vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +53 -0
- vllm/_custom_ops.py +1828 -0
- vllm/_ipex_ops.py +244 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +106 -0
- vllm/adapter_commons/request.py +26 -0
- vllm/adapter_commons/utils.py +93 -0
- vllm/adapter_commons/worker_manager.py +39 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +34 -0
- vllm/assets/video.py +115 -0
- vllm/attention/__init__.py +20 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +308 -0
- vllm/attention/backends/blocksparse_attn.py +461 -0
- vllm/attention/backends/cpu_mla.py +307 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
- vllm/attention/backends/flash_attn.py +1003 -0
- vllm/attention/backends/flashinfer.py +1104 -0
- vllm/attention/backends/flashmla.py +244 -0
- vllm/attention/backends/hpu_attn.py +313 -0
- vllm/attention/backends/ipex_attn.py +398 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1385 -0
- vllm/attention/backends/pallas.py +351 -0
- vllm/attention/backends/placeholder_attn.py +400 -0
- vllm/attention/backends/rocm_aiter_mla.py +435 -0
- vllm/attention/backends/rocm_flash_attn.py +975 -0
- vllm/attention/backends/torch_sdpa.py +703 -0
- vllm/attention/backends/triton_mla.py +115 -0
- vllm/attention/backends/utils.py +610 -0
- vllm/attention/backends/xformers.py +802 -0
- vllm/attention/layer.py +468 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
- vllm/attention/ops/blocksparse_attention/interface.py +239 -0
- vllm/attention/ops/blocksparse_attention/utils.py +246 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
- vllm/attention/ops/flashmla.py +116 -0
- vllm/attention/ops/hpu_paged_attn.py +88 -0
- vllm/attention/ops/ipex_attn.py +195 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/nki_flash_attn.py +906 -0
- vllm/attention/ops/paged_attn.py +256 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +100 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +674 -0
- vllm/attention/ops/triton_flash_attention.py +979 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_unified_attention.py +334 -0
- vllm/attention/selector.py +187 -0
- vllm/attention/utils/fa_utils.py +55 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +1185 -0
- vllm/benchmarks/endpoint_request_func.py +381 -0
- vllm/benchmarks/latency.py +168 -0
- vllm/benchmarks/serve.py +1135 -0
- vllm/benchmarks/throughput.py +609 -0
- vllm/benchmarks/utils.py +70 -0
- vllm/collect_env.py +820 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +89 -0
- vllm/compilation/backends.py +563 -0
- vllm/compilation/base_piecewise_backend.py +72 -0
- vllm/compilation/collective_fusion.py +127 -0
- vllm/compilation/compiler_interface.py +544 -0
- vllm/compilation/counter.py +38 -0
- vllm/compilation/cuda_piecewise_backend.py +214 -0
- vllm/compilation/decorators.py +250 -0
- vllm/compilation/fix_functionalization.py +191 -0
- vllm/compilation/fusion.py +618 -0
- vllm/compilation/fx_utils.py +62 -0
- vllm/compilation/inductor_pass.py +115 -0
- vllm/compilation/monitor.py +39 -0
- vllm/compilation/multi_output_match.py +109 -0
- vllm/compilation/noop_elimination.py +137 -0
- vllm/compilation/pass_manager.py +78 -0
- vllm/compilation/sequence_parallelism.py +268 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +67 -0
- vllm/compilation/wrapper.py +135 -0
- vllm/config.py +4746 -0
- vllm/connections.py +174 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +399 -0
- vllm/core/block/common.py +371 -0
- vllm/core/block/cpu_gpu_block_allocator.py +441 -0
- vllm/core/block/interfaces.py +319 -0
- vllm/core/block/naive_block.py +466 -0
- vllm/core/block/prefix_caching_block.py +1135 -0
- vllm/core/block/utils.py +28 -0
- vllm/core/block_manager.py +521 -0
- vllm/core/evictor.py +157 -0
- vllm/core/interfaces.py +135 -0
- vllm/core/placeholder_block_space_manager.py +100 -0
- vllm/core/scheduler.py +2093 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +281 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +264 -0
- vllm/distributed/device_communicators/base_device_communicator.py +260 -0
- vllm/distributed/device_communicators/cpu_communicator.py +145 -0
- vllm/distributed/device_communicators/cuda_communicator.py +176 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
- vllm/distributed/device_communicators/hpu_communicator.py +46 -0
- vllm/distributed/device_communicators/neuron_communicator.py +20 -0
- vllm/distributed/device_communicators/pynccl.py +218 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
- vllm/distributed/device_communicators/shm_broadcast.py +585 -0
- vllm/distributed/device_communicators/tpu_communicator.py +103 -0
- vllm/distributed/device_communicators/xpu_communicator.py +55 -0
- vllm/distributed/kv_events.py +356 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +12 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
- vllm/distributed/parallel_state.py +1296 -0
- vllm/distributed/tpu_distributed_utils.py +177 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1708 -0
- vllm/engine/async_llm_engine.py +1200 -0
- vllm/engine/async_timeout.py +173 -0
- vllm/engine/llm_engine.py +2097 -0
- vllm/engine/metrics.py +629 -0
- vllm/engine/metrics_types.py +94 -0
- vllm/engine/multiprocessing/__init__.py +148 -0
- vllm/engine/multiprocessing/client.py +681 -0
- vllm/engine/multiprocessing/engine.py +460 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +75 -0
- vllm/engine/output_processor/multi_step.py +216 -0
- vllm/engine/output_processor/single_step.py +145 -0
- vllm/engine/output_processor/stop_checker.py +131 -0
- vllm/engine/output_processor/util.py +28 -0
- vllm/engine/protocol.py +317 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1299 -0
- vllm/entrypoints/cli/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +39 -0
- vllm/entrypoints/cli/benchmark/latency.py +30 -0
- vllm/entrypoints/cli/benchmark/main.py +54 -0
- vllm/entrypoints/cli/benchmark/serve.py +30 -0
- vllm/entrypoints/cli/benchmark/throughput.py +30 -0
- vllm/entrypoints/cli/collect_env.py +35 -0
- vllm/entrypoints/cli/main.py +65 -0
- vllm/entrypoints/cli/openai.py +205 -0
- vllm/entrypoints/cli/run_batch.py +62 -0
- vllm/entrypoints/cli/serve.py +328 -0
- vllm/entrypoints/cli/types.py +25 -0
- vllm/entrypoints/launcher.py +147 -0
- vllm/entrypoints/llm.py +1544 -0
- vllm/entrypoints/logger.py +50 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1387 -0
- vllm/entrypoints/openai/cli_args.py +315 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +1913 -0
- vllm/entrypoints/openai/run_batch.py +463 -0
- vllm/entrypoints/openai/serving_chat.py +1221 -0
- vllm/entrypoints/openai/serving_classification.py +160 -0
- vllm/entrypoints/openai/serving_completion.py +592 -0
- vllm/entrypoints/openai/serving_embedding.py +201 -0
- vllm/entrypoints/openai/serving_engine.py +986 -0
- vllm/entrypoints/openai/serving_models.py +315 -0
- vllm/entrypoints/openai/serving_pooling.py +232 -0
- vllm/entrypoints/openai/serving_score.py +433 -0
- vllm/entrypoints/openai/serving_tokenization.py +157 -0
- vllm/entrypoints/openai/serving_transcription.py +424 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/score_utils.py +50 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/utils.py +233 -0
- vllm/env_override.py +41 -0
- vllm/envs.py +944 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +401 -0
- vllm/executor/mp_distributed_executor.py +244 -0
- vllm/executor/msgspec_utils.py +30 -0
- vllm/executor/multiproc_worker_utils.py +313 -0
- vllm/executor/ray_distributed_executor.py +701 -0
- vllm/executor/ray_utils.py +399 -0
- vllm/executor/uniproc_executor.py +139 -0
- vllm/forward_context.py +179 -0
- vllm/inputs/__init__.py +41 -0
- vllm/inputs/data.py +331 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +909 -0
- vllm/inputs/registry.py +237 -0
- vllm/jsontree.py +80 -0
- vllm/logger.py +212 -0
- vllm/logging_utils/__init__.py +8 -0
- vllm/logging_utils/dump_input.py +85 -0
- vllm/logging_utils/formatter.py +18 -0
- vllm/logits_process.py +119 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +355 -0
- vllm/lora/layers.py +1285 -0
- vllm/lora/lora.py +199 -0
- vllm/lora/models.py +818 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
- vllm/lora/ops/triton_ops/utils.py +120 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +145 -0
- vllm/lora/peft_helper.py +136 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +485 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +290 -0
- vllm/lora/punica_wrapper/punica_hpu.py +145 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +405 -0
- vllm/lora/punica_wrapper/utils.py +164 -0
- vllm/lora/request.py +99 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +240 -0
- vllm/lora/worker_manager.py +259 -0
- vllm/model_executor/__init__.py +16 -0
- vllm/model_executor/custom_op.py +152 -0
- vllm/model_executor/guided_decoding/__init__.py +181 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
- vllm/model_executor/guided_decoding/guided_fields.py +41 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
- vllm/model_executor/guided_decoding/utils.py +242 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +369 -0
- vllm/model_executor/layers/fused_moe/__init__.py +54 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
- vllm/model_executor/layers/fused_moe/layer.py +1535 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
- vllm/model_executor/layers/fused_moe/utils.py +98 -0
- vllm/model_executor/layers/layernorm.py +288 -0
- vllm/model_executor/layers/lightning_attn.py +652 -0
- vllm/model_executor/layers/linear.py +1524 -0
- vllm/model_executor/layers/logits_processor.py +197 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
- vllm/model_executor/layers/pooler.py +350 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/auto_round.py +310 -0
- vllm/model_executor/layers/quantization/awq.py +194 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +151 -0
- vllm/model_executor/layers/quantization/bitblas.py +461 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
- vllm/model_executor/layers/quantization/experts_int8.py +196 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +906 -0
- vllm/model_executor/layers/quantization/gguf.py +565 -0
- vllm/model_executor/layers/quantization/gptq.py +278 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +139 -0
- vllm/model_executor/layers/quantization/marlin.py +261 -0
- vllm/model_executor/layers/quantization/modelopt.py +737 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
- vllm/model_executor/layers/quantization/qqq.py +275 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +441 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +161 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
