vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +53 -0
- vllm/_custom_ops.py +1828 -0
- vllm/_ipex_ops.py +244 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +106 -0
- vllm/adapter_commons/request.py +26 -0
- vllm/adapter_commons/utils.py +93 -0
- vllm/adapter_commons/worker_manager.py +39 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +34 -0
- vllm/assets/video.py +115 -0
- vllm/attention/__init__.py +20 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +308 -0
- vllm/attention/backends/blocksparse_attn.py +461 -0
- vllm/attention/backends/cpu_mla.py +307 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
- vllm/attention/backends/flash_attn.py +1003 -0
- vllm/attention/backends/flashinfer.py +1104 -0
- vllm/attention/backends/flashmla.py +244 -0
- vllm/attention/backends/hpu_attn.py +313 -0
- vllm/attention/backends/ipex_attn.py +398 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1385 -0
- vllm/attention/backends/pallas.py +351 -0
- vllm/attention/backends/placeholder_attn.py +400 -0
- vllm/attention/backends/rocm_aiter_mla.py +435 -0
- vllm/attention/backends/rocm_flash_attn.py +975 -0
- vllm/attention/backends/torch_sdpa.py +703 -0
- vllm/attention/backends/triton_mla.py +115 -0
- vllm/attention/backends/utils.py +610 -0
- vllm/attention/backends/xformers.py +802 -0
- vllm/attention/layer.py +468 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
- vllm/attention/ops/blocksparse_attention/interface.py +239 -0
- vllm/attention/ops/blocksparse_attention/utils.py +246 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
- vllm/attention/ops/flashmla.py +116 -0
- vllm/attention/ops/hpu_paged_attn.py +88 -0
- vllm/attention/ops/ipex_attn.py +195 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/nki_flash_attn.py +906 -0
- vllm/attention/ops/paged_attn.py +256 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +100 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +674 -0
- vllm/attention/ops/triton_flash_attention.py +979 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_unified_attention.py +334 -0
- vllm/attention/selector.py +187 -0
- vllm/attention/utils/fa_utils.py +55 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +1185 -0
- vllm/benchmarks/endpoint_request_func.py +381 -0
- vllm/benchmarks/latency.py +168 -0
- vllm/benchmarks/serve.py +1135 -0
- vllm/benchmarks/throughput.py +609 -0
- vllm/benchmarks/utils.py +70 -0
- vllm/collect_env.py +820 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +89 -0
- vllm/compilation/backends.py +563 -0
- vllm/compilation/base_piecewise_backend.py +72 -0
- vllm/compilation/collective_fusion.py +127 -0
- vllm/compilation/compiler_interface.py +544 -0
- vllm/compilation/counter.py +38 -0
- vllm/compilation/cuda_piecewise_backend.py +214 -0
- vllm/compilation/decorators.py +250 -0
- vllm/compilation/fix_functionalization.py +191 -0
- vllm/compilation/fusion.py +618 -0
- vllm/compilation/fx_utils.py +62 -0
- vllm/compilation/inductor_pass.py +115 -0
- vllm/compilation/monitor.py +39 -0
- vllm/compilation/multi_output_match.py +109 -0
- vllm/compilation/noop_elimination.py +137 -0
- vllm/compilation/pass_manager.py +78 -0
- vllm/compilation/sequence_parallelism.py +268 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +67 -0
- vllm/compilation/wrapper.py +135 -0
- vllm/config.py +4746 -0
- vllm/connections.py +174 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +399 -0
- vllm/core/block/common.py +371 -0
- vllm/core/block/cpu_gpu_block_allocator.py +441 -0
- vllm/core/block/interfaces.py +319 -0
- vllm/core/block/naive_block.py +466 -0
- vllm/core/block/prefix_caching_block.py +1135 -0
- vllm/core/block/utils.py +28 -0
- vllm/core/block_manager.py +521 -0
- vllm/core/evictor.py +157 -0
- vllm/core/interfaces.py +135 -0
- vllm/core/placeholder_block_space_manager.py +100 -0
- vllm/core/scheduler.py +2093 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +281 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +264 -0
- vllm/distributed/device_communicators/base_device_communicator.py +260 -0
- vllm/distributed/device_communicators/cpu_communicator.py +145 -0
- vllm/distributed/device_communicators/cuda_communicator.py +176 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
- vllm/distributed/device_communicators/hpu_communicator.py +46 -0
- vllm/distributed/device_communicators/neuron_communicator.py +20 -0
- vllm/distributed/device_communicators/pynccl.py +218 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
- vllm/distributed/device_communicators/shm_broadcast.py +585 -0
- vllm/distributed/device_communicators/tpu_communicator.py +103 -0
- vllm/distributed/device_communicators/xpu_communicator.py +55 -0
- vllm/distributed/kv_events.py +356 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +12 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
- vllm/distributed/parallel_state.py +1296 -0
- vllm/distributed/tpu_distributed_utils.py +177 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1708 -0
- vllm/engine/async_llm_engine.py +1200 -0
- vllm/engine/async_timeout.py +173 -0
- vllm/engine/llm_engine.py +2097 -0
- vllm/engine/metrics.py +629 -0
- vllm/engine/metrics_types.py +94 -0
- vllm/engine/multiprocessing/__init__.py +148 -0
- vllm/engine/multiprocessing/client.py +681 -0
- vllm/engine/multiprocessing/engine.py +460 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +75 -0
- vllm/engine/output_processor/multi_step.py +216 -0
- vllm/engine/output_processor/single_step.py +145 -0
- vllm/engine/output_processor/stop_checker.py +131 -0
- vllm/engine/output_processor/util.py +28 -0
- vllm/engine/protocol.py +317 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1299 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +39 -0
- vllm/entrypoints/cli/benchmark/latency.py +30 -0
- vllm/entrypoints/cli/benchmark/main.py +54 -0
- vllm/entrypoints/cli/benchmark/serve.py +30 -0
- vllm/entrypoints/cli/benchmark/throughput.py +30 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +65 -0
- vllm/entrypoints/cli/openai.py +205 -0
- vllm/entrypoints/cli/run_batch.py +62 -0
- vllm/entrypoints/cli/serve.py +328 -0
- vllm/entrypoints/cli/types.py +25 -0
- vllm/entrypoints/launcher.py +147 -0
- vllm/entrypoints/llm.py +1544 -0
- vllm/entrypoints/logger.py +50 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1387 -0
- vllm/entrypoints/openai/cli_args.py +315 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +1913 -0
- vllm/entrypoints/openai/run_batch.py +463 -0
- vllm/entrypoints/openai/serving_chat.py +1221 -0
- vllm/entrypoints/openai/serving_classification.py +160 -0
- vllm/entrypoints/openai/serving_completion.py +592 -0
- vllm/entrypoints/openai/serving_embedding.py +201 -0
- vllm/entrypoints/openai/serving_engine.py +986 -0
- vllm/entrypoints/openai/serving_models.py +315 -0
- vllm/entrypoints/openai/serving_pooling.py +232 -0
- vllm/entrypoints/openai/serving_score.py +433 -0
- vllm/entrypoints/openai/serving_tokenization.py +157 -0
- vllm/entrypoints/openai/serving_transcription.py +424 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/score_utils.py +50 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/utils.py +233 -0
- vllm/env_override.py +41 -0
- vllm/envs.py +944 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +401 -0
- vllm/executor/mp_distributed_executor.py +244 -0
- vllm/executor/msgspec_utils.py +30 -0
- vllm/executor/multiproc_worker_utils.py +313 -0
- vllm/executor/ray_distributed_executor.py +701 -0
- vllm/executor/ray_utils.py +399 -0
- vllm/executor/uniproc_executor.py +139 -0
- vllm/forward_context.py +179 -0
- vllm/inputs/__init__.py +41 -0
- vllm/inputs/data.py +331 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +909 -0
- vllm/inputs/registry.py +237 -0
- vllm/jsontree.py +80 -0
- vllm/logger.py +212 -0
- vllm/logging_utils/__init__.py +8 -0
- vllm/logging_utils/dump_input.py +85 -0
- vllm/logging_utils/formatter.py +18 -0
- vllm/logits_process.py +119 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +355 -0
- vllm/lora/layers.py +1285 -0
- vllm/lora/lora.py +199 -0
- vllm/lora/models.py +818 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
- vllm/lora/ops/triton_ops/utils.py +120 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +145 -0
- vllm/lora/peft_helper.py +136 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +485 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +290 -0
- vllm/lora/punica_wrapper/punica_hpu.py +145 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +405 -0
- vllm/lora/punica_wrapper/utils.py +164 -0
- vllm/lora/request.py +99 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +240 -0
- vllm/lora/worker_manager.py +259 -0
- vllm/model_executor/__init__.py +16 -0
- vllm/model_executor/custom_op.py +152 -0
- vllm/model_executor/guided_decoding/__init__.py +181 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
- vllm/model_executor/guided_decoding/guided_fields.py +41 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
- vllm/model_executor/guided_decoding/utils.py +242 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +369 -0
- vllm/model_executor/layers/fused_moe/__init__.py +54 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
- vllm/model_executor/layers/fused_moe/layer.py +1535 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/utils.py +98 -0
- vllm/model_executor/layers/layernorm.py +288 -0
- vllm/model_executor/layers/lightning_attn.py +652 -0
- vllm/model_executor/layers/linear.py +1524 -0
- vllm/model_executor/layers/logits_processor.py +197 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
- vllm/model_executor/layers/pooler.py +350 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/auto_round.py +310 -0
- vllm/model_executor/layers/quantization/awq.py +194 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +151 -0
- vllm/model_executor/layers/quantization/bitblas.py +461 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
- vllm/model_executor/layers/quantization/experts_int8.py +196 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +906 -0
- vllm/model_executor/layers/quantization/gguf.py +565 -0
- vllm/model_executor/layers/quantization/gptq.py +278 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +139 -0
- vllm/model_executor/layers/quantization/marlin.py +261 -0
- vllm/model_executor/layers/quantization/modelopt.py +737 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
- vllm/model_executor/layers/quantization/qqq.py +275 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +441 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +161 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
- vllm/model_executor/layers/rejection_sampler.py +406 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding.py +1862 -0
- vllm/model_executor/layers/sampler.py +1204 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
