vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1197) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +53 -0
  3. vllm/_custom_ops.py +1828 -0
  4. vllm/_ipex_ops.py +244 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +115 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +308 -0
  20. vllm/attention/backends/blocksparse_attn.py +461 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
  23. vllm/attention/backends/flash_attn.py +1003 -0
  24. vllm/attention/backends/flashinfer.py +1104 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +313 -0
  27. vllm/attention/backends/ipex_attn.py +398 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1385 -0
  30. vllm/attention/backends/pallas.py +351 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +975 -0
  34. vllm/attention/backends/torch_sdpa.py +703 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +802 -0
  38. vllm/attention/layer.py +468 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +906 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/prefix_prefill.py +902 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  54. vllm/attention/ops/triton_decode_attention.py +674 -0
  55. vllm/attention/ops/triton_flash_attention.py +979 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  57. vllm/attention/ops/triton_unified_attention.py +334 -0
  58. vllm/attention/selector.py +187 -0
  59. vllm/attention/utils/fa_utils.py +55 -0
  60. vllm/beam_search.py +87 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +1185 -0
  63. vllm/benchmarks/endpoint_request_func.py +381 -0
  64. vllm/benchmarks/latency.py +168 -0
  65. vllm/benchmarks/serve.py +1135 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +70 -0
  68. vllm/collect_env.py +820 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +89 -0
  71. vllm/compilation/backends.py +563 -0
  72. vllm/compilation/base_piecewise_backend.py +72 -0
  73. vllm/compilation/collective_fusion.py +127 -0
  74. vllm/compilation/compiler_interface.py +544 -0
  75. vllm/compilation/counter.py +38 -0
  76. vllm/compilation/cuda_piecewise_backend.py +214 -0
  77. vllm/compilation/decorators.py +250 -0
  78. vllm/compilation/fix_functionalization.py +191 -0
  79. vllm/compilation/fusion.py +618 -0
  80. vllm/compilation/fx_utils.py +62 -0
  81. vllm/compilation/inductor_pass.py +115 -0
  82. vllm/compilation/monitor.py +39 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +137 -0
  85. vllm/compilation/pass_manager.py +78 -0
  86. vllm/compilation/sequence_parallelism.py +268 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +67 -0
  89. vllm/compilation/wrapper.py +135 -0
  90. vllm/config.py +4746 -0
  91. vllm/connections.py +174 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +399 -0
  95. vllm/core/block/common.py +371 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  97. vllm/core/block/interfaces.py +319 -0
  98. vllm/core/block/naive_block.py +466 -0
  99. vllm/core/block/prefix_caching_block.py +1135 -0
  100. vllm/core/block/utils.py +28 -0
  101. vllm/core/block_manager.py +521 -0
  102. vllm/core/evictor.py +157 -0
  103. vllm/core/interfaces.py +135 -0
  104. vllm/core/placeholder_block_space_manager.py +100 -0
  105. vllm/core/scheduler.py +2093 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +281 -0
  108. vllm/distributed/__init__.py +6 -0
  109. vllm/distributed/communication_op.py +41 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +264 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +176 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  120. vllm/distributed/device_communicators/pynccl.py +218 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  125. vllm/distributed/kv_events.py +356 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +12 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  152. vllm/distributed/parallel_state.py +1296 -0
  153. vllm/distributed/tpu_distributed_utils.py +177 -0
  154. vllm/distributed/utils.py +536 -0
  155. vllm/engine/__init__.py +0 -0
  156. vllm/engine/arg_utils.py +1708 -0
  157. vllm/engine/async_llm_engine.py +1200 -0
  158. vllm/engine/async_timeout.py +173 -0
  159. vllm/engine/llm_engine.py +2097 -0
  160. vllm/engine/metrics.py +629 -0
  161. vllm/engine/metrics_types.py +94 -0
  162. vllm/engine/multiprocessing/__init__.py +148 -0
  163. vllm/engine/multiprocessing/client.py +681 -0
  164. vllm/engine/multiprocessing/engine.py +460 -0
  165. vllm/engine/output_processor/__init__.py +0 -0
  166. vllm/engine/output_processor/interfaces.py +75 -0
  167. vllm/engine/output_processor/multi_step.py +216 -0
  168. vllm/engine/output_processor/single_step.py +145 -0
  169. vllm/engine/output_processor/stop_checker.py +131 -0
  170. vllm/engine/output_processor/util.py +28 -0
  171. vllm/engine/protocol.py +317 -0
  172. vllm/entrypoints/__init__.py +0 -0
  173. vllm/entrypoints/api_server.py +178 -0
  174. vllm/entrypoints/chat_utils.py +1299 -0
  175. vllm/entrypoints/cli/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  177. vllm/entrypoints/cli/benchmark/base.py +39 -0
  178. vllm/entrypoints/cli/benchmark/latency.py +30 -0
  179. vllm/entrypoints/cli/benchmark/main.py +54 -0
  180. vllm/entrypoints/cli/benchmark/serve.py +30 -0
  181. vllm/entrypoints/cli/benchmark/throughput.py +30 -0
  182. vllm/entrypoints/cli/collect_env.py +35 -0
  183. vllm/entrypoints/cli/main.py +65 -0
  184. vllm/entrypoints/cli/openai.py +205 -0
  185. vllm/entrypoints/cli/run_batch.py +62 -0
  186. vllm/entrypoints/cli/serve.py +328 -0
  187. vllm/entrypoints/cli/types.py +25 -0
  188. vllm/entrypoints/launcher.py +147 -0
  189. vllm/entrypoints/llm.py +1544 -0
  190. vllm/entrypoints/logger.py +50 -0
  191. vllm/entrypoints/openai/__init__.py +0 -0
  192. vllm/entrypoints/openai/api_server.py +1387 -0
  193. vllm/entrypoints/openai/cli_args.py +315 -0
  194. vllm/entrypoints/openai/logits_processors.py +90 -0
  195. vllm/entrypoints/openai/protocol.py +1913 -0
  196. vllm/entrypoints/openai/run_batch.py +463 -0
  197. vllm/entrypoints/openai/serving_chat.py +1221 -0
  198. vllm/entrypoints/openai/serving_classification.py +160 -0
  199. vllm/entrypoints/openai/serving_completion.py +592 -0
  200. vllm/entrypoints/openai/serving_embedding.py +201 -0
  201. vllm/entrypoints/openai/serving_engine.py +986 -0
  202. vllm/entrypoints/openai/serving_models.py +315 -0
  203. vllm/entrypoints/openai/serving_pooling.py +232 -0
  204. vllm/entrypoints/openai/serving_score.py +433 -0
  205. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  206. vllm/entrypoints/openai/serving_transcription.py +424 -0
  207. vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
  208. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  209. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  210. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  211. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  212. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  213. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  214. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  215. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  216. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  217. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  218. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  219. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  220. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  221. vllm/entrypoints/score_utils.py +50 -0
  222. vllm/entrypoints/ssl.py +75 -0
  223. vllm/entrypoints/utils.py +233 -0
  224. vllm/env_override.py +41 -0
  225. vllm/envs.py +944 -0
  226. vllm/executor/__init__.py +0 -0
  227. vllm/executor/executor_base.py +401 -0
  228. vllm/executor/mp_distributed_executor.py +244 -0
  229. vllm/executor/msgspec_utils.py +30 -0
  230. vllm/executor/multiproc_worker_utils.py +313 -0
  231. vllm/executor/ray_distributed_executor.py +701 -0
  232. vllm/executor/ray_utils.py +399 -0
  233. vllm/executor/uniproc_executor.py +139 -0
  234. vllm/forward_context.py +179 -0
  235. vllm/inputs/__init__.py +41 -0
  236. vllm/inputs/data.py +331 -0
  237. vllm/inputs/parse.py +151 -0
  238. vllm/inputs/preprocess.py +909 -0
  239. vllm/inputs/registry.py +237 -0
  240. vllm/jsontree.py +80 -0
  241. vllm/logger.py +212 -0
  242. vllm/logging_utils/__init__.py +8 -0
  243. vllm/logging_utils/dump_input.py +85 -0
  244. vllm/logging_utils/formatter.py +18 -0
  245. vllm/logits_process.py +119 -0
  246. vllm/lora/__init__.py +0 -0
  247. vllm/lora/fully_sharded_layers.py +355 -0
  248. vllm/lora/layers.py +1285 -0
  249. vllm/lora/lora.py +199 -0
  250. vllm/lora/models.py +818 -0
  251. vllm/lora/ops/__init__.py +0 -0
  252. vllm/lora/ops/torch_ops/__init__.py +16 -0
  253. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  254. vllm/lora/ops/triton_ops/__init__.py +12 -0
  255. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  256. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  257. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  258. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  259. vllm/lora/ops/triton_ops/utils.py +120 -0
  260. vllm/lora/ops/xla_ops/__init__.py +7 -0
  261. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  262. vllm/lora/peft_helper.py +136 -0
  263. vllm/lora/punica_wrapper/__init__.py +10 -0
  264. vllm/lora/punica_wrapper/punica_base.py +485 -0
  265. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  266. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  267. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  268. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  269. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  270. vllm/lora/punica_wrapper/utils.py +164 -0
  271. vllm/lora/request.py +99 -0
  272. vllm/lora/resolver.py +85 -0
  273. vllm/lora/utils.py +240 -0
  274. vllm/lora/worker_manager.py +259 -0
  275. vllm/model_executor/__init__.py +16 -0
  276. vllm/model_executor/custom_op.py +152 -0
  277. vllm/model_executor/guided_decoding/__init__.py +181 -0
  278. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  279. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  280. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  281. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  282. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  283. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  284. vllm/model_executor/guided_decoding/utils.py +242 -0
  285. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  286. vllm/model_executor/layers/__init__.py +0 -0
  287. vllm/model_executor/layers/activation.py +369 -0
  288. vllm/model_executor/layers/fused_moe/__init__.py +54 -0
  289. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
  290. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  455. vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