- vllm/model_executor/layers/rejection_sampler.py +406 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding.py +1862 -0
- vllm/model_executor/layers/sampler.py +1204 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
- vllm/model_executor/layers/utils.py +95 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +76 -0
- vllm/model_executor/model_loader/base_loader.py +43 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
- vllm/model_executor/model_loader/default_loader.py +282 -0
- vllm/model_executor/model_loader/dummy_loader.py +27 -0
- vllm/model_executor/model_loader/gguf_loader.py +120 -0
- vllm/model_executor/model_loader/neuron.py +476 -0
- vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
- vllm/model_executor/model_loader/tensorizer.py +600 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
- vllm/model_executor/model_loader/tpu.py +112 -0
- vllm/model_executor/model_loader/utils.py +302 -0
- vllm/model_executor/model_loader/weight_utils.py +782 -0
- vllm/model_executor/models/__init__.py +28 -0
- vllm/model_executor/models/adapters.py +248 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +657 -0
- vllm/model_executor/models/aya_vision.py +466 -0
- vllm/model_executor/models/baichuan.py +474 -0
- vllm/model_executor/models/bamba.py +543 -0
- vllm/model_executor/models/bart.py +938 -0
- vllm/model_executor/models/bert.py +523 -0
- vllm/model_executor/models/bert_with_rope.py +769 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +718 -0
- vllm/model_executor/models/bloom.py +373 -0
- vllm/model_executor/models/chameleon.py +1136 -0
- vllm/model_executor/models/chatglm.py +478 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/commandr.py +472 -0
- vllm/model_executor/models/constant_size_cache.py +137 -0
- vllm/model_executor/models/dbrx.py +472 -0
- vllm/model_executor/models/deepseek.py +486 -0
- vllm/model_executor/models/deepseek_mtp.py +269 -0
- vllm/model_executor/models/deepseek_v2.py +843 -0
- vllm/model_executor/models/deepseek_vl2.py +648 -0
- vllm/model_executor/models/eagle.py +260 -0
- vllm/model_executor/models/exaone.py +551 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +510 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/florence2.py +1103 -0
- vllm/model_executor/models/fuyu.py +389 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +425 -0
- vllm/model_executor/models/gemma3.py +533 -0
- vllm/model_executor/models/gemma3_mm.py +709 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4v.py +648 -0
- vllm/model_executor/models/gpt2.py +328 -0
- vllm/model_executor/models/gpt_bigcode.py +335 -0
- vllm/model_executor/models/gpt_j.py +339 -0
- vllm/model_executor/models/gpt_neox.py +332 -0
- vllm/model_executor/models/granite.py +493 -0
- vllm/model_executor/models/granite_speech.py +779 -0
- vllm/model_executor/models/granitemoe.py +437 -0
- vllm/model_executor/models/granitemoehybrid.py +586 -0
- vllm/model_executor/models/granitemoeshared.py +341 -0
- vllm/model_executor/models/gritlm.py +224 -0
- vllm/model_executor/models/grok1.py +546 -0
- vllm/model_executor/models/h2ovl.py +546 -0
- vllm/model_executor/models/idefics2_vision_model.py +389 -0
- vllm/model_executor/models/idefics3.py +776 -0
- vllm/model_executor/models/interfaces.py +572 -0
- vllm/model_executor/models/interfaces_base.py +164 -0
- vllm/model_executor/models/intern_vit.py +480 -0
- vllm/model_executor/models/internlm2.py +455 -0
- vllm/model_executor/models/internlm2_ve.py +147 -0
- vllm/model_executor/models/internvl.py +1418 -0
- vllm/model_executor/models/jais.py +373 -0
- vllm/model_executor/models/jamba.py +592 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/llama.py +644 -0
- vllm/model_executor/models/llama4.py +532 -0
- vllm/model_executor/models/llama_eagle.py +165 -0
- vllm/model_executor/models/llama_eagle3.py +263 -0
- vllm/model_executor/models/llava.py +866 -0
- vllm/model_executor/models/llava_next.py +586 -0
- vllm/model_executor/models/llava_next_video.py +471 -0
- vllm/model_executor/models/llava_onevision.py +956 -0
- vllm/model_executor/models/mamba.py +273 -0
- vllm/model_executor/models/mamba2.py +308 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +219 -0
- vllm/model_executor/models/mimo.py +192 -0
- vllm/model_executor/models/mimo_mtp.py +285 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +391 -0
- vllm/model_executor/models/minicpmo.py +759 -0
- vllm/model_executor/models/minicpmv.py +1287 -0
- vllm/model_executor/models/minimax_cache.py +36 -0
- vllm/model_executor/models/minimax_text_01.py +1301 -0
- vllm/model_executor/models/minimax_vl_01.py +364 -0
- vllm/model_executor/models/mistral3.py +604 -0
- vllm/model_executor/models/mixtral.py +488 -0
- vllm/model_executor/models/mixtral_quant.py +453 -0
- vllm/model_executor/models/mllama.py +1624 -0
- vllm/model_executor/models/mllama4.py +938 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +331 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1568 -0
- vllm/model_executor/models/moonvit.py +630 -0
- vllm/model_executor/models/mpt.py +331 -0
- vllm/model_executor/models/nemotron.py +508 -0
- vllm/model_executor/models/nemotron_h.py +573 -0
- vllm/model_executor/models/nemotron_nas.py +484 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +389 -0
- vllm/model_executor/models/olmo2.py +414 -0
- vllm/model_executor/models/olmoe.py +468 -0
- vllm/model_executor/models/opt.py +412 -0
- vllm/model_executor/models/orion.py +349 -0
- vllm/model_executor/models/ovis.py +567 -0
- vllm/model_executor/models/paligemma.py +398 -0
- vllm/model_executor/models/persimmon.py +344 -0
- vllm/model_executor/models/phi.py +356 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3_small.py +465 -0
- vllm/model_executor/models/phi3v.py +723 -0
- vllm/model_executor/models/phi4mm.py +1246 -0
- vllm/model_executor/models/phi4mm_audio.py +1233 -0
- vllm/model_executor/models/phi4mm_utils.py +1884 -0
- vllm/model_executor/models/phimoe.py +665 -0
- vllm/model_executor/models/pixtral.py +1316 -0
- vllm/model_executor/models/plamo2.py +738 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
- vllm/model_executor/models/qwen.py +362 -0
- vllm/model_executor/models/qwen2.py +497 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
- vllm/model_executor/models/qwen2_5_vl.py +1166 -0
- vllm/model_executor/models/qwen2_audio.py +410 -0
- vllm/model_executor/models/qwen2_moe.py +540 -0
- vllm/model_executor/models/qwen2_rm.py +132 -0
- vllm/model_executor/models/qwen2_vl.py +1405 -0
- vllm/model_executor/models/qwen3.py +321 -0
- vllm/model_executor/models/qwen3_moe.py +535 -0
- vllm/model_executor/models/qwen_vl.py +785 -0
- vllm/model_executor/models/registry.py +622 -0
- vllm/model_executor/models/roberta.py +276 -0
- vllm/model_executor/models/siglip.py +524 -0
- vllm/model_executor/models/skyworkr1v.py +951 -0
- vllm/model_executor/models/smolvlm.py +52 -0
- vllm/model_executor/models/solar.py +506 -0
- vllm/model_executor/models/stablelm.py +343 -0
- vllm/model_executor/models/starcoder2.py +356 -0
- vllm/model_executor/models/tarsier.py +643 -0
- vllm/model_executor/models/telechat2.py +140 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/transformers.py +508 -0
- vllm/model_executor/models/ultravox.py +656 -0
- vllm/model_executor/models/utils.py +731 -0
- vllm/model_executor/models/vision.py +147 -0
- vllm/model_executor/models/whisper.py +747 -0
- vllm/model_executor/models/zamba2.py +1009 -0
- vllm/model_executor/parameter.py +459 -0
- vllm/model_executor/pooling_metadata.py +72 -0
- vllm/model_executor/sampling_metadata.py +597 -0
- vllm/model_executor/utils.py +77 -0
- vllm/multimodal/__init__.py +33 -0
- vllm/multimodal/audio.py +106 -0
- vllm/multimodal/base.py +219 -0
- vllm/multimodal/hasher.py +118 -0
- vllm/multimodal/image.py +97 -0
- vllm/multimodal/inputs.py +876 -0
- vllm/multimodal/parse.py +461 -0
- vllm/multimodal/processing.py +1895 -0
- vllm/multimodal/profiling.py +258 -0
- vllm/multimodal/registry.py +331 -0
- vllm/multimodal/utils.py +436 -0
- vllm/multimodal/video.py +198 -0
- vllm/outputs.py +512 -0
- vllm/platforms/__init__.py +291 -0
- vllm/platforms/cpu.py +266 -0
- vllm/platforms/cuda.py +526 -0
- vllm/platforms/hpu.py +106 -0
- vllm/platforms/interface.py +538 -0
- vllm/platforms/neuron.py +150 -0
- vllm/platforms/rocm.py +435 -0
- vllm/platforms/tpu.py +216 -0
- vllm/platforms/xpu.py +156 -0
- vllm/plugins/__init__.py +94 -0
- vllm/plugins/lora_resolvers/README.md +15 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +54 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +83 -0
- vllm/prompt_adapter/models.py +358 -0
- vllm/prompt_adapter/request.py +37 -0
- vllm/prompt_adapter/utils.py +98 -0
- vllm/prompt_adapter/worker_manager.py +179 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +15 -0
- vllm/reasoning/abs_reasoning_parsers.py +192 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/qwen3_reasoning_parser.py +151 -0
- vllm/sampling_params.py +602 -0
- vllm/scalar_type.py +347 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +1568 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +506 -0
- vllm/spec_decode/draft_model_runner.py +349 -0
- vllm/spec_decode/interfaces.py +99 -0
- vllm/spec_decode/medusa_worker.py +138 -0
- vllm/spec_decode/metrics.py +213 -0
- vllm/spec_decode/mlp_speculator_worker.py +94 -0
- vllm/spec_decode/mqa_scorer.py +160 -0
- vllm/spec_decode/multi_step_worker.py +423 -0
- vllm/spec_decode/ngram_worker.py +196 -0
- vllm/spec_decode/proposer_worker_base.py +59 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
- vllm/spec_decode/spec_decode_worker.py +1326 -0
- vllm/spec_decode/target_model_runner.py +45 -0
- vllm/spec_decode/top1_proposer.py +275 -0
- vllm/spec_decode/util.py +277 -0
- vllm/test_utils.py +130 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +131 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +60 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/config.py +887 -0
- vllm/transformers_utils/configs/__init__.py +61 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/cohere2.py +195 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +85 -0
- vllm/transformers_utils/configs/exaone.py +190 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/h2ovl.py +16 -0
- vllm/transformers_utils/configs/internvl.py +54 -0
- vllm/transformers_utils/configs/jais.py +238 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/minimax_text_01.py +70 -0
- vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
- vllm/transformers_utils/configs/mllama.py +31 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/mpt.py +180 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +258 -0
