
  1077. vllm/v1/attention/backends/flex_attention.py +477 -0
  1078. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1079. vllm/v1/attention/backends/mla/common.py +931 -0
  1080. vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
  1081. vllm/v1/attention/backends/mla/flashmla.py +152 -0
  1082. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
  1083. vllm/v1/attention/backends/mla/triton_mla.py +120 -0
  1084. vllm/v1/attention/backends/pallas.py +240 -0
  1085. vllm/v1/attention/backends/triton_attn.py +285 -0
  1086. vllm/v1/attention/backends/utils.py +52 -0
  1087. vllm/v1/core/__init__.py +0 -0
  1088. vllm/v1/core/block_pool.py +349 -0
  1089. vllm/v1/core/encoder_cache_manager.py +150 -0
  1090. vllm/v1/core/kv_cache_coordinator.py +363 -0
  1091. vllm/v1/core/kv_cache_manager.py +392 -0
  1092. vllm/v1/core/kv_cache_utils.py +996 -0
  1093. vllm/v1/core/sched/__init__.py +0 -0
  1094. vllm/v1/core/sched/interface.py +150 -0
  1095. vllm/v1/core/sched/output.py +154 -0
  1096. vllm/v1/core/sched/scheduler.py +1044 -0
  1097. vllm/v1/core/sched/utils.py +23 -0
  1098. vllm/v1/core/single_type_kv_cache_manager.py +403 -0
  1099. vllm/v1/engine/__init__.py +173 -0
  1100. vllm/v1/engine/async_llm.py +558 -0
  1101. vllm/v1/engine/coordinator.py +253 -0
  1102. vllm/v1/engine/core.py +961 -0
  1103. vllm/v1/engine/core_client.py +1129 -0
  1104. vllm/v1/engine/detokenizer.py +261 -0
  1105. vllm/v1/engine/exceptions.py +17 -0
  1106. vllm/v1/engine/llm_engine.py +317 -0
  1107. vllm/v1/engine/logprobs.py +199 -0
  1108. vllm/v1/engine/mm_input_cache.py +91 -0
  1109. vllm/v1/engine/output_processor.py +428 -0
  1110. vllm/v1/engine/parallel_sampling.py +133 -0
  1111. vllm/v1/engine/processor.py +407 -0
  1112. vllm/v1/executor/__init__.py +0 -0
  1113. vllm/v1/executor/abstract.py +113 -0
  1114. vllm/v1/executor/multiproc_executor.py +537 -0
  1115. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1116. vllm/v1/kv_cache_interface.py +194 -0
  1117. vllm/v1/metrics/__init__.py +0 -0
  1118. vllm/v1/metrics/loggers.py +523 -0
  1119. vllm/v1/metrics/prometheus.py +82 -0
  1120. vllm/v1/metrics/ray_wrappers.py +131 -0
  1121. vllm/v1/metrics/reader.py +246 -0
  1122. vllm/v1/metrics/stats.py +239 -0
  1123. vllm/v1/outputs.py +116 -0
  1124. vllm/v1/request.py +193 -0
  1125. vllm/v1/sample/__init__.py +0 -0
  1126. vllm/v1/sample/metadata.py +44 -0
  1127. vllm/v1/sample/ops/__init__.py +0 -0
  1128. vllm/v1/sample/ops/bad_words.py +39 -0
  1129. vllm/v1/sample/ops/penalties.py +59 -0
  1130. vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
  1131. vllm/v1/sample/rejection_sampler.py +631 -0
  1132. vllm/v1/sample/sampler.py +286 -0
  1133. vllm/v1/sample/tpu/__init__.py +0 -0
  1134. vllm/v1/sample/tpu/metadata.py +124 -0
  1135. vllm/v1/sample/tpu/sampler.py +145 -0
  1136. vllm/v1/serial_utils.py +315 -0
  1137. vllm/v1/spec_decode/__init__.py +0 -0
  1138. vllm/v1/spec_decode/eagle.py +432 -0
  1139. vllm/v1/spec_decode/medusa.py +62 -0
  1140. vllm/v1/spec_decode/metadata.py +62 -0
  1141. vllm/v1/spec_decode/metrics.py +178 -0
  1142. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1143. vllm/v1/spec_decode/utils.py +46 -0
  1144. vllm/v1/structured_output/__init__.py +222 -0
  1145. vllm/v1/structured_output/backend_guidance.py +245 -0
  1146. vllm/v1/structured_output/backend_types.py +134 -0
  1147. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1148. vllm/v1/structured_output/request.py +86 -0
  1149. vllm/v1/structured_output/utils.py +175 -0
  1150. vllm/v1/utils.py +743 -0
  1151. vllm/v1/worker/__init__.py +0 -0
  1152. vllm/v1/worker/block_table.py +142 -0
  1153. vllm/v1/worker/cpu_model_runner.py +86 -0
  1154. vllm/v1/worker/cpu_worker.py +152 -0
  1155. vllm/v1/worker/gpu_input_batch.py +681 -0
  1156. vllm/v1/worker/gpu_model_runner.py +2320 -0
  1157. vllm/v1/worker/gpu_worker.py +393 -0
  1158. vllm/v1/worker/lora_model_runner_mixin.py +173 -0
  1159. vllm/v1/worker/tpu_model_runner.py +1673 -0
  1160. vllm/v1/worker/tpu_worker.py +299 -0
  1161. vllm/v1/worker/utils.py +111 -0
  1162. vllm/v1/worker/worker_base.py +65 -0
  1163. vllm/version.py +41 -0
  1164. vllm/vllm_flash_attn/.gitkeep +0 -0
  1165. vllm/worker/__init__.py +0 -0
  1166. vllm/worker/cache_engine.py +145 -0
  1167. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1168. vllm/worker/cpu_model_runner.py +671 -0
  1169. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1170. vllm/worker/cpu_worker.py +450 -0
  1171. vllm/worker/enc_dec_model_runner.py +555 -0
  1172. vllm/worker/hpu_model_runner.py +2320 -0
  1173. vllm/worker/hpu_worker.py +484 -0
  1174. vllm/worker/model_runner.py +2178 -0
  1175. vllm/worker/model_runner_base.py +282 -0
  1176. vllm/worker/multi_step_hpu_worker.py +123 -0
  1177. vllm/worker/multi_step_model_runner.py +911 -0
  1178. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1179. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1180. vllm/worker/multi_step_tpu_worker.py +108 -0
  1181. vllm/worker/multi_step_worker.py +197 -0
  1182. vllm/worker/neuron_model_runner.py +460 -0
  1183. vllm/worker/neuron_worker.py +193 -0
  1184. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1185. vllm/worker/pooling_model_runner.py +211 -0
  1186. vllm/worker/tpu_model_runner.py +909 -0
  1187. vllm/worker/tpu_worker.py +337 -0
  1188. vllm/worker/utils.py +53 -0
  1189. vllm/worker/worker.py +577 -0
  1190. vllm/worker/worker_base.py +646 -0
  1191. vllm/worker/xpu_model_runner.py +606 -0
  1192. vllm/worker/xpu_worker.py +186 -0
  1193. vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
  1194. vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
  1195. vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
  1196. vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
  1197. vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1673 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ import bisect
4
+ import gc
5
+ import time
6
+ from typing import TYPE_CHECKING, Optional, cast
7
+ from unittest.mock import patch
8
+
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn as nn
12
+ # TPU XLA related
13
+ import torch_xla.core.xla_model as xm
14
+ import torch_xla.distributed.spmd as xs
15
+ import torch_xla.runtime as xr
16
+
17
+ import vllm.envs as envs
18
+ from vllm.attention.backends.abstract import AttentionType
19
+ from vllm.attention.layer import Attention
20
+ from vllm.compilation.wrapper import TorchCompileWrapperWithCustomDispatcher
21
+ from vllm.config import ParallelConfig, VllmConfig, get_layers_from_vllm_config
22
+ from vllm.forward_context import set_forward_context
23
+ from vllm.logger import init_logger
24
+ from vllm.lora.layers import BaseLayerWithLoRA
25
+ from vllm.model_executor.model_loader import get_model_loader
26
+ from vllm.model_executor.model_loader.tpu import TPUModelLoader
27
+ from vllm.multimodal import MULTIMODAL_REGISTRY
28
+ from vllm.multimodal.inputs import (BatchedTensorInputs, MultiModalKwargs,
29
+ PlaceholderRange)
30
+ from vllm.multimodal.utils import group_mm_inputs_by_modality
31
+ from vllm.sequence import IntermediateTensors
32
+ from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, LayerBlockType, cdiv,
33
+ is_pin_memory_available)
34
+ from vllm.v1.attention.backends.pallas import (PallasAttentionBackend,
35
+ PallasMetadata)
36
+ from vllm.v1.core.encoder_cache_manager import compute_encoder_budget
37
+ from vllm.v1.kv_cache_interface import (AttentionSpec, FullAttentionSpec,
38
+ KVCacheConfig, KVCacheSpec,
39
+ SlidingWindowSpec)
40
+ from vllm.v1.outputs import (EMPTY_MODEL_RUNNER_OUTPUT, LogprobsTensors,
41
+ ModelRunnerOutput)
42
+ from vllm.v1.sample.tpu.metadata import TPUSupportedSamplingMetadata
43
+ from vllm.v1.sample.tpu.sampler import Sampler as TPUSampler
44
+ from vllm.v1.utils import bind_kv_cache
45
+ from vllm.v1.worker.gpu_input_batch import CachedRequestState, InputBatch
46
+ from vllm.v1.worker.lora_model_runner_mixin import LoRAModelRunnerMixin
47
+
48
+ from .utils import (initialize_kv_cache_for_kv_sharing,
49
+ sanity_check_mm_encoder_outputs)
50
+
51
+ if TYPE_CHECKING:
52
+ from vllm.v1.core.sched.output import SchedulerOutput
53
+
54
+ logger = init_logger(__name__)
55
+
56
+ # Here we utilize the behavior that out-of-bound index is ignored.
57
+ # FIXME(woosuk): Find a more reliable way to prevent possible bugs.
58
+ _PAD_SLOT_ID = 1_000_000_000
59
+ INVALID_TOKEN_ID = -1
60
+ # Smallest output size
61
+ MIN_NUM_SEQS = 8
62
+
63
+
64
+ #########################################################
65
+ # Ways to avoid recompilation
66
+ #########################################################
67
+ #
68
+ # The model executor has two primary components:
69
+ # 1. preparing the model and sampler inputs
70
+ # 2. executing the model and sampler.
71
+ # The core idea is to avoid any TPU computation during input preparation. For
72
+ # better compilation tracking and increased flexibility, the model execution and
73
+ # sampler are divided into several distinct components.
74
+ #
75
+ # Below are the detailed steps:
76
+ #
77
+ # Step 1
78
+ # It is recommended to avoid TPU operations when preparing the model and sampler
79
+ # inputs. CPU tensors can be prepared and transferred to the XLA device using
80
+ # cpu_tensor.to(xla_device), which only triggers CPU to TPU transfers and avoids
81
+ # compilation.