  456. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
  457. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
  458. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
  459. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
  460. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
  461. vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
  462. vllm/model_executor/layers/fused_moe/layer.py +1535 -0
  463. vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
  464. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  465. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  466. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  467. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  468. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
  469. vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
  470. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
  471. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
  472. vllm/model_executor/layers/fused_moe/utils.py +98 -0
  473. vllm/model_executor/layers/layernorm.py +288 -0
  474. vllm/model_executor/layers/lightning_attn.py +652 -0
  475. vllm/model_executor/layers/linear.py +1524 -0
  476. vllm/model_executor/layers/logits_processor.py +197 -0
  477. vllm/model_executor/layers/mamba/__init__.py +0 -0
  478. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  479. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  480. vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
  481. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  482. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  483. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  484. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  485. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  486. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  487. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  488. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  489. vllm/model_executor/layers/pooler.py +350 -0
  490. vllm/model_executor/layers/quantization/__init__.py +157 -0
  491. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  492. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  493. vllm/model_executor/layers/quantization/awq.py +194 -0
  494. vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
  495. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  496. vllm/model_executor/layers/quantization/base_config.py +151 -0
  497. vllm/model_executor/layers/quantization/bitblas.py +461 -0
  498. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  505. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  506. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
  507. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
  508. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  509. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  510. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  511. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  512. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  513. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  514. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  515. vllm/model_executor/layers/quantization/experts_int8.py +196 -0
  516. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  517. vllm/model_executor/layers/quantization/fp8.py +906 -0
  518. vllm/model_executor/layers/quantization/gguf.py +565 -0
  519. vllm/model_executor/layers/quantization/gptq.py +278 -0
  520. vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
  521. vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
  522. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  523. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  524. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  525. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  526. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  527. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  528. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  529. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  530. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  531. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
  532. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  533. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  534. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  535. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  536. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  537. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  538. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  539. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  540. vllm/model_executor/layers/quantization/marlin.py +261 -0
  541. vllm/model_executor/layers/quantization/modelopt.py +737 -0
  542. vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
  543. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  544. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  545. vllm/model_executor/layers/quantization/qqq.py +275 -0
  546. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  547. vllm/model_executor/layers/quantization/quark/quark.py +441 -0
  548. vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
  549. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  550. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  551. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  552. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
  553. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  554. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  555. vllm/model_executor/layers/quantization/schema.py +86 -0
  556. vllm/model_executor/layers/quantization/torchao.py +161 -0
  557. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  558. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  559. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  560. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
  764. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  765. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  766. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  767. vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
  768. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  769. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  770. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  771. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  772. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  773. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  774. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  775. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
  776. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  777. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  778. vllm/model_executor/layers/rejection_sampler.py +406 -0
  779. vllm/model_executor/layers/resampler.py +270 -0
  780. vllm/model_executor/layers/rotary_embedding.py +1862 -0
  781. vllm/model_executor/layers/sampler.py +1204 -0
  782. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  783. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  784. vllm/model_executor/layers/utils.py +95 -0
  785. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  786. vllm/model_executor/model_loader/__init__.py +76 -0
  787. vllm/model_executor/model_loader/base_loader.py +43 -0
  788. vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
  789. vllm/model_executor/model_loader/default_loader.py +282 -0
  790. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  791. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  792. vllm/model_executor/model_loader/neuron.py +476 -0
  793. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  794. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  795. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  796. vllm/model_executor/model_loader/tensorizer.py +600 -0
  797. vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
  798. vllm/model_executor/model_loader/tpu.py +112 -0
  799. vllm/model_executor/model_loader/utils.py +302 -0
  800. vllm/model_executor/model_loader/weight_utils.py +782 -0
  801. vllm/model_executor/models/__init__.py +28 -0
  802. vllm/model_executor/models/adapters.py +248 -0
  803. vllm/model_executor/models/aimv2.py +246 -0
  804. vllm/model_executor/models/arctic.py +559 -0
  805. vllm/model_executor/models/aria.py +657 -0
  806. vllm/model_executor/models/aya_vision.py +466 -0
  807. vllm/model_executor/models/baichuan.py +474 -0
  808. vllm/model_executor/models/bamba.py +543 -0
  809. vllm/model_executor/models/bart.py +938 -0
  810. vllm/model_executor/models/bert.py +523 -0
  811. vllm/model_executor/models/bert_with_rope.py +769 -0
  812. vllm/model_executor/models/blip.py +339 -0
  813. vllm/model_executor/models/blip2.py +718 -0
  814. vllm/model_executor/models/bloom.py +373 -0
  815. vllm/model_executor/models/chameleon.py +1136 -0
  816. vllm/model_executor/models/chatglm.py +478 -0
  817. vllm/model_executor/models/clip.py +407 -0
  818. vllm/model_executor/models/commandr.py +472 -0
  819. vllm/model_executor/models/constant_size_cache.py +137 -0
  820. vllm/model_executor/models/dbrx.py +472 -0
  821. vllm/model_executor/models/deepseek.py +486 -0
  822. vllm/model_executor/models/deepseek_mtp.py +269 -0
  823. vllm/model_executor/models/deepseek_v2.py +843 -0
  824. vllm/model_executor/models/deepseek_vl2.py +648 -0
  825. vllm/model_executor/models/eagle.py +260 -0
  826. vllm/model_executor/models/exaone.py +551 -0
  827. vllm/model_executor/models/fairseq2_llama.py +154 -0
  828. vllm/model_executor/models/falcon.py +510 -0
  829. vllm/model_executor/models/falcon_h1.py +685 -0
  830. vllm/model_executor/models/florence2.py +1103 -0
  831. vllm/model_executor/models/fuyu.py +389 -0
  832. vllm/model_executor/models/gemma.py +425 -0
  833. vllm/model_executor/models/gemma2.py +425 -0
  834. vllm/model_executor/models/gemma3.py +533 -0
  835. vllm/model_executor/models/gemma3_mm.py +709 -0
  836. vllm/model_executor/models/glm.py +23 -0
  837. vllm/model_executor/models/glm4.py +305 -0
  838. vllm/model_executor/models/glm4v.py +648 -0
  839. vllm/model_executor/models/gpt2.py +328 -0
  840. vllm/model_executor/models/gpt_bigcode.py +335 -0
  841. vllm/model_executor/models/gpt_j.py +339 -0
  842. vllm/model_executor/models/gpt_neox.py +332 -0
  843. vllm/model_executor/models/granite.py +493 -0
  844. vllm/model_executor/models/granite_speech.py +779 -0
  845. vllm/model_executor/models/granitemoe.py +437 -0
  846. vllm/model_executor/models/granitemoehybrid.py +586 -0
  847. vllm/model_executor/models/granitemoeshared.py +341 -0
  848. vllm/model_executor/models/gritlm.py +224 -0
  849. vllm/model_executor/models/grok1.py +546 -0
  850. vllm/model_executor/models/h2ovl.py +546 -0
  851. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  852. vllm/model_executor/models/idefics3.py +776 -0