- vllm/transformers_utils/configs/nvlm_d.py +15 -0
- vllm/transformers_utils/configs/ovis.py +184 -0
- vllm/transformers_utils/configs/skyworkr1v.py +54 -0
- vllm/transformers_utils/configs/solar.py +247 -0
- vllm/transformers_utils/configs/telechat2.py +64 -0
- vllm/transformers_utils/configs/ultravox.py +108 -0
- vllm/transformers_utils/detokenizer.py +168 -0
- vllm/transformers_utils/detokenizer_utils.py +189 -0
- vllm/transformers_utils/processor.py +221 -0
- vllm/transformers_utils/processors/__init__.py +8 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/s3_utils.py +162 -0
- vllm/transformers_utils/tokenizer.py +302 -0
- vllm/transformers_utils/tokenizer_base.py +149 -0
- vllm/transformers_utils/tokenizer_group.py +120 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +493 -0
- vllm/transformers_utils/utils.py +99 -0
- vllm/triton_utils/__init__.py +14 -0
- vllm/triton_utils/importing.py +50 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +256 -0
- vllm/utils.py +2910 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +163 -0
- vllm/v1/attention/backends/flash_attn.py +869 -0
- vllm/v1/attention/backends/flashinfer.py +651 -0
- vllm/v1/attention/backends/flex_attention.py +477 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +931 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
- vllm/v1/attention/backends/mla/flashmla.py +152 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
- vllm/v1/attention/backends/mla/triton_mla.py +120 -0
- vllm/v1/attention/backends/pallas.py +240 -0
- vllm/v1/attention/backends/triton_attn.py +285 -0
- vllm/v1/attention/backends/utils.py +52 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +349 -0
- vllm/v1/core/encoder_cache_manager.py +150 -0
- vllm/v1/core/kv_cache_coordinator.py +363 -0
- vllm/v1/core/kv_cache_manager.py +392 -0
- vllm/v1/core/kv_cache_utils.py +996 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +150 -0
- vllm/v1/core/sched/output.py +154 -0
- vllm/v1/core/sched/scheduler.py +1044 -0
- vllm/v1/core/sched/utils.py +23 -0
- vllm/v1/core/single_type_kv_cache_manager.py +403 -0
- vllm/v1/engine/__init__.py +173 -0
- vllm/v1/engine/async_llm.py +558 -0
- vllm/v1/engine/coordinator.py +253 -0
- vllm/v1/engine/core.py +961 -0
- vllm/v1/engine/core_client.py +1129 -0
- vllm/v1/engine/detokenizer.py +261 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +317 -0
- vllm/v1/engine/logprobs.py +199 -0
- vllm/v1/engine/mm_input_cache.py +91 -0
- vllm/v1/engine/output_processor.py +428 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +407 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +113 -0
- vllm/v1/executor/multiproc_executor.py +537 -0
- vllm/v1/executor/ray_distributed_executor.py +62 -0
- vllm/v1/kv_cache_interface.py +194 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +523 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +131 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +239 -0
- vllm/v1/outputs.py +116 -0
- vllm/v1/request.py +193 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/penalties.py +59 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +286 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +145 -0
- vllm/v1/serial_utils.py +315 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +432 -0
- vllm/v1/spec_decode/medusa.py +62 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +178 -0
- vllm/v1/spec_decode/ngram_proposer.py +132 -0
- vllm/v1/spec_decode/utils.py +46 -0
- vllm/v1/structured_output/__init__.py +222 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +318 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +175 -0
- vllm/v1/utils.py +743 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +142 -0
- vllm/v1/worker/cpu_model_runner.py +86 -0
- vllm/v1/worker/cpu_worker.py +152 -0
- vllm/v1/worker/gpu_input_batch.py +681 -0
- vllm/v1/worker/gpu_model_runner.py +2320 -0
- vllm/v1/worker/gpu_worker.py +393 -0
- vllm/v1/worker/lora_model_runner_mixin.py +173 -0
- vllm/v1/worker/tpu_model_runner.py +1673 -0
- vllm/v1/worker/tpu_worker.py +299 -0
- vllm/v1/worker/utils.py +111 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +145 -0
- vllm/worker/cpu_enc_dec_model_runner.py +326 -0
- vllm/worker/cpu_model_runner.py +671 -0
- vllm/worker/cpu_pooling_model_runner.py +125 -0
- vllm/worker/cpu_worker.py +450 -0
- vllm/worker/enc_dec_model_runner.py +555 -0
- vllm/worker/hpu_model_runner.py +2320 -0
- vllm/worker/hpu_worker.py +484 -0
- vllm/worker/model_runner.py +2178 -0
- vllm/worker/model_runner_base.py +282 -0
- vllm/worker/multi_step_hpu_worker.py +123 -0
- vllm/worker/multi_step_model_runner.py +911 -0
- vllm/worker/multi_step_neuron_model_runner.py +84 -0
- vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
- vllm/worker/multi_step_tpu_worker.py +108 -0
- vllm/worker/multi_step_worker.py +197 -0
- vllm/worker/neuron_model_runner.py +460 -0
- vllm/worker/neuron_worker.py +193 -0
- vllm/worker/neuronx_distributed_model_runner.py +294 -0
- vllm/worker/pooling_model_runner.py +211 -0
- vllm/worker/tpu_model_runner.py +909 -0
- vllm/worker/tpu_worker.py +337 -0
- vllm/worker/utils.py +53 -0
- vllm/worker/worker.py +577 -0
- vllm/worker/worker_base.py +646 -0
- vllm/worker/xpu_model_runner.py +606 -0
- vllm/worker/xpu_worker.py +186 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1044 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
from __future__ import annotations
|
|
5
|
+
|
|
6
|
+
import time
|
|
7
|
+
from collections import defaultdict, deque
|
|
8
|
+
from collections.abc import Iterable
|
|
9
|
+
from typing import Any, Optional, Union
|
|
10
|
+
|
|
11
|
+
from vllm.config import VllmConfig
|
|
12
|
+
from vllm.distributed.kv_events import EventPublisherFactory, KVEventBatch
|
|
13
|
+
from vllm.distributed.kv_transfer.kv_connector.factory import (
|
|
14
|
+
KVConnectorFactory)
|
|
15
|
+
from vllm.distributed.kv_transfer.kv_connector.v1 import (KVConnectorBase_V1,
|
|
16
|
+
KVConnectorRole)
|
|
17
|
+
from vllm.logger import init_logger
|
|
18
|
+
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalRegistry
|
|
19
|
+
from vllm.v1.core.encoder_cache_manager import (EncoderCacheManager,
|
|
20
|
+
compute_encoder_budget)
|
|
21
|
+
from vllm.v1.core.kv_cache_manager import KVCacheManager
|
|
22
|
+
from vllm.v1.core.sched.interface import SchedulerInterface
|
|
23
|
+
from vllm.v1.core.sched.output import (CachedRequestData, NewRequestData,
|
|
24
|
+
SchedulerOutput)
|
|
25
|
+
from vllm.v1.core.sched.utils import check_stop
|
|
26
|
+
from vllm.v1.engine import (EngineCoreEventType, EngineCoreOutput,
|
|
27
|
+
EngineCoreOutputs)
|
|
28
|
+
from vllm.v1.kv_cache_interface import KVCacheConfig
|
|
29
|
+
from vllm.v1.metrics.stats import SchedulerStats
|
|
30
|
+
from vllm.v1.outputs import ModelRunnerOutput
|
|
31
|
+
from vllm.v1.request import Request, RequestStatus
|
|
32
|
+
from vllm.v1.spec_decode.metrics import SpecDecodingStats
|
|
33
|
+
from vllm.v1.structured_output import StructuredOutputManager
|
|
34
|
+
|
|
35
|
+
logger = init_logger(__name__)
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
class Scheduler(SchedulerInterface):
|
|
39
|
+
|
|
40
|
+
def __init__(
|
|
41
|
+
self,
|
|
42
|
+
vllm_config: VllmConfig,
|
|
43
|
+
kv_cache_config: KVCacheConfig,
|
|
44
|
+
structured_output_manager: StructuredOutputManager,
|
|
45
|
+
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
|
|
46
|
+
include_finished_set: bool = False,
|
|
47
|
+
log_stats: bool = False,
|
|
48
|
+
) -> None:
|
|
49
|
+
self.vllm_config = vllm_config
|
|
50
|
+
self.scheduler_config = vllm_config.scheduler_config
|
|
51
|
+
self.cache_config = vllm_config.cache_config
|
|
52
|
+
self.lora_config = vllm_config.lora_config
|
|
53
|
+
self.kv_cache_config = kv_cache_config
|
|
54
|
+
self.kv_events_config = vllm_config.kv_events_config
|
|
55
|
+
self.log_stats = log_stats
|
|
56
|
+
self.structured_output_manager = structured_output_manager
|
|
57
|
+
|
|
58
|
+
# include_finished_set controls whether a separate set of finished
|
|
59
|
+
# request ids should be included in the EngineCoreOutputs returned
|
|
60
|
+
# by update_from_outputs(). This is currently used in the multi-engine
|
|
61
|
+
# case to track request lifetimes efficiently.
|
|
62
|
+
self.finished_req_ids_dict: Optional[dict[int, set[str]]] = (
|
|
63
|
+
defaultdict(set) if include_finished_set else None)
|
|
64
|
+
|
|
65
|
+
# Scheduling constraints.
|
|
66
|
+
self.max_num_running_reqs = self.scheduler_config.max_num_seqs
|
|
67
|
+
self.max_num_scheduled_tokens = \
|
|
68
|
+
self.scheduler_config.max_num_batched_tokens
|
|
69
|
+
self.max_model_len = self.scheduler_config.max_model_len
|
|
70
|
+
self.enable_kv_cache_events = (
|
|
71
|
+
self.kv_events_config is not None
|
|
72
|
+
and self.kv_events_config.enable_kv_cache_events)
|
|
73
|
+
|
|
74
|
+
# Create KVConnector for the Scheduler. Note that each Worker
|
|
75
|
+
# will have a corresponding KVConnector with Role=WORKER.
|
|
76
|
+
# KV Connector pushes/pull of remote KVs for P/D and offloading.
|
|
77
|
+
self.connector = None
|
|
78
|
+
if self.vllm_config.kv_transfer_config is not None:
|
|
79
|
+
assert len(self.kv_cache_config.kv_cache_groups) == 1, (
|
|
80
|
+
"Multiple KV cache groups are not currently supported "
|
|
81
|
+
"with KV connectors")
|
|
82
|
+
self.connector = KVConnectorFactory.create_connector_v1(
|
|
83
|
+
config=self.vllm_config, role=KVConnectorRole.SCHEDULER)
|
|
84
|
+
|
|
85
|
+
self.kv_event_publisher = EventPublisherFactory.create(
|
|
86
|
+
self.kv_events_config,
|
|
87
|
+
vllm_config.parallel_config.data_parallel_rank,
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
num_gpu_blocks = self.cache_config.num_gpu_blocks
|
|
91
|
+
assert num_gpu_blocks is not None and num_gpu_blocks > 0
|
|
92
|
+
|
|
93
|
+
self.block_size = self.cache_config.block_size
|
|
94
|
+
|
|
95
|
+
# req_id -> Request
|
|
96
|
+
self.requests: dict[str, Request] = {}
|
|
97
|
+
# Priority queues for requests.
|
|
98
|
+
self.waiting: deque[Request] = deque()
|
|
99
|
+
self.running: list[Request] = []
|
|
100
|
+
|
|
101
|
+
# The request IDs that are finished in between the previous and the
|
|
102
|
+
# current steps. This is used to notify the workers about the finished
|
|
103
|
+
# requests so that they can free the cached states for those requests.
|
|
104
|
+
# This is flushed at the end of each scheduling step.
|
|
105
|
+
self.finished_req_ids: set[str] = set()
|
|
106
|
+
|
|
107
|
+
# KV Connector: requests in process of async KV loading or recving
|
|
108
|
+
self.finished_recving_kv_req_ids: set[str] = set()