82
+ #
83
+ # Step 2
84
+ # The TPU execution should be decomposed into subgraphs (4 at the moment):
85
+ # 1. the main model
86
+ # 2. selecting hidden states for each request
87
+ # 3. sampler
88
+ # 4. encoder.
89
+ # Each subgraph should be decorated in a torch.compile. This is used to make
90
+ # sure that we have the same subgraph topology in both dummy_run and
91
+ # xecute_model. The results from these subgraphs should either be passed to
92
+ # other subgraphs, or transferred from TPU to CPU using xla_tensor.cpu() for
93
+ # subsequent processing on the CPU.
94
+ #
95
+ # Step 3
96
+ # The dummy_run should be comprehensive, ensuring all potential input shapes and
97
+ # branch predictions are included as subgraph inputs to facilitate
98
+ # pre-compilation.
99
+ class TPUModelRunner(LoRAModelRunnerMixin):
100
+
101
+ def __init__(
102
+ self,
103
+ vllm_config: VllmConfig,
104
+ device: torch.device,
105
+ original_parallel_config: Optional[ParallelConfig] = None,
106
+ ):
107
+ self.vllm_config = vllm_config
108
+ self.model_config = vllm_config.model_config
109
+ self.cache_config = vllm_config.cache_config
110
+ self.lora_config = vllm_config.lora_config
111
+ self.load_config = vllm_config.load_config
112
+ self.parallel_config = vllm_config.parallel_config
113
+ self.original_parallel_config = original_parallel_config
114
+ self.scheduler_config = vllm_config.scheduler_config
115
+ self.speculative_config = vllm_config.speculative_config
116
+ self.prompt_adapter_config = vllm_config.prompt_adapter_config
117
+ self.observability_config = vllm_config.observability_config
118
+ self.device_config = vllm_config.device_config
119
+
120
+ model_config = self.model_config
121
+ cache_config = self.cache_config
122
+ scheduler_config = self.scheduler_config
123
+ parallel_config = self.parallel_config
124
+ self.device = device
125
+ self.check_recompilation = envs.VLLM_XLA_CHECK_RECOMPILATION
126
+
127
+ # SPMD Related
128
+ self.use_spmd = envs.VLLM_XLA_USE_SPMD
129
+ if self.use_spmd:
130
+ num_devices = xr.global_runtime_device_count()
131
+ mesh_shape = (num_devices, 1)
132
+ device_ids = np.array(range(num_devices))
133
+ self.mesh = xs.Mesh(device_ids, mesh_shape, ('x', 'y'))
134
+
135
+ self.enforce_eager = model_config.enforce_eager
136
+
137
+ self.num_xla_graphs = 0
138
+ self._update_num_xla_graphs("init")
139
+
140
+ self.pin_memory = is_pin_memory_available()
141
+ self.dtype = self.model_config.dtype
142
+ if cache_config.cache_dtype == "auto":
143
+ self.kv_cache_dtype = self.dtype
144
+ else:
145
+ self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
146
+ cache_config.cache_dtype]
147
+ self._hidden_states_dtype = self.dtype
148
+
149
+ self.is_multimodal_model = model_config.is_multimodal_model
150
+ self.sliding_window = model_config.get_sliding_window()
151
+ self.block_size = cache_config.block_size
152
+ self.max_model_len = model_config.max_model_len
153
+ self.max_num_blocks_per_req = cdiv(self.max_model_len, self.block_size)
154
+ # InputBatch needs to work with sampling tensors greater than padding
155
+ # to avoid dynamic shapes. Also, avoid suboptimal alignment.
156
+ self.max_num_reqs = max(scheduler_config.max_num_seqs, MIN_NUM_SEQS)
157
+ self.num_tokens_paddings = _get_token_paddings(
158
+ min_token_size=16,
159
+ max_token_size=scheduler_config.max_num_batched_tokens,
160
+ padding_gap=envs.VLLM_TPU_BUCKET_PADDING_GAP)
161
+ # In case `max_num_tokens < max(num_tokens_paddings)` use the actual
162
+ # padded max value to pre-allocate data structures and pre-compile.
163
+ self.max_num_tokens = self.num_tokens_paddings[-1]
164
+
165
+ # Model-related.
166
+ self.num_attn_layers = model_config.get_num_layers_by_block_type(
167
+ parallel_config, LayerBlockType.attention)
168
+ self.num_query_heads = model_config.get_num_attention_heads(
169
+ parallel_config)
170
+ self.num_kv_heads = model_config.get_num_kv_heads(parallel_config)
171
+ self.head_size = model_config.get_head_size()
172
+ self.hidden_size = model_config.get_hidden_size()
173
+ self.vocab_size = model_config.get_vocab_size()
174
+
175
+ if self.lora_config is not None:
176
+ self.vocab_size += self.lora_config.lora_extra_vocab_size
177
+
178
+ # Multi-modal data support
179
+ self.mm_registry = MULTIMODAL_REGISTRY
180
+ self.uses_mrope = model_config.uses_mrope
181
+ # TODO: Support M-RoPE (e.g, Qwen2-VL)
182
+ assert not self.uses_mrope, "TPU does not support M-RoPE yet."
183
+
184
+ encoder_compute_budget, encoder_cache_size = compute_encoder_budget(
185
+ model_config=model_config,
186
+ scheduler_config=scheduler_config,
187
+ mm_registry=self.mm_registry,
188
+ )
189
+ self.max_num_encoder_input_tokens = encoder_compute_budget
190
+ self.encoder_cache_size = encoder_cache_size
191
+
192
+ # Lazy initialization
193
+ self.model: nn.Module # Set after load_model
194
+ self.kv_caches: list[torch.Tensor] = []
195
+ # req_id -> (input_id -> encoder_output)
196
+ self.encoder_cache: dict[str, dict[int, torch.Tensor]] = {}
197
+
198
+ # Request states.
199
+ self.requests: dict[str, CachedRequestState] = {}
200
+
201
+ # Initialize input batch early to avoid AttributeError in _update_states
202
+ self.input_batch = InputBatch(
203
+ max_num_reqs=self.max_num_reqs,
204
+ max_model_len=self.max_model_len,
205
+ max_num_batched_tokens=self.max_num_tokens,
206
+ device=self.device,
207
+ pin_memory=self.pin_memory,
208
+ vocab_size=self.model_config.get_vocab_size(),
209
+ block_sizes=[self.block_size],
210
+ )
211
+
212
+ # Cached torch/numpy tensor
213
+ # The pytorch tensor and numpy array share the same buffer.
214
+ # Sometimes the numpy op is faster so we create both.
215
+ self.input_ids_cpu = torch.zeros(self.max_num_tokens,
216
+ dtype=torch.int32,
217
+ device="cpu")
218
+
219
+ self.positions_cpu = torch.zeros(self.max_num_tokens,
220
+ dtype=torch.int32,
221
+ device="cpu")
222
+ self.positions_np = self.positions_cpu.numpy()
223
+
224
+ self.block_table_cpu = torch.zeros(
225
+ (self.max_num_reqs, self.max_num_blocks_per_req),
226
+ dtype=torch.int32,
227
+ device="cpu")
228
+
229
+ self.query_start_loc_cpu = torch.zeros(self.max_num_tokens + 1,
230
+ dtype=torch.int32,
231
+ device="cpu",
232
+ pin_memory=self.pin_memory)
233
+ self.query_start_loc_np = self.query_start_loc_cpu.numpy()
234
+
235
+ self.seq_lens_cpu = torch.zeros(self.max_num_tokens,
236
+ dtype=torch.int32,
237
+ device="cpu",
238
+ pin_memory=self.pin_memory)
239
+ self.seq_lens_np = self.seq_lens_cpu.numpy()
240
+
241
+ # Range tensor with values [0 .. self.max_num_tokens - 1].
242
+ # Used to initialize positions / context_lens / seq_lens
243
+ # Keep in int64 to avoid overflow with long context
244
+ self.arange_np = np.arange(self.max_num_tokens, dtype=np.int64)
245
+ self.num_reqs_paddings = _get_req_paddings(
246
+ min_req_size=MIN_NUM_SEQS, max_req_size=self.max_num_reqs)
247
+
248
+ # Layer pairings for cross-layer KV sharing.
249
+ # If an Attention layer `layer_name` is in the keys of this dict, it
250
+ # means this layer will perform attention using the keys and values
251
+ # from the KV cache of `shared_kv_cache_layers[layer_name]`.
252
+ self.shared_kv_cache_layers: dict[str, str] = {}
253
+
254
+ # tensors for structured decoding
255
+ self.grammar_bitmask_cpu = torch.zeros(
256
+ (self.max_num_reqs, cdiv(self.vocab_size, 32)),
257
+ dtype=torch.int32,
258
+ device="cpu",
259
+ pin_memory=self.pin_memory)
260
+ self.require_structured_out_cpu = torch.zeros(
261
+ (self.max_num_reqs, 1),
262
+ dtype=torch.bool,
263
+ device="cpu",
264
+ pin_memory=self.pin_memory)
265
+ self.structured_decode_arange = torch.arange(
266
+ 0, 32, device="cpu", pin_memory=self.pin_memory)
267
+
268
+ # Get maximum number of mm items per modality (batch size).
269
+ self.max_num_mm_items_by_modality = dict()
270
+ if (self.is_multimodal_model and self.max_num_encoder_input_tokens > 0
271
+ and self.encoder_cache_size > 0):
272
+ max_tokens_by_modality_dict = (
273
+ MULTIMODAL_REGISTRY.
274
+ get_max_tokens_per_item_by_nonzero_modality(self.model_config))
275
+ for modality, max_tokens in max_tokens_by_modality_dict.items():
276
+ # Check how many items of this modality can be supported by
277
+ # the encoder budget.
278
+ encoder_budget = min(self.max_num_encoder_input_tokens,
279
+ self.encoder_cache_size)
280
+
281
+ max_num_mm_items_encoder_budget = cdiv(encoder_budget,
282
+ max_tokens)
283
+
284
+ # Check how many items of this modality can be supported by
285
+ # the decoder budget.
286
+ max_mm_items_per_req = self.mm_registry.\
287
+ get_mm_limits_per_prompt(self.model_config)[modality]
288
+
289
+ # NOTE: We do not consider max_num_batched_tokens on purpose
290
+ # because the multimodal embeddings can be generated in advance
291
+ # and chunked prefilled.
292
+ max_num_mm_items_decoder_budget = self.max_num_reqs * \
293
+ max_mm_items_per_req
294
+
295
+ max_num_mm_items = min(max_num_mm_items_encoder_budget,
296
+ max_num_mm_items_decoder_budget)
297
+ self.max_num_mm_items_by_modality[modality] = max_num_mm_items
298
+
299
+ if not self.use_spmd:
300
+ self.sample_from_logits_func = torch.compile(
301
+ self.sample_from_logits,
302
+ backend="openxla",
303
+ fullgraph=True,
304
+ dynamic=False)
305
+ else:
306
+ self.sample_from_logits_func = self.sample_from_logits
307
+
308
+ def _update_num_xla_graphs(self, case_str):
309
+ check_comp = self.check_recompilation and not self.enforce_eager
310
+ if not check_comp:
311
+ return
312
+
313
+ total_cached_graphs = xr.get_num_cached_compilation_graph()
314
+ new_compiled_graphs = total_cached_graphs - self.num_xla_graphs
315
+ if new_compiled_graphs == 0:
316
+ return
317
+
318
+ logger.info("Add new %d compiled XLA graphs due to %s",
319
+ new_compiled_graphs, case_str)
320
+ self.num_xla_graphs += new_compiled_graphs
321
+
322
+ def _verify_num_xla_graphs(self, case_str):
323
+ check_comp = self.check_recompilation and not self.enforce_eager
324
+ if not check_comp:
325
+ return
326
+
327
+ curr_cached_graph = xr.get_num_cached_compilation_graph()
328
+ assert self.num_xla_graphs == curr_cached_graph, (
329
+ "Recompilation after warm up is detected during {}."