  853. vllm/model_executor/models/interfaces.py +572 -0
  854. vllm/model_executor/models/interfaces_base.py +164 -0
  855. vllm/model_executor/models/intern_vit.py +480 -0
  856. vllm/model_executor/models/internlm2.py +455 -0
  857. vllm/model_executor/models/internlm2_ve.py +147 -0
  858. vllm/model_executor/models/internvl.py +1418 -0
  859. vllm/model_executor/models/jais.py +373 -0
  860. vllm/model_executor/models/jamba.py +592 -0
  861. vllm/model_executor/models/kimi_vl.py +577 -0
  862. vllm/model_executor/models/llama.py +644 -0
  863. vllm/model_executor/models/llama4.py +532 -0
  864. vllm/model_executor/models/llama_eagle.py +165 -0
  865. vllm/model_executor/models/llama_eagle3.py +263 -0
  866. vllm/model_executor/models/llava.py +866 -0
  867. vllm/model_executor/models/llava_next.py +586 -0
  868. vllm/model_executor/models/llava_next_video.py +471 -0
  869. vllm/model_executor/models/llava_onevision.py +956 -0
  870. vllm/model_executor/models/mamba.py +273 -0
  871. vllm/model_executor/models/mamba2.py +308 -0
  872. vllm/model_executor/models/mamba_cache.py +76 -0
  873. vllm/model_executor/models/medusa.py +219 -0
  874. vllm/model_executor/models/mimo.py +192 -0
  875. vllm/model_executor/models/mimo_mtp.py +285 -0
  876. vllm/model_executor/models/minicpm.py +592 -0
  877. vllm/model_executor/models/minicpm3.py +230 -0
  878. vllm/model_executor/models/minicpm_eagle.py +391 -0
  879. vllm/model_executor/models/minicpmo.py +759 -0
  880. vllm/model_executor/models/minicpmv.py +1287 -0
  881. vllm/model_executor/models/minimax_cache.py +36 -0
  882. vllm/model_executor/models/minimax_text_01.py +1301 -0
  883. vllm/model_executor/models/minimax_vl_01.py +364 -0
  884. vllm/model_executor/models/mistral3.py +604 -0
  885. vllm/model_executor/models/mixtral.py +488 -0
  886. vllm/model_executor/models/mixtral_quant.py +453 -0
  887. vllm/model_executor/models/mllama.py +1624 -0
  888. vllm/model_executor/models/mllama4.py +938 -0
  889. vllm/model_executor/models/mlp_speculator.py +206 -0
  890. vllm/model_executor/models/modernbert.py +331 -0
  891. vllm/model_executor/models/module_mapping.py +72 -0
  892. vllm/model_executor/models/molmo.py +1568 -0
  893. vllm/model_executor/models/moonvit.py +630 -0
  894. vllm/model_executor/models/mpt.py +331 -0
  895. vllm/model_executor/models/nemotron.py +508 -0
  896. vllm/model_executor/models/nemotron_h.py +573 -0
  897. vllm/model_executor/models/nemotron_nas.py +484 -0
  898. vllm/model_executor/models/nvlm_d.py +216 -0
  899. vllm/model_executor/models/olmo.py +389 -0
  900. vllm/model_executor/models/olmo2.py +414 -0
  901. vllm/model_executor/models/olmoe.py +468 -0
  902. vllm/model_executor/models/opt.py +412 -0
  903. vllm/model_executor/models/orion.py +349 -0
  904. vllm/model_executor/models/ovis.py +567 -0
  905. vllm/model_executor/models/paligemma.py +398 -0
  906. vllm/model_executor/models/persimmon.py +344 -0
  907. vllm/model_executor/models/phi.py +356 -0
  908. vllm/model_executor/models/phi3.py +19 -0
  909. vllm/model_executor/models/phi3_small.py +465 -0
  910. vllm/model_executor/models/phi3v.py +723 -0
  911. vllm/model_executor/models/phi4mm.py +1246 -0
  912. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  913. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  914. vllm/model_executor/models/phimoe.py +665 -0
  915. vllm/model_executor/models/pixtral.py +1316 -0
  916. vllm/model_executor/models/plamo2.py +738 -0
  917. vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
  918. vllm/model_executor/models/qwen.py +362 -0
  919. vllm/model_executor/models/qwen2.py +497 -0
  920. vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
  921. vllm/model_executor/models/qwen2_5_vl.py +1166 -0
  922. vllm/model_executor/models/qwen2_audio.py +410 -0
  923. vllm/model_executor/models/qwen2_moe.py +540 -0
  924. vllm/model_executor/models/qwen2_rm.py +132 -0
  925. vllm/model_executor/models/qwen2_vl.py +1405 -0
  926. vllm/model_executor/models/qwen3.py +321 -0
  927. vllm/model_executor/models/qwen3_moe.py +535 -0
  928. vllm/model_executor/models/qwen_vl.py +785 -0
  929. vllm/model_executor/models/registry.py +622 -0
  930. vllm/model_executor/models/roberta.py +276 -0
  931. vllm/model_executor/models/siglip.py +524 -0
  932. vllm/model_executor/models/skyworkr1v.py +951 -0
  933. vllm/model_executor/models/smolvlm.py +52 -0
  934. vllm/model_executor/models/solar.py +506 -0
  935. vllm/model_executor/models/stablelm.py +343 -0
  936. vllm/model_executor/models/starcoder2.py +356 -0
  937. vllm/model_executor/models/tarsier.py +643 -0
  938. vllm/model_executor/models/telechat2.py +140 -0
  939. vllm/model_executor/models/teleflm.py +79 -0
  940. vllm/model_executor/models/transformers.py +508 -0
  941. vllm/model_executor/models/ultravox.py +656 -0
  942. vllm/model_executor/models/utils.py +731 -0
  943. vllm/model_executor/models/vision.py +147 -0
  944. vllm/model_executor/models/whisper.py +747 -0
  945. vllm/model_executor/models/zamba2.py +1009 -0
  946. vllm/model_executor/parameter.py +459 -0
  947. vllm/model_executor/pooling_metadata.py +72 -0
  948. vllm/model_executor/sampling_metadata.py +597 -0
  949. vllm/model_executor/utils.py +77 -0
  950. vllm/multimodal/__init__.py +33 -0
  951. vllm/multimodal/audio.py +106 -0
  952. vllm/multimodal/base.py +219 -0
  953. vllm/multimodal/hasher.py +118 -0
  954. vllm/multimodal/image.py +97 -0
  955. vllm/multimodal/inputs.py +876 -0
  956. vllm/multimodal/parse.py +461 -0
  957. vllm/multimodal/processing.py +1895 -0
  958. vllm/multimodal/profiling.py +258 -0
  959. vllm/multimodal/registry.py +331 -0
  960. vllm/multimodal/utils.py +436 -0
  961. vllm/multimodal/video.py +198 -0
  962. vllm/outputs.py +512 -0
  963. vllm/platforms/__init__.py +291 -0
  964. vllm/platforms/cpu.py +266 -0
  965. vllm/platforms/cuda.py +526 -0
  966. vllm/platforms/hpu.py +106 -0
  967. vllm/platforms/interface.py +538 -0
  968. vllm/platforms/neuron.py +150 -0
  969. vllm/platforms/rocm.py +435 -0
  970. vllm/platforms/tpu.py +216 -0
  971. vllm/platforms/xpu.py +156 -0
  972. vllm/plugins/__init__.py +94 -0
  973. vllm/plugins/lora_resolvers/README.md +15 -0
  974. vllm/plugins/lora_resolvers/__init__.py +0 -0
  975. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  976. vllm/pooling_params.py +54 -0
  977. vllm/profiler/__init__.py +0 -0
  978. vllm/profiler/layerwise_profile.py +375 -0
  979. vllm/profiler/utils.py +148 -0
  980. vllm/prompt_adapter/__init__.py +0 -0
  981. vllm/prompt_adapter/layers.py +83 -0
  982. vllm/prompt_adapter/models.py +358 -0
  983. vllm/prompt_adapter/request.py +37 -0
  984. vllm/prompt_adapter/utils.py +98 -0
  985. vllm/prompt_adapter/worker_manager.py +179 -0
  986. vllm/py.typed +2 -0
  987. vllm/reasoning/__init__.py +15 -0
  988. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  989. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  990. vllm/reasoning/granite_reasoning_parser.py +363 -0
  991. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  992. vllm/sampling_params.py +602 -0
  993. vllm/scalar_type.py +347 -0
  994. vllm/scripts.py +15 -0
  995. vllm/sequence.py +1568 -0
  996. vllm/spec_decode/__init__.py +0 -0
  997. vllm/spec_decode/batch_expansion.py +506 -0
  998. vllm/spec_decode/draft_model_runner.py +349 -0
  999. vllm/spec_decode/interfaces.py +99 -0
  1000. vllm/spec_decode/medusa_worker.py +138 -0
  1001. vllm/spec_decode/metrics.py +213 -0
  1002. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1003. vllm/spec_decode/mqa_scorer.py +160 -0
  1004. vllm/spec_decode/multi_step_worker.py +423 -0
  1005. vllm/spec_decode/ngram_worker.py +196 -0
  1006. vllm/spec_decode/proposer_worker_base.py +59 -0
  1007. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1008. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1009. vllm/spec_decode/target_model_runner.py +45 -0
  1010. vllm/spec_decode/top1_proposer.py +275 -0
  1011. vllm/spec_decode/util.py +277 -0
  1012. vllm/test_utils.py +130 -0
  1013. vllm/third_party/__init__.py +0 -0
  1014. vllm/third_party/pynvml.py +6140 -0
  1015. vllm/tracing.py +131 -0
  1016. vllm/transformers_utils/__init__.py +24 -0
  1017. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1018. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1019. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1020. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1021. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1022. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1023. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1024. vllm/transformers_utils/config.py +887 -0
  1025. vllm/transformers_utils/configs/__init__.py +61 -0
  1026. vllm/transformers_utils/configs/arctic.py +207 -0
  1027. vllm/transformers_utils/configs/chatglm.py +72 -0
  1028. vllm/transformers_utils/configs/cohere2.py +195 -0
  1029. vllm/transformers_utils/configs/dbrx.py +280 -0
  1030. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1031. vllm/transformers_utils/configs/eagle.py +85 -0
  1032. vllm/transformers_utils/configs/exaone.py +190 -0
  1033. vllm/transformers_utils/configs/falcon.py +90 -0
  1034. vllm/transformers_utils/configs/h2ovl.py +16 -0
  1035. vllm/transformers_utils/configs/internvl.py +54 -0
  1036. vllm/transformers_utils/configs/jais.py +238 -0
  1037. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1038. vllm/transformers_utils/configs/medusa.py +63 -0
  1039. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1040. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1041. vllm/transformers_utils/configs/mllama.py +31 -0
  1042. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1043. vllm/transformers_utils/configs/moonvit.py +33 -0
  1044. vllm/transformers_utils/configs/mpt.py +180 -0
  1045. vllm/transformers_utils/configs/nemotron.py +205 -0
  1046. vllm/transformers_utils/configs/nemotron_h.py +258 -0
  1047. vllm/transformers_utils/configs/nvlm_d.py +15 -0
  1048. vllm/transformers_utils/configs/ovis.py +184 -0
  1049. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1050. vllm/transformers_utils/configs/solar.py +247 -0
  1051. vllm/transformers_utils/configs/telechat2.py +64 -0
  1052. vllm/transformers_utils/configs/ultravox.py +108 -0
  1053. vllm/transformers_utils/detokenizer.py +168 -0
  1054. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1055. vllm/transformers_utils/processor.py +221 -0
  1056. vllm/transformers_utils/processors/__init__.py +8 -0
  1057. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1058. vllm/transformers_utils/processors/ovis.py +420 -0
  1059. vllm/transformers_utils/s3_utils.py +162 -0
  1060. vllm/transformers_utils/tokenizer.py +302 -0
  1061. vllm/transformers_utils/tokenizer_base.py +149 -0
  1062. vllm/transformers_utils/tokenizer_group.py +120 -0