|
|
109
|
+
|
|
110
|
+
# OPTIMIZATION: Cache the CachedRequestData objects to avoid creating
|
|
111
|
+
# them at each scheduling step.
|
|
112
|
+
# Request id -> deque of CachedRequestData
|
|
113
|
+
self._cached_reqs_data: dict[
|
|
114
|
+
str, deque[CachedRequestData]] = defaultdict(deque)
|
|
115
|
+
|
|
116
|
+
# Encoder-related.
|
|
117
|
+
# Calculate encoder cache size if applicable
|
|
118
|
+
# NOTE: For now we use the same budget for both compute and space.
|
|
119
|
+
# This can be changed when we make encoder cache for embedding caching
|
|
120
|
+
# across requests.
|
|
121
|
+
encoder_compute_budget, encoder_cache_size = compute_encoder_budget(
|
|
122
|
+
model_config=vllm_config.model_config,
|
|
123
|
+
scheduler_config=vllm_config.scheduler_config,
|
|
124
|
+
mm_registry=mm_registry,
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
# NOTE(woosuk): Here, "encoder" includes the vision encoder (and
|
|
128
|
+
# projector if needed). Currently, we assume that the encoder also
|
|
129
|
+
# has the Transformer architecture (e.g., ViT).
|
|
130
|
+
self.max_num_encoder_input_tokens = encoder_compute_budget
|
|
131
|
+
# NOTE: For the models without encoder (e.g., text-only models),
|
|
132
|
+
# the encoder cache will not be initialized because cache size is 0
|
|
133
|
+
# for these models.
|
|
134
|
+
self.encoder_cache_manager = EncoderCacheManager(
|
|
135
|
+
cache_size=encoder_cache_size)
|
|
136
|
+
|
|
137
|
+
speculative_config = vllm_config.speculative_config
|
|
138
|
+
|
|
139
|
+
self.use_eagle = False
|
|
140
|
+
self.num_spec_tokens = self.num_lookahead_tokens = 0
|
|
141
|
+
if speculative_config:
|
|
142
|
+
self.num_spec_tokens = speculative_config.num_speculative_tokens
|
|
143
|
+
if speculative_config.use_eagle():
|
|
144
|
+
self.use_eagle = True
|
|
145
|
+
self.num_lookahead_tokens = self.num_spec_tokens
|
|
146
|
+
|
|
147
|
+
# Create the KV cache manager.
|
|
148
|
+
self.kv_cache_manager = KVCacheManager(
|
|
149
|
+
kv_cache_config=kv_cache_config,
|
|
150
|
+
max_model_len=self.max_model_len,
|
|
151
|
+
enable_caching=self.cache_config.enable_prefix_caching,
|
|
152
|
+
caching_hash_algo=self.cache_config.prefix_caching_hash_algo,
|
|
153
|
+
use_eagle=self.use_eagle,
|
|
154
|
+
log_stats=self.log_stats,
|
|
155
|
+
enable_kv_cache_events=self.enable_kv_cache_events,
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
def schedule(self) -> SchedulerOutput:
|
|
159
|
+
# NOTE(woosuk) on the scheduling algorithm:
|
|
160
|
+
# There's no "decoding phase" nor "prefill phase" in the scheduler.
|
|
161
|
+
# Each request just has the num_computed_tokens and
|
|
162
|
+
# num_tokens_with_spec. num_tokens_with_spec =
|
|
163
|
+
# len(prompt_token_ids) + len(output_token_ids) + len(spec_token_ids).
|
|
164
|
+
# At each step, the scheduler tries to assign tokens to the requests
|
|
165
|
+
# so that each request's num_computed_tokens can catch up its
|
|
166
|
+
# num_tokens_with_spec. This is general enough to cover
|
|
167
|
+
# chunked prefills, prefix caching, speculative decoding,
|
|
168
|
+
# and the "jump decoding" optimization in the future.
|
|
169
|
+
|
|
170
|
+
scheduled_new_reqs: list[Request] = []
|
|
171
|
+
scheduled_resumed_reqs: list[Request] = []
|
|
172
|
+
scheduled_running_reqs: list[Request] = []
|
|
173
|
+
preempted_reqs: list[Request] = []
|
|
174
|
+
|
|
175
|
+
# NOTE: structured_output_request_ids maps
|
|
176
|
+
# a request's (request that uses structured output)
|
|
177
|
+
# request_id to the running request index.
|
|
178
|
+
# This will helps us determine to slice the grammar bitmask
|
|
179
|
+
# and only applies valid mask for requests that
|
|
180
|
+
# uses structured decoding.
|
|
181
|
+
structured_output_request_ids: dict[str, int] = {}
|
|
182
|
+
|
|
183
|
+
req_to_new_block_ids: dict[str, tuple[list[int], ...]] = {}
|
|
184
|
+
num_scheduled_tokens: dict[str, int] = {}
|
|
185
|
+
token_budget = self.max_num_scheduled_tokens
|
|
186
|
+
# Encoder-related.
|
|
187
|
+
scheduled_encoder_inputs: dict[str, list[int]] = {}
|
|
188
|
+
encoder_budget = self.max_num_encoder_input_tokens
|
|
189
|
+
# Spec decode-related.
|
|
190
|
+
scheduled_spec_decode_tokens: dict[str, list[int]] = {}
|
|
191
|
+
|
|
192
|
+
# For logging.
|
|
193
|
+
scheduled_timestamp = time.monotonic()
|
|
194
|
+
|
|
195
|
+
# First, schedule the RUNNING requests.
|
|
196
|
+
req_index = 0
|
|
197
|
+
while req_index < len(self.running) and token_budget > 0:
|
|
198
|
+
request = self.running[req_index]
|
|
199
|
+
|
|
200
|
+
num_new_tokens = (request.num_tokens_with_spec -
|
|
201
|
+
request.num_computed_tokens)
|
|
202
|
+
if (0 < self.scheduler_config.long_prefill_token_threshold <
|
|
203
|
+
num_new_tokens):
|
|
204
|
+
num_new_tokens = (
|
|
205
|
+
self.scheduler_config.long_prefill_token_threshold)
|
|
206
|
+
num_new_tokens = min(num_new_tokens, token_budget)
|
|
207
|
+
|
|
208
|
+
# Make sure the input position does not exceed the max model len.
|
|
209
|
+
# This is necessary when using spec decoding.
|
|
210
|
+
num_new_tokens = min(
|
|
211
|
+
num_new_tokens,
|
|
212
|
+
self.max_model_len - request.num_computed_tokens)
|
|
213
|
+
|
|
214
|
+
# Schedule encoder inputs.
|
|
215
|
+
encoder_inputs_to_schedule = None
|
|
216
|
+
new_encoder_budget = encoder_budget
|
|
217
|
+
if request.has_encoder_inputs:
|
|
218
|
+
(encoder_inputs_to_schedule, num_new_tokens,
|
|
219
|
+
new_encoder_budget) = self._try_schedule_encoder_inputs(
|
|
220
|
+
request, request.num_computed_tokens, num_new_tokens,
|
|
221
|
+
encoder_budget)
|
|
222
|
+
|
|
223
|
+
if num_new_tokens == 0:
|
|
224
|
+
# The request cannot be scheduled because one of the following
|
|
225
|
+
# reasons:
|
|
226
|
+
# 1. No new tokens to schedule. This may happen when PP>1 and
|
|
227
|
+
# we have already scheduled all prompt tokens but they are
|
|
228
|
+
# not finished yet.
|
|
229
|
+
# 2. The encoder budget is exhausted.
|
|
230
|
+
# 3. The encoder cache is exhausted.
|
|
231
|
+
# NOTE(woosuk): Here, by doing `continue` instead of `break`,
|
|
232
|
+
# we do not strictly follow the FCFS scheduling policy and
|
|
233
|
+
# allow the lower-priority requests to be scheduled.
|
|
234
|
+
req_index += 1
|
|
235
|
+
continue
|
|
236
|
+
|
|
237
|
+
num_draft_tokens = max(
|
|
238
|
+
num_new_tokens + request.num_computed_tokens -
|
|
239
|
+
request.num_tokens, 0)
|
|
240
|
+
|
|
241
|
+
while True:
|
|
242
|
+
new_blocks = self.kv_cache_manager.allocate_slots(
|
|
243
|
+
request,
|
|
244
|
+
num_new_tokens,
|
|
245
|
+
num_draft_tokens=num_draft_tokens,
|
|
246
|
+
num_lookahead_tokens=self.num_lookahead_tokens)
|
|
247
|
+
if new_blocks is None:
|
|
248
|
+
# The request cannot be scheduled.
|
|
249
|
+
# Preempt the lowest-priority request.
|
|
250
|
+
preempted_req = self.running.pop()
|
|
251
|
+
self.kv_cache_manager.free(preempted_req)
|
|
252
|
+
preempted_req.status = RequestStatus.PREEMPTED
|
|
253
|
+
preempted_req.num_computed_tokens = 0
|
|
254
|
+
if self.log_stats:
|
|
255
|
+
preempted_req.record_event(
|
|
256
|
+
EngineCoreEventType.PREEMPTED, scheduled_timestamp)
|
|
257
|
+
|
|
258
|
+
self.waiting.appendleft(preempted_req)
|
|
259
|
+
preempted_reqs.append(preempted_req)
|
|
260
|
+
if preempted_req == request:
|
|
261
|
+
# No more request to preempt.
|
|
262
|
+
can_schedule = False
|
|
263
|
+
break
|
|
264
|
+
else:
|
|
265
|
+
# The request can be scheduled.
|
|
266
|
+
can_schedule = True
|
|
267
|
+
break
|
|
268
|
+
if not can_schedule:
|
|
269
|
+
break
|
|
270
|
+
assert new_blocks is not None
|
|
271
|
+
|
|
272
|
+
# Schedule the request.
|
|
273
|
+
scheduled_running_reqs.append(request)
|
|
274
|
+
if request.use_structured_output:
|
|
275
|
+
# PERF: in case of chunked prefill,
|
|
276
|
+
# request might not include any new tokens.
|
|
277
|
+
# Therefore, we might introduce some additional
|
|
278
|
+
# cycle to fill in the bitmask, which could be a big no-op.
|
|
279
|
+
structured_output_request_ids[request.request_id] = req_index
|
|
280
|
+
req_to_new_block_ids[request.request_id] = (
|
|
281
|
+
new_blocks.get_block_ids())
|
|
282
|
+
num_scheduled_tokens[request.request_id] = num_new_tokens
|
|
283
|
+
token_budget -= num_new_tokens
|
|
284
|
+
req_index += 1
|
|
285
|
+
|
|
286
|
+
# Speculative decode related.
|
|
287
|
+
if request.spec_token_ids:
|
|
288
|
+
num_scheduled_spec_tokens = (num_new_tokens +
|
|
289
|
+
request.num_computed_tokens -
|
|
290
|
+
request.num_tokens)
|
|
291
|
+
if num_scheduled_spec_tokens > 0:
|
|
292
|
+
# Trim spec_token_ids list to num_scheduled_spec_tokens.
|
|
293
|
+
del request.spec_token_ids[num_scheduled_spec_tokens:]
|
|
294
|
+
scheduled_spec_decode_tokens[request.request_id] = (
|
|
295
|
+
request.spec_token_ids)