- vllm/model_executor/layers/utils.py +95 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +76 -0
- vllm/model_executor/model_loader/base_loader.py +43 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
- vllm/model_executor/model_loader/default_loader.py +282 -0
- vllm/model_executor/model_loader/dummy_loader.py +27 -0
- vllm/model_executor/model_loader/gguf_loader.py +120 -0
- vllm/model_executor/model_loader/neuron.py +476 -0
- vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
- vllm/model_executor/model_loader/tensorizer.py +600 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
- vllm/model_executor/model_loader/tpu.py +112 -0
- vllm/model_executor/model_loader/utils.py +302 -0
- vllm/model_executor/model_loader/weight_utils.py +782 -0
- vllm/model_executor/models/__init__.py +28 -0
- vllm/model_executor/models/adapters.py +248 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +657 -0
- vllm/model_executor/models/aya_vision.py +466 -0
- vllm/model_executor/models/baichuan.py +474 -0
- vllm/model_executor/models/bamba.py +543 -0
- vllm/model_executor/models/bart.py +938 -0
- vllm/model_executor/models/bert.py +523 -0
- vllm/model_executor/models/bert_with_rope.py +769 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +718 -0
- vllm/model_executor/models/bloom.py +373 -0
- vllm/model_executor/models/chameleon.py +1136 -0
- vllm/model_executor/models/chatglm.py +478 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/commandr.py +472 -0
- vllm/model_executor/models/constant_size_cache.py +137 -0
- vllm/model_executor/models/dbrx.py +472 -0
- vllm/model_executor/models/deepseek.py +486 -0
- vllm/model_executor/models/deepseek_mtp.py +269 -0
- vllm/model_executor/models/deepseek_v2.py +843 -0
- vllm/model_executor/models/deepseek_vl2.py +648 -0
- vllm/model_executor/models/eagle.py +260 -0
- vllm/model_executor/models/exaone.py +551 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +510 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/florence2.py +1103 -0
- vllm/model_executor/models/fuyu.py +389 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +425 -0
- vllm/model_executor/models/gemma3.py +533 -0
- vllm/model_executor/models/gemma3_mm.py +709 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4v.py +648 -0
- vllm/model_executor/models/gpt2.py +328 -0
- vllm/model_executor/models/gpt_bigcode.py +335 -0
- vllm/model_executor/models/gpt_j.py +339 -0
- vllm/model_executor/models/gpt_neox.py +332 -0
- vllm/model_executor/models/granite.py +493 -0
- vllm/model_executor/models/granite_speech.py +779 -0
- vllm/model_executor/models/granitemoe.py +437 -0
- vllm/model_executor/models/granitemoehybrid.py +586 -0
- vllm/model_executor/models/granitemoeshared.py +341 -0
- vllm/model_executor/models/gritlm.py +224 -0
- vllm/model_executor/models/grok1.py +546 -0
- vllm/model_executor/models/h2ovl.py +546 -0
- vllm/model_executor/models/idefics2_vision_model.py +389 -0
- vllm/model_executor/models/idefics3.py +776 -0
- vllm/model_executor/models/interfaces.py +572 -0
- vllm/model_executor/models/interfaces_base.py +164 -0
- vllm/model_executor/models/intern_vit.py +480 -0
- vllm/model_executor/models/internlm2.py +455 -0
- vllm/model_executor/models/internlm2_ve.py +147 -0
- vllm/model_executor/models/internvl.py +1418 -0
- vllm/model_executor/models/jais.py +373 -0
- vllm/model_executor/models/jamba.py +592 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +644 -0
- vllm/model_executor/models/llama4.py +532 -0
- vllm/model_executor/models/llama_eagle.py +165 -0
- vllm/model_executor/models/llama_eagle3.py +263 -0
- vllm/model_executor/models/llava.py +866 -0
- vllm/model_executor/models/llava_next.py +586 -0
- vllm/model_executor/models/llava_next_video.py +471 -0
- vllm/model_executor/models/llava_onevision.py +956 -0
- vllm/model_executor/models/mamba.py +273 -0
- vllm/model_executor/models/mamba2.py +308 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +219 -0
- vllm/model_executor/models/mimo.py +192 -0
- vllm/model_executor/models/mimo_mtp.py +285 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +391 -0
- vllm/model_executor/models/minicpmo.py +759 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +36 -0
- vllm/model_executor/models/minimax_text_01.py +1301 -0
- vllm/model_executor/models/minimax_vl_01.py +364 -0
- vllm/model_executor/models/mistral3.py +604 -0
- vllm/model_executor/models/mixtral.py +488 -0
- vllm/model_executor/models/mixtral_quant.py +453 -0
- vllm/model_executor/models/mllama.py +1624 -0
- vllm/model_executor/models/mllama4.py +938 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +331 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1568 -0
- vllm/model_executor/models/moonvit.py +630 -0
- vllm/model_executor/models/mpt.py +331 -0
- vllm/model_executor/models/nemotron.py +508 -0
- vllm/model_executor/models/nemotron_h.py +573 -0
- vllm/model_executor/models/nemotron_nas.py +484 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +389 -0
- vllm/model_executor/models/olmo2.py +414 -0
- vllm/model_executor/models/olmoe.py +468 -0
- vllm/model_executor/models/opt.py +412 -0
- vllm/model_executor/models/orion.py +349 -0
- vllm/model_executor/models/ovis.py +567 -0
- vllm/model_executor/models/paligemma.py +398 -0
- vllm/model_executor/models/persimmon.py +344 -0
- vllm/model_executor/models/phi.py +356 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3_small.py +465 -0
- vllm/model_executor/models/phi3v.py +723 -0
- vllm/model_executor/models/phi4mm.py +1246 -0
- vllm/model_executor/models/phi4mm_audio.py +1233 -0
- vllm/model_executor/models/phi4mm_utils.py +1884 -0
- vllm/model_executor/models/phimoe.py +665 -0
- vllm/model_executor/models/pixtral.py +1316 -0
- vllm/model_executor/models/plamo2.py +738 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
- vllm/model_executor/models/qwen.py +362 -0
- vllm/model_executor/models/qwen2.py +497 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
- vllm/model_executor/models/qwen2_5_vl.py +1166 -0
- vllm/model_executor/models/qwen2_audio.py +410 -0
- vllm/model_executor/models/qwen2_moe.py +540 -0
- vllm/model_executor/models/qwen2_rm.py +132 -0
- vllm/model_executor/models/qwen2_vl.py +1405 -0
- vllm/model_executor/models/qwen3.py +321 -0
- vllm/model_executor/models/qwen3_moe.py +535 -0
- vllm/model_executor/models/qwen_vl.py +785 -0
- vllm/model_executor/models/registry.py +622 -0
- vllm/model_executor/models/roberta.py +276 -0
- vllm/model_executor/models/siglip.py +524 -0
- vllm/model_executor/models/skyworkr1v.py +951 -0
- vllm/model_executor/models/smolvlm.py +52 -0
- vllm/model_executor/models/solar.py +506 -0
- vllm/model_executor/models/stablelm.py +343 -0
- vllm/model_executor/models/starcoder2.py +356 -0
- vllm/model_executor/models/tarsier.py +643 -0
- vllm/model_executor/models/telechat2.py +140 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/transformers.py +508 -0
- vllm/model_executor/models/ultravox.py +656 -0
- vllm/model_executor/models/utils.py +731 -0
- vllm/model_executor/models/vision.py +147 -0
- vllm/model_executor/models/whisper.py +747 -0
- vllm/model_executor/models/zamba2.py +1009 -0
- vllm/model_executor/parameter.py +459 -0
- vllm/model_executor/pooling_metadata.py +72 -0
- vllm/model_executor/sampling_metadata.py +597 -0
- vllm/model_executor/utils.py +77 -0
- vllm/multimodal/__init__.py +33 -0
- vllm/multimodal/audio.py +106 -0
- vllm/multimodal/base.py +219 -0
- vllm/multimodal/hasher.py +118 -0
- vllm/multimodal/image.py +97 -0
- vllm/multimodal/inputs.py +876 -0
- vllm/multimodal/parse.py +461 -0
- vllm/multimodal/processing.py +1895 -0
- vllm/multimodal/profiling.py +258 -0
- vllm/multimodal/registry.py +331 -0
- vllm/multimodal/utils.py +436 -0
- vllm/multimodal/video.py +198 -0
- vllm/outputs.py +512 -0
- vllm/platforms/__init__.py +291 -0
- vllm/platforms/cpu.py +266 -0
- vllm/platforms/cuda.py +526 -0
- vllm/platforms/hpu.py +106 -0
- vllm/platforms/interface.py +538 -0
- vllm/platforms/neuron.py +150 -0
- vllm/platforms/rocm.py +435 -0
- vllm/platforms/tpu.py +216 -0
- vllm/platforms/xpu.py +156 -0
- vllm/plugins/__init__.py +94 -0
- vllm/plugins/lora_resolvers/README.md +15 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +54 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +83 -0
- vllm/prompt_adapter/models.py +358 -0
- vllm/prompt_adapter/request.py +37 -0
- vllm/prompt_adapter/utils.py +98 -0
- vllm/prompt_adapter/worker_manager.py +179 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +15 -0
- vllm/reasoning/abs_reasoning_parsers.py +192 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/qwen3_reasoning_parser.py +151 -0
- vllm/sampling_params.py +602 -0
- vllm/scalar_type.py +347 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +1568 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +506 -0
- vllm/spec_decode/draft_model_runner.py +349 -0
- vllm/spec_decode/interfaces.py +99 -0
- vllm/spec_decode/medusa_worker.py +138 -0
- vllm/spec_decode/metrics.py +213 -0
- vllm/spec_decode/mlp_speculator_worker.py +94 -0
- vllm/spec_decode/mqa_scorer.py +160 -0
- vllm/spec_decode/multi_step_worker.py +423 -0
- vllm/spec_decode/ngram_worker.py +196 -0
- vllm/spec_decode/proposer_worker_base.py +59 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
- vllm/spec_decode/spec_decode_worker.py +1326 -0
- vllm/spec_decode/target_model_runner.py +45 -0
- vllm/spec_decode/top1_proposer.py +275 -0
- vllm/spec_decode/util.py +277 -0
- vllm/test_utils.py +130 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +131 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +60 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/config.py +887 -0
- vllm/transformers_utils/configs/__init__.py +61 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/cohere2.py +195 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +85 -0
- vllm/transformers_utils/configs/exaone.py +190 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/h2ovl.py +16 -0
- vllm/transformers_utils/configs/internvl.py +54 -0
- vllm/transformers_utils/configs/jais.py +238 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/minimax_text_01.py +70 -0
- vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
- vllm/transformers_utils/configs/mllama.py +31 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/mpt.py +180 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +258 -0
- vllm/transformers_utils/configs/nvlm_d.py +15 -0
- vllm/transformers_utils/configs/ovis.py +184 -0
- vllm/transformers_utils/configs/skyworkr1v.py +54 -0
- vllm/transformers_utils/configs/solar.py +247 -0
- vllm/transformers_utils/configs/telechat2.py +64 -0
- vllm/transformers_utils/configs/ultravox.py +108 -0
- vllm/transformers_utils/detokenizer.py +168 -0
- vllm/transformers_utils/detokenizer_utils.py +189 -0
- vllm/transformers_utils/processor.py +221 -0