330
+ " num_xla_graphs = {} curr_cached_graph = {}".format(
331
+ case_str, self.num_xla_graphs, curr_cached_graph))
332
+
333
+ def _update_states(self, scheduler_output: "SchedulerOutput") -> bool:
334
+ """Update the cached states and the persistent batch with the scheduler
335
+ output.
336
+
337
+ The updated states are used by the `_prepare_inputs` function to create
338
+ the input GPU tensors for the model.
339
+
340
+ Returns:
341
+ True if there is a new/resumed/paused/finished request.
342
+ If False, we can skip copying SamplingMetadata to the GPU.
343
+ """
344
+ # Remove finished requests from the cached states.
345
+ for req_id in scheduler_output.finished_req_ids:
346
+ self.requests.pop(req_id, None)
347
+ self.encoder_cache.pop(req_id, None)
348
+
349
+ # Remove the finished requests from the persistent batch.
350
+ # NOTE(woosuk): There could be an edge case where finished_req_ids and
351
+ # scheduled_req_ids overlap. This happens when a request is aborted and
352
+ # then resubmitted with the same ID. In this case, we treat them as two
353
+ # distinct requests - clearing the cached states for the first request
354
+ # and handling the second as a new request.
355
+ removed_req_indices: list[int] = []
356
+ for req_id in scheduler_output.finished_req_ids:
357
+ req_index = self.input_batch.remove_request(req_id)
358
+ if req_index is not None:
359
+ removed_req_indices.append(req_index)
360
+
361
+ # Free the cached encoder outputs.
362
+ for req_id, input_id in scheduler_output.free_encoder_input_ids:
363
+ encoder_outputs = self.encoder_cache.get(req_id)
364
+ if encoder_outputs is not None:
365
+ encoder_outputs.pop(input_id, None)
366
+ if not encoder_outputs:
367
+ self.encoder_cache.pop(req_id, None)
368
+
369
+ # Remove the unscheduled requests from the persistent batch.
370
+ # NOTE(woosuk): The unscheduled requests are either preempted requests
371
+ # or running requests that are not scheduled in this step. We remove
372
+ # them from the persistent batch but keep their cached states since
373
+ # they will be scheduled again sometime in the future.
374
+ scheduled_req_ids = scheduler_output.num_scheduled_tokens.keys()
375
+ cached_req_ids = self.input_batch.req_id_to_index.keys()
376
+ unscheduled_req_ids = cached_req_ids - scheduled_req_ids
377
+ # NOTE(woosuk): The persistent batch optimization assumes that
378
+ # consecutive batches contain mostly the same requests. If batches
379
+ # have low request overlap (e.g., alternating between two distinct
380
+ # sets of requests), this optimization becomes very inefficient.
381
+ for req_id in unscheduled_req_ids:
382
+ req_index = self.input_batch.remove_request(req_id)
383
+ assert req_index is not None
384
+ removed_req_indices.append(req_index)
385
+
386
+ req_ids_to_add: list[str] = []
387
+ # Add new requests to the cached states.
388
+ for new_req_data in scheduler_output.scheduled_new_reqs:
389
+ req_id = new_req_data.req_id
390
+ sampling_params = new_req_data.sampling_params
391
+
392
+ self.requests[req_id] = CachedRequestState(
393
+ req_id=req_id,
394
+ prompt_token_ids=new_req_data.prompt_token_ids,
395
+ mm_inputs=new_req_data.mm_inputs,
396
+ mm_positions=new_req_data.mm_positions,
397
+ sampling_params=sampling_params,
398
+ generator=None,
399
+ block_ids=new_req_data.block_ids,
400
+ num_computed_tokens=new_req_data.num_computed_tokens,
401
+ output_token_ids=[],
402
+ lora_request=new_req_data.lora_request,
403
+ )
404
+
405
+ req_ids_to_add.append(req_id)
406
+
407
+ # Update the states of the running/resumed requests.
408
+ for req_data in scheduler_output.scheduled_cached_reqs:
409
+ req_id = req_data.req_id
410
+ req_state = self.requests[req_id]
411
+
412
+ # Update the cached states.
413
+ req_state.num_computed_tokens = req_data.num_computed_tokens
414
+ if not req_data.resumed_from_preemption:
415
+ # Append the new blocks to the existing block IDs.
416
+ for block_ids, new_block_ids in zip( # type: ignore[call-overload]
417
+ req_state.block_ids,
418
+ req_data.new_block_ids,
419
+ strict=True):
420
+ block_ids.extend(new_block_ids)
421
+ else:
422
+ # The request is resumed from preemption.
423
+ # Replace the existing block IDs with the new ones.
424
+ req_state.block_ids = req_data.new_block_ids
425
+
426
+ req_index = self.input_batch.req_id_to_index.get(req_id)
427
+ if req_index is None:
428
+ # The request is not in the persistent batch.
429
+ # The request was either preempted and resumed later, or was not
430
+ # scheduled in the previous step and needs to be added again.
431
+ req_ids_to_add.append(req_id)
432
+ continue
433
+
434
+ # Update the persistent batch.
435
+ self.input_batch.num_computed_tokens_cpu[req_index] = (
436
+ req_data.num_computed_tokens)
437
+ self.input_batch.block_table.append_row(req_data.new_block_ids,
438
+ req_index)
439
+
440
+ # Add the new or resumed requests to the persistent batch.
441
+ # The smaller empty indices are filled first.
442
+ removed_req_indices = sorted(removed_req_indices, reverse=True)
443
+ for req_id in req_ids_to_add:
444
+ req_state = self.requests[req_id]
445
+ if removed_req_indices:
446
+ # Fill the empty index.
447
+ req_index = removed_req_indices.pop()
448
+ else:
449
+ # Append to the end.
450
+ req_index = None
451
+ self.input_batch.add_request(req_state, req_index)
452
+
453
+ # Condense the batched states if there are empty indices.
454
+ if removed_req_indices:
455
+ self.input_batch.condense(removed_req_indices)
456
+
457
+ return len(unscheduled_req_ids) > 0 or len(req_ids_to_add) > 0
458
+
459
+ def get_model(self) -> nn.Module:
460
+ return self.model
461
+
462
+ def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
463
+ """
464
+ Generates the KVCacheSpec by parsing the kv cache format from each
465
+ Attention module in the static forward context.
466
+ Returns:
467
+ KVCacheSpec: A dictionary mapping layer names to their KV cache
468
+ format. Layers that do not need KV cache are not included.
469
+ """
470
+
471
+ layers = get_layers_from_vllm_config(self.vllm_config, Attention)
472
+ block_size = self.vllm_config.cache_config.block_size
473
+ kv_cache_spec: dict[str, KVCacheSpec] = {}
474
+ for layer_name, attn_module in layers.items():
475
+ if (kv_tgt_layer :=
476
+ attn_module.kv_sharing_target_layer_name) is not None:
477
+ # The layer doesn't need its own KV cache and will use that of
478
+ # the target layer. We skip creating a KVCacheSpec for it, so
479
+ # that KV cache management logic will act as this layer does
480
+ # not exist, and doesn't allocate KV cache for the layer. This
481
+ # enables the memory saving of cross-layer kv sharing, allowing
482
+ # a given amount of memory to accommodate longer context lengths
483
+ # or enable more requests to be processed simultaneously.
484
+ self.shared_kv_cache_layers[layer_name] = kv_tgt_layer
485
+ continue
486
+
487
+ if attn_module.attn_type == AttentionType.DECODER:
488
+ if attn_module.sliding_window is not None:
489
+ kv_cache_spec[layer_name] = SlidingWindowSpec(
490
+ block_size=block_size,
491
+ num_kv_heads=attn_module.num_kv_heads,
492
+ head_size=attn_module.head_size,
493
+ dtype=self.kv_cache_dtype,
494
+ sliding_window=attn_module.sliding_window,
495
+ use_mla=False,
496
+ )
497
+ else:
498
+ kv_cache_spec[layer_name] = FullAttentionSpec(
499
+ block_size=block_size,
500
+ num_kv_heads=attn_module.num_kv_heads,
501
+ head_size=attn_module.head_size,
502
+ dtype=self.kv_cache_dtype,
503
+ use_mla=False,
504
+ )
505
+ elif attn_module.attn_type in (AttentionType.ENCODER,
506
+ AttentionType.ENCODER_ONLY):
507
+ # encoder-only attention does not need KV cache.
508
+ continue
509
+ elif attn_module.attn_type == AttentionType.ENCODER_DECODER:
510
+ raise NotImplementedError
511
+ else:
512
+ raise ValueError(
513
+ f"Unknown attention type: {attn_module.attn_type}")
514
+
515
+ return kv_cache_spec
516
+
517
+ def _prepare_inputs(self, scheduler_output: "SchedulerOutput"):
518
+ total_num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
519
+ assert total_num_scheduled_tokens > 0
520
+ num_reqs = self.input_batch.num_reqs
521
+ assert num_reqs > 0
522
+
523
+ # Get the number of scheduled tokens for each request.
524
+ num_scheduled_tokens_per_req = []
525
+ max_num_scheduled_tokens_all_reqs = 0
526
+ for req_id in self.input_batch.req_ids[:num_reqs]:
527
+ assert req_id is not None
528
+ num_tokens = scheduler_output.num_scheduled_tokens[req_id]
529
+ num_scheduled_tokens_per_req.append(num_tokens)
530
+ max_num_scheduled_tokens_all_reqs = max(
531
+ max_num_scheduled_tokens_all_reqs, num_tokens)
532
+ num_scheduled_tokens_per_req = np.array(num_scheduled_tokens_per_req,
533
+ dtype=np.int32)
534
+ assert max_num_scheduled_tokens_all_reqs > 0
535
+
536
+ # Get request indices.
537
+ # E.g., [2, 5, 3] -> [0, 0, 1, 1, 1, 1, 1, 2, 2, 2]
538
+ # For each scheduled token, what are the corresponding req index.
539
+ req_indices = np.repeat(self.arange_np[:num_reqs],
540
+ num_scheduled_tokens_per_req)
541
+
542
+ # Get batched arange.
543
+ # E.g., [2, 5, 3] -> [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
544
+ # For each scheduled token, what is its position in corresponding req.
545
+ arange = np.concatenate(
546
+ [self.arange_np[:n] for n in num_scheduled_tokens_per_req])
547
+
548
+ # Get positions.