|
|
296
|
+
|
|
297
|
+
# Encoder-related.
|
|
298
|
+
if encoder_inputs_to_schedule:
|
|
299
|
+
scheduled_encoder_inputs[request.request_id] = (
|
|
300
|
+
encoder_inputs_to_schedule)
|
|
301
|
+
# Allocate the encoder cache.
|
|
302
|
+
for i in encoder_inputs_to_schedule:
|
|
303
|
+
self.encoder_cache_manager.allocate(request, i)
|
|
304
|
+
encoder_budget = new_encoder_budget
|
|
305
|
+
|
|
306
|
+
# Record the LoRAs in scheduled_running_reqs
|
|
307
|
+
scheduled_loras: set[int] = set()
|
|
308
|
+
if self.lora_config:
|
|
309
|
+
scheduled_loras = set(
|
|
310
|
+
req.lora_request.lora_int_id for req in scheduled_running_reqs
|
|
311
|
+
if req.lora_request and req.lora_request.lora_int_id > 0)
|
|
312
|
+
assert len(scheduled_loras) <= self.lora_config.max_loras
|
|
313
|
+
|
|
314
|
+
# Use a temporary deque to collect requests that need to be skipped
|
|
315
|
+
# and put back at the head of the waiting queue later
|
|
316
|
+
skipped_waiting_requests: deque[Request] = deque()
|
|
317
|
+
|
|
318
|
+
# Next, schedule the WAITING requests.
|
|
319
|
+
if not preempted_reqs:
|
|
320
|
+
while self.waiting and token_budget > 0:
|
|
321
|
+
if len(self.running) == self.max_num_running_reqs:
|
|
322
|
+
break
|
|
323
|
+
|
|
324
|
+
request = self.waiting[0]
|
|
325
|
+
|
|
326
|
+
# KVTransfer: skip request if still waiting for remote kvs.
|
|
327
|
+
if request.status == RequestStatus.WAITING_FOR_REMOTE_KVS:
|
|
328
|
+
is_ready = self._update_waiting_for_remote_kv(request)
|
|
329
|
+
if is_ready:
|
|
330
|
+
request.status = RequestStatus.WAITING
|
|
331
|
+
else:
|
|
332
|
+
logger.debug(
|
|
333
|
+
"%s is still in WAITING_FOR_REMOTE_KVS state.",
|
|
334
|
+
request.request_id)
|
|
335
|
+
self.waiting.popleft()
|
|
336
|
+
skipped_waiting_requests.appendleft(request)
|
|
337
|
+
continue
|
|
338
|
+
|
|
339
|
+
# Skip request if the structured output request is still waiting
|
|
340
|
+
# for FSM compilation.
|
|
341
|
+
if request.status == RequestStatus.WAITING_FOR_FSM:
|
|
342
|
+
structured_output_req = request.structured_output_request
|
|
343
|
+
if structured_output_req and structured_output_req.grammar:
|
|
344
|
+
request.status = RequestStatus.WAITING
|
|
345
|
+
else:
|
|
346
|
+
self.waiting.popleft()
|
|
347
|
+
skipped_waiting_requests.appendleft(request)
|
|
348
|
+
continue
|
|
349
|
+
|
|
350
|
+
# Check that adding the request still respects the max_loras
|
|
351
|
+
# constraint.
|
|
352
|
+
if self.lora_config and request.lora_request and (
|
|
353
|
+
len(scheduled_loras) == self.lora_config.max_loras
|
|
354
|
+
and request.lora_request.lora_int_id
|
|
355
|
+
not in scheduled_loras):
|
|
356
|
+
# Scheduling would exceed max_loras, skip.
|
|
357
|
+
self.waiting.popleft()
|
|
358
|
+
skipped_waiting_requests.appendleft(request)
|
|
359
|
+
continue
|
|
360
|
+
|
|
361
|
+
num_external_computed_tokens = 0
|
|
362
|
+
load_kv_async = False
|
|
363
|
+
|
|
364
|
+
# Get already-cached tokens.
|
|
365
|
+
if request.num_computed_tokens == 0:
|
|
366
|
+
# Get locally-cached tokens.
|
|
367
|
+
new_computed_blocks, num_new_local_computed_tokens = \
|
|
368
|
+
self.kv_cache_manager.get_computed_blocks(
|
|
369
|
+
request)
|
|
370
|
+
|
|
371
|
+
# Get externally-cached tokens if using a KVConnector.
|
|
372
|
+
if self.connector is not None:
|
|
373
|
+
num_external_computed_tokens, load_kv_async = (
|
|
374
|
+
self.connector.get_num_new_matched_tokens(
|
|
375
|
+
request, num_new_local_computed_tokens))
|
|
376
|
+
|
|
377
|
+
# Total computed tokens (local + external).
|
|
378
|
+
num_computed_tokens = (num_new_local_computed_tokens +
|
|
379
|
+
num_external_computed_tokens)
|
|
380
|
+
# KVTransfer: WAITING reqs have num_computed_tokens > 0
|
|
381
|
+
# after async KV recvs are completed.
|
|
382
|
+
else:
|
|
383
|
+
new_computed_blocks = (
|
|
384
|
+
self.kv_cache_manager.create_empty_block_list())
|
|
385
|
+
num_new_local_computed_tokens = 0
|
|
386
|
+
num_computed_tokens = request.num_computed_tokens
|
|
387
|
+
|
|
388
|
+
encoder_inputs_to_schedule = None
|
|
389
|
+
new_encoder_budget = encoder_budget
|
|
390
|
+
|
|
391
|
+
# KVTransfer: loading remote KV, do not allocate for new work.
|
|
392
|
+
if load_kv_async:
|
|
393
|
+
assert num_external_computed_tokens > 0
|
|
394
|
+
num_new_tokens = 0
|
|
395
|
+
# Number of tokens to be scheduled.
|
|
396
|
+
else:
|
|
397
|
+
# We use `request.num_tokens` instead of
|
|
398
|
+
# `request.num_prompt_tokens` to consider the resumed
|
|
399
|
+
# requests, which have output tokens.
|
|
400
|
+
num_new_tokens = request.num_tokens - num_computed_tokens
|
|
401
|
+
if (0 < self.scheduler_config.long_prefill_token_threshold
|
|
402
|
+
< num_new_tokens):
|
|
403
|
+
num_new_tokens = (
|
|
404
|
+
self.scheduler_config.long_prefill_token_threshold)
|
|
405
|
+
num_new_tokens = min(num_new_tokens, token_budget)
|
|
406
|
+
assert num_new_tokens > 0
|
|
407
|
+
|
|
408
|
+
# Schedule encoder inputs.
|
|
409
|
+
if request.has_encoder_inputs:
|
|
410
|
+
(encoder_inputs_to_schedule, num_new_tokens,
|
|
411
|
+
new_encoder_budget
|
|
412
|
+
) = self._try_schedule_encoder_inputs(
|
|
413
|
+
request, num_computed_tokens, num_new_tokens,
|
|
414
|
+
encoder_budget)
|
|
415
|
+
if num_new_tokens == 0:
|
|
416
|
+
# The request cannot be scheduled.
|
|
417
|
+
break
|
|
418
|
+
|
|
419
|
+
new_blocks = self.kv_cache_manager.allocate_slots(
|
|
420
|
+
request,
|
|
421
|
+
num_new_tokens + num_external_computed_tokens,
|
|
422
|
+
num_new_local_computed_tokens,
|
|
423
|
+
new_computed_blocks,
|
|
424
|
+
num_lookahead_tokens=self.num_lookahead_tokens,
|
|
425
|
+
delay_cache_blocks=load_kv_async,
|
|
426
|
+
)
|
|
427
|
+
if new_blocks is None:
|
|
428
|
+
# The request cannot be scheduled.
|
|
429
|
+
break
|
|
430
|
+
|
|
431
|
+
# KVTransfer: the connector uses this info to determine
|
|
432
|
+
# if a load is needed. Note that
|
|
433
|
+
# This information is used to determine if a load is
|
|
434
|
+
# needed for this request.
|
|
435
|
+
if self.connector is not None:
|
|
436
|
+
self.connector.update_state_after_alloc(
|
|
437
|
+
request,
|
|
438
|
+
new_computed_blocks + new_blocks,
|
|
439
|
+
num_external_computed_tokens,
|
|
440
|
+
)
|
|
441
|
+
|
|
442
|
+
self.waiting.popleft()
|
|
443
|
+
if load_kv_async:
|
|
444
|
+
# If loading async, allocate memory and put request
|
|
445
|
+
# into the WAITING_FOR_REMOTE_KV state.
|
|
446
|
+
skipped_waiting_requests.appendleft(request)
|
|
447
|
+
request.status = RequestStatus.WAITING_FOR_REMOTE_KVS
|
|
448
|
+
continue
|
|
449
|
+
|
|
450
|
+
if request.use_structured_output:
|
|
451
|
+
structured_output_request_ids[
|
|
452
|
+
request.request_id] = req_index
|
|
453
|
+
req_index += 1
|
|
454
|
+
self.running.append(request)
|
|
455
|
+
if self.log_stats:
|
|
456
|
+
request.record_event(EngineCoreEventType.SCHEDULED,
|
|
457
|
+
scheduled_timestamp)
|
|
458
|
+
if request.status == RequestStatus.WAITING:
|
|
459
|
+
scheduled_new_reqs.append(request)
|
|
460
|
+
elif request.status == RequestStatus.PREEMPTED:
|
|
461
|
+
scheduled_resumed_reqs.append(request)
|
|
462
|
+
else:
|
|
463
|
+
raise RuntimeError(
|
|
464
|
+
f"Invalid request status: {request.status}")
|
|
465
|
+
|
|
466
|
+
if self.lora_config and request.lora_request:
|
|
467
|
+
scheduled_loras.add(request.lora_request.lora_int_id)
|
|
468
|
+
req_to_new_block_ids[request.request_id] = (
|
|
469
|
+
self.kv_cache_manager.get_block_ids(request.request_id))
|
|
470
|
+
num_scheduled_tokens[request.request_id] = num_new_tokens
|
|
471
|
+
token_budget -= num_new_tokens
|
|
472
|
+
request.status = RequestStatus.RUNNING
|
|
473
|
+
request.num_computed_tokens = num_computed_tokens
|
|
474
|
+
# Count the number of prefix cached tokens.
|
|
475
|
+
if request.num_cached_tokens < 0:
|
|
476
|
+
request.num_cached_tokens = num_computed_tokens
|
|
477
|
+
# Encoder-related.
|
|
478
|
+
if encoder_inputs_to_schedule:
|
|
479
|
+
scheduled_encoder_inputs[request.request_id] = (
|
|
480
|
+
encoder_inputs_to_schedule)
|
|
481
|
+
# Allocate the encoder cache.
|
|
482
|
+
for i in encoder_inputs_to_schedule:
|
|
483
|
+
self.encoder_cache_manager.allocate(request, i)
|
|
484
|
+
encoder_budget = new_encoder_budget
|
|
485
|
+
|
|
486
|
+
# Put back any skipped requests at the head of the waiting queue
|
|
487
|
+
if skipped_waiting_requests:
|
|
488
|
+
self.waiting.extendleft(skipped_waiting_requests)