- vllm/transformers_utils/processors/__init__.py +8 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/s3_utils.py +162 -0
- vllm/transformers_utils/tokenizer.py +302 -0
- vllm/transformers_utils/tokenizer_base.py +149 -0
- vllm/transformers_utils/tokenizer_group.py +120 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +493 -0
- vllm/transformers_utils/utils.py +99 -0
- vllm/triton_utils/__init__.py +14 -0
- vllm/triton_utils/importing.py +50 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +256 -0
- vllm/utils.py +2910 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +163 -0
- vllm/v1/attention/backends/flash_attn.py +869 -0
- vllm/v1/attention/backends/flashinfer.py +651 -0
- vllm/v1/attention/backends/flex_attention.py +477 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +931 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
- vllm/v1/attention/backends/mla/flashmla.py +152 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
- vllm/v1/attention/backends/mla/triton_mla.py +120 -0
- vllm/v1/attention/backends/pallas.py +240 -0
- vllm/v1/attention/backends/triton_attn.py +285 -0
- vllm/v1/attention/backends/utils.py +52 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +349 -0
- vllm/v1/core/encoder_cache_manager.py +150 -0
- vllm/v1/core/kv_cache_coordinator.py +363 -0
- vllm/v1/core/kv_cache_manager.py +392 -0
- vllm/v1/core/kv_cache_utils.py +996 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +150 -0
- vllm/v1/core/sched/output.py +154 -0
- vllm/v1/core/sched/scheduler.py +1044 -0
- vllm/v1/core/sched/utils.py +23 -0
- vllm/v1/core/single_type_kv_cache_manager.py +403 -0
- vllm/v1/engine/__init__.py +173 -0
- vllm/v1/engine/async_llm.py +558 -0
- vllm/v1/engine/coordinator.py +253 -0
- vllm/v1/engine/core.py +961 -0
- vllm/v1/engine/core_client.py +1129 -0
- vllm/v1/engine/detokenizer.py +261 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +317 -0
- vllm/v1/engine/logprobs.py +199 -0
- vllm/v1/engine/mm_input_cache.py +91 -0
- vllm/v1/engine/output_processor.py +428 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +407 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +113 -0
- vllm/v1/executor/multiproc_executor.py +537 -0
- vllm/v1/executor/ray_distributed_executor.py +62 -0
- vllm/v1/kv_cache_interface.py +194 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +523 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +131 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +239 -0
- vllm/v1/outputs.py +116 -0
- vllm/v1/request.py +193 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/penalties.py +59 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +286 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +145 -0
- vllm/v1/serial_utils.py +315 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +432 -0
- vllm/v1/spec_decode/medusa.py +62 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +178 -0
- vllm/v1/spec_decode/ngram_proposer.py +132 -0
- vllm/v1/spec_decode/utils.py +46 -0
- vllm/v1/structured_output/__init__.py +222 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +318 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +175 -0
- vllm/v1/utils.py +743 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +142 -0
- vllm/v1/worker/cpu_model_runner.py +86 -0
- vllm/v1/worker/cpu_worker.py +152 -0
- vllm/v1/worker/gpu_input_batch.py +681 -0
- vllm/v1/worker/gpu_model_runner.py +2320 -0
- vllm/v1/worker/gpu_worker.py +393 -0
- vllm/v1/worker/lora_model_runner_mixin.py +173 -0
- vllm/v1/worker/tpu_model_runner.py +1673 -0
- vllm/v1/worker/tpu_worker.py +299 -0
- vllm/v1/worker/utils.py +111 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +145 -0
- vllm/worker/cpu_enc_dec_model_runner.py +326 -0
- vllm/worker/cpu_model_runner.py +671 -0
- vllm/worker/cpu_pooling_model_runner.py +125 -0
- vllm/worker/cpu_worker.py +450 -0
- vllm/worker/enc_dec_model_runner.py +555 -0
- vllm/worker/hpu_model_runner.py +2320 -0
- vllm/worker/hpu_worker.py +484 -0
- vllm/worker/model_runner.py +2178 -0
- vllm/worker/model_runner_base.py +282 -0
- vllm/worker/multi_step_hpu_worker.py +123 -0
- vllm/worker/multi_step_model_runner.py +911 -0
- vllm/worker/multi_step_neuron_model_runner.py +84 -0
- vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
- vllm/worker/multi_step_tpu_worker.py +108 -0
- vllm/worker/multi_step_worker.py +197 -0
- vllm/worker/neuron_model_runner.py +460 -0
- vllm/worker/neuron_worker.py +193 -0
- vllm/worker/neuronx_distributed_model_runner.py +294 -0
- vllm/worker/pooling_model_runner.py +211 -0
- vllm/worker/tpu_model_runner.py +909 -0
- vllm/worker/tpu_worker.py +337 -0
- vllm/worker/utils.py +53 -0
- vllm/worker/worker.py +577 -0
- vllm/worker/worker_base.py +646 -0
- vllm/worker/xpu_model_runner.py +606 -0
- vllm/worker/xpu_worker.py +186 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
vllm/lora/layers.py
ADDED
|
@@ -0,0 +1,1285 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
# pylint: disable=unused-argument
|
|
5
|
+
import math
|
|
6
|
+
from dataclasses import dataclass
|
|
7
|
+
from typing import TYPE_CHECKING, Optional, Union, cast
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
import torch.nn as nn
|
|
11
|
+
import torch.nn.functional as F
|
|
12
|
+
from transformers import PretrainedConfig
|
|
13
|
+
|
|
14
|
+
from vllm.adapter_commons.layers import AdapterMapping
|
|
15
|
+
from vllm.config import LoRAConfig
|
|
16
|
+
from vllm.distributed import (get_tensor_model_parallel_rank,
|
|
17
|
+
get_tensor_model_parallel_world_size,
|
|
18
|
+
split_tensor_along_last_dim,
|
|
19
|
+
tensor_model_parallel_all_gather,
|
|
20
|
+
tensor_model_parallel_all_reduce)
|
|
21
|
+
from vllm.distributed.utils import divide
|
|
22
|
+
# yapf: disable
|
|
23
|
+
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
24
|
+
LinearBase,
|
|
25
|
+
MergedColumnParallelLinear,
|
|
26
|
+
QKVParallelLinear,
|
|
27
|
+
ReplicatedLinear,
|
|
28
|
+
RowParallelLinear)
|
|
29
|
+
# yapf: enable
|
|
30
|
+
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
31
|
+
from vllm.model_executor.layers.rotary_embedding import (
|
|
32
|
+
LinearScalingRotaryEmbedding, RotaryEmbedding)
|
|
33
|
+
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
34
|
+
VocabParallelEmbedding)
|
|
35
|
+
from vllm.platforms import current_platform
|
|
36
|
+
|
|
37
|
+
if TYPE_CHECKING:
|
|
38
|
+
from vllm.lora.punica_wrapper import PunicaWrapperBase
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def _get_lora_device(base_layer: nn.Module) -> torch.device:
|
|
42
|
+
# code borrowed from https://github.com/fmmoret/vllm/blob/fm-support-lora-on-quantized-models/vllm/lora/layers.py#L34
|
|
43
|
+
"""Returns the device for where to place the LoRA tensors."""
|
|
44
|
+
# unquantizedLinear
|
|
45
|
+
if hasattr(base_layer, "weight"):
|
|
46
|
+
return base_layer.weight.device
|
|
47
|
+
# Compressed Tensor
|
|
48
|
+
elif hasattr(base_layer, "weight_packed"):
|
|
49
|
+
return base_layer.weight_packed.device
|
|
50
|
+
# GPTQ/AWQ
|
|
51
|
+
elif hasattr(base_layer, "qweight"):
|
|
52
|
+
return base_layer.qweight.device
|
|
53
|
+
# marlin
|
|
54
|
+
elif hasattr(base_layer, "B"):
|
|
55
|
+
return base_layer.B.device
|
|
56
|
+
# HQQ marlin
|
|
57
|
+
elif hasattr(base_layer, "W_q"):
|
|
58
|
+
return base_layer.W_q.device
|
|
59
|
+
else:
|
|
60
|
+
raise ValueError(f"Unsupported base layer: {base_layer}")
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def _not_fully_sharded_can_replace(can_replace):
|
|
64
|
+
"""
|
|
65
|
+
decorator which adds the condition of not using fully sharded loras
|
|
66
|
+
intended to wrap can_replace_layer()
|
|
67
|
+
"""
|
|
68
|
+
|
|
69
|
+
def dec(*args, **kwargs):
|
|
70
|
+
decorate = kwargs.pop("decorate") if "decorate" in kwargs else True
|
|
71
|
+
condition = (not kwargs["lora_config"].fully_sharded_loras
|
|
72
|
+
if decorate else True)
|
|
73
|
+
return can_replace(*args, **kwargs) and condition
|
|
74
|
+
|
|
75
|
+
return dec
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
@dataclass
|
|
79
|
+
class LoRAMapping(AdapterMapping):
|
|
80
|
+
is_prefill: bool = False
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
class BaseLayerWithLoRA(nn.Module):
|
|
84
|
+
|
|
85
|
+
def slice_lora_a(
|
|
86
|
+
self, lora_a: Union[torch.Tensor, list[Union[torch.Tensor, None]]]
|
|
87
|
+
) -> Union[torch.Tensor, list[Union[torch.Tensor, None]]]:
|
|
88
|
+
"""Slice lora a if splitting for tensor parallelism."""
|
|
89
|
+
...
|
|
90
|
+
|
|
91
|
+
def slice_lora_b(
|
|
92
|
+
self, lora_b: Union[torch.Tensor, list[Union[torch.Tensor, None]]]
|
|
93
|
+
) -> Union[torch.Tensor, list[Union[torch.Tensor, None]]]:
|
|
94
|
+
"""Slice lora b if splitting with tensor parallelism."""
|
|
95
|
+
...
|
|
96
|
+
|
|
97
|
+
def create_lora_weights(
|
|
98
|
+
self,
|
|
99
|
+
max_loras: int,
|
|
100
|
+
lora_config: LoRAConfig,
|
|
101
|
+
model_config: Optional[PretrainedConfig] = None,
|
|
102
|
+
) -> None:
|
|
103
|
+
"""Initializes lora matrices."""
|
|
104
|
+
...
|
|
105
|
+
|
|
106
|
+
def reset_lora(self, index: int):
|
|
107
|
+
"""Resets the lora weights at index back to 0."""
|
|
108
|
+
...
|
|
109
|
+
|
|
110
|
+
def set_lora(
|
|
111
|
+
self,
|
|
112
|
+
index: int,
|
|
113
|
+
lora_a: torch.Tensor,
|
|
114
|
+
lora_b: torch.Tensor,
|
|
115
|
+
embeddings_tensor: Optional[torch.Tensor],
|
|
116
|
+
bias: Optional[torch.Tensor] = None,
|
|
117
|
+
):
|
|
118
|
+
"""Overwrites lora tensors at index."""
|
|
119
|
+
...
|
|
120
|
+
|
|
121
|
+
def set_mapping(
|
|
122
|
+
self,
|
|
123
|
+
punica_wrapper,
|
|
124
|
+
):
|
|
125
|
+
self.punica_wrapper: PunicaWrapperBase = punica_wrapper
|
|
126
|
+
|
|
127
|
+
@classmethod
|
|
128
|
+
def can_replace_layer(
|
|
129
|
+
cls,
|
|
130
|
+
source_layer: nn.Module,
|
|
131
|
+
lora_config: LoRAConfig,
|
|
132
|
+
packed_modules_list: list,
|
|
133
|
+
model_config: Optional[PretrainedConfig],
|
|
134
|
+
) -> bool:
|
|
135
|
+
"""Returns True if the layer can be replaced by this LoRA layer."""
|
|
136
|
+
raise NotImplementedError
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
class VocabParallelEmbeddingWithLoRA(BaseLayerWithLoRA):
|
|
140
|
+
|
|
141
|
+
def __init__(self, base_layer: VocabParallelEmbedding) -> None:
|
|
142
|
+
super().__init__()
|
|
143
|
+
self.base_layer = base_layer
|
|
144
|
+
self.embeddings_slice: Optional[tuple[int, int]]
|
|
145
|
+
self.embeddings_weights: Optional[torch.Tensor]
|
|
146
|
+
|
|
147
|
+
def create_lora_weights(
|
|
148
|
+
self,
|
|
149
|
+
max_loras: int,
|
|
150
|
+
lora_config: LoRAConfig,
|
|
151
|
+
model_config: Optional[PretrainedConfig] = None) -> None:
|
|
152
|
+
|
|
153
|
+
if self.base_layer.num_added_embeddings_per_partition > 0:
|
|
154
|
+
# We can start adding lora weights
|
|
155
|
+
self.embeddings_weights = self.base_layer.weight.data[
|
|
156
|
+
self.base_layer.num_org_embeddings_per_partition:self.