549
+ positions_np = self.positions_np[:total_num_scheduled_tokens]
550
+ np.add(self.input_batch.num_computed_tokens_cpu[req_indices],
551
+ arange,
552
+ out=positions_np)
553
+
554
+ # Get token indices.
555
+ # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
556
+ # -> [0, 1, M, M + 1, M + 2, M + 3, M + 4, 2 * M, 2 * M + 1, 2 * M + 2]
557
+ # where M is the max_model_len.
558
+ token_indices = (positions_np +
559
+ req_indices * self.input_batch.token_ids_cpu.shape[1])
560
+
561
+ # NOTE(woosuk): We use torch.index_select instead of np.take here
562
+ # because torch.index_select is much faster than np.take for large
563
+ # tensors.
564
+ torch.index_select(self.input_batch.token_ids_cpu_tensor.flatten(),
565
+ 0,
566
+ torch.from_numpy(token_indices),
567
+ out=self.input_ids_cpu[:total_num_scheduled_tokens])
568
+
569
+ # Calculate the slot mapping.
570
+ # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
571
+ # -> [0, 0, K, K, K + 1, K + 1, K + 2, 2 * K, 2 * K, 2 * K + 1]
572
+ # where K is the max_num_blocks_per_req and the block size is 2.
573
+ # NOTE(woosuk): We can't simply use `token_indices // block_size` here
574
+ # because M (max_model_len) is not necessarily divisible by block_size.
575
+ # req_indices: # E.g., [2, 5, 3] -> [0, 0, 1, 1, 1, 1, 1, 2, 2, 2]
576
+ block_table_indices = (req_indices * self.max_num_blocks_per_req +
577
+ positions_np // self.block_size)
578
+ # NOTE(woosuk): We use torch.index_select instead of np.take here
579
+ # because torch.index_select is much faster than np.take for large
580
+ # tensors.
581
+ block_table_cpu = self.input_batch.block_table[0].get_cpu_tensor()
582
+ block_numbers = block_table_cpu.flatten()[block_table_indices].numpy()
583
+ block_offsets = positions_np % self.block_size
584
+ np.add(block_numbers * self.block_size,
585
+ block_offsets,
586
+ out=self.input_batch.block_table[0].
587
+ slot_mapping_np[:total_num_scheduled_tokens])
588
+
589
+ # Prepare the attention metadata.
590
+ self.query_start_loc_np[0] = 0
591
+ np.cumsum(num_scheduled_tokens_per_req,
592
+ out=self.query_start_loc_np[1:num_reqs + 1])
593
+ self.query_start_loc_np[num_reqs + 1:] = 1
594
+
595
+ self.seq_lens_np[:num_reqs] = (
596
+ self.input_batch.num_computed_tokens_cpu[:num_reqs] +
597
+ num_scheduled_tokens_per_req)
598
+
599
+ # Do the padding and copy the tensors to the TPU.
600
+ padded_total_num_scheduled_tokens = _get_padded_token_len(
601
+ self.num_tokens_paddings, total_num_scheduled_tokens)
602
+ # Zero out to avoid spurious values from prev iteration (last cp chunk)
603
+ self.input_ids_cpu[
604
+ total_num_scheduled_tokens:padded_total_num_scheduled_tokens] = 0
605
+ self.input_ids = self.input_ids_cpu[:
606
+ padded_total_num_scheduled_tokens].to(
607
+ self.device)
608
+ self.position_ids = self.positions_cpu[:
609
+ padded_total_num_scheduled_tokens].to(
610
+ self.device)
611
+ self.input_batch.block_table[0].slot_mapping_cpu[
612
+ total_num_scheduled_tokens:] = _PAD_SLOT_ID
613
+ slot_mapping = (
614
+ self.input_batch.block_table[0].
615
+ slot_mapping_cpu[:padded_total_num_scheduled_tokens].to(
616
+ self.device))
617
+ block_tables = self.block_table_cpu[:self.max_num_reqs]
618
+ block_tables[:num_reqs, :self.max_num_blocks_per_req] = (
619
+ self.input_batch.block_table[0].get_cpu_tensor()[:num_reqs])
620
+ block_tables = block_tables.to(self.device)
621
+ query_start_loc = self.query_start_loc_cpu[:self.max_num_reqs + 1].to(
622
+ self.device)
623
+ seq_lens = self.seq_lens_cpu[:self.max_num_reqs].to(self.device)
624
+
625
+ if self.lora_config is not None:
626
+ # We need to respect padding when activating LoRA adapters
627
+ padded_num_scheduled_tokens_per_req = np.copy(
628
+ num_scheduled_tokens_per_req
629
+ ) # Copying to avoid accidental state corruption bugs
630
+ padded_num_scheduled_tokens_per_req[-1] += \
631
+ padded_total_num_scheduled_tokens - total_num_scheduled_tokens
632
+
633
+ self.set_active_loras(self.input_batch,
634
+ padded_num_scheduled_tokens_per_req)
635
+
636
+ attn_metadata = PallasMetadata(
637
+ slot_mapping=slot_mapping,
638
+ block_tables=block_tables,
639
+ context_lens=seq_lens,
640
+ query_start_loc=query_start_loc,
641
+ num_seqs=torch.tensor([num_reqs],
642
+ dtype=torch.int32,
643
+ device=self.device),
644
+ )
645
+ # NOTE(woosuk): Due to chunked prefills, there can be at most 1 partial
646
+ # request in the batch. While we should not sample any token from this
647
+ # partial request, we do so for simplicity. We will ignore the sampled
648
+ # token from the partial request.
649
+ # TODO: Support prompt logprobs.
650
+ padded_num_reqs = _get_padded_num_reqs_with_upper_limit(
651
+ num_reqs, self.max_num_reqs)
652
+ # Indices at which we sample (positions of last token in the sequence).
653
+ # Padded to avoid recompiling when `num_reqs` varies.
654
+ logits_indices = self.query_start_loc_cpu[1:padded_num_reqs + 1] - 1
655
+ logits_indices = logits_indices.to(self.device)
656
+
657
+ if self.lora_config is not None:
658
+ # We need to respect padding when activating LoRA adapters
659
+ padded_num_scheduled_tokens_per_req = np.copy(
660
+ num_scheduled_tokens_per_req
661
+ ) # Copying to avoid accidental state corruption bugs
662
+ padded_num_scheduled_tokens_per_req[-1] += \
663
+ padded_total_num_scheduled_tokens - total_num_scheduled_tokens
664
+
665
+ self.set_active_loras(self.input_batch,
666
+ padded_num_scheduled_tokens_per_req)
667
+
668
+ layer_names = get_layers_from_vllm_config(self.vllm_config,
669
+ Attention).keys()
670
+ per_layer_attn_metadata = {
671
+ layer_name: attn_metadata
672
+ for layer_name in layer_names
673
+ }
674
+ return per_layer_attn_metadata, logits_indices, padded_num_reqs
675
+
676
+ def _scatter_placeholders(
677
+ self,
678
+ embeds: torch.Tensor,
679
+ is_embed: Optional[torch.Tensor],
680
+ ) -> torch.Tensor:
681
+ if is_embed is None:
682
+ return embeds
683
+
684
+ placeholders = embeds.new_full(
685
+ (is_embed.shape[0], embeds.shape[-1]),
686
+ fill_value=torch.nan,
687
+ )
688
+ placeholders[is_embed] = embeds
689
+ return placeholders
690
+
691
+ def _gather_placeholders(
692
+ self,
693
+ placeholders: torch.Tensor,
694
+ is_embed: Optional[torch.Tensor],
695
+ ) -> torch.Tensor:
696
+ if is_embed is None:
697
+ return placeholders
698
+
699
+ return placeholders[is_embed]
700
+
701
+ def _execute_mm_encoder(self, scheduler_output: "SchedulerOutput"):
702
+ scheduled_encoder_inputs = scheduler_output.scheduled_encoder_inputs
703
+ if not scheduled_encoder_inputs:
704
+ return
705
+
706
+ # Batch the multi-modal inputs.
707
+ mm_inputs = list[MultiModalKwargs]()
708
+ req_ids_pos = list[tuple[str, int, PlaceholderRange]]()
709
+ for req_id, encoder_input_ids in scheduled_encoder_inputs.items():
710
+ req_state = self.requests[req_id]
711
+
712
+ for mm_input_id in encoder_input_ids:
713
+ mm_inputs.append(req_state.mm_inputs[mm_input_id])
714
+ req_ids_pos.append(
715
+ (req_id, mm_input_id, req_state.mm_positions[mm_input_id]))
716
+
717
+ # Batch mm inputs as much as we can: if a request in the batch has
718
+ # multiple modalities or a different modality than the previous one,
719
+ # we process it separately to preserve item order.
720
+ # FIXME(ywang96): This is a hacky way to deal with multiple modalities
721
+ # in the same batch while still being able to benefit from batching
722
+ # multimodal inputs. The proper solution should be reordering the
723
+ # encoder outputs.
724
+ grouped_mm_inputs_list = group_mm_inputs_by_modality(mm_inputs)
725
+
726
+ encoder_outputs = []
727
+ for grouped_mm_inputs in grouped_mm_inputs_list:
728
+ batched_mm_inputs = MultiModalKwargs.batch(grouped_mm_inputs)
729
+ batched_mm_inputs = MultiModalKwargs.as_kwargs(
730
+ batched_mm_inputs,
731
+ device=self.device,
732
+ )
733
+
734
+ # Run the encoder.
735
+ # `curr_group_outputs` is either of the following:
736
+ # 1. A tensor of shape (num_items, feature_size, hidden_size)
737
+ # in case feature_size is fixed across all multimodal items.
738
+ # 2. A list or tuple (length: num_items) of tensors, each of shape
739
+ # (feature_size, hidden_size) in case the feature size is dynamic
740
+ # depending on the input multimodal items.
741
+ xm.mark_step()
742
+ curr_group_outputs = self.model.get_multimodal_embeddings(
743
+ **batched_mm_inputs)
744
+ xm.mark_step()
745
+
746
+ sanity_check_mm_encoder_outputs(
747
+ curr_group_outputs,
748
+ expected_num_items=len(grouped_mm_inputs),
749
+ )
750
+
751
+ if isinstance(curr_group_outputs, torch.Tensor):
752
+ encoder_outputs.append(curr_group_outputs)
753
+ else:
754
+ assert isinstance(curr_group_outputs, (list, tuple))
755
+ for output in curr_group_outputs:
756
+ encoder_outputs.append(output)
757
+
758
+ # Cache the encoder outputs.
759
+ # NOTE (NickLucche) here we diverge from logic in other runners, as we
760
+ # assume to only have whole mm items to process. Hence we avoid the
761
+ # intrinsic dynamism that `scatter_mm_placeholders` introduces.
762
+ for (req_id, input_id, pos_info), output in zip(
763
+ req_ids_pos,
764
+ encoder_outputs,
765
+ ):
766
+ if req_id not in self.encoder_cache:
767
+ self.encoder_cache[req_id] = {}
768
+ assert pos_info.is_embed is None, "Expected all positions to be"\
769
+ " contiguous and embeddings."