|
|
489
|
+
|
|
490
|
+
# Check if the scheduling constraints are satisfied.
|
|
491
|
+
total_num_scheduled_tokens = sum(num_scheduled_tokens.values())
|
|
492
|
+
assert total_num_scheduled_tokens <= self.max_num_scheduled_tokens
|
|
493
|
+
assert token_budget >= 0
|
|
494
|
+
assert len(self.running) <= self.max_num_running_reqs
|
|
495
|
+
# Since some requests in the RUNNING queue may not be scheduled in
|
|
496
|
+
# this step, the total number of scheduled requests can be smaller than
|
|
497
|
+
# len(self.running).
|
|
498
|
+
assert (len(scheduled_new_reqs) + len(scheduled_resumed_reqs) +
|
|
499
|
+
len(scheduled_running_reqs) <= len(self.running))
|
|
500
|
+
|
|
501
|
+
# Get the longest common prefix among all requests in the running queue.
|
|
502
|
+
# This can be potentially used for cascade attention.
|
|
503
|
+
num_common_prefix_blocks = [0] * len(
|
|
504
|
+
self.kv_cache_config.kv_cache_groups)
|
|
505
|
+
if self.running:
|
|
506
|
+
any_request = self.running[0]
|
|
507
|
+
num_common_prefix_blocks = (
|
|
508
|
+
self.kv_cache_manager.get_num_common_prefix_blocks(
|
|
509
|
+
any_request, len(self.running)))
|
|
510
|
+
|
|
511
|
+
grammar_bitmask = self.structured_output_manager.grammar_bitmask(
|
|
512
|
+
self.requests,
|
|
513
|
+
structured_output_request_ids,
|
|
514
|
+
scheduled_spec_decode_tokens,
|
|
515
|
+
)
|
|
516
|
+
# Construct the scheduler output.
|
|
517
|
+
new_reqs_data = [
|
|
518
|
+
NewRequestData.from_request(req,
|
|
519
|
+
req_to_new_block_ids[req.request_id])
|
|
520
|
+
for req in scheduled_new_reqs
|
|
521
|
+
]
|
|
522
|
+
resumed_reqs_data = [
|
|
523
|
+
self._make_cached_request_data(
|
|
524
|
+
req,
|
|
525
|
+
num_scheduled_tokens[req.request_id],
|
|
526
|
+
len(scheduled_spec_decode_tokens.get(req.request_id, ())),
|
|
527
|
+
req_to_new_block_ids[req.request_id],
|
|
528
|
+
resumed_from_preemption=True,
|
|
529
|
+
) for req in scheduled_resumed_reqs
|
|
530
|
+
]
|
|
531
|
+
running_reqs_data = [
|
|
532
|
+
self._make_cached_request_data(
|
|
533
|
+
req,
|
|
534
|
+
num_scheduled_tokens[req.request_id],
|
|
535
|
+
len(scheduled_spec_decode_tokens.get(req.request_id, ())),
|
|
536
|
+
req_to_new_block_ids[req.request_id],
|
|
537
|
+
resumed_from_preemption=False,
|
|
538
|
+
) for req in scheduled_running_reqs
|
|
539
|
+
]
|
|
540
|
+
scheduler_output = SchedulerOutput(
|
|
541
|
+
scheduled_new_reqs=new_reqs_data,
|
|
542
|
+
scheduled_cached_reqs=resumed_reqs_data + running_reqs_data,
|
|
543
|
+
num_scheduled_tokens=num_scheduled_tokens,
|
|
544
|
+
total_num_scheduled_tokens=total_num_scheduled_tokens,
|
|
545
|
+
scheduled_spec_decode_tokens=scheduled_spec_decode_tokens,
|
|
546
|
+
scheduled_encoder_inputs=scheduled_encoder_inputs,
|
|
547
|
+
num_common_prefix_blocks=num_common_prefix_blocks,
|
|
548
|
+
# finished_req_ids is an existing state in the scheduler,
|
|
549
|
+
# instead of being newly scheduled in this step.
|
|
550
|
+
# It contains the request IDs that are finished in between
|
|
551
|
+
# the previous and the current steps.
|
|
552
|
+
finished_req_ids=self.finished_req_ids,
|
|
553
|
+
free_encoder_input_ids=self.encoder_cache_manager.get_freed_ids(),
|
|
554
|
+
structured_output_request_ids=structured_output_request_ids,
|
|
555
|
+
grammar_bitmask=grammar_bitmask,
|
|
556
|
+
)
|
|
557
|
+
|
|
558
|
+
# NOTE(Kuntai): this function is designed for multiple purposes:
|
|
559
|
+
# 1. Plan the KV cache store
|
|
560
|
+
# 2. Wrap up all the KV cache load / save ops into an opaque object
|
|
561
|
+
# 3. Clear the internal states of the connector
|
|
562
|
+
if self.connector is not None:
|
|
563
|
+
meta = self.connector.build_connector_meta(scheduler_output)
|
|
564
|
+
scheduler_output.kv_connector_metadata = meta
|
|
565
|
+
|
|
566
|
+
events = self.kv_cache_manager.take_events()
|
|
567
|
+
if events:
|
|
568
|
+
batch = KVEventBatch(ts=time.time(), events=events)
|
|
569
|
+
self.kv_event_publisher.publish(batch)
|
|
570
|
+
|
|
571
|
+
# Advance the number of computed tokens for the request AFTER
|
|
572
|
+
# the request is scheduled.
|
|
573
|
+
# 1. The scheduler_output of the current step has to include the
|
|
574
|
+
# original number of scheduled tokens to determine input IDs.
|
|
575
|
+
# 2. Advance the number of computed tokens here allowing us to
|
|
576
|
+
# schedule the prefill request again immediately in the next
|
|
577
|
+
# scheduling step.
|
|
578
|
+
# 3. If some tokens (e.g. spec tokens) are rejected later, the number of
|
|
579
|
+
# computed tokens will be adjusted in update_from_output.
|
|
580
|
+
for req_id, num_scheduled_token in num_scheduled_tokens.items():
|
|
581
|
+
self.requests[req_id].num_computed_tokens += num_scheduled_token
|
|
582
|
+
|
|
583
|
+
self.finished_req_ids = set()
|
|
584
|
+
return scheduler_output
|
|
585
|
+
|
|
586
|
+
def _make_cached_request_data(
|
|
587
|
+
self,
|
|
588
|
+
request: Request,
|
|
589
|
+
num_scheduled_tokens: int,
|
|
590
|
+
num_scheduled_spec_tokens: int,
|
|
591
|
+
new_block_ids: tuple[list[int], ...],
|
|
592
|
+
resumed_from_preemption: bool,
|
|
593
|
+
) -> CachedRequestData:
|
|
594
|
+
# OPTIMIZATION: Cache the CachedRequestData objects to avoid creating
|
|
595
|
+
# them at each scheduling step.
|
|
596
|
+
num_computed_tokens = request.num_computed_tokens
|
|
597
|
+
num_regular_tokens = num_scheduled_tokens - num_scheduled_spec_tokens
|
|
598
|
+
new_token_ids = request.all_token_ids[
|
|
599
|
+
num_computed_tokens:num_computed_tokens + num_regular_tokens]
|
|
600
|
+
|
|
601
|
+
req_data_queue = self._cached_reqs_data.get(request.request_id)
|
|
602
|
+
if req_data_queue:
|
|
603
|
+
req_data = req_data_queue.popleft()
|
|
604
|
+
req_data.resumed_from_preemption = resumed_from_preemption
|
|
605
|
+
req_data.new_token_ids = new_token_ids
|
|
606
|
+
req_data.new_block_ids = new_block_ids
|
|
607
|
+
req_data.num_computed_tokens = num_computed_tokens
|
|
608
|
+
else:
|
|
609
|
+
# No cached request data, or all cached request data has been
|
|
610
|
+
# used by the scheduled requests.
|
|
611
|
+
req_data = CachedRequestData.from_request(request,
|
|
612
|
+
resumed_from_preemption,
|
|
613
|
+
new_token_ids,
|
|
614
|
+
new_block_ids)
|
|
615
|
+
return req_data
|
|
616
|
+
|
|
617
|
+
def _try_schedule_encoder_inputs(
|
|
618
|
+
self,
|
|
619
|
+
request: Request,
|
|
620
|
+
num_computed_tokens: int,
|
|
621
|
+
num_new_tokens: int,
|
|
622
|
+
encoder_budget: int,
|
|
623
|
+
) -> tuple[list[int], int, int]:
|
|
624
|
+
"""
|
|
625
|
+
Determine which encoder inputs need to be scheduled in the current step,
|
|
626
|
+
and update `num_new_tokens` and encoder token budget accordingly.
|
|
627
|
+
|
|
628
|
+
An encoder input will be scheduled if:
|
|
629
|
+
- Its output tokens overlap with the range of tokens being computed
|
|
630
|
+
in this step, i.e.,
|
|
631
|
+
[num_computed_tokens, num_computed_tokens + num_new_tokens).
|
|
632
|
+
- It is not already computed and stored in the encoder cache.
|
|
633
|
+
- There is sufficient encoder token budget to process it.
|
|
634
|
+
- The encoder cache has space to store it.
|
|
635
|
+
|
|
636
|
+
If an encoder input cannot be scheduled due to cache or budget
|
|
637
|
+
limitations, the method adjusts `num_new_tokens` to schedule only the
|
|
638
|
+
decoder tokens up to just before the unschedulable encoder input.
|
|
639
|
+
|
|
640
|
+
Note that num_computed_tokens includes both locally cached
|
|
641
|
+
blocks and externally cached blocks (via KVConnector).