|
|
157
|
+
base_layer.num_org_embeddings_per_partition +
|
|
158
|
+
self.base_layer.num_added_embeddings_per_partition]
|
|
159
|
+
self.embeddings_slice = (
|
|
160
|
+
self.base_layer.shard_indices.added_vocab_start_index -
|
|
161
|
+
self.base_layer.org_vocab_size,
|
|
162
|
+
self.base_layer.shard_indices.added_vocab_end_index -
|
|
163
|
+
self.base_layer.org_vocab_size)
|
|
164
|
+
self.base_layer.weight.data[
|
|
165
|
+
self.base_layer.num_org_embeddings_per_partition:].fill_(0)
|
|
166
|
+
else:
|
|
167
|
+
self.embeddings_slice = None
|
|
168
|
+
self.embeddings_weights = None
|
|
169
|
+
|
|
170
|
+
self.embeddings_tensors = torch.zeros(
|
|
171
|
+
(
|
|
172
|
+
max_loras,
|
|
173
|
+
lora_config.lora_extra_vocab_size,
|
|
174
|
+
self.base_layer.embedding_dim,
|
|
175
|
+
),
|
|
176
|
+
dtype=self.base_layer.weight.dtype,
|
|
177
|
+
device=self.base_layer.weight.device,
|
|
178
|
+
)
|
|
179
|
+
self.lora_a_stacked = torch.zeros(
|
|
180
|
+
(
|
|
181
|
+
max_loras,
|
|
182
|
+
self.base_layer.org_vocab_size +
|
|
183
|
+
lora_config.lora_extra_vocab_size,
|
|
184
|
+
lora_config.max_lora_rank,
|
|
185
|
+
),
|
|
186
|
+
dtype=lora_config.lora_dtype,
|
|
187
|
+
device=self.base_layer.weight.device,
|
|
188
|
+
)
|
|
189
|
+
self.lora_b_stacked = torch.zeros(
|
|
190
|
+
(
|
|
191
|
+
max_loras,
|
|
192
|
+
1,
|
|
193
|
+
self.base_layer.embedding_dim,
|
|
194
|
+
lora_config.max_lora_rank,
|
|
195
|
+
),
|
|
196
|
+
dtype=lora_config.lora_dtype,
|
|
197
|
+
device=self.base_layer.weight.device,
|
|
198
|
+
)
|
|
199
|
+
self.lora_a_stacked_2d = self.lora_a_stacked.view(
|
|
200
|
+
self.lora_a_stacked.shape[0] * self.lora_a_stacked.shape[1],
|
|
201
|
+
self.lora_a_stacked.shape[2],
|
|
202
|
+
)
|
|
203
|
+
|
|
204
|
+
def reset_lora(self, index: int):
|
|
205
|
+
self.lora_a_stacked[index] = 0
|
|
206
|
+
self.lora_b_stacked[index] = 0
|
|
207
|
+
self.embeddings_tensors[index] = 0
|
|
208
|
+
|
|
209
|
+
def set_lora(
|
|
210
|
+
self,
|
|
211
|
+
index: int,
|
|
212
|
+
lora_a: torch.Tensor,
|
|
213
|
+
lora_b: torch.Tensor,
|
|
214
|
+
embeddings_tensor: Optional[torch.Tensor],
|
|
215
|
+
bias: Optional[torch.Tensor] = None,
|
|
216
|
+
):
|
|
217
|
+
self.reset_lora(index)
|
|
218
|
+
self.lora_a_stacked[index, :lora_a.shape[0], :lora_a.shape[1]].copy_(
|
|
219
|
+
lora_a, non_blocking=True)
|
|
220
|
+
self.lora_b_stacked[index,
|
|
221
|
+
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
|
|
222
|
+
lora_b.T, non_blocking=True)
|
|
223
|
+
if embeddings_tensor is not None:
|
|
224
|
+
self.embeddings_tensors[
|
|
225
|
+
index,
|
|
226
|
+
:embeddings_tensor.shape[0],
|
|
227
|
+
:embeddings_tensor.shape[1],
|
|
228
|
+
].copy_(embeddings_tensor, non_blocking=True)
|
|
229
|
+
if self.embeddings_slice is not None:
|
|
230
|
+
# TODO(yard1): Optimize this copy, we don't need to copy
|
|
231
|
+
# everything, just the modified part
|
|
232
|
+
embeddings = self.embeddings_tensors.view(
|
|
233
|
+
self.embeddings_tensors.shape[0] *
|
|
234
|
+
self.embeddings_tensors.shape[1],
|
|
235
|
+
self.embeddings_tensors.shape[2],
|
|
236
|
+
)[self.embeddings_slice[0]:self.embeddings_slice[1]]
|
|
237
|
+
assert self.embeddings_weights is not None
|
|
238
|
+
self.embeddings_weights[:embeddings.shape[0]].copy_(embeddings)
|
|
239
|
+
|
|
240
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
241
|
+
added_tokens_mask = torch.where(x > self.base_layer.org_vocab_size - 1,
|
|
242
|
+
1, 0)
|
|
243
|
+
embeddings_indices = torch.narrow(
|
|
244
|
+
self.punica_wrapper._embeddings_indices, 1, 0, x.size(0))
|
|
245
|
+
|
|
246
|
+
indices = embeddings_indices[1]
|
|
247
|
+
full_lora_a_embeddings = F.embedding(
|
|
248
|
+
x + indices,
|
|
249
|
+
self.lora_a_stacked_2d,
|
|
250
|
+
)
|
|
251
|
+
indices = embeddings_indices[0]
|
|
252
|
+
full_output = self.base_layer.forward(x +
|
|
253
|
+
(indices * added_tokens_mask))
|
|
254
|
+
|
|
255
|
+
full_output_org = full_output
|
|
256
|
+
if full_output.ndim == 3:
|
|
257
|
+
full_output = full_output.view(
|
|
258
|
+
full_output.shape[0] * full_output.shape[1], -1)
|
|
259
|
+
if full_lora_a_embeddings.ndim == 3:
|
|
260
|
+
full_lora_a_embeddings = full_lora_a_embeddings.view(
|
|
261
|
+
full_lora_a_embeddings.shape[0] *
|
|
262
|
+
full_lora_a_embeddings.shape[1],
|
|
263
|
+
-1,
|
|
264
|
+
)
|
|
265
|
+
|
|
266
|
+
lora_output: Optional[
|
|
267
|
+
torch.Tensor] = self.punica_wrapper.add_lora_embedding(
|
|
268
|
+
full_output,
|
|
269
|
+
full_lora_a_embeddings,
|
|
270
|
+
self.lora_b_stacked,
|
|
271
|
+
add_input=True)
|
|
272
|
+
|
|
273
|
+
if not current_platform.can_update_inplace():
|
|
274
|
+
full_output = lora_output
|
|
275
|
+
|
|
276
|
+
return full_output.view_as(full_output_org)
|
|
277
|
+
|
|
278
|
+
@classmethod
|
|
279
|
+
def can_replace_layer(
|
|
280
|
+
cls,
|
|
281
|
+
source_layer: nn.Module,
|
|
282
|
+
lora_config: LoRAConfig,
|
|
283
|
+
packed_modules_list: list,
|
|
284
|
+
model_config: Optional[PretrainedConfig],
|
|
285
|
+
) -> bool:
|
|
286
|
+
return type(source_layer) is VocabParallelEmbedding
|
|
287
|
+
|
|
288
|
+
@property
|
|
289
|
+
def weight(self):
|
|
290
|
+
return self.base_layer.weight
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
class BaseLinearLayerWithLoRA(BaseLayerWithLoRA):
|
|
294
|
+
|
|
295
|
+
def __init__(self, base_layer: LinearBase):
|
|
296
|
+
super().__init__()
|
|
297
|
+
self.base_layer = base_layer
|
|
298
|
+
self.input_size = self.base_layer.input_size
|
|
299
|
+
self.device = _get_lora_device(self.base_layer)
|
|
300
|
+
self.lora_bias_stacked: Optional[tuple[torch.Tensor, ...]] = None
|
|
301
|
+
|
|
302
|
+
self.output_slices: tuple[int, ...]
|
|
303
|
+
self.tp_size: int
|
|
304
|
+
self.output_size: int
|
|
305
|
+
self.n_slices: int
|
|
306
|
+
|
|
307
|
+
def create_lora_weights(
|
|
308
|
+
self,
|
|
309
|
+
max_loras: int,
|
|
310
|
+
lora_config: LoRAConfig,
|
|
311
|
+
model_config: Optional[PretrainedConfig] = None,
|
|
312
|
+
) -> None:
|
|
313
|
+
self.lora_config = lora_config
|
|
314
|
+
#
|
|
315
|
+
if isinstance(self.base_layer, ReplicatedLinear):
|
|
316
|
+
lora_a_out_size = lora_config.max_lora_rank
|
|
317
|
+
lora_b_out_size = self.output_size
|
|
318
|
+
|
|
319
|
+
elif isinstance(self.base_layer, ColumnParallelLinear):
|
|
320
|
+
lora_a_out_size = (lora_config.max_lora_rank if
|
|
321
|
+
not lora_config.fully_sharded_loras else divide(
|
|
322
|
+
lora_config.max_lora_rank, self.tp_size))
|
|
323
|
+
lora_b_out_size = self.output_size
|
|
324
|
+
|
|
325
|
+
elif isinstance(self.base_layer, RowParallelLinear):
|
|
326
|
+
lora_a_out_size = lora_config.max_lora_rank
|
|
327
|
+
lora_b_out_size = (self.output_size if
|
|
328
|
+
not lora_config.fully_sharded_loras else divide(
|
|
329
|
+
self.output_size, self.tp_size))
|
|
330
|
+
else:
|
|
331
|
+
raise NotImplementedError
|
|
332
|
+
|
|
333
|
+
self.lora_a_stacked = tuple(
|
|
334
|
+
torch.zeros(
|
|
335
|
+
max_loras,
|
|
336
|
+
1,
|
|
337
|
+
lora_a_out_size,
|
|
338
|
+
self.input_size,
|
|
339
|
+
dtype=lora_config.lora_dtype,
|
|
340
|
+
device=self.device,
|
|
341
|
+
) for _ in range(self.n_slices))
|
|
342
|
+
self.lora_b_stacked = tuple(
|
|
343
|
+
torch.zeros(
|
|
344
|
+
max_loras,
|
|
345
|
+
1,
|
|
346
|
+
lora_b_out_size,
|
|
347
|
+
lora_config.max_lora_rank,
|
|
348
|
+
dtype=lora_config.lora_dtype,
|
|
349
|
+
device=self.device,
|
|
350
|
+
) for _ in range(self.n_slices))
|
|
351
|
+
if lora_config.bias_enabled:
|
|
352
|
+
lora_bias_out_size = lora_b_out_size
|
|
353
|
+
self.lora_bias_stacked = tuple(
|
|
354
|
+
torch.zeros(
|
|
355
|
+
max_loras,
|
|
356
|
+
1,
|
|
357
|
+
lora_bias_out_size,
|
|
358
|
+
dtype=lora_config.lora_dtype,
|
|
359
|
+
device=self.device,
|
|
360
|
+
) for _ in range(self.n_slices))
|
|
361
|
+
self.output_slices = (self.lora_b_stacked[0].shape[2], )
|
|
362
|
+
|
|
363
|
+
def reset_lora(self, index: int):
|
|
364
|
+
for s_index in range(self.n_slices):
|
|
365
|
+
self.lora_a_stacked[s_index][index] = 0
|
|
366
|
+
self.lora_b_stacked[s_index][index] = 0
|
|
367
|
+
if self.lora_config.bias_enabled:
|
|
368
|
+
# Make mypy happy
|
|
369
|
+
self.lora_bias_stacked = cast(tuple[torch.Tensor, ...],
|
|
370
|
+
self.lora_bias_stacked)
|
|
371
|
+
self.lora_bias_stacked[s_index][index] = 0
|
|
372
|
+
|
|
373
|
+
def set_lora(
|
|
374
|
+
self,
|
|
375
|
+
index: int,
|
|
376
|
+
lora_a: torch.Tensor,
|
|
377
|
+
lora_b: torch.Tensor,
|
|
378
|
+
embeddings_tensor: Optional[torch.Tensor],
|
|
379
|
+
lora_bias: Optional[torch.Tensor] = None,
|
|
380
|
+
):
|
|
381
|
+
# Except for QKVParallelLinearWithLoRA and
|
|
382
|
+
# MergedColumnParallelLinearWithLoRA, all other linear LoRA layers
|
|
383
|
+
# store weights in a tuple of size 1. These two layers will
|
|
384
|
+
# override this function.
|
|
385
|
+
assert (len(self.lora_a_stacked) == len(self.lora_b_stacked) ==
|
|
386
|
+
self.n_slices == 1)
|
|
387
|
+
|
|
388
|
+
self.reset_lora(index)
|
|
389
|
+
if self.tp_size > 1:
|
|
390
|
+
lora_a = self.slice_lora_a(lora_a)
|
|
391
|
+
lora_b = self.slice_lora_b(lora_b)
|
|
392
|
+
if lora_bias is not None:
|
|
393
|
+
lora_bias = self.slice_bias(lora_bias)
|
|
394
|
+
|
|
395
|
+
self.lora_a_stacked[0][index,
|
|
396
|
+
0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
|
|
397
|
+
lora_a.T, non_blocking=True)
|
|
398
|
+
self.lora_b_stacked[0][index,
|
|
399
|
+
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
|
|
400
|
+
lora_b.T, non_blocking=True)
|
|
401
|
+
if lora_bias is not None:
|
|
402
|
+
|
|
403
|
+
self.lora_bias_stacked = cast(tuple[torch.Tensor, ...],
|
|
404
|
+
self.lora_bias_stacked)
|
|
405
|
+
assert len(self.lora_bias_stacked)
|
|
406
|
+
self.lora_bias_stacked[0][index, 0, :lora_bias.shape[0]].copy_(
|
|
407
|
+
lora_bias.T, non_blocking=True)
|
|
408
|
+
|
|
409
|
+
def apply(self,
|
|
410
|
+
x: torch.Tensor,
|
|
411
|
+
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
412
|
+
output = self.base_layer.quant_method.apply(self.base_layer, x, bias)