770
+ self.encoder_cache[req_id][input_id] = output
771
+
772
+ def _gather_mm_embeddings(
773
+ self,
774
+ scheduler_output: "SchedulerOutput",
775
+ ) -> list[torch.Tensor]:
776
+ mm_embeds: list[torch.Tensor] = []
777
+ for req_id in self.input_batch.req_ids:
778
+ num_scheduled_tokens = scheduler_output.num_scheduled_tokens[
779
+ req_id]
780
+ req_state = self.requests[req_id]
781
+ num_computed_tokens = req_state.num_computed_tokens
782
+ mm_positions = req_state.mm_positions
783
+ # TODO unroll loop and assume/enforce --disable_chunked_mm_input
784
+ # NOTE (NickLucche) here we diverge from logic in other runners, as
785
+ # we assume to only have whole mm items to process. Hence we avoid
786
+ # the intrinsic dynamism that `gather_mm_placeholders` introduces.
787
+ for i, pos_info in enumerate(mm_positions):
788
+ start_pos = pos_info.offset
789
+ num_encoder_tokens = pos_info.length
790
+
791
+ # The encoder output is needed if the two ranges overlap:
792
+ # [num_computed_tokens,
793
+ # num_computed_tokens + num_scheduled_tokens) and
794
+ # [start_pos, start_pos + num_encoder_tokens)
795
+ if start_pos >= num_computed_tokens + num_scheduled_tokens:
796
+ # The encoder output is not needed in this step.
797
+ break
798
+ if start_pos + num_encoder_tokens <= num_computed_tokens:
799
+ # The encoder output is already processed and stored
800
+ # in the decoder's KV cache.
801
+ continue
802
+
803
+ assert req_id in self.encoder_cache
804
+ assert i in self.encoder_cache[req_id]
805
+ assert pos_info.is_embed is None, "Expected all positions to"\
806
+ " be contiguous and embeddings."
807
+ encoder_output = self.encoder_cache[req_id][i]
808
+ mm_embeds.append(encoder_output)
809
+ return mm_embeds
810
+
811
+ def _get_model_inputs(self, input_ids: torch.Tensor,
812
+ mm_embeds: list[torch.Tensor]):
813
+ if self.is_multimodal_model:
814
+ # NOTE(woosuk): To unify token ids and soft tokens (vision
815
+ # embeddings), we always use embeddings (rather than token ids)
816
+ # as input to the multimodal model, even when the input is text.
817
+ if mm_embeds:
818
+ inputs_embeds = self.model.get_input_embeddings(
819
+ input_ids, mm_embeds)
820
+ else:
821
+ inputs_embeds = self.model.get_input_embeddings(input_ids)
822
+ return None, inputs_embeds
823
+ else:
824
+ # For text-only models, we use token ids as input.
825
+ # While it is possible to use embeddings as input just like the
826
+ # multimodal models, it is not desirable for performance since
827
+ # then the embedding layer is not included in the CUDA graph.
828
+ return input_ids, None
829
+
830
+ @torch.no_grad()
831
+ def execute_model(
832
+ self,
833
+ scheduler_output: "SchedulerOutput",
834
+ intermediate_tensors: Optional[IntermediateTensors] = None,
835
+ ) -> ModelRunnerOutput:
836
+ # Update cached state
837
+ self._update_states(scheduler_output)
838
+ if not scheduler_output.total_num_scheduled_tokens:
839
+ # Return empty ModelRunnerOutput if there's no work to do.
840
+ return EMPTY_MODEL_RUNNER_OUTPUT
841
+
842
+ if self.is_multimodal_model:
843
+ # Run the multimodal encoder if any.
844
+ self._execute_mm_encoder(scheduler_output)
845
+ mm_embeds = self._gather_mm_embeddings(scheduler_output)
846
+ else:
847
+ mm_embeds = []
848
+ xm.mark_step()
849
+ # Prepare inputs
850
+ attn_metadata, logits_indices, padded_num_reqs = self._prepare_inputs(
851
+ scheduler_output)
852
+ input_ids, inputs_embeds = self._get_model_inputs(
853
+ self.input_ids, mm_embeds)
854
+ xm.mark_step()
855
+ num_reqs = self.input_batch.num_reqs
856
+ # Run the decoder
857
+ with set_forward_context(
858
+ attn_metadata,
859
+ self.vllm_config,
860
+ num_tokens=scheduler_output.total_num_scheduled_tokens):
861
+ hidden_states = self.model(
862
+ input_ids=input_ids,
863
+ positions=self.position_ids,
864
+ inputs_embeds=inputs_embeds,
865
+ )
866
+ hidden_states = self.select_hidden_states(hidden_states,
867
+ logits_indices)
868
+ logits = self.compute_logits(hidden_states)
869
+ tpu_sampling_metadata = TPUSupportedSamplingMetadata.\
870
+ from_input_batch(self.input_batch, padded_num_reqs, self.device)
871
+ if scheduler_output.grammar_bitmask is not None:
872
+ require_struct_decoding, grammar_bitmask_padded, arange = \
873
+ self.prepare_structured_decoding_input(logits, scheduler_output)
874
+ logits = self.structured_decode(require_struct_decoding,
875
+ grammar_bitmask_padded, logits,
876
+ arange)
877
+ selected_token_ids = self.sample_from_logits_func(
878
+ logits, tpu_sampling_metadata)
879
+ # NOTE (NickLucche) Use the original logits (before any penalties or
880
+ # temperature scaling) for the top-k logprobs. We can't enforce it due
881
+ # to recompilations outside torch.compiled code, so just make sure
882
+ # `sample_from_logits` does not modify the logits in-place.
883
+ logprobs = self.gather_logprobs(logits, selected_token_ids) \
884
+ if tpu_sampling_metadata.logprobs else None
885
+
886
+ # Remove padding on cpu and keep dynamic op outside of xla graph.
887
+ selected_token_ids = selected_token_ids.cpu()[:num_reqs]
888
+ logprobs_lists = logprobs.tolists() \
889
+ if tpu_sampling_metadata.logprobs else None
890
+
891
+ # Update the cache state concurrently. Code above will not block until
892
+ # we use `selected_token_ids`. Add mark_step if post-processing changes
893
+ request_seq_lens: list[tuple[int, CachedRequestState, int]] = []
894
+ discard_sampled_tokens_req_indices = []
895
+ for i, req_id in zip(range(num_reqs), self.input_batch.req_ids):
896
+ assert req_id is not None
897
+ req_state = self.requests[req_id]
898
+ seq_len = (req_state.num_computed_tokens +
899
+ scheduler_output.num_scheduled_tokens[req_id])
900
+ if seq_len >= req_state.num_tokens:
901
+ request_seq_lens.append((i, req_state, seq_len))
902
+ else:
903
+ # Ignore the sampled token from the partial request.
904
+ # Rewind the generator state as if the token was not sampled.
905
+ generator = self.input_batch.generators.get(i)
906
+ if generator is not None:
907
+ # This relies on cuda-specific torch-internal impl details
908
+ generator.set_offset(generator.get_offset() - 4)
909
+
910
+ # Record the index of the request that should not be sampled,
911
+ # so that we could clear the sampled tokens before returning.
912
+ discard_sampled_tokens_req_indices.append(i)
913
+
914
+ assert all(
915
+ req_id is not None for req_id in
916
+ self.input_batch.req_ids[:num_reqs]), "req_ids contains None"
917
+ req_ids = cast(list[str], self.input_batch.req_ids[:num_reqs])
918
+
919
+ prompt_logprobs_dict: dict[str, Optional[LogprobsTensors]] = {}
920
+ for req_id in self.input_batch.req_ids[:num_reqs]:
921
+ prompt_logprobs_dict[req_id] = None
922
+
923
+ max_gen_len = selected_token_ids.shape[-1]
924
+ if max_gen_len == 1:
925
+ valid_sampled_token_ids = selected_token_ids.tolist()
926
+
927
+ # Mask out the sampled tokens that should not be sampled.
928
+ # TODO: Keep in sync with gpu_model_runner.py, in particular
929
+ # the "else" case here
930
+ for i in discard_sampled_tokens_req_indices:
931
+ valid_sampled_token_ids[i].clear()
932
+
933
+ # Append sampled tokens
934
+ for i, req_state, seq_len in request_seq_lens:
935
+ token_id = valid_sampled_token_ids[i][0]
936
+ self.input_batch.token_ids_cpu[i, seq_len] = token_id
937
+ req_state.output_token_ids.append(token_id)
938
+ self.input_batch.num_tokens[i] += 1
939
+
940
+ else:
941
+ valid_mask = selected_token_ids != INVALID_TOKEN_ID
942
+ gen_lens = valid_mask.sum(dim=1).tolist()
943
+ valid_sampled_token_ids = [
944
+ seq.tolist()
945
+ for seq in selected_token_ids[valid_mask].split(gen_lens)
946
+ ]
947
+ self.input_batch.num_tokens[:num_reqs] += gen_lens
948
+ for i, req_state, seq_len in request_seq_lens:
949
+ target_slice = slice(seq_len - gen_lens[i] + 1, seq_len + 1)
950
+ self.input_batch.token_ids_cpu[
951
+ i, target_slice] = valid_sampled_token_ids[i]
952
+ req_state.output_token_ids.extend(valid_sampled_token_ids[i])
953
+
954
+ model_runner_output = ModelRunnerOutput(
955
+ req_ids=req_ids,
956
+ req_id_to_index=self.input_batch.req_id_to_index,
957
+ sampled_token_ids=valid_sampled_token_ids,
958
+ spec_token_ids=None,
959
+ logprobs=logprobs_lists,
960
+ prompt_logprobs_dict=prompt_logprobs_dict,
961
+ )
962
+
963
+ # Check there are no new graphs compiled - all the graphs should be
964
+ # captured and compiled during warm up.
965
+ self._verify_num_xla_graphs("execute_model")
966
+
967
+ return model_runner_output
968
+
969
+ def load_model(self) -> None:
970
+ self.device = self.device_config.device
971
+
972
+ # NOTE(woosuk): While the executor assigns the TP ranks to the worker
973
+ # process, the ranks can be different from the ranks internally assigned
974
+ # by the xm runtime. Therefore, there is a mismatch in the rank
975
+ # assignment between the gloo (cpu) runtime and the xm (tpu) runtime.
976
+ # This is not a problem in linear layers because all-reduce is
977
+ # rank-agnostic. However, it matters for all-gather as the ranks
978
+ # determine the order of concatenating the output tensors.
979
+ # As a workaround, we use the xm's rank assignment only when loading
980
+ # the embedding weights.
981
+ xm_tp_rank = xr.global_ordinal()
982
+ with patch(
983
+ "vllm.model_executor.layers.vocab_parallel_embedding."
984
+ "get_tensor_model_parallel_rank",
985
+ return_value=xm_tp_rank):
986
+ if self.use_spmd:
987
+ tpu_loader = TPUModelLoader(
988
+ load_config=self.vllm_config.load_config)
989
+ model = tpu_loader.load_model(
990
+ vllm_config=self.vllm_config,
991
+ model_config=self.vllm_config.model_config,
992
+ mesh=self.mesh)
993
+ else:
994
+ # model = get_model(vllm_config=self.vllm_config)
995
+ model_loader = get_model_loader(self.load_config)
996
+ if not hasattr(self, "model"):
997
+ logger.info("Loading model from scratch...")