|
|
642
|
+
"""
|
|
643
|
+
if num_new_tokens == 0 or not request.has_encoder_inputs:
|
|
644
|
+
return [], num_new_tokens, encoder_budget
|
|
645
|
+
encoder_inputs_to_schedule: list[int] = []
|
|
646
|
+
mm_positions = request.mm_positions
|
|
647
|
+
assert mm_positions is not None
|
|
648
|
+
assert len(mm_positions) > 0
|
|
649
|
+
for i, pos_info in enumerate(mm_positions):
|
|
650
|
+
start_pos = pos_info.offset
|
|
651
|
+
num_encoder_tokens = pos_info.length
|
|
652
|
+
|
|
653
|
+
# The encoder output is needed if the two ranges overlap:
|
|
654
|
+
# [num_computed_tokens, num_computed_tokens + num_new_tokens) and
|
|
655
|
+
# [start_pos, start_pos + num_encoder_tokens)
|
|
656
|
+
if start_pos >= num_computed_tokens + num_new_tokens:
|
|
657
|
+
# The encoder input is not needed in this step.
|
|
658
|
+
break
|
|
659
|
+
if start_pos + num_encoder_tokens <= num_computed_tokens:
|
|
660
|
+
# The encoder input is already computed and stored
|
|
661
|
+
# in the decoder's KV cache.
|
|
662
|
+
continue
|
|
663
|
+
|
|
664
|
+
if self.encoder_cache_manager.has_cache(request, i):
|
|
665
|
+
# The encoder input is already computed and cached.
|
|
666
|
+
continue
|
|
667
|
+
|
|
668
|
+
# If no encoder input chunking is allowed, we do not want to
|
|
669
|
+
# partially schedule a multimodal item. If the scheduled range would
|
|
670
|
+
# only cover part of the mm input, roll back to before the mm item.
|
|
671
|
+
if (self.scheduler_config.disable_chunked_mm_input
|
|
672
|
+
and num_computed_tokens < start_pos
|
|
673
|
+
and (num_computed_tokens + num_new_tokens)
|
|
674
|
+
< (start_pos + num_encoder_tokens)):
|
|
675
|
+
num_new_tokens = start_pos - num_computed_tokens
|
|
676
|
+
break
|
|
677
|
+
|
|
678
|
+
if (not self.encoder_cache_manager.can_allocate(request, i)
|
|
679
|
+
or num_encoder_tokens > encoder_budget):
|
|
680
|
+
# The encoder cache is full or the encoder budget is exhausted.
|
|
681
|
+
# NOTE(woosuk): We assume that the encoder input tokens should
|
|
682
|
+
# be processed altogether, as the encoder usually uses
|
|
683
|
+
# bidirectional attention.
|
|
684
|
+
if num_computed_tokens < start_pos:
|
|
685
|
+
# We only schedule the decoder tokens just before the
|
|
686
|
+
# encoder input.
|
|
687
|
+
num_new_tokens = start_pos - num_computed_tokens
|
|
688
|
+
else:
|
|
689
|
+
# Because of prefix caching, num_computed_tokens is greater
|
|
690
|
+
# than start_pos even though its encoder input is not
|
|
691
|
+
# available. In this case, we can't schedule any token for
|
|
692
|
+
# the request in this step.
|
|
693
|
+
num_new_tokens = 0
|
|
694
|
+
break
|
|
695
|
+
|
|
696
|
+
encoder_budget -= num_encoder_tokens
|
|
697
|
+
encoder_inputs_to_schedule.append(i)
|
|
698
|
+
return encoder_inputs_to_schedule, num_new_tokens, encoder_budget
|
|
699
|
+
|
|
700
|
+
def update_from_output(
|
|
701
|
+
self,
|
|
702
|
+
scheduler_output: SchedulerOutput,
|
|
703
|
+
model_runner_output: ModelRunnerOutput,
|
|
704
|
+
) -> dict[int, EngineCoreOutputs]:
|
|
705
|
+
sampled_token_ids = model_runner_output.sampled_token_ids
|
|
706
|
+
spec_token_ids = model_runner_output.spec_token_ids
|
|
707
|
+
logprobs = model_runner_output.logprobs
|
|
708
|
+
prompt_logprobs_dict = model_runner_output.prompt_logprobs_dict
|
|
709
|
+
num_scheduled_tokens = scheduler_output.num_scheduled_tokens
|
|
710
|
+
|
|
711
|
+
new_running: list[Request] = []
|
|
712
|
+
outputs: dict[int, list[EngineCoreOutput]] = defaultdict(list)
|
|
713
|
+
spec_decoding_stats: Optional[SpecDecodingStats] = None
|
|
714
|
+
|
|
715
|
+
# NOTE(woosuk): As len(self.running) can be up to 1K or more, the below
|
|
716
|
+
# loop can be a performance bottleneck. We should do our best to avoid
|
|
717
|
+
# expensive operations inside the loop.
|
|
718
|
+
for request in self.running:
|
|
719
|
+
req_id = request.request_id
|
|
720
|
+
num_tokens_scheduled = num_scheduled_tokens.get(req_id, 0)
|
|
721
|
+
if num_tokens_scheduled == 0:
|
|
722
|
+
# The request was not scheduled in this step.
|
|
723
|
+
new_running.append(request)
|
|
724
|
+
continue
|
|
725
|
+
|
|
726
|
+
req_index = model_runner_output.req_id_to_index[req_id]
|
|
727
|
+
generated_token_ids = sampled_token_ids[req_index]
|
|
728
|
+
|
|
729
|
+
scheduled_spec_token_ids = (
|
|
730
|
+
scheduler_output.scheduled_spec_decode_tokens.get(req_id))
|
|
731
|
+
if scheduled_spec_token_ids:
|
|
732
|
+
# num_computed_tokens represents the number of tokens
|
|
733
|
+
# processed in the current step, considering scheduled
|
|
734
|
+
# tokens and rejections. If some tokens are rejected,
|
|
735
|
+
# num_computed_tokens is decreased by the number of rejected
|
|
736
|
+
# tokens, where is given by:
|
|
737
|
+
# len(scheduled_spec_token_ids) + 1 - len(generated_token_ids).
|
|
738
|
+
num_tokens_rejected = (len(scheduled_spec_token_ids) + 1 -
|
|
739
|
+
len(generated_token_ids))
|
|
740
|
+
request.num_computed_tokens -= num_tokens_rejected
|
|
741
|
+
spec_decoding_stats = self.make_spec_decoding_stats(
|
|
742
|
+
spec_decoding_stats,
|
|
743
|
+
num_draft_tokens=len(scheduled_spec_token_ids),
|
|
744
|
+
num_accepted_tokens=len(generated_token_ids) - 1)
|
|
745
|
+
|
|
746
|
+
cached_encoder_input_ids = (
|
|
747
|
+
self.encoder_cache_manager.get_cached_input_ids(request))
|
|
748
|
+
# OPTIMIZATION: Avoid list(set) if the set is empty.
|
|
749
|
+
if cached_encoder_input_ids:
|
|
750
|
+
for input_id in list(cached_encoder_input_ids):
|
|
751
|
+
mm_positions = request.mm_positions[input_id]
|
|
752
|
+
start_pos = mm_positions.offset
|
|
753
|
+
num_tokens = mm_positions.length
|
|
754
|
+
if start_pos + num_tokens <= request.num_computed_tokens:
|
|
755
|
+
# The encoder output is already processed and stored
|
|
756
|
+
# in the decoder's KV cache.
|
|
757
|
+
self.encoder_cache_manager.free_encoder_input(
|
|
758
|
+
request, input_id)
|
|
759
|
+
|
|
760
|
+
stopped = False
|
|
761
|
+
new_logprobs = None
|
|
762
|
+
new_token_ids = generated_token_ids
|
|
763
|
+
kv_transfer_params = None
|
|
764
|
+
|
|
765
|
+
# Append generated tokens and check for stop. Note that if
|
|
766
|
+
# a request is still being prefilled, we expect the model runner
|
|
767
|
+
# to return empty token ids for the request.
|
|
768
|
+
for num_new, output_token_id in enumerate(new_token_ids, 1):
|
|
769
|
+
request.append_output_token_ids(output_token_id)
|
|
770
|
+
|
|
771
|
+
# Check for stop and update request state.
|
|
772
|
+
# This must be called before we make the EngineCoreOutput.
|
|
773
|
+
stopped = check_stop(request, self.max_model_len)
|
|
774
|
+
if stopped:
|
|
775
|
+
kv_transfer_params = self._free_request(request)
|
|
776
|
+
del new_token_ids[num_new:] # Trim new tokens if needed.
|
|
777
|
+
break
|
|
778
|
+
|
|
779
|
+
# Extract sample logprobs if needed.
|
|
780
|
+
if request.sampling_params.logprobs is not None and logprobs:
|
|
781
|
+
# NOTE: once we support N tokens per step (spec decode),
|
|
782
|
+
# the outer lists can be of length > 1.
|
|
783
|
+
new_logprobs = logprobs.slice(req_index, req_index + 1)
|
|
784
|
+
|
|
785
|
+
if new_token_ids and self.structured_output_manager.should_advance(
|
|
786
|
+
request):
|
|
787
|
+
# NOTE: structured_output_request
|
|
788
|
+
# should not be None if use_structured_output, we have
|
|
789
|
+
# check above, so safe to ignore type warning
|
|
790
|
+
request.structured_output_request.grammar.accept_tokens( # type: ignore[union-attr]
|
|
791
|
+
req_id, new_token_ids)
|
|
792
|
+
|
|
793
|
+
# Add newly generated spec token ids to the request.
|
|
794
|
+
if spec_token_ids is not None:
|
|
795
|
+
if self.structured_output_manager.should_advance(request):
|
|
796
|
+
metadata = request.structured_output_request
|
|
797
|
+
# Needs to happen after new_token_ids are accepted.
|
|
798
|
+
request.spec_token_ids = metadata.grammar.validate_tokens( # type: ignore[union-attr]
|
|
799
|
+
spec_token_ids[req_index])
|
|
800
|
+
else:
|
|
801
|
+
request.spec_token_ids = spec_token_ids[req_index]
|
|
802
|
+
|
|
803
|
+
# Get prompt logprobs for this request.
|
|
804
|
+
prompt_logprobs_tensors = prompt_logprobs_dict.get(req_id)
|
|
805
|
+
if new_token_ids or kv_transfer_params:
|
|
806
|
+
|
|
807
|
+
# Add EngineCoreOutput for this Request.
|
|
808
|
+
outputs[request.client_index].append(
|
|
809
|
+
EngineCoreOutput(
|
|
810
|
+
request_id=req_id,
|
|
811
|
+
new_token_ids=new_token_ids,
|
|
812
|
+
finish_reason=request.get_finished_reason(),
|
|
813
|
+
new_logprobs=new_logprobs,
|
|
814
|
+
new_prompt_logprobs_tensors=prompt_logprobs_tensors,
|
|
815
|
+
stop_reason=request.stop_reason,
|
|
816
|
+
events=request.take_events(),
|
|
817
|
+
kv_transfer_params=kv_transfer_params,
|
|
818
|
+
num_cached_tokens=request.num_cached_tokens,
|
|
819
|
+
))
|
|
820
|
+
|
|
821
|
+
else:
|
|
822
|
+
# Invariant: EngineCore returns no partial prefill outputs.
|
|
823
|
+
assert not prompt_logprobs_tensors
|
|
824
|
+
|
|
825
|
+
if not stopped:
|
|
826
|
+
new_running.append(request)
|
|
827
|
+
|
|
828
|
+
# KV Connector: update state for finished KV Transfers.
|
|
829
|
+
self._update_from_kv_xfer_finished(model_runner_output)
|
|
830
|
+
|
|
831
|
+
# Return the cached request data to the queue so they can be reused.
|
|
832
|
+
for req_data in scheduler_output.scheduled_cached_reqs:
|
|
833
|
+
# NOTE(rob): since we free stopped reqs above, adding stopped reqs
|
|
834
|
+
# to _cached_reqs_data will cause a memory leak.
|
|
835
|
+
if req_data.req_id not in self.finished_req_ids:
|
|
836
|
+
self._cached_reqs_data[req_data.req_id].append(req_data)
|
|
837
|
+
|
|
838
|
+
self.running = new_running
|
|
839
|
+
|
|
840
|
+
# Create EngineCoreOutputs for all clients that have requests with
|
|
841
|
+
# outputs in this step.
|
|
842
|
+
engine_core_outputs = {
|
|
843
|
+
client_index: EngineCoreOutputs(outputs=outs)
|
|
844
|
+
for client_index, outs in outputs.items()
|
|
845
|
+
}
|
|
846
|
+
|
|
847
|
+
finished_req_ids = self.finished_req_ids_dict
|
|
848
|
+
if finished_req_ids:
|
|
849
|
+
# Include ids of requests that finished since last outputs
|
|
850
|
+
# were sent.
|
|
851
|
+
for client_index, finished_set in finished_req_ids.items():
|
|
852
|
+
# Set finished request set in EngineCoreOutputs for this client.
|
|
853
|
+
if (eco := engine_core_outputs.get(client_index)) is not None:
|
|
854
|
+
eco.finished_requests = finished_set
|
|
855
|
+
else:
|
|
856
|
+
engine_core_outputs[client_index] = EngineCoreOutputs(
|
|
857
|
+
finished_requests=finished_set)
|
|
858
|
+
finished_req_ids.clear()
|
|
859
|
+
|
|
860
|
+
if engine_core_outputs:
|
|
861
|
+
# Return stats to only one of the front-ends.
|
|
862
|
+
next(iter(engine_core_outputs.values())).scheduler_stats = (
|
|
863
|
+
self.make_stats(spec_decoding_stats))
|
|
864
|
+
|
|
865
|
+
return engine_core_outputs
|
|
866
|
+
|
|
867
|
+
def get_request_counts(self) -> tuple[int, int]:
|
|
868
|
+
"""Returns (num_running_reqs, num_waiting_reqs)."""