|
|
413
|
+
|
|
414
|
+
# In transformers backend, x and output have extra batch dimension like
|
|
415
|
+
# (1, seq_len, hidden_dim), while punica expects (seq_len, hidden_dim),
|
|
416
|
+
# therefore we need to flatten the batch dimensions.
|
|
417
|
+
if x.ndim == 3 and output.ndim == 3:
|
|
418
|
+
output = output.flatten(0, 1)
|
|
419
|
+
x = x.flatten(0, 1)
|
|
420
|
+
|
|
421
|
+
lora_output: Optional[
|
|
422
|
+
torch.Tensor] = self.punica_wrapper.add_lora_linear(
|
|
423
|
+
output, x, self.lora_a_stacked, self.lora_b_stacked,
|
|
424
|
+
self.lora_bias_stacked, 1.0, self.output_slices)
|
|
425
|
+
if not current_platform.can_update_inplace():
|
|
426
|
+
output = lora_output
|
|
427
|
+
|
|
428
|
+
return output
|
|
429
|
+
|
|
430
|
+
@property
|
|
431
|
+
def weight(self) -> torch.Tensor:
|
|
432
|
+
|
|
433
|
+
# unquantizedLinear
|
|
434
|
+
if hasattr(self.base_layer, "weight"):
|
|
435
|
+
return self.base_layer.weight
|
|
436
|
+
# Compressed Tensor
|
|
437
|
+
elif hasattr(self.base_layer, "weight_packed"):
|
|
438
|
+
return self.base_layer.weight_packed
|
|
439
|
+
# GPTQ/AWQ
|
|
440
|
+
elif hasattr(self.base_layer, "qweight"):
|
|
441
|
+
return self.base_layer.qweight
|
|
442
|
+
# marlin
|
|
443
|
+
elif hasattr(self.base_layer, "B"):
|
|
444
|
+
return self.base_layer.B
|
|
445
|
+
# HQQ marlin
|
|
446
|
+
elif hasattr(self.base_layer, "W_q"):
|
|
447
|
+
return self.base_layer.W_q
|
|
448
|
+
else:
|
|
449
|
+
raise ValueError(f"Unsupported base layer: {self.base_layer}")
|
|
450
|
+
|
|
451
|
+
@property
|
|
452
|
+
def bias(self) -> Optional[torch.Tensor]:
|
|
453
|
+
if hasattr(self.base_layer, "bias"):
|
|
454
|
+
return self.base_layer.bias
|
|
455
|
+
else:
|
|
456
|
+
return None
|
|
457
|
+
|
|
458
|
+
|
|
459
|
+
class ReplicatedLinearWithLoRA(BaseLinearLayerWithLoRA):
|
|
460
|
+
|
|
461
|
+
def __init__(self, base_layer: ReplicatedLinear) -> None:
|
|
462
|
+
super().__init__(base_layer, )
|
|
463
|
+
# To ensure interface compatibility, set to 1 always.
|
|
464
|
+
self.tp_size = 1
|
|
465
|
+
self.output_size = self.base_layer.output_size
|
|
466
|
+
self.n_slices = 1
|
|
467
|
+
|
|
468
|
+
def forward(
|
|
469
|
+
self, input_: torch.Tensor
|
|
470
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[torch.Tensor]]]:
|
|
471
|
+
"""Forward of ReplicatedLinearWithLoRA
|
|
472
|
+
|
|
473
|
+
Args:
|
|
474
|
+
input_: Tensor whose last dimension is `input_size`.
|
|
475
|
+
|
|
476
|
+
Returns:
|
|
477
|
+
- output
|
|
478
|
+
- bias
|
|
479
|
+
"""
|
|
480
|
+
bias = (self.base_layer.bias
|
|
481
|
+
if not self.base_layer.skip_bias_add else None)
|
|
482
|
+
|
|
483
|
+
# Matrix multiply.
|
|
484
|
+
output = self.apply(input_, bias)
|
|
485
|
+
|
|
486
|
+
output_bias = (self.base_layer.bias
|
|
487
|
+
if self.base_layer.skip_bias_add else None)
|
|
488
|
+
|
|
489
|
+
if not self.base_layer.return_bias:
|
|
490
|
+
return output
|
|
491
|
+
|
|
492
|
+
return output, output_bias
|
|
493
|
+
|
|
494
|
+
# ReplicatedLinear should always be replaced, regardless of the fully
|
|
495
|
+
# sharded LoRAs setting, because it is, by definition, copied per GPU.
|
|
496
|
+
@classmethod
|
|
497
|
+
def can_replace_layer(
|
|
498
|
+
cls,
|
|
499
|
+
source_layer: nn.Module,
|
|
500
|
+
lora_config: LoRAConfig,
|
|
501
|
+
packed_modules_list: list,
|
|
502
|
+
model_config: Optional[PretrainedConfig],
|
|
503
|
+
) -> bool:
|
|
504
|
+
return type(source_layer) is ReplicatedLinear
|
|
505
|
+
|
|
506
|
+
|
|
507
|
+
class ColumnParallelLinearWithLoRA(BaseLinearLayerWithLoRA):
|
|
508
|
+
"""
|
|
509
|
+
LoRA on top of ColumnParallelLinear layer.
|
|
510
|
+
LoRA B is sliced for tensor parallelism.
|
|
511
|
+
There are two types for the `base_layer`:
|
|
512
|
+
1. ColumnParallelLinear, e.g.`dense_h_to_4h` in `FalconForCausalLM`.
|
|
513
|
+
2. MergedColumnParallelLinear, e.g.`gate_up_proj` in `Phi3ForCausalLM`.
|
|
514
|
+
"""
|
|
515
|
+
|
|
516
|
+
def __init__(self, base_layer: ColumnParallelLinear) -> None:
|
|
517
|
+
super().__init__(base_layer)
|
|
518
|
+
# The base_layer type is ColumnParallelLinear or
|
|
519
|
+
# MergedColumnParallelLinear, their weight sharding logic is
|
|
520
|
+
# inconsistent when TP is greater than 1.
|
|
521
|
+
self.is_merged_col_linear = type(
|
|
522
|
+
base_layer) is MergedColumnParallelLinear
|
|
523
|
+
self.tp_size = get_tensor_model_parallel_world_size()
|
|
524
|
+
self.output_size = self.base_layer.output_size_per_partition
|
|
525
|
+
# There is only one LoRA layer
|
|
526
|
+
self.n_slices = 1
|
|
527
|
+
|
|
528
|
+
def slice_lora_a(self, lora_a: torch.Tensor) -> torch.Tensor:
|
|
529
|
+
return lora_a
|
|
530
|
+
|
|
531
|
+
def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor:
|
|
532
|
+
# Applicable to cases where the base_layer is
|
|
533
|
+
# MergedColumnParallelLinear.
|
|
534
|
+
if self.is_merged_col_linear:
|
|
535
|
+
tp_rank = get_tensor_model_parallel_rank()
|
|
536
|
+
shard_size = self.output_size // 2
|
|
537
|
+
offset = lora_b.shape[-1] // 2
|
|
538
|
+
|
|
539
|
+
left_weight = lora_b[:, tp_rank * shard_size:(tp_rank + 1) *
|
|
540
|
+
shard_size]
|
|
541
|
+
right_weight = lora_b[:, offset + tp_rank * shard_size:offset +
|
|
542
|
+
(tp_rank + 1) * shard_size]
|
|
543
|
+
lora_b = torch.cat([left_weight, right_weight], dim=1)
|
|
544
|
+
# Applicable to cases where the base_layer is
|
|
545
|
+
# ColumnParallelLinear.
|
|
546
|
+
else:
|
|
547
|
+
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
|
|
548
|
+
shard_size = self.output_size
|
|
549
|
+
start_idx = tensor_model_parallel_rank * shard_size
|
|
550
|
+
end_idx = (tensor_model_parallel_rank + 1) * shard_size
|
|
551
|
+
lora_b = lora_b[:, start_idx:end_idx]
|
|
552
|
+
return lora_b
|
|
553
|
+
|
|
554
|
+
def slice_bias(self, bias: torch.Tensor) -> torch.Tensor:
|
|
555
|
+
# TODO: Fix the slicing logic of bias.
|
|
556
|
+
if bias is None:
|
|
557
|
+
return bias
|
|
558
|
+
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
|
|
559
|
+
shard_size = self.output_size
|
|
560
|
+
start_idx = tensor_model_parallel_rank * shard_size
|
|
561
|
+
end_idx = (tensor_model_parallel_rank + 1) * shard_size
|
|
562
|
+
bias = bias[start_idx:end_idx]
|
|
563
|
+
return bias
|
|
564
|
+
|
|
565
|
+
def forward(
|
|
566
|
+
self, input_: torch.Tensor
|
|
567
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[torch.Tensor]]]:
|
|
568
|
+
"""Forward of ColumnParallelLinear
|
|
569
|
+
|
|
570
|
+
Args:
|
|
571
|
+
input_: Tensor whose last dimension is `input_size`.
|
|
572
|
+
|
|
573
|
+
Returns:
|
|
574
|
+
- output
|
|
575
|
+
- bias
|
|
576
|
+
"""
|
|
577
|
+
bias = (self.base_layer.bias
|
|
578
|
+
if not self.base_layer.skip_bias_add else None)
|
|
579
|
+
|
|
580
|
+
# Matrix multiply.
|
|
581
|
+
output_parallel = self.apply(input_, bias)
|
|
582
|
+
if self.base_layer.gather_output:
|
|
583
|
+
# All-gather across the partitions.
|
|
584
|
+
output = tensor_model_parallel_all_gather(output_parallel)
|
|
585
|
+
else:
|
|
586
|
+
output = output_parallel
|
|
587
|
+
|
|
588
|
+
if not self.base_layer.return_bias:
|
|
589
|
+
return output
|
|
590
|
+
|
|
591
|
+
output_bias = (self.base_layer.bias
|
|
592
|
+
if self.base_layer.skip_bias_add else None)
|
|
593
|
+
return output, output_bias
|
|
594
|
+
|
|
595
|
+
@classmethod
|
|
596
|
+
@_not_fully_sharded_can_replace
|
|
597
|
+
def can_replace_layer(
|
|
598
|
+
cls,
|
|
599
|
+
source_layer: nn.Module,
|
|
600
|
+
lora_config: LoRAConfig,
|
|
601
|
+
packed_modules_list: list,
|
|
602
|
+
model_config: Optional[PretrainedConfig],
|
|
603
|
+
) -> bool:
|
|
604
|
+
return type(source_layer) is ColumnParallelLinear or (
|
|
605
|
+
type(source_layer) is MergedColumnParallelLinear
|
|
606
|
+
and len(packed_modules_list) == 1)
|
|
607
|
+
|
|
608
|
+
|
|
609
|
+
class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
|
|
610
|
+
"""ColumnParallelLinear layer that is composed of 2 sublayers (slices)
|
|
611
|
+
packed together (eg. gate_proj + up_proj -> gate_up_proj).
|
|
612
|
+
|
|
613
|
+
This means we have 2 LoRAs, each applied to one half of the layer.
|
|
614
|
+
|
|
615
|
+
Both slices must have the same size.
|
|
616
|
+
"""
|
|
617
|
+
|
|
618
|
+
def __init__(
|
|
619
|
+
self, base_layer: Union[MergedColumnParallelLinear,
|
|
620
|
+
QKVParallelLinear]) -> None:
|
|
621
|
+
super().__init__(base_layer)
|
|
622
|
+
# There are two LoRA layers
|
|
623
|
+
self.tp_size = get_tensor_model_parallel_world_size()
|
|
624
|
+
self.tp_rank = get_tensor_model_parallel_rank()
|
|
625
|
+
# the output_sizes in MergedColumnParallelLinear is not sharded by tp
|
|
626
|
+
# we need to divide it by the tp_size to get correct slices size
|
|
627
|
+
output_sizes = self.base_layer.output_sizes
|
|
628
|
+
self.output_slices = tuple(
|
|
629
|
+
divide(output_size, self.tp_size) for output_size in output_sizes)
|
|
630
|
+
self.n_slices = len(self.output_slices)
|
|
631
|
+
self.output_ids = (self.tp_rank, ) * self.n_slices
|
|
632
|
+
|
|
633
|
+
def create_lora_weights(
|
|
634
|
+
self,
|
|
635
|
+
max_loras: int,
|
|
636
|
+
lora_config: LoRAConfig,
|
|
637
|
+
model_config: Optional[PretrainedConfig] = None,
|
|
638
|
+
) -> None:
|
|
639
|
+
"""
|
|
640
|
+
The main reason for overriding this function is to enhance code
|
|
641
|
+
maintainability.