998
+ model = model_loader.load_model(
999
+ vllm_config=self.vllm_config,
1000
+ model_config=self.model_config)
1001
+ else:
1002
+ logger.info("Model was already initialized. \
1003
+ Loading weights inplace...")
1004
+ model_loader.load_weights(self.model,
1005
+ model_config=self.model_config)
1006
+ if self.lora_config is not None:
1007
+ model = self.load_lora_model(model, self.model_config,
1008
+ self.scheduler_config,
1009
+ self.lora_config, self.device)
1010
+ replace_set_lora(model)
1011
+
1012
+ # Sync all pending XLA execution during model initialization and weight
1013
+ # loading.
1014
+ xm.mark_step()
1015
+ xm.wait_device_ops()
1016
+ if not hasattr(self, "model"):
1017
+ self.model = model
1018
+ self.sampler = TPUSampler()
1019
+
1020
+ @torch.no_grad()
1021
+ def _dummy_run(self, num_tokens: int) -> None:
1022
+ if self.is_multimodal_model:
1023
+ input_ids = None
1024
+ inputs_embeds = torch.zeros((num_tokens, self.hidden_size),
1025
+ dtype=self.dtype,
1026
+ device=self.device)
1027
+ else:
1028
+ input_ids = torch.zeros((num_tokens),
1029
+ dtype=torch.int32).to(self.device)
1030
+ inputs_embeds = None
1031
+ actual_num_reqs = min(num_tokens, self.max_num_reqs)
1032
+ position_ids = torch.zeros(num_tokens,
1033
+ dtype=torch.int32).to(self.device)
1034
+ slot_mapping = torch.zeros(num_tokens,
1035
+ dtype=torch.int64).to(self.device)
1036
+ block_tables = torch.zeros(
1037
+ (self.max_num_reqs, self.block_table_cpu.shape[1]),
1038
+ dtype=torch.int32).to(self.device)
1039
+ query_lens = [1] * self.max_num_reqs
1040
+ query_start_loc = torch.cumsum(torch.tensor([0] + query_lens,
1041
+ dtype=torch.int32),
1042
+ dim=0,
1043
+ dtype=torch.int32).to(self.device)
1044
+ context_lens = torch.ones((self.max_num_reqs, ),
1045
+ dtype=torch.int32).to(self.device)
1046
+ num_seqs = torch.tensor([actual_num_reqs],
1047
+ dtype=torch.int32).to(self.device)
1048
+ attn_metadata = PallasMetadata(
1049
+ slot_mapping=slot_mapping,
1050
+ block_tables=block_tables,
1051
+ context_lens=context_lens,
1052
+ query_start_loc=query_start_loc,
1053
+ num_seqs=num_seqs,
1054
+ )
1055
+
1056
+ if self.is_multimodal_model:
1057
+ torch._dynamo.mark_dynamic(inputs_embeds, 0)
1058
+ else:
1059
+ torch._dynamo.mark_dynamic(input_ids, 0)
1060
+ torch._dynamo.mark_dynamic(position_ids, 0)
1061
+ torch._dynamo.mark_dynamic(attn_metadata.slot_mapping, 0)
1062
+
1063
+ layer_names = get_layers_from_vllm_config(self.vllm_config,
1064
+ Attention).keys()
1065
+ per_layer_attn_metadata = {
1066
+ layer_name: attn_metadata
1067
+ for layer_name in layer_names
1068
+ }
1069
+
1070
+ with self.maybe_select_dummy_loras(
1071
+ self.lora_config,
1072
+ np.array([num_tokens], dtype=np.int32)), set_forward_context(
1073
+ per_layer_attn_metadata, self.vllm_config, 0):
1074
+ out = self.model(input_ids=input_ids,
1075
+ positions=position_ids,
1076
+ inputs_embeds=inputs_embeds)
1077
+ self._hidden_states_dtype = out.dtype
1078
+
1079
+ def _set_active_loras(self, prompt_lora_mapping, token_lora_mapping,
1080
+ lora_requests) -> None:
1081
+ xm.mark_step() # Captures input updates
1082
+ super()._set_active_loras(prompt_lora_mapping, token_lora_mapping,
1083
+ lora_requests)
1084
+ xm.mark_step() # Captures metadata updates
1085
+
1086
+ def _precompile_mm_encoder(self) -> None:
1087
+ # Pre-compile MM encoder for all supported data modalities.
1088
+ hf_config = self.vllm_config.model_config.hf_config
1089
+ for mode, max_items_by_mode in \
1090
+ self.max_num_mm_items_by_modality.items():
1091
+ logger.info(
1092
+ "Compiling Multimodal %s Encoder with different input"
1093
+ " shapes.", mode)
1094
+ start = time.perf_counter()
1095
+ # No padding for MM encoder just yet.
1096
+ for num_items in range(1, max_items_by_mode + 1):
1097
+ logger.info(" -- mode: %s items: %d", mode, num_items)
1098
+ batched_dummy_mm_inputs = self._get_mm_dummy_batch(
1099
+ mode, num_items)
1100
+ # Run multimodal encoder.
1101
+ xm.mark_step()
1102
+ mm_embeds = self.model.\
1103
+ get_multimodal_embeddings(**batched_dummy_mm_inputs)
1104
+ xm.mark_step()
1105
+ num_patches = mm_embeds[0].shape[0]
1106
+ items_size = num_patches * num_items
1107
+
1108
+ # NOTE (NickLucche) pre-compile `get_input_embeddings` when mm
1109
+ # embeddings are present. We assume `--disable-mm-chunked`,
1110
+ # hence only whole items can be scheduled. This implies we just
1111
+ # need to compile when `num_items` fit the (padded) `input_ids`
1112
+ for num_tokens in self.num_tokens_paddings:
1113
+ if num_tokens >= items_size:
1114
+ # XLA Workaround: if torch.zeros(..device) is used, XLA
1115
+ # compiles a scalar+expansion op, which won't match
1116
+ # the graph generated at runtime. CPU->TPU must be used
1117
+ placeholders_ids = torch.zeros(num_tokens,
1118
+ dtype=torch.int32,
1119
+ device="cpu")
1120
+ # Align placeholders and actual num mm_embeddings.
1121
+ placeholders_ids[:items_size] = \
1122
+ hf_config.image_token_index
1123
+
1124
+ placeholders_ids = placeholders_ids.to(self.device)
1125
+ # Assign outputs or the graph will be cut short.
1126
+ a, b = self._get_model_inputs(placeholders_ids,
1127
+ [mm_embeds])
1128
+ assert a is None
1129
+ xm.mark_step()
1130
+
1131
+ # Pre-compile `get_input_embeddings` when mm_embeddings are not
1132
+ # present. Chunk is only made of text, no mm_placeholders.
1133
+ for num_tokens in self.num_tokens_paddings:
1134
+ placeholders_ids = torch.zeros(num_tokens,
1135
+ dtype=torch.int32,
1136
+ device="cpu")
1137
+ placeholders_ids = placeholders_ids.to(self.device)
1138
+ a, b = self._get_model_inputs(placeholders_ids, [])
1139
+ assert a is None
1140
+ xm.mark_step()
1141
+
1142
+ xm.wait_device_ops()
1143
+ end = time.perf_counter()
1144
+ logger.info(
1145
+ "Multimodal %s Encoder compilation finished in in %.2f "
1146
+ "[secs].", mode, end - start)
1147
+
1148
+ def _precompile_backbone(self) -> None:
1149
+ logger.info("Compiling the model with different input shapes.")
1150
+ start = time.perf_counter()
1151
+ for num_tokens in self.num_tokens_paddings:
1152
+ logger.info(" -- num_tokens: %d", num_tokens)
1153
+ self._dummy_run(num_tokens)
1154
+ xm.wait_device_ops()
1155
+ end = time.perf_counter()
1156
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1157
+ self._update_num_xla_graphs("model backbone")
1158
+
1159
+ def _precompile_select_hidden_states(self) -> None:
1160
+ # Compile hidden state selection function for bucketed
1161
+ # n_tokens x max_num_reqs. Graph is really small so this is fine.
1162
+ logger.info(
1163
+ "Compiling select_hidden_states with different input shapes.")
1164
+ start = time.perf_counter()
1165
+ hsize = self.model_config.get_hidden_size()
1166
+ for num_tokens in self.num_tokens_paddings:
1167
+ dummy_hidden = torch.zeros((num_tokens, hsize),
1168
+ device=self.device,
1169
+ dtype=self._hidden_states_dtype)
1170
+ torch._dynamo.mark_dynamic(dummy_hidden, 0)
1171
+ for num_reqs in self.num_reqs_paddings:
1172
+ indices = torch.zeros(num_reqs,
1173
+ dtype=torch.int32,
1174
+ device=self.device)
1175
+ torch._dynamo.mark_dynamic(indices, 0)
1176
+ self.select_hidden_states(dummy_hidden, indices)
1177
+ logger.info(" -- num_tokens: %d, num_seqs: %d", num_tokens,
1178
+ num_reqs)
1179
+ # Requests can't be more than tokens. But do compile for the
1180
+ # next bigger value in case num_tokens uses bucketed padding.
1181
+ if num_reqs >= min(num_tokens, self.max_num_reqs):
1182
+ break
1183
+ xm.wait_device_ops()
1184
+ end = time.perf_counter()
1185
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1186
+ self._update_num_xla_graphs("select_hidden_states")
1187
+
1188
+ def _precompile_compute_logits(self) -> None:
1189
+ logger.info("Compiling compute_logits with different input shapes.")
1190
+ start = time.perf_counter()
1191
+ hsize = self.model_config.get_hidden_size()
1192
+ for num_reqs in self.num_reqs_paddings:
1193
+ dummy_hidden = torch.zeros((num_reqs, hsize),
1194
+ device=self.device,
1195
+ dtype=self._hidden_states_dtype)
1196
+ torch._dynamo.mark_dynamic(dummy_hidden, 0)
1197
+ self.compute_logits(dummy_hidden)
1198
+ logger.info(" -- num_seqs: %d", num_reqs)
1199
+ xm.wait_device_ops()
1200
+ end = time.perf_counter()
1201
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1202
+ self._update_num_xla_graphs("compute_logits")
1203
+
1204
+ def _precompile_structured_decoding(self) -> None:
1205
+ logger.info(
1206
+ "Compiling structured_decoding with different input shapes.")
1207
+ start = time.perf_counter()
1208
+ for num_reqs in self.num_reqs_paddings:
1209
+ dummy_logits = torch.zeros((num_reqs, self.vocab_size),
1210
+ device=self.device,
1211
+ dtype=self._hidden_states_dtype)
1212
+ dummy_require_struct_decoding = \
1213
+ self.require_structured_out_cpu[:num_reqs].to(self.device)
1214
+ dummy_grammar_bitmask = \
1215
+ self.grammar_bitmask_cpu[:num_reqs].to(self.device)
1216
+ # The first dimension of the above 3 dummy tensors cannot be
1217
+ # mark_dynamic because some operations in structured_decode require
1218
+ # them to be static.