  1063. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1064. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1065. vllm/transformers_utils/utils.py +99 -0
  1066. vllm/triton_utils/__init__.py +14 -0
  1067. vllm/triton_utils/importing.py +50 -0
  1068. vllm/usage/__init__.py +0 -0
  1069. vllm/usage/usage_lib.py +256 -0
  1070. vllm/utils.py +2910 -0
  1071. vllm/v1/__init__.py +0 -0
  1072. vllm/v1/attention/__init__.py +0 -0
  1073. vllm/v1/attention/backends/__init__.py +0 -0
  1074. vllm/v1/attention/backends/cpu_attn.py +163 -0
  1075. vllm/v1/attention/backends/flash_attn.py +869 -0
  1076. vllm/v1/attention/backends/flashinfer.py +651 -0
  1077. vllm/v1/attention/backends/flex_attention.py +477 -0
  1078. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1079. vllm/v1/attention/backends/mla/common.py +931 -0
  1080. vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
  1081. vllm/v1/attention/backends/mla/flashmla.py +152 -0
  1082. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
  1083. vllm/v1/attention/backends/mla/triton_mla.py +120 -0
  1084. vllm/v1/attention/backends/pallas.py +240 -0
  1085. vllm/v1/attention/backends/triton_attn.py +285 -0
  1086. vllm/v1/attention/backends/utils.py +52 -0
  1087. vllm/v1/core/__init__.py +0 -0
  1088. vllm/v1/core/block_pool.py +349 -0
  1089. vllm/v1/core/encoder_cache_manager.py +150 -0
  1090. vllm/v1/core/kv_cache_coordinator.py +363 -0
  1091. vllm/v1/core/kv_cache_manager.py +392 -0
  1092. vllm/v1/core/kv_cache_utils.py +996 -0
  1093. vllm/v1/core/sched/__init__.py +0 -0
  1094. vllm/v1/core/sched/interface.py +150 -0
  1095. vllm/v1/core/sched/output.py +154 -0
  1096. vllm/v1/core/sched/scheduler.py +1044 -0
  1097. vllm/v1/core/sched/utils.py +23 -0
  1098. vllm/v1/core/single_type_kv_cache_manager.py +403 -0
  1099. vllm/v1/engine/__init__.py +173 -0
  1100. vllm/v1/engine/async_llm.py +558 -0
  1101. vllm/v1/engine/coordinator.py +253 -0
  1102. vllm/v1/engine/core.py +961 -0
  1103. vllm/v1/engine/core_client.py +1129 -0
  1104. vllm/v1/engine/detokenizer.py +261 -0
  1105. vllm/v1/engine/exceptions.py +17 -0
  1106. vllm/v1/engine/llm_engine.py +317 -0
  1107. vllm/v1/engine/logprobs.py +199 -0
  1108. vllm/v1/engine/mm_input_cache.py +91 -0
  1109. vllm/v1/engine/output_processor.py +428 -0
  1110. vllm/v1/engine/parallel_sampling.py +133 -0
  1111. vllm/v1/engine/processor.py +407 -0
  1112. vllm/v1/executor/__init__.py +0 -0
  1113. vllm/v1/executor/abstract.py +113 -0
  1114. vllm/v1/executor/multiproc_executor.py +537 -0
  1115. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1116. vllm/v1/kv_cache_interface.py +194 -0
  1117. vllm/v1/metrics/__init__.py +0 -0
  1118. vllm/v1/metrics/loggers.py +523 -0
  1119. vllm/v1/metrics/prometheus.py +82 -0
  1120. vllm/v1/metrics/ray_wrappers.py +131 -0
  1121. vllm/v1/metrics/reader.py +246 -0
  1122. vllm/v1/metrics/stats.py +239 -0
  1123. vllm/v1/outputs.py +116 -0
  1124. vllm/v1/request.py +193 -0
  1125. vllm/v1/sample/__init__.py +0 -0
  1126. vllm/v1/sample/metadata.py +44 -0
  1127. vllm/v1/sample/ops/__init__.py +0 -0
  1128. vllm/v1/sample/ops/bad_words.py +39 -0
  1129. vllm/v1/sample/ops/penalties.py +59 -0
  1130. vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
  1131. vllm/v1/sample/rejection_sampler.py +631 -0
  1132. vllm/v1/sample/sampler.py +286 -0
  1133. vllm/v1/sample/tpu/__init__.py +0 -0
  1134. vllm/v1/sample/tpu/metadata.py +124 -0
  1135. vllm/v1/sample/tpu/sampler.py +145 -0
  1136. vllm/v1/serial_utils.py +315 -0
  1137. vllm/v1/spec_decode/__init__.py +0 -0
  1138. vllm/v1/spec_decode/eagle.py +432 -0
  1139. vllm/v1/spec_decode/medusa.py +62 -0
  1140. vllm/v1/spec_decode/metadata.py +62 -0
  1141. vllm/v1/spec_decode/metrics.py +178 -0
  1142. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1143. vllm/v1/spec_decode/utils.py +46 -0
  1144. vllm/v1/structured_output/__init__.py +222 -0
  1145. vllm/v1/structured_output/backend_guidance.py +245 -0
  1146. vllm/v1/structured_output/backend_types.py +134 -0
  1147. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1148. vllm/v1/structured_output/request.py +86 -0
  1149. vllm/v1/structured_output/utils.py +175 -0
  1150. vllm/v1/utils.py +743 -0
  1151. vllm/v1/worker/__init__.py +0 -0
  1152. vllm/v1/worker/block_table.py +142 -0
  1153. vllm/v1/worker/cpu_model_runner.py +86 -0
  1154. vllm/v1/worker/cpu_worker.py +152 -0
  1155. vllm/v1/worker/gpu_input_batch.py +681 -0
  1156. vllm/v1/worker/gpu_model_runner.py +2320 -0
  1157. vllm/v1/worker/gpu_worker.py +393 -0
  1158. vllm/v1/worker/lora_model_runner_mixin.py +173 -0
  1159. vllm/v1/worker/tpu_model_runner.py +1673 -0
  1160. vllm/v1/worker/tpu_worker.py +299 -0
  1161. vllm/v1/worker/utils.py +111 -0
  1162. vllm/v1/worker/worker_base.py +65 -0
  1163. vllm/version.py +41 -0
  1164. vllm/vllm_flash_attn/.gitkeep +0 -0
  1165. vllm/worker/__init__.py +0 -0
  1166. vllm/worker/cache_engine.py +145 -0
  1167. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1168. vllm/worker/cpu_model_runner.py +671 -0
  1169. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1170. vllm/worker/cpu_worker.py +450 -0
  1171. vllm/worker/enc_dec_model_runner.py +555 -0
  1172. vllm/worker/hpu_model_runner.py +2320 -0
  1173. vllm/worker/hpu_worker.py +484 -0
  1174. vllm/worker/model_runner.py +2178 -0
  1175. vllm/worker/model_runner_base.py +282 -0
  1176. vllm/worker/multi_step_hpu_worker.py +123 -0
  1177. vllm/worker/multi_step_model_runner.py +911 -0
  1178. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1179. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1180. vllm/worker/multi_step_tpu_worker.py +108 -0
  1181. vllm/worker/multi_step_worker.py +197 -0
  1182. vllm/worker/neuron_model_runner.py +460 -0
  1183. vllm/worker/neuron_worker.py +193 -0
  1184. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1185. vllm/worker/pooling_model_runner.py +211 -0
  1186. vllm/worker/tpu_model_runner.py +909 -0
  1187. vllm/worker/tpu_worker.py +337 -0
  1188. vllm/worker/utils.py +53 -0
  1189. vllm/worker/worker.py +577 -0
  1190. vllm/worker/worker_base.py +646 -0
  1191. vllm/worker/xpu_model_runner.py +606 -0
  1192. vllm/worker/xpu_worker.py +186 -0
  1193. vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
  1194. vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
  1195. vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
  1196. vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
  1197. vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1326 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import copy
5
+ from collections import defaultdict
6
+ from functools import cached_property
7
+ from typing import Any, Dict, List, Optional, Set, Tuple, Type
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+
12
+ from vllm.config import ParallelConfig, SpeculativeConfig, VllmConfig
13
+ from vllm.distributed.communication_op import (broadcast_tensor_dict,
14
+ get_tp_group,
15
+ tensor_model_parallel_gather)
16
+ from vllm.distributed.parallel_state import model_parallel_is_initialized
17
+ from vllm.logger import init_logger
18
+ from vllm.model_executor.layers.rejection_sampler import RejectionSampler
19
+ from vllm.model_executor.layers.sampler import SamplerOutput
20
+ from vllm.model_executor.layers.spec_decode_base_sampler import (
21
+ SpecDecodeBaseSampler, SpecDecodeStochasticBaseSampler)
22
+ from vllm.model_executor.layers.typical_acceptance_sampler import (
23
+ TypicalAcceptanceSampler)
24
+ from vllm.platforms import current_platform
25
+ from vllm.sequence import (VLLM_INVALID_TOKEN_ID,
26
+ CompletionSequenceGroupOutput, ExecuteModelRequest,
27
+ HiddenStates, SequenceGroupMetadata,
28
+ get_all_seq_ids_and_request_ids)
29
+ from vllm.spec_decode.batch_expansion import BatchExpansionTop1Scorer
30
+
31
+ if current_platform.is_cuda_alike():
32
+ from vllm.spec_decode.draft_model_runner import TP1DraftModelRunner
33
+
34
+ from vllm.spec_decode.interfaces import (SpeculativeProposals,
35
+ SpeculativeScorer, SpeculativeScores)
36
+ from vllm.spec_decode.medusa_worker import MedusaWorker
37
+ from vllm.spec_decode.metrics import AsyncMetricsCollector
38
+ from vllm.spec_decode.mlp_speculator_worker import MLPSpeculatorWorker
39
+ from vllm.spec_decode.mqa_scorer import MQAScorer
40
+ from vllm.spec_decode.multi_step_worker import MultiStepWorker
41
+ from vllm.spec_decode.ngram_worker import NGramWorker
42
+ from vllm.spec_decode.proposer_worker_base import ProposerWorkerBase
43
+ from vllm.spec_decode.smaller_tp_proposer_worker import SmallerTpProposerWorker
44
+ from vllm.spec_decode.target_model_runner import TargetModelRunner
45
+ from vllm.spec_decode.util import (Timer, create_logprobs_output,
46
+ create_sequence_group_output,
47
+ get_all_num_logprobs,
48
+ get_sampled_token_logprobs, nvtx_range,
49
+ split_batch_by_proposal_len)
50
+ from vllm.utils import resolve_obj_by_qualname
51
+ from vllm.worker.worker_base import LoRANotSupportedWorkerBase, WorkerBase
52
+
53
+ logger = init_logger(__name__)
54
+
55
+
56
+ def create_spec_worker(*args, **kwargs) -> "SpecDecodeWorker":
57
+ """Helper method that is the entrypoint for Executors which use
58
+ WorkerWrapper. It constructs a SpecDecodeWorker from the speculative config.
59
+ """
60
+ vllm_config: VllmConfig = kwargs.get("vllm_config")
61
+ speculative_config: SpeculativeConfig = vllm_config.speculative_config
62
+ assert speculative_config is not None
63
+
64
+ if vllm_config.parallel_config.pipeline_parallel_size > 1:
65
+ raise NotImplementedError("Speculative decoding is currently "
66
+ "incompatible with pipeline parallelism")
67
+
68
+ draft_worker_kwargs = kwargs.copy()
69
+
70
+ kwargs["model_runner_cls"] = TargetModelRunner
71
+ target_worker_config = copy.deepcopy(vllm_config)
72
+ target_worker_config.parallel_config.worker_cls =\
73
+ target_worker_config.parallel_config.sd_worker_cls
74
+ cls = resolve_obj_by_qualname(
75
+ target_worker_config.parallel_config.worker_cls)
76
+ target_worker = cls(*args, **kwargs)
77
+ # Set the disable_logprobs variable in the TargetModelRunner instance
78
+ # as per its value specified in the SpeculativeConfig.
79
+ target_worker.model_runner.disable_logprobs =\
80
+ speculative_config.disable_logprobs
81
+
82
+ draft_worker_config = copy.deepcopy(vllm_config)
83
+ draft_worker_config.model_config = speculative_config.draft_model_config
84
+ draft_worker_config.quant_config = VllmConfig._get_quantization_config(
85
+ draft_worker_config.model_config,
86
+ vllm_config.load_config,
87
+ )
88
+ speculative_config.draft_parallel_config.worker_cls =\
89
+ draft_worker_config.parallel_config.sd_worker_cls
90
+ draft_worker_config.parallel_config = speculative_config.draft_parallel_config # noqa
91
+ # TODO allow draft-model specific load config.
92
+
93
+ # Override draft-model specific worker args.