|
|
869
|
+
return len(self.running), len(self.waiting)
|
|
870
|
+
|
|
871
|
+
def add_request(self, request: Request) -> None:
|
|
872
|
+
self.waiting.append(request)
|
|
873
|
+
self.requests[request.request_id] = request
|
|
874
|
+
if self.log_stats:
|
|
875
|
+
request.record_event(EngineCoreEventType.QUEUED)
|
|
876
|
+
|
|
877
|
+
def finish_requests(
|
|
878
|
+
self,
|
|
879
|
+
request_ids: Union[str, Iterable[str]],
|
|
880
|
+
finished_status: RequestStatus,
|
|
881
|
+
) -> None:
|
|
882
|
+
"""Handles the finish signal from outside the scheduler.
|
|
883
|
+
|
|
884
|
+
For example, the API server can abort a request when the client
|
|
885
|
+
disconnects.
|
|
886
|
+
"""
|
|
887
|
+
assert RequestStatus.is_finished(finished_status)
|
|
888
|
+
if isinstance(request_ids, str):
|
|
889
|
+
request_ids = (request_ids, )
|
|
890
|
+
else:
|
|
891
|
+
request_ids = set(request_ids)
|
|
892
|
+
|
|
893
|
+
for req_id in request_ids:
|
|
894
|
+
request = self.requests.get(req_id)
|
|
895
|
+
if request is None:
|
|
896
|
+
# Invalid request ID.
|
|
897
|
+
continue
|
|
898
|
+
|
|
899
|
+
if request.status == RequestStatus.RUNNING:
|
|
900
|
+
self.running.remove(request)
|
|
901
|
+
else:
|
|
902
|
+
self.waiting.remove(request)
|
|
903
|
+
request.status = finished_status
|
|
904
|
+
self._free_request(request)
|
|
905
|
+
|
|
906
|
+
def _free_request(self, request: Request) -> Optional[dict[str, Any]]:
|
|
907
|
+
|
|
908
|
+
assert request.is_finished()
|
|
909
|
+
|
|
910
|
+
delay_free_blocks, kv_xfer_params = self._connector_finished(request)
|
|
911
|
+
self.encoder_cache_manager.free(request)
|
|
912
|
+
request_id = request.request_id
|
|
913
|
+
self._cached_reqs_data.pop(request_id, None)
|
|
914
|
+
self.finished_req_ids.add(request_id)
|
|
915
|
+
if self.finished_req_ids_dict is not None:
|
|
916
|
+
self.finished_req_ids_dict[request.client_index].add(request_id)
|
|
917
|
+
|
|
918
|
+
if not delay_free_blocks:
|
|
919
|
+
self._free_blocks(request)
|
|
920
|
+
|
|
921
|
+
return kv_xfer_params
|
|
922
|
+
|
|
923
|
+
def _free_blocks(self, request: Request):
|
|
924
|
+
assert request.is_finished()
|
|
925
|
+
assert request.request_id not in self._cached_reqs_data
|
|
926
|
+
self.kv_cache_manager.free(request)
|
|
927
|
+
self.kv_cache_manager.free_block_hashes(request)
|
|
928
|
+
del self.requests[request.request_id]
|
|
929
|
+
|
|
930
|
+
def get_num_unfinished_requests(self) -> int:
|
|
931
|
+
return len(self.waiting) + len(self.running)
|
|
932
|
+
|
|
933
|
+
def has_finished_requests(self) -> bool:
|
|
934
|
+
return len(self.finished_req_ids) > 0
|
|
935
|
+
|
|
936
|
+
def reset_prefix_cache(self) -> bool:
|
|
937
|
+
return self.kv_cache_manager.reset_prefix_cache()
|
|
938
|
+
|
|
939
|
+
def make_stats(
|
|
940
|
+
self,
|
|
941
|
+
spec_decoding_stats: Optional[SpecDecodingStats] = None,
|
|
942
|
+
) -> Optional[SchedulerStats]:
|
|
943
|
+
if not self.log_stats:
|
|
944
|
+
return None
|
|
945
|
+
prefix_cache_stats = self.kv_cache_manager.make_prefix_cache_stats()
|
|
946
|
+
assert prefix_cache_stats is not None
|
|
947
|
+
return SchedulerStats(
|
|
948
|
+
num_running_reqs=len(self.running),
|
|
949
|
+
num_waiting_reqs=len(self.waiting),
|
|
950
|
+
gpu_cache_usage=self.kv_cache_manager.usage,
|
|
951
|
+
prefix_cache_stats=prefix_cache_stats,
|
|
952
|
+
spec_decoding_stats=spec_decoding_stats,
|
|
953
|
+
)
|
|
954
|
+
|
|
955
|
+
def make_spec_decoding_stats(
|
|
956
|
+
self,
|
|
957
|
+
spec_decoding_stats: Optional[SpecDecodingStats],
|
|
958
|
+
num_draft_tokens: int,
|
|
959
|
+
num_accepted_tokens: int,
|
|
960
|
+
) -> Optional[SpecDecodingStats]:
|
|
961
|
+
if not self.log_stats:
|
|
962
|
+
return None
|
|
963
|
+
if spec_decoding_stats is None:
|
|
964
|
+
spec_decoding_stats = SpecDecodingStats.new(self.num_spec_tokens)
|
|
965
|
+
spec_decoding_stats.observe_draft(
|
|
966
|
+
num_draft_tokens=num_draft_tokens,
|
|
967
|
+
num_accepted_tokens=num_accepted_tokens)
|
|
968
|
+
return spec_decoding_stats
|
|
969
|
+
|
|
970
|
+
def shutdown(self) -> None:
|
|
971
|
+
if self.kv_event_publisher:
|
|
972
|
+
self.kv_event_publisher.shutdown()
|
|
973
|
+
|
|
974
|
+
########################################################################
|
|
975
|
+
# KV Connector Related Methods
|
|
976
|
+
########################################################################
|
|
977
|
+
|
|
978
|
+
def get_kv_connector(self) -> Optional[KVConnectorBase_V1]:
|
|
979
|
+
return self.connector
|
|
980
|
+
|
|
981
|
+
def _connector_finished(
|
|
982
|
+
self, request: Request) -> tuple[bool, Optional[dict[str, Any]]]:
|
|
983
|
+
"""
|
|
984
|
+
Invoke the KV connector request_finished() method if applicable.
|
|
985
|
+
|
|
986
|
+
Returns optional kv transfer parameters to be included with the
|
|
987
|
+
request outputs.
|
|
988
|
+
"""
|
|
989
|
+
if self.connector is None:
|
|
990
|
+
return False, None
|
|
991
|
+
|
|
992
|
+
(block_ids, ) = self.kv_cache_manager.get_block_ids(request.request_id)
|
|
993
|
+
return self.connector.request_finished(request, block_ids)
|
|
994
|
+
|
|
995
|
+
def _update_waiting_for_remote_kv(self, request: Request) -> bool:
|
|
996
|
+
"""
|
|
997
|
+
KV Connector: check if the request_id is finished_recving.
|
|
998
|
+
|
|
999
|
+
The finished_recving_kv_req_ids list is populated
|
|
1000
|
+
on the previous steps()'s update_from_output based
|
|
1001
|
+
on the worker side connector.
|
|
1002
|
+
|
|
1003
|
+
When the kv transfer is ready, we cache the blocks
|
|
1004
|
+
and the request state will be moved back to WAITING from
|
|
1005
|
+
WAITING_FOR_REMOTE_KV.
|
|
1006
|
+
"""
|
|
1007
|
+
assert self.connector is not None
|
|
1008
|
+
if request.request_id not in self.finished_recving_kv_req_ids:
|
|
1009
|
+
return False
|
|
1010
|
+
|
|
1011
|
+
# Now that the blocks are ready, actually cache them.
|
|
1012
|
+
(block_ids, ) = self.kv_cache_manager.get_block_ids(request.request_id)
|
|
1013
|
+
num_computed_tokens = len(block_ids) * self.block_size
|
|
1014
|
+
# Handle the case where num request tokens less then one block.
|
|
1015
|
+
num_computed_tokens = min(num_computed_tokens, request.num_tokens)
|
|
1016
|
+
if num_computed_tokens == request.num_tokens:
|
|
1017
|
+
num_computed_tokens -= 1
|
|
1018
|
+
self.kv_cache_manager.cache_blocks(request, num_computed_tokens)
|
|
1019
|
+
|
|
1020
|
+
# Update the request state for scheduling.
|
|
1021
|
+
request.num_computed_tokens = num_computed_tokens
|
|
1022
|
+
|
|
1023
|
+
# Return that we are ready.
|
|
1024
|
+
self.finished_recving_kv_req_ids.remove(request.request_id)
|
|
1025
|
+
return True
|
|
1026
|
+
|
|
1027
|
+
def _update_from_kv_xfer_finished(self,
|
|
1028
|
+
model_runner_output: ModelRunnerOutput):
|
|
1029
|
+
"""
|
|
1030
|
+
KV Connector: update the scheduler state based on the output.
|
|
1031
|
+
|
|
1032
|
+
The Worker side connectors add finished_recving and
|
|
1033
|
+
finished_sending reqs to the output.
|
|
1034
|
+
* if finished_sending: free the blocks
|
|
1035
|
+
# if finished_recving: add to state so we can
|
|
1036
|
+
scheduler the request during the next step.
|
|
1037
|
+
"""
|
|
1038
|
+
# KV Connector:: update recv and send status from last step.
|
|
1039
|
+
for req_id in (model_runner_output.finished_recving or ()):
|
|
1040
|
+
logger.debug("Finished recving KV transfer for request %s", req_id)
|
|
1041
|
+
self.finished_recving_kv_req_ids.add(req_id)
|
|
1042
|
+
for req_id in (model_runner_output.finished_sending or ()):
|
|
1043
|
+
logger.debug("Finished sending KV transfer for request %s", req_id)
|
|
1044
|
+
self._free_blocks(self.requests[req_id])
|