1219
+ arange = self.structured_decode_arange.to(self.device)
1220
+ self.structured_decode(dummy_require_struct_decoding,
1221
+ dummy_grammar_bitmask, dummy_logits, arange)
1222
+ logger.info(" -- num_seqs: %d", num_reqs)
1223
+ xm.wait_device_ops()
1224
+ end = time.perf_counter()
1225
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1226
+ self._update_num_xla_graphs("structured_decoding")
1227
+
1228
+ def _precompile_sample_from_logits(self) -> None:
1229
+ logger.info(
1230
+ "Compiling sample_from_logits with different input shapes.")
1231
+ start = time.perf_counter()
1232
+ for num_reqs in self.num_reqs_paddings:
1233
+ dummy_logits = torch.zeros((num_reqs, self.vocab_size),
1234
+ device=self.device,
1235
+ dtype=self._hidden_states_dtype)
1236
+ # The first dimension of dummy_logits cannot be mark_dynamic
1237
+ # because some operations in the sampler require it to be static.
1238
+ for all_greedy in [False, True]:
1239
+ generate_params_if_all_greedy = not all_greedy
1240
+ sampling_metadata = (
1241
+ TPUSupportedSamplingMetadata.from_input_batch(
1242
+ self.input_batch,
1243
+ num_reqs,
1244
+ self.device,
1245
+ generate_params_if_all_greedy,
1246
+ ))
1247
+ sampling_metadata.all_greedy = all_greedy
1248
+ with self.maybe_select_dummy_loras(
1249
+ self.lora_config, np.array([num_reqs],
1250
+ dtype=np.int32)):
1251
+ self.sample_from_logits_func(dummy_logits,
1252
+ sampling_metadata)
1253
+ logger.info(" -- num_seqs: %d", num_reqs)
1254
+ xm.wait_device_ops()
1255
+ end = time.perf_counter()
1256
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1257
+ self._update_num_xla_graphs("sample_from_logits")
1258
+
1259
+ def _precompile_gather_logprobs(self) -> None:
1260
+ logger.info("Compiling gather_logprobs with different input shapes.")
1261
+ start = time.perf_counter()
1262
+ for num_reqs in self.num_reqs_paddings:
1263
+ dummy_logits = torch.zeros((num_reqs, self.vocab_size),
1264
+ device=self.device,
1265
+ dtype=self._hidden_states_dtype)
1266
+ dummy_tokens = torch.zeros((num_reqs, 1),
1267
+ dtype=torch.int64).to(self.device)
1268
+ with self.maybe_select_dummy_loras(
1269
+ self.lora_config, np.array([num_reqs], dtype=np.int32)):
1270
+ self.gather_logprobs(dummy_logits, dummy_tokens)
1271
+ logger.info(" -- num_seqs: %d", num_reqs)
1272
+ xm.wait_device_ops()
1273
+ end = time.perf_counter()
1274
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1275
+ self._update_num_xla_graphs("gather_logprobs")
1276
+
1277
+ def capture_model(self) -> None:
1278
+ """
1279
+ Precompile all the subgraphs with possible input shapes.
1280
+ """
1281
+ with self.maybe_setup_dummy_loras(self.lora_config):
1282
+ self._precompile_mm_encoder()
1283
+ self._precompile_backbone()
1284
+ self._precompile_select_hidden_states()
1285
+ self._precompile_compute_logits()
1286
+ self._precompile_structured_decoding()
1287
+ self._precompile_sample_from_logits()
1288
+ self._precompile_gather_logprobs()
1289
+
1290
+ def profile_run(
1291
+ self,
1292
+ num_tokens: int,
1293
+ ) -> None:
1294
+ # Profile with multimodal encoder & encoder cache.
1295
+ # TODO: handle encoder-decoder models once we support them.
1296
+ if (self.is_multimodal_model and self.max_num_encoder_input_tokens > 0
1297
+ and self.encoder_cache_size > 0):
1298
+
1299
+ # NOTE: Currently model is profiled with a single non-text
1300
+ # modality with the max possible input tokens even when
1301
+ # it supports multiple.
1302
+ dummy_data_modality, max_num_mm_items = max(
1303
+ self.max_num_mm_items_by_modality.items(), key=lambda t: t[1])
1304
+
1305
+ encoder_budget = min(self.max_num_encoder_input_tokens,
1306
+ self.encoder_cache_size)
1307
+
1308
+ logger.info(
1309
+ "Encoder cache will be initialized with a budget of %d tokens,"
1310
+ " and profiled with %s %s items of the maximum feature size.",
1311
+ encoder_budget, max_num_mm_items, dummy_data_modality)
1312
+
1313
+ # Create dummy batch of multimodal inputs.
1314
+ batched_dummy_mm_inputs = self._get_mm_dummy_batch(
1315
+ dummy_data_modality, max_num_mm_items)
1316
+
1317
+ # Run multimodal encoder.
1318
+ # Isolate encoder graph from post-processing to minimize
1319
+ # impact of recompilation until it's fixed.
1320
+ start = time.perf_counter()
1321
+ xm.mark_step()
1322
+ dummy_encoder_outputs = self.model.get_multimodal_embeddings(
1323
+ **batched_dummy_mm_inputs)
1324
+ xm.mark_step()
1325
+ xm.wait_device_ops()
1326
+ end = time.perf_counter()
1327
+ logger.info(
1328
+ "Multimodal Encoder profiling finished in in %.2f [secs].",
1329
+ end - start)
1330
+
1331
+ assert len(dummy_encoder_outputs) == max_num_mm_items, (
1332
+ "Expected dimension 0 of encoder outputs to match the number "
1333
+ f"of multimodal data items: {max_num_mm_items}, got "
1334
+ f"{len(dummy_encoder_outputs)=} instead. This is most likely "
1335
+ "due to the 'get_multimodal_embeddings' method of the model "
1336
+ "not implemented correctly.")
1337
+
1338
+ # Cache the dummy encoder outputs.
1339
+ self.encoder_cache["tmp"] = dict(enumerate(dummy_encoder_outputs))
1340
+
1341
+ # Trigger compilation for general shape.
1342
+ self._dummy_run(num_tokens)
1343
+
1344
+ xm.mark_step()
1345
+ xm.wait_device_ops()
1346
+ self.encoder_cache.clear()
1347
+ gc.collect()
1348
+
1349
+ def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
1350
+ """
1351
+ Initialize KV cache based on `kv_cache_config`.
1352
+ Args:
1353
+ kv_cache_config: Configuration for the KV cache, including the KV
1354
+ cache size of each layer
1355
+ """
1356
+ if len(kv_cache_config.kv_cache_groups) > 1:
1357
+ raise NotImplementedError(
1358
+ "Hybrid models with more than one KV cache type are not "
1359
+ "supported yet.")
1360
+
1361
+ if kv_cache_config.kv_cache_groups[
1362
+ 0].kv_cache_spec.block_size != self.block_size:
1363
+ self.input_batch = InputBatch(
1364
+ max_num_reqs=self.max_num_reqs,
1365
+ max_model_len=self.max_model_len,
1366
+ max_num_batched_tokens=self.max_num_tokens,
1367
+ device=self.device,
1368
+ pin_memory=self.pin_memory,
1369
+ vocab_size=self.model_config.get_vocab_size(),
1370
+ block_sizes=[
1371
+ kv_cache_config.kv_cache_groups[0].kv_cache_spec.block_size
1372
+ ],
1373
+ )
1374
+ # Verify dtype compatibility between block_table_cpu and input_batch
1375
+ assert self.block_table_cpu.dtype == self.input_batch.block_table[
1376
+ 0].get_cpu_tensor().dtype
1377
+
1378
+ kv_cache_sizes = {}
1379
+ for kv_cache_tensor in kv_cache_config.kv_cache_tensors:
1380
+ assert len(kv_cache_tensor.shared_by) == 1, (
1381
+ "KV cache tensor shared by multiple layers is not supported in "
1382
+ "TPU.")
1383
+ kv_cache_sizes[kv_cache_tensor.shared_by[0]] = kv_cache_tensor.size
1384
+
1385
+ kv_caches: dict[str, torch.Tensor] = {}
1386
+ for kv_cache_group in kv_cache_config.kv_cache_groups:
1387
+ kv_cache_spec = kv_cache_group.kv_cache_spec
1388
+ for layer_name in kv_cache_group.layer_names:
1389
+ tensor_size = kv_cache_sizes[layer_name]
1390
+ assert tensor_size % kv_cache_spec.page_size_bytes == 0
1391
+ num_blocks = tensor_size // kv_cache_spec.page_size_bytes # noqa
1392
+ if isinstance(kv_cache_spec, AttentionSpec):
1393
+ if self.use_spmd:
1394
+ num_kv_heads = kv_cache_spec.num_kv_heads
1395
+ assert self.original_parallel_config is not None
1396
+ tp_size = \
1397
+ self.original_parallel_config.tensor_parallel_size
1398
+ # TODO: Handle kv cache duplication under SPMD mode.
1399
+ assert num_kv_heads % tp_size == 0, (
1400
+ f"num_kv_heads {num_kv_heads} must be divisible by "
1401
+ f"tp_size {tp_size} under SPMD mode")
1402
+ kv_cache_shape = PallasAttentionBackend.get_kv_cache_shape(
1403
+ num_blocks, kv_cache_spec.block_size,
1404
+ kv_cache_spec.num_kv_heads, kv_cache_spec.head_size)
1405
+ dtype = kv_cache_spec.dtype
1406
+
1407
+ tpu_kv_cache = torch.zeros(kv_cache_shape,
1408
+ dtype=dtype).to(self.device)
1409
+
1410
+ kv_caches[layer_name] = tpu_kv_cache
1411
+ else:
1412
+ raise NotImplementedError
1413
+
1414
+ # Setup `kv_cache_config` and `kv_caches` for models
1415
+ # with cross-layer KV sharing
1416
+ if self.shared_kv_cache_layers:
1417
+ initialize_kv_cache_for_kv_sharing(
1418
+ self.shared_kv_cache_layers,
1419
+ kv_cache_config.kv_cache_groups,
1420
+ kv_caches,
1421
+ )
1422
+
1423
+ bind_kv_cache(
1424
+ kv_caches,
1425
+ self.vllm_config.compilation_config.static_forward_context,
1426
+ self.kv_caches)
1427
+
1428
+ if self.use_spmd:
1429
+ # Shard KV Cache
1430
+ for cache in self.kv_caches:
1431
+ xs.mark_sharding(cache, self.mesh, (None, 'x', None, None))
1432
+
1433
+ def reset_dynamo_cache(self):
1434
+ if self.is_multimodal_model:
1435
+ compiled_model = self.model.get_language_model().model
1436
+ else:
1437
+ compiled_model = self.model.model
1438
+ if isinstance(compiled_model, TorchCompileWrapperWithCustomDispatcher):
1439
+ logger.info("Clear dynamo cache and cached dynamo bytecode.")