94
+ draft_worker_kwargs.update(
95
+ vllm_config=draft_worker_config,
96
+ ngram_prompt_lookup_max=speculative_config.prompt_lookup_max,
97
+ ngram_prompt_lookup_min=speculative_config.prompt_lookup_min,
98
+ )
99
+
100
+ spec_decode_worker = SpecDecodeWorker.create_worker(
101
+ scorer_worker=target_worker,
102
+ draft_worker_kwargs=draft_worker_kwargs,
103
+ disable_mqa_scorer=speculative_config.disable_mqa_scorer,
104
+ disable_by_batch_size=speculative_config.disable_by_batch_size,
105
+ draft_token_acceptance_method=speculative_config.acceptance_method,
106
+ typical_acceptance_sampler_posterior_threshold=speculative_config.
107
+ posterior_threshold,
108
+ typical_acceptance_sampler_posterior_alpha=speculative_config.
109
+ posterior_alpha,
110
+ disable_logprobs=speculative_config.disable_logprobs,
111
+ disable_log_stats=speculative_config.disable_log_stats,
112
+ num_speculative_tokens=speculative_config.num_speculative_tokens,
113
+ )
114
+
115
+ return spec_decode_worker
116
+
117
+
118
+ # Reminder: Please update docs/features/compatibility_matrix.md
119
+ # If the feature combo become valid
120
+ class SpecDecodeWorker(LoRANotSupportedWorkerBase):
121
+ """Worker which implements speculative decoding.
122
+
123
+ Speculative decoding reduces decoding per-token latency by using a proposal
124
+ method, such as a small draft model, to speculate ahead of a larger LLM. The
125
+ probabilities of the speculative tokens are then determined by the larger
126
+ LLM, after which some verification routine determines which (if any) of the
127
+ speculative tokens are accepted by the larger LLM.
128
+
129
+ See https://github.com/vllm-project/vllm/pull/2188 and
130
+ https://github.com/vllm-project/vllm/pull/3103 for more info.
131
+
132
+ The current implementation has the following limitations:
133
+ * Only draft-model proposal is implemented (contributions for more forms are
134
+ welcome!).
135
+ * Only top-1 proposal and scoring are implemented. Tree-attention is left as
136
+ future work.
137
+ * All sequences in a batch must have the same proposal length, or zero. This
138
+ can be improved by having per-sequence speculation in the future.
139
+ * The scoring forward pass is done without an MQA kernel, which is
140
+ suboptimal especially as the batch size, proposal length, and sequence
141
+ lengths grow. Contributions to add a MQA scoring are welcome once
142
+ correctness tests pass.
143
+ More info here https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit.
144
+ """
145
+
146
+ @classmethod
147
+ def create_worker(
148
+ cls,
149
+ scorer_worker: WorkerBase,
150
+ draft_worker_kwargs: Dict[str, Any],
151
+ disable_mqa_scorer: bool,
152
+ disable_by_batch_size: Optional[int],
153
+ draft_token_acceptance_method: str,
154
+ typical_acceptance_sampler_posterior_threshold: float,
155
+ typical_acceptance_sampler_posterior_alpha: float,
156
+ disable_logprobs: bool,
157
+ disable_log_stats: bool,
158
+ num_speculative_tokens: int,
159
+ ) -> "SpecDecodeWorker":
160
+
161
+ allow_zero_draft_token_step = True
162
+ enable_lm_head_weight_load = False
163
+ num_spec_prefill_steps = 1
164
+ ngram_prompt_lookup_max = (
165
+ draft_worker_kwargs.pop("ngram_prompt_lookup_max"))
166
+ ngram_prompt_lookup_min = (
167
+ draft_worker_kwargs.pop("ngram_prompt_lookup_min"))
168
+ draft_model_config = draft_worker_kwargs["vllm_config"].model_config
169
+ draft_parallel_config: ParallelConfig = draft_worker_kwargs[
170
+ 'vllm_config'].parallel_config
171
+ if ngram_prompt_lookup_max > 0:
172
+ draft_worker_kwargs[
173
+ "device_type"] = scorer_worker.device_config.device.type
174
+ proposer_worker = NGramWorker(**draft_worker_kwargs)
175
+ proposer_worker.set_ngram_window_size(ngram_prompt_lookup_min,
176
+ ngram_prompt_lookup_max)
177
+ else:
178
+ draft_tp = draft_parallel_config.tensor_parallel_size
179
+ target_tp = scorer_worker.parallel_config.tensor_parallel_size
180
+
181
+ if draft_model_config.hf_config.model_type == "mlp_speculator":
182
+ proposer_worker = MLPSpeculatorWorker(**draft_worker_kwargs)
183
+ elif draft_model_config.hf_config.model_type == "medusa":
184
+ proposer_worker = MedusaWorker(**draft_worker_kwargs)
185
+ else:
186
+ if draft_tp == 1:
187
+ if current_platform.is_cuda_alike():
188
+ draft_worker_kwargs[
189
+ "model_runner_cls"] = TP1DraftModelRunner
190
+ else:
191
+ if draft_model_config.hf_config.model_type == "eagle":
192
+ raise NotImplementedError(
193
+ f"{draft_model_config.hf_config.model_type} "
194
+ "does not support TP > 1 yet")
195
+
196
+ allow_zero_draft_token_step = False
197
+
198
+ # Load lm_head weight for eagle in init_device
199
+ if draft_model_config.hf_config.model_type == "eagle":
200
+ enable_lm_head_weight_load = True
201
+
202
+ proposer_worker = MultiStepWorker(**draft_worker_kwargs)
203
+ if draft_model_config.hf_config.model_type == "deepseek_mtp":
204
+ num_spec_prefill_steps = \
205
+ draft_model_config.hf_config.n_predict
206
+
207
+ proposer_worker = SmallerTpProposerWorker.maybe_wrap_worker(
208
+ proposer_worker, draft_tp, target_tp)
209
+
210
+ logger.info("Configuring SpecDecodeWorker with proposer=%s",
211
+ type(proposer_worker))
212
+
213
+ spec_decode_sampler: SpecDecodeBaseSampler = None
214
+ if draft_token_acceptance_method == "rejection_sampler":
215
+ spec_decode_sampler = RejectionSampler()
216
+ elif draft_token_acceptance_method == "typical_acceptance_sampler":
217
+ spec_decode_sampler = TypicalAcceptanceSampler(
218
+ posterior_threshold=\
219
+ typical_acceptance_sampler_posterior_threshold,
220
+ posterior_alpha=typical_acceptance_sampler_posterior_alpha,
221
+ )
222
+ logger.info(
223
+ "[Speculative Decoding] Configuring"
224
+ " SpecDecodeWorker with sampler=%s", type(spec_decode_sampler))
225
+
226
+ if not disable_mqa_scorer:
227
+ if scorer_worker.model_runner.attn_backend.get_name(
228
+ ) != "FLASH_ATTN":
229
+ disable_mqa_scorer = True
230
+ logger.info(
231
+ "[Speculative Decoding] Disabling MQA scorer as the "
232
+ "MQA is only available with flash attn backend.")
233
+
234
+ if draft_model_config and \
235
+ draft_model_config.max_model_len < \
236
+ scorer_worker.model_config.max_model_len:
237
+ disable_mqa_scorer = True
238
+ logger.info(
239
+ "[Speculative Decoding] Disabling MQA scorer as the "
240
+ "draft model max_model_len is smaller than the target "
241
+ "model max_model_len.")
242
+
243
+ if not scorer_worker.model_runner.model_config.enforce_eager:
244
+ disable_mqa_scorer = True
245
+ logger.info(
246
+ "[Speculative Decoding] Disabling MQA scorer as the "
247
+ "target model is not running in eager mode.")
248
+
249
+ return SpecDecodeWorker(
250
+ proposer_worker,
251
+ scorer_worker,
252
+ disable_mqa_scorer=disable_mqa_scorer,
253
+ disable_logprobs=disable_logprobs,
254
+ disable_log_stats=disable_log_stats,
255
+ disable_by_batch_size=disable_by_batch_size,
256
+ spec_decode_sampler=spec_decode_sampler,
257
+ allow_zero_draft_token_step=allow_zero_draft_token_step,
258
+ enable_lm_head_weight_load=enable_lm_head_weight_load,
259
+ num_spec_prefill_steps=num_spec_prefill_steps)
260
+
261
+ def __init__(
262
+ self,
263
+ proposer_worker: ProposerWorkerBase,
264
+ scorer_worker: WorkerBase,
265
+ spec_decode_sampler: SpecDecodeBaseSampler,
266
+ disable_mqa_scorer: bool = False,
267
+ disable_logprobs: bool = False,
268
+ disable_log_stats: bool = False,
269
+ metrics_collector: Optional[AsyncMetricsCollector] = None,
270
+ disable_by_batch_size: Optional[int] = None,
271
+ allow_zero_draft_token_step: Optional[bool] = True,
272
+ enable_lm_head_weight_load: Optional[bool] = False,
273
+ num_spec_prefill_steps: int = 1,
274
+ ):
275
+ """
276
+ Create a SpecDecodeWorker.
277
+
278
+ Args:
279
+ proposer_worker: A worker that can produce speculative tokens for
280
+ sequences.
281
+ scorer_worker: A worker that produces probabilities of speculative
282
+ tokens according to some base model. Typically a vanilla vLLM
283
+ Worker.
284
+ spec_decode_sampler: A Torch module used to perform acceptance
285
+ sampling of the draft tokens in the verification step of
286
+ speculative decoding. Currently we support two different
287
+ types of sampler namely RejectionSampler and
288
+ TypicalAcceptanceSampler. 'spec_decode_sampler' is either an
289
+ instance of RejectionSampler or TypicalAcceptanceSampler.
290
+ disable_mqa_scorer: If set to True, disable the MQA scorer and use
291
+ the BatchExpansionTop1Scorer instead.
292
+ disable_logprobs: If set to True, token log probabilities will
293
+ not be output in both the draft worker and the target worker.
294
+ If set to False, log probabilities will be output by both.
295
+ disable_log_stats: If set to True, disable periodic printing of
296
+ speculative stage times.
297
+ disable_by_batch_size: If the batch size is larger than this,
298
+ disable speculative decoding for new incoming requests.
299
+ metrics_collector: Helper class for collecting metrics; can be set
300
+ for testing purposes.
301
+ allow_zero_draft_token_step: whether to allow a step where the draft
302
+ model generates no draft token; should disallow when the tp of
303
+ draft model is larger than 1 (TODO: #5814)
304
+ enable_lm_head_weight_load: whether to load lm_head weight for
305
+ draft models like eagle.