|
|
642
|
+
"""
|
|
643
|
+
self.lora_config = lora_config
|
|
644
|
+
|
|
645
|
+
lora_a_output_size_per_partition = (
|
|
646
|
+
lora_config.max_lora_rank if not lora_config.fully_sharded_loras
|
|
647
|
+
else divide(lora_config.max_lora_rank, self.tp_size))
|
|
648
|
+
|
|
649
|
+
self.lora_a_stacked = tuple(
|
|
650
|
+
torch.zeros(
|
|
651
|
+
max_loras,
|
|
652
|
+
1,
|
|
653
|
+
lora_a_output_size_per_partition,
|
|
654
|
+
self.input_size,
|
|
655
|
+
dtype=lora_config.lora_dtype,
|
|
656
|
+
device=self.device,
|
|
657
|
+
) for _ in range(self.n_slices))
|
|
658
|
+
self.lora_b_stacked = tuple(
|
|
659
|
+
torch.zeros(
|
|
660
|
+
max_loras,
|
|
661
|
+
1,
|
|
662
|
+
output_size,
|
|
663
|
+
lora_config.max_lora_rank,
|
|
664
|
+
dtype=lora_config.lora_dtype,
|
|
665
|
+
device=self.device,
|
|
666
|
+
) for output_size in self.output_slices)
|
|
667
|
+
if lora_config.bias_enabled:
|
|
668
|
+
self.lora_bias_stacked = tuple(
|
|
669
|
+
torch.zeros(
|
|
670
|
+
max_loras,
|
|
671
|
+
1,
|
|
672
|
+
output_size,
|
|
673
|
+
dtype=lora_config.lora_dtype,
|
|
674
|
+
device=self.device,
|
|
675
|
+
) for output_size in self.output_slices)
|
|
676
|
+
|
|
677
|
+
def slice_lora_a(
|
|
678
|
+
self, lora_a: list[Union[torch.Tensor, None]]
|
|
679
|
+
) -> list[Union[torch.Tensor, None]]:
|
|
680
|
+
return lora_a
|
|
681
|
+
|
|
682
|
+
def slice_lora_b(
|
|
683
|
+
self, lora_b: list[Union[torch.Tensor, None]]
|
|
684
|
+
) -> list[Union[torch.Tensor, None]]:
|
|
685
|
+
for i, (shard_id, shard_size) in enumerate(
|
|
686
|
+
zip(self.output_ids, self.output_slices)):
|
|
687
|
+
if (lora_b_i := lora_b[i]) is not None:
|
|
688
|
+
lora_b[i] = lora_b_i[:, shard_size * shard_id:shard_size *
|
|
689
|
+
(shard_id + 1)]
|
|
690
|
+
return lora_b
|
|
691
|
+
|
|
692
|
+
def slice_bias(
|
|
693
|
+
self, bias: list[Union[torch.Tensor,
|
|
694
|
+
None]]) -> list[Union[torch.Tensor, None]]:
|
|
695
|
+
for i, (shard_id, shard_size) in enumerate(
|
|
696
|
+
zip(self.output_ids, self.output_slices)):
|
|
697
|
+
if (bias_i := bias[i]) is not None:
|
|
698
|
+
bias[i] = bias_i[shard_size * shard_id:shard_size *
|
|
699
|
+
(shard_id + 1)]
|
|
700
|
+
return bias
|
|
701
|
+
|
|
702
|
+
def set_lora(
|
|
703
|
+
self,
|
|
704
|
+
index: int,
|
|
705
|
+
lora_a: torch.Tensor,
|
|
706
|
+
lora_b: torch.Tensor,
|
|
707
|
+
embeddings_tensor: Optional[torch.Tensor],
|
|
708
|
+
lora_bias: Optional[torch.Tensor] = None,
|
|
709
|
+
):
|
|
710
|
+
self.reset_lora(index)
|
|
711
|
+
|
|
712
|
+
if self.tp_size > 1:
|
|
713
|
+
lora_a = self.slice_lora_a(lora_a)
|
|
714
|
+
lora_b = self.slice_lora_b(lora_b)
|
|
715
|
+
if lora_bias is not None:
|
|
716
|
+
lora_bias = self.slice_bias(lora_bias)
|
|
717
|
+
|
|
718
|
+
for i in range(self.n_slices):
|
|
719
|
+
if (lora_a_i := lora_a[i]) is not None:
|
|
720
|
+
self.lora_a_stacked[i][
|
|
721
|
+
index, 0, :lora_a_i.shape[1], :lora_a_i.shape[0]].copy_(
|
|
722
|
+
lora_a_i.T, non_blocking=True)
|
|
723
|
+
if (lora_b_i := lora_b[i]) is not None:
|
|
724
|
+
self.lora_b_stacked[i][
|
|
725
|
+
index, 0, :lora_b_i.shape[1], :lora_b_i.shape[0]].copy_(
|
|
726
|
+
lora_b_i.T, non_blocking=True)
|
|
727
|
+
|
|
728
|
+
if lora_bias is not None:
|
|
729
|
+
self.lora_bias_stacked = cast(tuple[torch.Tensor, ...],
|
|
730
|
+
self.lora_bias_stacked)
|
|
731
|
+
for i in range(self.n_slices):
|
|
732
|
+
if (lora_bias_i := lora_bias[i]) is not None:
|
|
733
|
+
self.lora_bias_stacked[i][index,
|
|
734
|
+
0, :lora_bias_i.shape[0]].copy_(
|
|
735
|
+
lora_bias_i.T,
|
|
736
|
+
non_blocking=True)
|
|
737
|
+
|
|
738
|
+
@classmethod
|
|
739
|
+
@_not_fully_sharded_can_replace
|
|
740
|
+
def can_replace_layer(
|
|
741
|
+
cls,
|
|
742
|
+
source_layer: nn.Module,
|
|
743
|
+
lora_config: LoRAConfig,
|
|
744
|
+
packed_modules_list: list,
|
|
745
|
+
model_config: Optional[PretrainedConfig],
|
|
746
|
+
) -> bool:
|
|
747
|
+
return (type(source_layer) is MergedColumnParallelLinear
|
|
748
|
+
and len(packed_modules_list) == 2)
|
|
749
|
+
|
|
750
|
+
|
|
751
|
+
class QKVParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
|
|
752
|
+
"""
|
|
753
|
+
ColumnParallelLinear layer that is specifically designed for
|
|
754
|
+
qkv_proj. Certain models, such as chatglm3 and baichuan-7b,
|
|
755
|
+
only contains a single LoRA within their qkv_proj layer.
|
|
756
|
+
|
|
757
|
+
During inference with Tensor Parallel, the weights of lora_b
|
|
758
|
+
must be accurately partitioned according to the respective ranks.
|
|
759
|
+
|
|
760
|
+
Q slice may have different shape than K and V slices (which both have
|
|
761
|
+
the same shape).
|
|
762
|
+
"""
|
|
763
|
+
|
|
764
|
+
def __init__(self, base_layer: QKVParallelLinear) -> None:
|
|
765
|
+
super().__init__(base_layer)
|
|
766
|
+
self.q_proj_total_size = (self.base_layer.total_num_heads *
|
|
767
|
+
self.base_layer.head_size)
|
|
768
|
+
self.q_proj_shard_size = (self.base_layer.num_heads *
|
|
769
|
+
self.base_layer.head_size)
|
|
770
|
+
self.kv_proj_shard_size = (self.base_layer.num_kv_heads *
|
|
771
|
+
self.base_layer.head_size)
|
|
772
|
+
self.kv_proj_total_size = (self.base_layer.total_num_kv_heads *
|
|
773
|
+
self.base_layer.head_size)
|
|
774
|
+
# There is only one LoRA layer
|
|
775
|
+
self.n_slices = 1
|
|
776
|
+
|
|
777
|
+
def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor:
|
|
778
|
+
tp_rank = get_tensor_model_parallel_rank()
|
|
779
|
+
self.q_shard_id = tp_rank
|
|
780
|
+
self.kv_shard_id = tp_rank // self.base_layer.num_kv_head_replicas
|
|
781
|
+
lora_b_q = lora_b[:, self.q_proj_shard_size *
|
|
782
|
+
self.q_shard_id:self.q_proj_shard_size *
|
|
783
|
+
(self.q_shard_id + 1)]
|
|
784
|
+
k_offset = self.q_proj_total_size
|
|
785
|
+
lora_b_k = lora_b[:, k_offset +
|
|
786
|
+
self.kv_proj_shard_size * self.kv_shard_id:k_offset +
|
|
787
|
+
self.kv_proj_shard_size * (self.kv_shard_id + 1)]
|
|
788
|
+
v_offset = k_offset + self.kv_proj_total_size
|
|
789
|
+
lora_b_v = lora_b[:, v_offset +
|
|
790
|
+
self.kv_proj_shard_size * self.kv_shard_id:v_offset +
|
|
791
|
+
self.kv_proj_shard_size * (self.kv_shard_id + 1)]
|
|
792
|
+
lora_b = torch.cat([lora_b_q, lora_b_k, lora_b_v], dim=1)
|
|
793
|
+
return lora_b
|
|
794
|
+
|
|
795
|
+
def slice_bias(self, bias: torch.Tensor) -> torch.Tensor:
|
|
796
|
+
bias_q = bias[self.q_proj_shard_size *
|
|
797
|
+
self.q_shard_id:self.q_proj_shard_size *
|
|
798
|
+
(self.q_shard_id + 1)]
|
|
799
|
+
k_offset = self.q_proj_total_size
|
|
800
|
+
bias_k = bias[k_offset +
|
|
801
|
+
self.kv_proj_shard_size * self.kv_shard_id:k_offset +
|
|
802
|
+
self.kv_proj_shard_size * (self.kv_shard_id + 1)]
|
|
803
|
+
v_offset = k_offset + self.kv_proj_total_size
|
|
804
|
+
bias_v = bias[v_offset +
|
|
805
|
+
self.kv_proj_shard_size * self.kv_shard_id:v_offset +
|
|
806
|
+
self.kv_proj_shard_size * (self.kv_shard_id + 1)]
|
|
807
|
+
bias = torch.cat([bias_q, bias_k, bias_v], dim=1)
|
|
808
|
+
return bias
|
|
809
|
+
|
|
810
|
+
@classmethod
|
|
811
|
+
@_not_fully_sharded_can_replace
|
|
812
|
+
def can_replace_layer(cls, source_layer: nn.Module,
|
|
813
|
+
lora_config: LoRAConfig, packed_modules_list: list,
|
|
814
|
+
model_config: Optional[PretrainedConfig]) -> bool:
|
|
815
|
+
return type(source_layer) is QKVParallelLinear and len(
|
|
816
|
+
packed_modules_list) == 1
|
|
817
|
+
|
|
818
|
+
|
|
819
|
+
class MergedQKVParallelLinearWithLoRA(MergedColumnParallelLinearWithLoRA):
|
|
820
|
+
"""MergedColumnParallelLinear layer that is composed of 3 sublayers (slices)
|
|
821
|
+
packed together in qkv proj fashion
|
|
822
|
+
(q_proj + k_proj + v_proj -> qkv_proj).
|
|
823
|
+
|
|
824
|
+
This means we have 3 LoRAs, each applied to one slice of the layer.
|
|
825
|
+
|
|
826
|
+
Q slice may have different shape than K and V slices (which both have
|
|
827
|
+
the same shape).