1440
+ torch._dynamo.eval_frame.remove_from_cache(
1441
+ compiled_model.original_code_object)
1442
+ compiled_model.compiled_codes.clear()
1443
+
1444
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1445
+ def select_hidden_states(self, hidden_states, indices_do_sample):
1446
+ return hidden_states[indices_do_sample]
1447
+
1448
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1449
+ def compute_logits(self,
1450
+ sample_hidden_states: torch.Tensor) -> torch.Tensor:
1451
+ return self.model.compute_logits(sample_hidden_states, None)
1452
+
1453
+ # TODO: Under SPMD mode, sample_from_logits has correctness issue.
1454
+ # Re-enable the torch.compile once the issue is fixed in torchxla.
1455
+ # @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1456
+ def sample_from_logits(
1457
+ self, logits: torch.Tensor,
1458
+ sampling_metadata: TPUSupportedSamplingMetadata) -> torch.Tensor:
1459
+ """
1460
+ Sample with xla-friendly function. This function is to be traced
1461
+ separately from `forward` for lighter compilation overhead.
1462
+ """
1463
+ if sampling_metadata.all_greedy:
1464
+ out_tokens = torch.argmax(logits, dim=-1, keepdim=True)
1465
+ else:
1466
+ out_tokens = self.sampler(logits,
1467
+ sampling_metadata).sampled_token_ids
1468
+ return out_tokens
1469
+
1470
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1471
+ def gather_logprobs(self, logits: torch.Tensor,
1472
+ sampled_tokens: torch.Tensor) -> LogprobsTensors:
1473
+ """
1474
+ Gather the top_logprobs with corresponding tokens. Use a fixed number
1475
+ of logprobs as an alternative to having multiple pre-compiled graphs.
1476
+ Select the number of logprobs actually demanded by each request on CPU.
1477
+ """
1478
+ logprobs = self.sampler.compute_logprobs(logits)
1479
+ return self.sampler.gather_logprobs(
1480
+ logprobs,
1481
+ self.model_config.max_logprobs,
1482
+ token_ids=sampled_tokens.squeeze(-1))
1483
+
1484
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1485
+ def structured_decode(self, require_struct_decoding: torch.Tensor,
1486
+ grammar_bitmask: torch.Tensor, logits: torch.Tensor,
1487
+ arange: torch.Tensor) -> torch.Tensor:
1488
+ return torch.where(
1489
+ require_struct_decoding,
1490
+ self.apply_grammar_bitmask(logits, grammar_bitmask, arange),
1491
+ logits)
1492
+
1493
+ def apply_grammar_bitmask(self, logits: torch.Tensor,
1494
+ grammar_bitmask: torch.Tensor,
1495
+ arange: torch.Tensor):
1496
+ assert (logits.shape[0] == grammar_bitmask.shape[0])
1497
+ logits_cloned = logits.clone()
1498
+ for i in range(logits.shape[0]):
1499
+ unpacked_bitmask = (torch.bitwise_right_shift(
1500
+ grammar_bitmask[i][:, None], arange[None, :]) & 1) == 0
1501
+ unpacked_bitmask = unpacked_bitmask.reshape(-1)[:self.vocab_size]
1502
+ logits_cloned[i] = logits_cloned[i].masked_fill(
1503
+ unpacked_bitmask, -float("inf"))
1504
+ return logits_cloned
1505
+
1506
+ def get_multimodal_embeddings(self, *args, **kwargs):
1507
+ return self.model.get_multimodal_embeddings(*args, **kwargs)
1508
+
1509
+ def get_input_embeddings(self, *args, **kwargs):
1510
+ return self.model.get_input_embeddings(*args, **kwargs)
1511
+
1512
+ def prepare_structured_decoding_input(
1513
+ self, logits: torch.Tensor, scheduler_output: "SchedulerOutput"
1514
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
1515
+ grammar_bitmask = scheduler_output.grammar_bitmask
1516
+ assert grammar_bitmask is not None
1517
+ num_reqs, _ = logits.shape
1518
+
1519
+ # Reset pre-allocated tensors
1520
+ self.grammar_bitmask_cpu.zero_()
1521
+ self.require_structured_out_cpu.zero_()
1522
+
1523
+ # We receive the structured output bitmask from the scheduler, but the
1524
+ # indices of the requests in the batch may not match the indices of
1525
+ # the bitmask since the scheduler doesn't know how the tpu runner is
1526
+ # ordering the requests in the batch. We need to match the order of
1527
+ # bitmask with the order of requests
1528
+ struct_out_indices: list[int] = []
1529
+ mask_indices: list[int] = []
1530
+ for req_id in self.input_batch.req_ids:
1531
+ mask_index = scheduler_output.structured_output_request_ids.get(
1532
+ req_id)
1533
+ if mask_index is None:
1534
+ continue
1535
+ batch_index = self.input_batch.req_id_to_index[req_id]
1536
+ struct_out_indices.append(batch_index)
1537
+ mask_indices.append(mask_index)
1538
+ self.grammar_bitmask_cpu[struct_out_indices] = torch.from_numpy(
1539
+ grammar_bitmask[mask_indices])
1540
+ # It's not guaranteed that all requests in this batch require
1541
+ # structured output, so create a bool tensor to represent
1542
+ # the requests that need structured output.
1543
+ struct_out_indices = torch.tensor(struct_out_indices, dtype=torch.long)
1544
+ self.require_structured_out_cpu[struct_out_indices] = True
1545
+ return self.require_structured_out_cpu[:num_reqs].to(logits.device), \
1546
+ self.grammar_bitmask_cpu[:num_reqs].to(logits.device), \
1547
+ self.structured_decode_arange.to(logits.device)
1548
+
1549
+ def _get_mm_dummy_batch(self, modality: str,
1550
+ batch_size: int) -> BatchedTensorInputs:
1551
+ # Dummy data for pre-compiling multimodal models.
1552
+ dummy_request_data = self.mm_registry.get_decoder_dummy_data(
1553
+ model_config=self.model_config,
1554
+ seq_len=self.max_num_tokens,
1555
+ )
1556
+ dummy_mm_data = dummy_request_data.multi_modal_data
1557
+
1558
+ # Dummy data definition in V0 may contain multiple multimodal items
1559
+ # (e.g, multiple images) for a single request, therefore here we
1560
+ # always replicate first item by max_num_mm_items times since in V1
1561
+ # they are scheduled to be processed separately.
1562
+ assert isinstance(dummy_mm_data, MultiModalKwargs), (
1563
+ "Expected dummy multimodal data to be of type "
1564
+ f"MultiModalKwargs, got {type(dummy_mm_data)=} instead. "
1565
+ "This is most likely due to the model not having a merged "
1566
+ "processor.")
1567
+
1568
+ # When models have a merged processor, their dummy data is
1569
+ # already batched `MultiModalKwargs`, therefore we take the first
1570
+ # `MultiModalKwargsItem` from the desired modality to profile on.
1571
+ dummy_mm_item = dummy_mm_data.get_item(modality=modality, item_index=0)
1572
+ dummy_mm_kwargs = MultiModalKwargs.from_items([dummy_mm_item])
1573
+
1574
+ batched_dummy_mm_inputs = MultiModalKwargs.batch([dummy_mm_kwargs] *
1575
+ batch_size)
1576
+ return MultiModalKwargs.as_kwargs(
1577
+ batched_dummy_mm_inputs,
1578
+ device=self.device,
1579
+ )
1580
+
1581
+
1582
+ def _get_req_paddings(min_req_size: int, max_req_size: int) -> list[int]:
1583
+ logger.info("Preparing request paddings:")
1584
+ # assert min_req_size is power of 2
1585
+ assert (min_req_size & (min_req_size - 1) == 0) and min_req_size > 0
1586
+ paddings: list = []
1587
+ num = max(MIN_NUM_SEQS, min_req_size)
1588
+ while num <= max_req_size and (len(paddings) == 0 or paddings[-1] != num):
1589
+ paddings.append(num)
1590
+ logger.info(" %d", num)
1591
+ num = _get_padded_num_reqs_with_upper_limit(num + 1, max_req_size)
1592
+ return paddings
1593
+
1594
+
1595
+ def _get_padded_num_reqs_with_upper_limit(x: int, upper_limit: int) -> int:
1596
+ res = MIN_NUM_SEQS if x <= MIN_NUM_SEQS else 1 << (x - 1).bit_length()
1597
+ return min(res, upper_limit)
1598
+
1599
+
1600
+ def _get_token_paddings(min_token_size: int, max_token_size: int,
1601
+ padding_gap: int) -> list[int]:
1602
+ """Generate a list of padding size, starting from min_token_size,
1603
+ ending with a number that can cover max_token_size
1604
+
1605
+ If padding_gap == 0 then:
1606
+ increase 2X each time (exponential)
1607
+ else:
1608
+ first increase the size to twice,
1609
+ then increase the padding size by padding_gap.
1610
+ """
1611
+ # assert min_token_size is power of 2
1612
+ assert (min_token_size & (min_token_size - 1) == 0) and min_token_size > 0
1613
+ paddings = []
1614
+ num = min_token_size
1615
+
1616
+ if padding_gap == 0:
1617
+ logger.info("Using exponential token paddings:")
1618
+ while True:
1619
+ logger.info(" %d", num)
1620
+ paddings.append(num)
1621
+ if num >= max_token_size:
1622
+ break
1623
+ num *= 2
1624
+ else:
1625
+ logger.info("Using incremental token paddings:")
1626
+ while num <= padding_gap:
1627
+ logger.info(" %d", num)
1628
+ paddings.append(num)
1629
+ num *= 2
1630
+ num //= 2
1631
+ while num < max_token_size:
1632
+ num += padding_gap
1633
+ logger.info(" %d", num)
1634
+ paddings.append(num)
1635
+
1636
+ return paddings
1637
+
1638
+
1639
+ def _get_padded_token_len(paddings: list[int], x: int) -> int:
1640
+ """Return the first element in paddings list greater or equal to x.
1641
+ """
1642
+ index = bisect.bisect_left(paddings, x)
1643
+ assert index < len(paddings)
1644
+ return paddings[index]
1645
+
1646
+
1647
+ def replace_set_lora(model):
1648
+
1649
+ def _tpu_set_lora(
1650
+ self,
1651
+ index: int,
1652
+ lora_a: torch.Tensor,
1653
+ lora_b: torch.Tensor,
1654
+ embeddings_tensor: Optional[torch.Tensor],
1655
+ bias: Optional[torch.Tensor] = None,
1656
+ ):
1657
+ # TODO: The integer index leads to a recompilation, but converting it
1658
+ # to a tensor doesn't seem to work anymore. This might be fixed with a
1659
+ # later release of torch_xla.
1660
+ self._original_set_lora(index, lora_a, lora_b, embeddings_tensor, bias)
1661
+ xm.mark_step()
1662
+
1663
+ def _tpu_reset_lora(self, index: int):
1664
+ self._original_reset_lora(index)
1665
+ xm.mark_step()
1666
+
1667
+ for _, module in model.named_modules():
1668
+ if isinstance(module, BaseLayerWithLoRA):
1669
+ module._original_set_lora = module.set_lora
1670
+ module._original_reset_lora = module.reset_lora
1671
+ module.set_lora = _tpu_set_lora.__get__(module, module.__class__)
1672
+ module.reset_lora = _tpu_reset_lora.__get__(
1673
+ module, module.__class__)