306
+ num_spec_prefill_steps: number of speculative prefill steps to run
307
+ before the speculative decoding starts. This is only used when
308
+ the draft model is a deepseek_mtp model that requires prefill
309
+ kv cache separately for each MTP layer.
310
+ """
311
+ self.proposer_worker = proposer_worker
312
+ self.scorer_worker = scorer_worker
313
+ scorer_runner = getattr(self.scorer_worker, "model_runner", None)
314
+ self.generators = scorer_runner.get_generators(
315
+ ) if scorer_runner else None
316
+ self.disable_by_batch_size = disable_by_batch_size or float("inf")
317
+ self.spec_decode_sampler = spec_decode_sampler
318
+ self._allow_zero_draft_token_step = allow_zero_draft_token_step
319
+ self._enable_lm_head_weight_load = enable_lm_head_weight_load
320
+ self._metrics = AsyncMetricsCollector(
321
+ self.spec_decode_sampler
322
+ ) if metrics_collector is None else metrics_collector
323
+ # Tracks the sequence IDs that received a bonus token ID in
324
+ # their last forward pass. Needed only if KV cache is being
325
+ # used for token generation such as in the case of MultiStepWorker.
326
+ self._seq_with_bonus_token_in_last_step: Set[int] = set()
327
+ # Tracks the currently active request ids and the sequence IDs
328
+ # corresponding to them
329
+ self._request_id_seq_id_mapping: Dict[str, Set[int]] = defaultdict(set)
330
+ # Tracks if the proposer worker uses the KV cache or not.
331
+
332
+ self.probs_dtype = self.spec_decode_sampler.probs_dtype
333
+ self.token_id_dtype = self.spec_decode_sampler.token_id_dtype
334
+ # Lazy initialization.
335
+ self.scorer: SpeculativeScorer
336
+ self.disable_mqa_scorer = disable_mqa_scorer
337
+
338
+ # Hidden states from target model to pass to proposer
339
+ # in the subsequent step.
340
+ self.previous_hidden_states: Optional[HiddenStates] = None
341
+ self._disable_logprobs = disable_logprobs
342
+ self._disable_log_stats = disable_log_stats
343
+ self._num_spec_prefill_steps = num_spec_prefill_steps
344
+
345
+ def init_device(self) -> None:
346
+ """Initialize both scorer and proposer models.
347
+ """
348
+ # The scorer worker model is initialized first in case the proposer
349
+ # model has a smaller TP degree than the target worker.
350
+ self.scorer_worker.init_device()
351
+ self.proposer_worker.init_device()
352
+
353
+ # NOTE(cade): load_model is not part of the WorkerBase interface.
354
+ self.scorer_worker.load_model()
355
+ self.proposer_worker.load_model()
356
+
357
+ if self._enable_lm_head_weight_load:
358
+ # NOTE(Shangming): gather lm_head weight when tp enabled
359
+ target_lm_head_weight: torch.Tensor = tensor_model_parallel_gather(
360
+ self.scorer_worker.model_runner.model_runner.model.lm_head.\
361
+ weight.data,
362
+ dim=0,
363
+ )
364
+
365
+ self.proposer_worker.maybe_load_lm_head_weight(
366
+ target_lm_head_weight)
367
+
368
+ self._metrics.init_tensors(self.rank, device_type=self.device)
369
+ if model_parallel_is_initialized():
370
+ self.spec_decode_sampler.init_tensors(get_tp_group().local_rank,
371
+ device_type=self.device)
372
+ else:
373
+ self.spec_decode_sampler.init_tensors(self.rank,
374
+ device_type=self.device)
375
+
376
+ scorer_cls: Type[SpeculativeScorer]
377
+ if self.disable_mqa_scorer:
378
+ scorer_cls = BatchExpansionTop1Scorer
379
+ logger.info("[Speculative Decoding] Use batch "
380
+ "expansion for scoring proposals.")
381
+ else:
382
+ scorer_cls = MQAScorer
383
+ logger.info(
384
+ "[Speculative Decoding] Use MQA scorer for scoring proposals.")
385
+
386
+ self.scorer = scorer_cls(scorer_worker=self.scorer_worker,
387
+ device=self.device,
388
+ vocab_size=self._vocab_size)
389
+
390
+ self._configure_model_sampler_for_spec_decode()
391
+
392
+ def load_model(self, *args, **kwargs):
393
+ pass
394
+
395
+ def _configure_model_sampler_for_spec_decode(self):
396
+ """Configure model sampler to emit GPU tensors. This allows spec decode
397
+ to keep data on device without transferring to CPU and serializing,
398
+ which significantly reduces overhead of sampling during verification.
399
+
400
+ NOTE(cade): This breaks abstraction boundaries pretty badly. The better
401
+ design is to have the "move to CPU and serialize" sampling decision be
402
+ done outside of the model/sampler; this way the "last-mile" worker
403
+ object which interfaces with the scheduler can serialize and incur the
404
+ performance hit as necessary. This allows us to run the worker several
405
+ iterations in a row without incurring the "move to CPU and serialize"
406
+ performance penalty.
407
+
408
+ Since this requires a large change to vLLM, we defer it to later and
409
+ temporarily accept this broken abstraction boundary.
410
+
411
+ NOTE(cade): This will require a special check if the proposer worker
412
+ does not have a sampler (e.g. ngram speculation).
413
+ """
414
+ (self.scorer_worker.model_runner.sampler.include_gpu_probs_tensor
415
+ ) = True
416
+ (self.scorer_worker.model_runner.sampler.
417
+ should_modify_greedy_probs_inplace) = True
418
+ self.proposer_worker.set_include_gpu_probs_tensor()
419
+ self.proposer_worker.set_should_modify_greedy_probs_inplace()
420
+
421
+ def determine_num_available_blocks(self) -> Tuple[int, int]:
422
+ """Determine the number of cache blocks to use.
423
+
424
+ This is done by profiling the scorer model (which is typically the
425
+ larger of the two). Then the total memory which would be used by the
426
+ scorer cache is divided evenly between the proposer and scorer model KV,
427
+ such that the number of blocks is equal in both KV caches.
428
+ """
429
+ num_gpu_blocks, num_cpu_blocks = (
430
+ self.scorer_worker.determine_num_available_blocks())
431
+
432
+ scorer_cache_block_size_bytes = (
433
+ self.scorer_worker.get_cache_block_size_bytes())
434
+ proposer_cache_block_size_bytes = (
435
+ self.proposer_worker.get_cache_block_size_bytes())
436
+
437
+ new_num_gpu_blocks = split_num_cache_blocks_evenly(
438
+ scorer_cache_block_size_bytes, proposer_cache_block_size_bytes,
439
+ num_gpu_blocks)
440
+ return new_num_gpu_blocks, num_cpu_blocks
441
+
442
+ def initialize_cache(self, num_gpu_blocks: int,
443
+ num_cpu_blocks: int) -> None:
444
+ """Initialize the cache engine of the scorer and proposer workers.
445
+ """
446
+ self.scorer_worker.initialize_cache(num_gpu_blocks=num_gpu_blocks,
447
+ num_cpu_blocks=num_cpu_blocks)
448
+ self.proposer_worker.initialize_cache(num_gpu_blocks=num_gpu_blocks,
449
+ num_cpu_blocks=num_cpu_blocks)
450
+
451
+ def get_model(self) -> nn.Module:
452
+ return self.scorer_worker.get_model()
453
+
454
+ @torch.inference_mode()
455
+ def execute_model(
456
+ self,
457
+ execute_model_req: Optional[ExecuteModelRequest] = None
458
+ ) -> List[SamplerOutput]:
459
+ """Perform speculative decoding on the input batch.
460
+ """
461
+ if self.rank != self._driver_rank:
462
+ self._run_non_driver_rank()
463
+ return []
464
+
465
+ if execute_model_req is None:
466
+ # This signals that there's no more requests to process for now.
467
+ # All workers are running infinite loop with broadcast_tensor_dict,
468
+ # and it stops the loop when the driver broadcasts an empty input.
469
+ # Send an empty input to notify all other workers to stop their
470
+ # execution loop.
471
+ broadcast_tensor_dict({}, src=0)
472
+ return []
473
+
474
+ self._track_finished_requests(execute_model_req)
475
+ disable_all_speculation = self._should_disable_all_speculation(
476
+ execute_model_req)
477
+ num_lookahead_slots = execute_model_req.num_lookahead_slots
478
+ all_prompt = True
479
+ atleast_one_prompt = False
480
+ all_zero_spec_tokens = True
481
+ for sgm in execute_model_req.seq_group_metadata_list:
482
+ all_prompt = all_prompt and sgm.is_prompt
483
+ atleast_one_prompt = atleast_one_prompt or sgm.is_prompt
484
+ all_zero_spec_tokens = all_zero_spec_tokens and (
485
+ sgm.num_speculative_tokens == 0)
486
+
487
+ if all_prompt and execute_model_req.seq_group_metadata_list:
488
+ assert num_lookahead_slots == 0, (
489
+ "Prompt only runs should have num_lookahead_slots equal to 0. "
490
+ "This should never happen, please file a bug at "
491
+ "https://github.com/vllm-project/vllm/issues")
492
+ # Speculative decoding is disabled in the following cases:
493
+ # 1. Prefill phase: Speculative decoding is not
494
+ # used during the prefill phase.
495
+ # 2. Auto-disable enabled: The running queue size exceeds
496
+ # the specified threshold.
497
+ # 3. No request: There are no requests in the batch, or
498
+ # none of the requests in the batch have spec decoding enabled.
499
+ # In any of these cases, the proposer and scorer workers
500
+ # are called normally.
501
+ # We expect `num_speculative_tokens` to be None for prefills.
502
+ no_spec = (num_lookahead_slots == 0 or disable_all_speculation
503
+ or all_zero_spec_tokens)
504
+
505
+ # Broadcast how many lookahead slots are scheduled for this step, and
506
+ # whether all speculation is disabled, to all non-driver workers.
507
+
508
+ # This is required as if the number of draft model runs changes
509
+ # dynamically, the non-driver workers won't know unless we perform a
510
+ # communication to inform them.
511
+
512
+ # no_spec is used to signal non-driver worker about prefill vs decode
513
+ # stage. This is needed to ensure that order of execution of proposer
514
+ # and scorer is same in both driver and non-driver workers (i.e.,
515
+ # scorer -> proposer for prefill and proposer -> scorer in decode). This
516
+ # order is needed to support models like EAGLE that take scorer states
517
+ # as inputs.