|
|
828
|
+
"""
|
|
829
|
+
|
|
830
|
+
def __init__(self, base_layer: QKVParallelLinear) -> None:
|
|
831
|
+
super().__init__(base_layer)
|
|
832
|
+
# There are three LoRA layer.
|
|
833
|
+
self.n_slices = len(self.base_layer.output_sizes)
|
|
834
|
+
self.tp_size = get_tensor_model_parallel_world_size()
|
|
835
|
+
self.tp_rank = get_tensor_model_parallel_rank()
|
|
836
|
+
|
|
837
|
+
self.q_proj_shard_size = (self.base_layer.num_heads *
|
|
838
|
+
self.base_layer.head_size)
|
|
839
|
+
self.kv_proj_shard_size = (self.base_layer.num_kv_heads *
|
|
840
|
+
self.base_layer.head_size)
|
|
841
|
+
self.q_shard_id = self.tp_rank
|
|
842
|
+
self.kv_shard_id = self.tp_rank // self.base_layer.num_kv_head_replicas
|
|
843
|
+
|
|
844
|
+
self.output_slices = (
|
|
845
|
+
self.q_proj_shard_size,
|
|
846
|
+
self.kv_proj_shard_size,
|
|
847
|
+
self.kv_proj_shard_size,
|
|
848
|
+
)
|
|
849
|
+
self.output_ids = (
|
|
850
|
+
self.q_shard_id,
|
|
851
|
+
self.kv_shard_id,
|
|
852
|
+
self.kv_shard_id,
|
|
853
|
+
)
|
|
854
|
+
|
|
855
|
+
def create_lora_weights(
|
|
856
|
+
self,
|
|
857
|
+
max_loras: int,
|
|
858
|
+
lora_config: LoRAConfig,
|
|
859
|
+
model_config: Optional[PretrainedConfig] = None,
|
|
860
|
+
) -> None:
|
|
861
|
+
"""
|
|
862
|
+
The main reason for overloading this function is to handle inconsistent
|
|
863
|
+
weight dimensions in qkv lora.
|
|
864
|
+
"""
|
|
865
|
+
super().create_lora_weights(max_loras, lora_config, model_config)
|
|
866
|
+
|
|
867
|
+
@classmethod
|
|
868
|
+
@_not_fully_sharded_can_replace
|
|
869
|
+
def can_replace_layer(
|
|
870
|
+
cls,
|
|
871
|
+
source_layer: nn.Module,
|
|
872
|
+
lora_config: LoRAConfig,
|
|
873
|
+
packed_modules_list: list,
|
|
874
|
+
model_config: Optional[PretrainedConfig],
|
|
875
|
+
) -> bool:
|
|
876
|
+
return (type(source_layer) is QKVParallelLinear
|
|
877
|
+
and len(packed_modules_list) == 3)
|
|
878
|
+
|
|
879
|
+
|
|
880
|
+
#TODO: Implement this
|
|
881
|
+
class QKVCrossParallelLinearWithLoRA(BaseLayerWithLoRA):
|
|
882
|
+
pass
|
|
883
|
+
|
|
884
|
+
|
|
885
|
+
class RowParallelLinearWithLoRA(BaseLinearLayerWithLoRA):
|
|
886
|
+
|
|
887
|
+
def __init__(self, base_layer: RowParallelLinear) -> None:
|
|
888
|
+
super().__init__(base_layer)
|
|
889
|
+
|
|
890
|
+
self.tp_size = get_tensor_model_parallel_world_size()
|
|
891
|
+
# reset input_size
|
|
892
|
+
self.input_size = self.base_layer.input_size_per_partition
|
|
893
|
+
self.output_size = self.base_layer.output_size
|
|
894
|
+
|
|
895
|
+
self.tp_rank = get_tensor_model_parallel_rank()
|
|
896
|
+
# There is only one LoRA layer.
|
|
897
|
+
self.n_slices = 1
|
|
898
|
+
|
|
899
|
+
def slice_lora_a(self, lora_a: torch.Tensor) -> torch.Tensor:
|
|
900
|
+
|
|
901
|
+
shard_size = self.input_size
|
|
902
|
+
start_idx = self.tp_rank * shard_size
|
|
903
|
+
end_idx = (self.tp_rank + 1) * shard_size
|
|
904
|
+
lora_a = lora_a[start_idx:end_idx, :]
|
|
905
|
+
return lora_a
|
|
906
|
+
|
|
907
|
+
def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor:
|
|
908
|
+
return lora_b
|
|
909
|
+
|
|
910
|
+
def slice_bias(self, bias: torch.Tensor) -> torch.Tensor:
|
|
911
|
+
return bias
|
|
912
|
+
|
|
913
|
+
def forward(
|
|
914
|
+
self, input_: torch.Tensor
|
|
915
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[torch.Tensor]]]:
|
|
916
|
+
"""Forward of RowParallelLinear
|
|
917
|
+
|
|
918
|
+
Args:
|
|
919
|
+
input_: tensor whose last dimension is `input_size`. If
|
|
920
|
+
`input_is_parallel` is set, then the last dimension
|
|
921
|
+
is `input_size // tp_size`.
|
|
922
|
+
|
|
923
|
+
Returns:
|
|
924
|
+
- output
|
|
925
|
+
- bias
|
|
926
|
+
"""
|
|
927
|
+
# set up backprop all-reduce.
|
|
928
|
+
if self.base_layer.input_is_parallel:
|
|
929
|
+
input_parallel = input_
|
|
930
|
+
else:
|
|
931
|
+
# TODO: simplify code below
|
|
932
|
+
splitted_input = split_tensor_along_last_dim(
|
|
933
|
+
input_, num_partitions=self.base_layer.tp_size)
|
|
934
|
+
input_parallel = splitted_input[self.tp_rank].contiguous()
|
|
935
|
+
|
|
936
|
+
# Matrix multiply.
|
|
937
|
+
output_parallel = self.apply(input_parallel)
|
|
938
|
+
if self.base_layer.reduce_results and self.base_layer.tp_size > 1:
|
|
939
|
+
output_ = tensor_model_parallel_all_reduce(output_parallel)
|
|
940
|
+
else:
|
|
941
|
+
output_ = output_parallel
|
|
942
|
+
|
|
943
|
+
if not self.base_layer.skip_bias_add:
|
|
944
|
+
output = (output_ + self.base_layer.bias
|
|
945
|
+
if self.base_layer.bias is not None else output_)
|
|
946
|
+
output_bias = None
|
|
947
|
+
else:
|
|
948
|
+
output = output_
|
|
949
|
+
output_bias = self.base_layer.bias
|
|
950
|
+
|
|
951
|
+
if not self.base_layer.return_bias:
|
|
952
|
+
return output
|
|
953
|
+
|
|
954
|
+
return output, output_bias
|
|
955
|
+
|
|
956
|
+
@classmethod
|
|
957
|
+
@_not_fully_sharded_can_replace
|
|
958
|
+
def can_replace_layer(
|
|
959
|
+
cls,
|
|
960
|
+
source_layer: nn.Module,
|
|
961
|
+
lora_config: LoRAConfig,
|
|
962
|
+
packed_modules_list: list,
|
|
963
|
+
model_config: Optional[PretrainedConfig],
|
|
964
|
+
) -> bool:
|
|
965
|
+
return type(source_layer) is RowParallelLinear
|
|
966
|
+
|
|
967
|
+
|
|
968
|
+
class LogitsProcessorWithLoRA(BaseLayerWithLoRA):
|
|
969
|
+
"""
|
|
970
|
+
LoRA wrapper for LogitsProcessor, with extra logic to handle the
|
|
971
|
+
application of the LoRA adapter and added LoRA vocabulary.
|
|
972
|
+
|
|
973
|
+
Args:
|
|
974
|
+
base_layer: LogitsProcessor layer
|
|
975
|
+
hidden_size: hidden size of the model
|
|
976
|
+
dtype: data type of the model
|
|
977
|
+
device: device of the model
|
|
978
|
+
sharded_to_full_mapping: index mapping from sharded vocab to full vocab
|
|
979
|
+
received from base_layer.get_sharded_to_full_mapping(). If None,
|
|
980
|
+
no reindexing will be done.
|
|
981
|
+
"""
|
|
982
|
+
|
|
983
|
+
def __init__(self, base_layer: LogitsProcessor, hidden_size: int,
|
|
984
|
+
dtype: torch.dtype, device: torch.device,
|
|
985
|
+
sharded_to_full_mapping: Optional[list[int]]) -> None:
|
|
986
|
+
super().__init__()
|
|
987
|
+
self.base_layer = base_layer
|
|
988
|
+
self.hidden_size = hidden_size
|
|
989
|
+
self.dtype = dtype
|
|
990
|
+
self.device = device
|
|
991
|
+
self.tp_size = get_tensor_model_parallel_world_size()
|
|
992
|
+
self.tp_rank = get_tensor_model_parallel_rank()
|
|
993
|
+
self.sharded_to_full_mapping = sharded_to_full_mapping
|
|
994
|
+
|
|
995
|
+
@property
|
|
996
|
+
def logits_as_input(self):
|
|
997
|
+
return self.base_layer.logits_as_input
|
|
998
|
+
|
|
999
|
+
@property
|
|
1000
|
+
def vocab_size(self):
|
|
1001
|
+
return self.base_layer.vocab_size
|
|
1002
|
+
|
|
1003
|
+
@property
|
|
1004
|
+
def scale(self):
|
|
1005
|
+
return self.base_layer.scale
|
|
1006
|
+
|
|
1007
|
+
@property
|
|
1008
|
+
def soft_cap(self):
|
|
1009
|
+
return self.base_layer.soft_cap
|
|
1010
|
+
|
|
1011
|
+
@property
|
|
1012
|
+
def use_all_gather(self):
|
|
1013
|
+
return self.base_layer.use_all_gather
|
|
1014
|
+
|
|
1015
|
+
@property
|
|
1016
|
+
def org_vocab_size(self):
|
|
1017
|
+
return self.base_layer.org_vocab_size
|
|
1018
|
+
|
|
1019
|
+
@property
|
|
1020
|
+
def include_gpu_probs_tensor(self):
|
|
1021
|
+
return self.base_layer.include_gpu_probs_tensor
|
|
1022
|
+
|
|
1023
|
+
@property
|
|
1024
|
+
def should_modify_greedy_probs_inplace(self):
|
|
1025
|
+
return self.base_layer.should_modify_greedy_probs_inplace
|
|
1026
|
+
|
|
1027
|
+
def create_lora_weights(
|
|
1028
|
+
self,
|
|
1029
|
+
max_loras: int,
|
|
1030
|
+
lora_config: LoRAConfig,
|
|
1031
|
+
model_config: Optional[PretrainedConfig] = None,
|
|
1032
|
+
) -> None:
|
|
1033
|
+
# TODO: Verify if this condition can be further relaxed
|
|
1034
|
+
if 32000 < self.base_layer.vocab_size > 257024:
|
|
1035
|
+
raise ValueError("When using LoRA, vocab size must be "
|
|
1036
|
+
"32000 >= vocab_size <= 257024")
|
|
1037
|
+
self.lora_a_stacked = torch.zeros(
|
|
1038
|
+
(
|
|
1039
|
+
max_loras,
|
|
1040
|
+
1,
|
|
1041
|
+
lora_config.max_lora_rank,
|
|
1042
|
+
self.hidden_size,
|
|
1043
|
+
),
|
|
1044
|
+
dtype=lora_config.lora_dtype,
|
|
1045
|
+
device=self.device,
|
|
1046
|
+
)
|
|
1047
|
+
self.lora_b_stacked = torch.zeros(
|
|
1048
|
+
(
|
|
1049
|
+
max_loras,
|
|
1050
|
+
1,
|
|
1051
|
+
# Pad for kernel compatibility
|
|
1052
|
+
math.ceil(self.base_layer.vocab_size /
|
|
1053
|
+
lora_config.lora_vocab_padding_size) *
|
|
1054
|
+
lora_config.lora_vocab_padding_size,
|
|
1055
|
+
lora_config.max_lora_rank,
|
|
1056
|
+
),
|
|
1057
|
+
dtype=lora_config.lora_dtype,
|
|
1058
|
+
device=self.device,
|
|
1059
|
+
)
|
|
1060
|
+
self.embeddings_tensors = torch.full(
|
|
1061
|
+
(max_loras, lora_config.lora_extra_vocab_size, self.hidden_size),
|
|
1062
|
+
fill_value=float("-inf"),
|
|
1063
|
+
dtype=self.dtype,
|
|
1064
|
+
device=self.device,
|
|
1065
|
+
)
|
|
1066
|
+
if self.sharded_to_full_mapping is not None:
|
|
1067
|
+
self.sharded_to_full_mapping_gpu = torch.tensor(
|
|
1068
|
+
self.sharded_to_full_mapping,
|
|
1069
|
+
device=self.device,
|
|
1070
|
+
dtype=torch.long)
|
|
1071
|
+
else:
|
|
1072
|
+
self.sharded_to_full_mapping_gpu = None
|
|
1073
|
+
|
|
1074
|
+
def reset_lora(self, index: int):
|
|
1075
|
+
self.lora_a_stacked[index] = 0
|
|
1076
|
+
self.lora_b_stacked[index] = 0
|
|
1077
|
+
self.embeddings_tensors[index] = float("-inf")
|
|
1078
|
+
|
|
1079
|
+
def set_lora(
|
|
1080
|
+
self,
|
|
1081
|
+
index: int,
|
|
1082
|
+
lora_a: torch.Tensor,
|
|
1083
|
+
lora_b: torch.Tensor,
|
|
1084
|
+
embeddings_tensor: Optional[torch.Tensor],
|
|
1085
|
+
bias: Optional[torch.Tensor] = None,
|
|
1086
|
+
):
|
|
1087
|
+
self.reset_lora(index)
|
|
1088
|
+
self.lora_a_stacked[index,
|
|
1089
|
+
0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
|
|
1090
|
+
lora_a.T, non_blocking=True)
|
|
1091
|
+
self.lora_b_stacked[index,
|
|
1092
|
+
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
|
|
1093
|
+
lora_b.T, non_blocking=True)
|
|
1094
|
+
if embeddings_tensor is not None:
|
|
1095
|
+
self.embeddings_tensors[
|
|
1096
|
+
index,
|
|
1097
|
+
:embeddings_tensor.shape[0],
|
|
1098
|
+
:embeddings_tensor.shape[1],
|
|
1099
|
+
] = embeddings_tensor
|
|
1100
|
+
|
|
1101
|
+
def _get_logits(
|
|
1102
|
+
self,
|
|
1103
|
+
hidden_states: torch.Tensor,
|
|
1104
|
+
lm_head: VocabParallelEmbedding,
|
|
1105
|
+
embedding_bias: Optional[torch.Tensor] = None,
|
|
1106
|
+
) -> Optional[torch.Tensor]:
|
|
1107
|
+
# Get the logits for the next tokens.
|
|
1108
|
+
logits = lm_head.quant_method.apply(lm_head, hidden_states)
|
|
1109
|
+
if embedding_bias is not None:
|
|
1110
|
+
logits += embedding_bias
|
|
1111
|
+
|
|
1112
|
+
# Gather logits for TP
|
|
1113
|
+
logits = self.base_layer._gather_logits(logits)
|
|
1114
|
+
|
|
1115
|
+
if logits is None:
|
|
1116
|
+
return None
|
|
1117
|
+
|
|
1118
|
+
if self.sharded_to_full_mapping_gpu is not None:
|
|
1119
|
+
# Reindex full logits tensor to ensure 1:1 mapping between
|
|
1120
|
+
# index and token_id
|
|
1121
|
+
# Example for:
|
|
1122
|
+
# org_vocab_size = 4
|
|
1123
|
+
# added_vocab_size = 2
|
|
1124
|
+
# pad_to_size = 8
|
|
1125
|
+
# tp_size = 2
|
|
1126
|
+
|
|
1127
|
+
# indices: [0, 1, 2, 3, 4, 5, 6, 7]
|
|
1128
|
+
# token_id: [0, 1, 4, -1, 2, 3, 5, -1]
|
|
1129
|
+
|
|
1130
|
+
# Therefore, the mapping is expected to be:
|
|
1131
|
+
# [0, 1, 4, 6, 2, 3, 5, 7] so that when we reindex,
|
|
1132
|
+
# we get:
|
|
1133
|
+
# indices: [0, 1, 2, 3, 4, 5, 6, 7]
|
|
1134
|
+
# token_id: [0, 1, 2, 3, 4, 5, -1, -1]
|
|
1135
|
+
logits = logits[:, self.sharded_to_full_mapping_gpu]
|
|
1136
|
+
|
|
1137
|
+
lora_logits = torch.empty(
|
|
1138
|
+
self.embeddings_tensors.shape[0] + 1,
|
|
1139
|
+
self.embeddings_tensors.shape[1],
|
|
1140
|
+
hidden_states.shape[0],
|
|
1141
|
+
dtype=self.embeddings_tensors.dtype,
|
|
1142
|
+
device=self.embeddings_tensors.device,
|
|
1143
|
+
)
|
|
1144
|
+
torch.matmul(self.embeddings_tensors,
|
|
1145
|
+
hidden_states.T,
|
|
1146
|
+
out=lora_logits[:-1])
|
|
1147
|
+
|
|
1148
|
+
neg_inf, pos_inf = current_platform.get_infinity_values(
|
|
1149
|
+
lora_logits.dtype)
|
|
1150
|
+
|
|
1151
|
+
lora_logits[-1] = neg_inf
|
|
1152
|
+
lora_logits = lora_logits.mT
|
|
1153
|
+
indices_padded = self.punica_wrapper.sampler_indices_padded
|
|
1154
|
+
|
|
1155
|
+
if current_platform.is_tpu():
|
|
1156
|
+
indices_padded = indices_padded[:logits.size(0)]
|
|
1157
|
+
|
|
1158
|
+
lora_logits = (lora_logits.reshape(
|
|
1159
|
+
lora_logits.shape[0] * lora_logits.shape[1],
|
|
1160
|
+
lora_logits.shape[2],
|
|
1161
|
+
).index_select(0, indices_padded).nan_to_num_(nan=neg_inf,
|
|
1162
|
+
posinf=pos_inf,
|
|
1163
|
+
neginf=neg_inf))
|
|
1164
|
+
|
|
1165
|
+
# HPU needs special handling to prune out dummy samples.
|
|
1166
|
+
if current_platform.is_hpu():
|
|
1167
|
+
lora_logits = lora_logits[:logits.shape[0], :]
|
|
1168
|
+
|
|
1169
|
+
logits[:,
|
|
1170
|
+
self.base_layer.org_vocab_size:self.base_layer.org_vocab_size +
|
|
1171
|
+
lora_logits.shape[1]] = lora_logits
|
|
1172
|
+
|
|
1173
|
+
lora_output: Optional[
|
|
1174
|
+
torch.Tensor] = self.punica_wrapper.add_lora_logits(
|
|
1175
|
+
logits, hidden_states, self.lora_a_stacked,
|
|
1176
|
+
self.lora_b_stacked, 1.0)
|
|
1177
|
+
|
|
1178
|
+
if not current_platform.can_update_inplace():
|
|
1179
|
+
logits = lora_output
|
|
1180
|
+
|
|
1181
|
+
# Remove paddings in vocab (if any).
|
|
1182
|
+
logits = logits[:, :self.base_layer.vocab_size]
|
|
1183
|
+
return logits
|
|
1184
|
+
|
|
1185
|
+
def forward(self, *args, **kwargs):
|
|
1186
|
+
return type(self.base_layer).forward(self, *args, **kwargs)
|
|
1187
|
+
|
|
1188
|
+
@classmethod
|
|
1189
|
+
def can_replace_layer(
|
|
1190
|
+
cls,
|
|
1191
|
+
source_layer: nn.Module,
|
|
1192
|
+
lora_config: LoRAConfig,
|
|
1193
|
+
packed_modules_list: list,
|
|
1194
|
+
model_config: Optional[PretrainedConfig],
|
|
1195
|
+
) -> bool:
|
|
1196
|
+
# Special handling for the LogitsProcessor.
|
|
1197
|
+
return False
|
|
1198
|
+
|
|
1199
|
+
|
|
1200
|
+
class LinearScalingRotaryEmbeddingWithLoRA(BaseLayerWithLoRA):
|
|
1201
|
+
"""Implements RoPE-scaled embeddings with linear scaling for
|
|
1202
|
+
multiple LoRA adapters with a specialized kernel.
|
|
1203
|
+
|
|
1204
|
+
Replace LinearScalingRotaryEmbedding with MultiLinearScalingRotaryEmbedding
|
|
1205
|
+
which can handle multi lora adapters in a specialied kernel.
|
|
1206
|
+
"""
|
|
1207
|
+
|
|
1208
|
+
def __init__(self, base_layer: RotaryEmbedding) -> None:
|
|
1209
|
+
super().__init__()
|
|
1210
|
+
self.base_layer = base_layer
|
|
1211
|
+
|
|
1212
|
+
@property
|
|
1213
|
+
def scaling_factors(self):
|
|
1214
|
+
return self.base_layer.scaling_factors
|
|
1215
|
+
|
|
1216
|
+
@property
|
|
1217
|
+
def rotary_dim(self):
|
|
1218
|
+
return self.base_layer.rotary_dim
|
|
1219
|
+
|
|
1220
|
+
def create_lora_weights(
|
|
1221
|
+
self,
|
|
1222
|
+
max_loras: int,
|
|
1223
|
+
lora_config: LoRAConfig,
|
|
1224
|
+
model_config: Optional[PretrainedConfig] = None,
|
|
1225
|
+
) -> None:
|
|
1226
|
+
scaling_factors = (list(lora_config.long_lora_scaling_factors)
|
|
1227
|
+
if lora_config.long_lora_scaling_factors else [])
|
|
1228
|
+
base_scaling_factor = (self.base_layer.scaling_factor if isinstance(
|
|
1229
|
+
self.base_layer, LinearScalingRotaryEmbedding) else 1.0)
|
|
1230
|
+
scaling_factors = sorted(
|
|
1231
|
+
list(set([base_scaling_factor] + scaling_factors)))
|
|
1232
|
+
self.base_layer = LinearScalingRotaryEmbedding(
|
|
1233
|
+
self.base_layer.head_size,
|
|
1234
|
+
self.base_layer.rotary_dim,
|
|
1235
|
+
self.base_layer.max_position_embeddings,
|
|
1236
|
+
self.base_layer.base,
|
|
1237
|
+
self.base_layer.is_neox_style,
|
|
1238
|
+
scaling_factors,
|
|
1239
|
+
self.base_layer.dtype,
|
|
1240
|
+
)
|
|
1241
|
+
|
|
1242
|
+
def reset_lora(self, index: int):
|
|
1243
|
+
...
|
|
1244
|
+
|
|
1245
|
+
def set_lora(
|
|
1246
|
+
self,
|
|
1247
|
+
index: int,
|
|
1248
|
+
lora_a: torch.Tensor,
|
|
1249
|
+
lora_b: torch.Tensor,
|
|
1250
|
+
embeddings_tensor: Optional[torch.Tensor],
|
|
1251
|
+
bias: Optional[torch.Tensor] = None,
|
|
1252
|
+
):
|
|
1253
|
+
...
|
|
1254
|
+
|
|
1255
|
+
def forward(
|
|
1256
|
+
self,
|
|
1257
|
+
positions: torch.Tensor,
|
|
1258
|
+
query: torch.Tensor,
|
|
1259
|
+
key: torch.Tensor,
|
|
1260
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
1261
|
+
return self.base_layer(
|
|
1262
|
+
positions,
|
|
1263
|
+
query,
|
|
1264
|
+
key,
|
|
1265
|
+
offsets=self.punica_wrapper.long_lora_indices,
|
|
1266
|
+
)
|
|
1267
|
+
|
|
1268
|
+
@property
|
|
1269
|
+
def scaling_factor_to_offset(self) -> dict[float, int]:
|
|
1270
|
+
return self.base_layer.scaling_factor_to_offset
|
|
1271
|
+
|
|
1272
|
+
@classmethod
|
|
1273
|
+
def can_replace_layer(
|
|
1274
|
+
cls,
|
|
1275
|
+
source_layer: nn.Module,
|
|
1276
|
+
lora_config: LoRAConfig,
|
|
1277
|
+
packed_modules_list: list,
|
|
1278
|
+
model_config: Optional[PretrainedConfig],
|
|
1279
|
+
) -> bool:
|
|
1280
|
+
"""Returns True if the layer can be replaced by this LoRA layer."""
|
|
1281
|
+
return (type(source_layer) is LinearScalingRotaryEmbedding
|
|
1282
|
+
or type(source_layer) is RotaryEmbedding)
|
|
1283
|
+
|
|
1284
|
+
def extra_repr(self) -> str:
|
|
1285
|
+
return self.base_layer.extra_repr()
|