518
+ broadcast_dict = dict(
519
+ num_lookahead_slots=num_lookahead_slots,
520
+ no_spec=no_spec,
521
+ disable_all_speculation=disable_all_speculation,
522
+ # When both chunked prefill and speculative decoding are enabled
523
+ # it is possible that the same batch contains both prefill
524
+ # and decodes. If that happens in the scorer we run the batch
525
+ # as one single forward pass. However, in the proposer we
526
+ # run them as 2 different batches - one for prefill and
527
+ # the other for decodes. The variable indicates to the non-driver
528
+ # worker that there are prefills as part of the speculative batch
529
+ # and hence it needs to run an extra prefill forward pass.
530
+ run_spec_proposer_for_prefill=atleast_one_prompt,
531
+ )
532
+ broadcast_tensor_dict(broadcast_dict, src=self._driver_rank)
533
+
534
+ assert execute_model_req.seq_group_metadata_list is not None, (
535
+ "speculative decoding requires non-None seq_group_metadata_list")
536
+
537
+ self._maybe_disable_speculative_tokens(
538
+ disable_all_speculation, execute_model_req.seq_group_metadata_list)
539
+
540
+ if no_spec:
541
+ return self._run_no_spec(execute_model_req,
542
+ skip_proposer=disable_all_speculation)
543
+ return self._run_speculative_decoding_step(execute_model_req,
544
+ num_lookahead_slots)
545
+
546
+ @torch.inference_mode()
547
+ def start_worker_execution_loop(self) -> None:
548
+ """Execute model loop to perform speculative decoding
549
+ in parallel worker."""
550
+ while self._run_non_driver_rank():
551
+ pass
552
+
553
+ def _should_disable_all_speculation(
554
+ self, execute_model_req: ExecuteModelRequest) -> bool:
555
+ # When the batch size is too large, disable speculative decoding
556
+ # to stop trading off throughput for latency.
557
+ return (execute_model_req.running_queue_size
558
+ >= self.disable_by_batch_size)
559
+
560
+ def _maybe_disable_speculative_tokens(
561
+ self, disable_all_speculation: bool,
562
+ seq_group_metadata_list: List[SequenceGroupMetadata]) -> None:
563
+ if not disable_all_speculation:
564
+ return
565
+
566
+ for seq_group_metadata in seq_group_metadata_list:
567
+ # Once num_speculative_tokens is set to 0, the spec decode
568
+ # of this request will be disabled forever.
569
+ # TODO(comaniac): We currently store spec decoding specific
570
+ # state in the global data structure, but we should maintain
571
+ # this state within spec decode worker.
572
+ seq_group_metadata.num_speculative_tokens = 0
573
+
574
+ def _serialize_sampler_output_no_logprobs(
575
+ self, execute_model_req: ExecuteModelRequest,
576
+ sampler_output: SamplerOutput) -> List[SamplerOutput]:
577
+ """
578
+ Creates and returns a `SamplerOutput` with only the token IDs being
579
+ serialized to CPU and populated in `CompletionSequenceGroupOutput`.
580
+ All other parameters in `CompletionSequenceGroupOutput` related to log
581
+ probabilities are skipped.
582
+
583
+ Args:
584
+ execute_model_req (ExecuteModelRequest): The model request that
585
+ was executed.
586
+ sampler_output (SamplerOutput): The output from the sampler with
587
+ only GPU tensors populated.
588
+
589
+ Returns:
590
+ SamplerOutput: A new `SamplerOutput` instance containing a list of
591
+ `CompletionSequenceGroupOutput` objects with only token IDs
592
+ populated.
593
+ """
594
+ seq_output_prompt_logprobs = [
595
+ seq.is_prompt and seq.sampling_params.prompt_logprobs is not None
596
+ and seq.sampling_params.prompt_logprobs > 0
597
+ for seq in execute_model_req.seq_group_metadata_list
598
+ ]
599
+ # ignore slots for prompt tokens that are filled with INVALID_TOKEN_ID
600
+ sampled_token_ids_list = (sampler_output.sampled_token_ids[torch.where(
601
+ # subtracting is faster than testing for equality
602
+ sampler_output.sampled_token_ids - VLLM_INVALID_TOKEN_ID)[0]] \
603
+ if any(seq_output_prompt_logprobs) else \
604
+ sampler_output.sampled_token_ids).tolist()
605
+
606
+ seq_data_entries = [
607
+ (seq_id, seq_data) for sg in \
608
+ execute_model_req.seq_group_metadata_list \
609
+ for seq_id, seq_data in sg.seq_data.items()
610
+ ]
611
+ completion_seq_group_output_list: List[
612
+ CompletionSequenceGroupOutput] = []
613
+ output_index = 0
614
+ # Make sure the non-terminal prefill chunks are still aligned with
615
+ # their own empty output.
616
+ for idx, seq_group_meta in enumerate(
617
+ execute_model_req.seq_group_metadata_list):
618
+ needs_prompt_logprobs = seq_output_prompt_logprobs[idx]
619
+ seq_id, seq_data = seq_data_entries[idx]
620
+ if needs_prompt_logprobs:
621
+ prompt_token_ids = seq_data.get_prompt_token_ids()
622
+
623
+ # Some of these sequences may belong to non-terminal chunks,
624
+ # which may still have to report logprobs for prompts.
625
+ start = 1 if seq_data._num_computed_tokens == 0 \
626
+ else seq_data._num_computed_tokens
627
+ end = (seq_data._num_computed_tokens + \
628
+ seq_group_meta.token_chunk_size)
629
+ prompt_token_ids = prompt_token_ids[start:end]
630
+ prompt_logprobs = [
631
+ create_logprobs_output(
632
+ token_id=p_token_id,
633
+ token_id_logprob_rank=-1,
634
+ token_id_logprob=0.0,
635
+ topk_token_ids=[],
636
+ topk_logprobs=[],
637
+ ) for p_token_id in prompt_token_ids
638
+ ]
639
+ else:
640
+ prompt_logprobs = None
641
+
642
+ # Since we can get chunks here, we dont always have a sampled token
643
+ # (only on last chunk) but we still have to provide an output.
644
+ if not seq_group_meta.do_sample:
645
+ completion_seq_group_output_list.append(
646
+ CompletionSequenceGroupOutput(
647
+ samples=[], prompt_logprobs=prompt_logprobs))
648
+ continue
649
+
650
+ # Sequence with output.
651
+ completion_seq_group_output_list.append(
652
+ create_sequence_group_output(
653
+ token_id=sampled_token_ids_list[output_index][0],
654
+ token_id_logprob_rank=-1,
655
+ token_id_logprob=0.0,
656
+ seq_id=seq_id,
657
+ topk_token_ids=[],
658
+ topk_logprobs=[],
659
+ prompt_logprobs=prompt_logprobs))
660
+ output_index += 1
661
+
662
+ return [SamplerOutput(outputs=completion_seq_group_output_list)]
663
+
664
+ @nvtx_range("spec_decode_worker._run_no_spec")
665
+ def _run_no_spec(self, execute_model_req: ExecuteModelRequest,
666
+ skip_proposer: bool) -> List[SamplerOutput]:
667
+ """Run a single generation step without any speculation. The input is
668
+ sent to the proposer and scorer model so that the KV cache is consistent
669
+ between the two. When skip_proposer is True, the proposer model is
670
+ not called, meaning that the kv-cache in proposer for requests is not
671
+ updated, so they cannot enable spec decode in the rest decoding.
672
+ """
673
+
674
+ sampler_output = self.scorer_worker.execute_model(execute_model_req)
675
+ assert len(sampler_output) == 1
676
+ sampler_output = sampler_output[0]
677
+
678
+ # Store hidden states from target model execution, BxD.
679
+ hidden_states = sampler_output.hidden_states
680
+ if hidden_states is not None:
681
+ # Only decodes and prefill terminal chunks need a hidden state.
682
+ seq_group_meta_with_hidden = [
683
+ sg for sg in execute_model_req.seq_group_metadata_list
684
+ if sg.do_sample
685
+ ]
686
+ if any(seq.is_prompt for seq in seq_group_meta_with_hidden):
687
+ # Drop hidden_states with no prediction (eg non-terminal chunks)
688
+ hidden_states = hidden_states[
689
+ torch.where(sampler_output.sampled_token_ids -
690
+ VLLM_INVALID_TOKEN_ID)[0]]
691
+ if self.previous_hidden_states is None and len(
692
+ seq_group_meta_with_hidden):
693
+ self.previous_hidden_states = HiddenStates(
694
+ hidden_states, seq_group_meta_with_hidden)
695
+ elif self.previous_hidden_states and len(
696
+ seq_group_meta_with_hidden):
697
+ self.previous_hidden_states.update(hidden_states,
698
+ seq_group_meta_with_hidden)
699
+ self.previous_hidden_states.prune(seq_group_meta_with_hidden)
700
+
701
+ if not skip_proposer:
702
+ # We prepare the prefill hidden states here so that there no
703
+ # additional complexity in worker for spec_decode vs non_spec_decode
704
+ # flow and execute_model doesn't need additional modifications.
705
+ execute_model_req.previous_hidden_states = \
706
+ prepare_prefill_hidden_states(
707
+ sampler_output.prefill_hidden_states)
708
+ for i in range(self._num_spec_prefill_steps):
709
+ execute_model_req.spec_step_idx = i
710
+ self.proposer_worker.execute_model(execute_model_req)
711
+
712
+ sampler_output_to_return = (self._serialize_sampler_output_no_logprobs(
713
+ execute_model_req=execute_model_req, sampler_output=sampler_output)
714
+ if self._disable_logprobs else
715
+ [sampler_output])
716
+
717
+ # Clear device tensors from sampler output. This reduces communication
718
+ # overhead when the engine runs in a different process than the workers.
719
+ sampler_output.sampled_token_probs = None
720
+ sampler_output.sampled_token_ids = None
721
+ sampler_output.logprobs = None
722
+ return sampler_output_to_return
723
+
724
+ def _run_non_driver_rank(self) -> bool:
725
+ """Run proposer and verifier model in non-driver workers. This is used
726
+ for both speculation cases (num_lookahead_slots>0) and non-speculation
727
+ cases (e.g. prefill).
728
+
729
+ Returns True if there are remaining sequences to process.
730
+ """
731
+ assert self.rank != self._driver_rank
732
+
733
+ data = broadcast_tensor_dict(src=self._driver_rank)
734
+ if not data:
735
+ return False
736
+ num_lookahead_slots = data["num_lookahead_slots"]
737
+
738
+ # In case of prefill, scorer_worker has to be run before proposer so
739
+ # that the hidden states can be propagated to proposer when needed.
740
+ if data["no_spec"]:
741
+ self.scorer_worker.execute_model()
742
+
743
+ if not data["disable_all_speculation"]:
744
+ # Even if num_lookahead_slots is zero, we want to run the
745
+ # proposer model as it may have KV.
746
+ #
747
+ # We run the proposer once per lookahead slot. In the future we
748
+ # should delegate how many times it runs to the proposer.
749
+ for _ in range(max(num_lookahead_slots, 1)):
750
+ self.proposer_worker.execute_model()
751
+
752
+ if not data["no_spec"]:
753
+ self.scorer_worker.execute_model()
754
+ if data["run_spec_proposer_for_prefill"]:
755
+ self.proposer_worker.execute_model()
756
+
757
+ return True
758
+
759
+ @nvtx_range("spec_decode_worker._run_speculative_decoding_step")
760
+ def _run_speculative_decoding_step(
761
+ self, execute_model_req: ExecuteModelRequest,
762
+ num_lookahead_slots: int) -> List[SamplerOutput]:
763
+ """Execute a single step of speculative decoding.
764
+
765
+ This invokes the proposer worker to get k speculative tokens for each
766
+ sequence, then scores each speculative token using the scoring worker.
767
+
768
+ When `enable_chunked_prefill` is set, scorer will batch decodes and
769
+ prefills, while proposer will sync its KV-cache by running an extra
770
+ forward on prefills.
771
+
772
+ Returns a list of SamplerOutput, each containing a single token per
773
+ sequence.
774
+ """
775
+ # With prefill chunking, expect requests to have prompts first
776
+ # so that backend gets prefill|decode.
777
+ assert num_lookahead_slots == execute_model_req.num_lookahead_slots
778
+
779
+ # Pass last hidden states from target model to proposer
780
+ execute_model_req.previous_hidden_states = self.previous_hidden_states
781
+ self.previous_hidden_states = None
782
+
783
+ with Timer() as proposal_timer:
784
+ # Generate proposals using draft worker.
785
+ proposals = self.proposer_worker.get_spec_proposals(
786
+ execute_model_req, self._seq_with_bonus_token_in_last_step)
787
+
788
+ if not self._allow_zero_draft_token_step and proposals.no_proposals:
789
+ #TODO: Fix it #5814
790
+ raise RuntimeError("Cannot handle cases where distributed draft "
791
+ "workers generate no tokens")
792
+
793
+ execute_model_req.previous_hidden_states = None
794
+
795
+ with Timer() as scoring_timer:
796
+ proposal_scores = self.scorer.score_proposals(
797
+ execute_model_req,
798
+ proposals,
799
+ )
800
+
801
+ _, (non_spec_seqs, non_spec_indices) = split_batch_by_proposal_len(
802
+ execute_model_req.seq_group_metadata_list, proposals.proposal_lens)
803
+ # With prefill chunking enabled, `non_spec_seqs` contains prefills too:
804
+ # discard decodes that have already been processed by proposer.
805
+ non_spec_indices = [
806
+ idx for idx in non_spec_indices
807
+ if execute_model_req.seq_group_metadata_list[idx].is_prompt
808
+ ]
809
+ if len(non_spec_indices):
810
+ all_hidden_states = proposal_scores.hidden_states
811
+ if all_hidden_states is not None:
812
+ prefill_hidden_states = all_hidden_states[non_spec_indices]
813
+ execute_model_req.previous_hidden_states = \
814
+ prepare_prefill_hidden_states(prefill_hidden_states)
815
+ # Sync proposer KV cache for prefills.
816
+ prefill_req = execute_model_req.clone(non_spec_seqs)
817
+ # TODO avoid sampling here?
818
+ self.proposer_worker.execute_model(prefill_req)
819
+
820
+ with Timer() as verification_timer:
821
+ accepted_token_ids, target_logprobs = self._verify_tokens(
822
+ execute_model_req.seq_group_metadata_list, proposal_scores,
823
+ proposals, execute_model_req.num_lookahead_slots)
824
+
825
+ stage_times = (proposal_timer.elapsed_time_ms / num_lookahead_slots,
826
+ scoring_timer.elapsed_time_ms,
827
+ verification_timer.elapsed_time_ms)
828
+
829
+ return self._create_output_sampler_list(
830
+ execute_model_req.seq_group_metadata_list,
831
+ accepted_token_ids,
832
+ target_logprobs=target_logprobs,
833
+ prompt_logprobs=proposal_scores.prompt_logprobs
834
+ if not self._disable_logprobs else None,
835
+ k=execute_model_req.num_lookahead_slots,
836
+ stage_times=stage_times)
837
+
838
+ @nvtx_range("spec_decode_worker._verify_tokens")
839
+ def _verify_tokens(
840
+ self,
841
+ seq_group_metadata_list: List[SequenceGroupMetadata],
842
+ proposal_scores: SpeculativeScores,
843
+ proposals: SpeculativeProposals,
844
+ max_proposal_len: int,
845
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
846
+ """Determine which speculative tokens are accepted using the
847
+ probabilities of each token according to the proposer and scorer models.
848
+
849
+ Returns a tuple of Tensors, one for the accepted token ids and one for
850
+ the logprobs according to the scoring model.
851
+ """
852
+ proposal_lens_list = proposals.proposal_lens.tolist()
853
+
854
+ # vLLM currently only supports proposal lens equal to zero or the batch
855
+ # proposal len. This adds some complexity (splitting the batch into spec
856
+ # and non spec sequences) and should be removed in the future. It can be
857
+ # done by supporting per-sequence proposal lens.
858
+ (_, spec_indices), (_, non_spec_indices) = split_batch_by_proposal_len(
859
+ seq_group_metadata_list, proposal_lens_list)
860
+ original_indices = spec_indices + non_spec_indices
861
+
862
+ # Get probabilities of target model, including bonus tokens.
863
+ proposal_verifier_probs = proposal_scores.probs[spec_indices]
864
+
865
+ # Get non-speculative sampled tokens from target model.
866
+ non_spec_token_ids = proposal_scores.token_ids[non_spec_indices]
867
+
868
+ # Get bonus tokens from target model.
869
+ bonus_token_ids = proposal_scores.token_ids[spec_indices, -1:]
870
+
871
+ # Get probabilities according to proposal method.
872
+ proposal_probs = proposals.proposal_probs[spec_indices]
873
+
874
+ # Get proposed tokens.
875
+ proposal_token_ids = proposals.proposal_token_ids[spec_indices]
876
+
877
+ # Sampler arguments
878
+ sampler_extra_kwargs: Dict[str, Any] = {}
879
+ if self.generators and isinstance(self.spec_decode_sampler,
880
+ SpecDecodeStochasticBaseSampler):
881
+ sampler_extra_kwargs["seeded_seqs"] = {
882
+ idx: self.generators[sgm.request_id]
883
+ for idx, sgm in enumerate(seq_group_metadata_list)
884
+ if sgm.sampling_params.seed is not None
885
+ }
886
+
887
+ accepted_token_ids = self.spec_decode_sampler(
888
+ target_with_bonus_probs=proposal_verifier_probs,
889
+ bonus_token_ids=bonus_token_ids,
890
+ draft_probs=proposal_probs,
891
+ draft_token_ids=proposal_token_ids,
892
+ **sampler_extra_kwargs,
893
+ )
894
+ # Append output tokens from non-speculative sequences to
895
+ # the accepted token ids tensor.
896
+ non_spec_token_ids = non_spec_token_ids.expand(-1, max_proposal_len +
897
+ 1).clone()
898
+ non_spec_token_ids[:, 1:] = -1
899
+ accepted_token_ids = torch.cat(
900
+ [accepted_token_ids, non_spec_token_ids])
901
+ logprobs = proposal_scores.logprobs
902
+ # Rearrange so that results are in the order of the original seq group
903
+ # metadata.
904
+ accepted_token_ids[original_indices] = accepted_token_ids.clone()
905
+
906
+ # B x K+1 x D
907
+ hidden_states = proposal_scores.hidden_states
908
+ if hidden_states is not None:
909
+ # Only get terminal hidden states for next step
910
+ terminal_metadata = [
911
+ sg for sg in seq_group_metadata_list if sg.do_sample
912
+ ]
913
+
914
+ # Contract hidden states based on accepted tokens
915
+ hs_size = hidden_states.shape[-1]
916
+ accepted_index = accepted_token_ids + 1 # Convert -1 to 0
917
+ accepted_index = accepted_index.count_nonzero(dim=1).add_(-1) # b
918
+ # Drop non-terminal prefill chunks hidden states.
919
+ hidden_states = hidden_states[accepted_index !=
920
+ VLLM_INVALID_TOKEN_ID]
921
+ accepted_index = accepted_index[accepted_index !=
922
+ VLLM_INVALID_TOKEN_ID]
923
+ assert len(accepted_index) == hidden_states.shape[0] == len(
924
+ terminal_metadata)
925
+ index = accepted_index[:, None, None].expand(-1, 1,
926
+ hs_size) # b x 1 x d
927
+ second_last_token_hidden_states = hidden_states[:, -2] # b x d
928
+ hidden_states = hidden_states.gather(1, index).squeeze(1) # b x d
929
+ # Store hidden states from target model for subsequent decode step
930
+ self.previous_hidden_states = HiddenStates(
931
+ hidden_states, terminal_metadata,
932
+ second_last_token_hidden_states)
933
+ return accepted_token_ids, logprobs
934
+
935
+ def _create_output_sampler_list(
936
+ self,
937
+ seq_group_metadata_list: List[SequenceGroupMetadata],
938
+ accepted_token_ids: torch.Tensor, # shape: [batch_size, k+1]
939
+ target_logprobs: torch.Tensor, # shape: [batch_size, k+1, vocab_size]
940
+ prompt_logprobs: Optional[
941
+ torch.Tensor], # shape: [nprompt_tokens, vocab_size]
942
+ k: int,
943
+ stage_times: Tuple[float, float, float],
944
+ ) -> List[SamplerOutput]:
945
+ """Given the accepted token ids, create a list of SamplerOutput.
946
+
947
+ The output is padded with -1 tokens such that each sequence has
948
+ the same number of outputs.
949
+ """
950
+ batch_size, num_steps = accepted_token_ids.shape
951
+ accepted_token_ids_by_step = accepted_token_ids.transpose(0, 1)
952
+ if self._disable_logprobs:
953
+ # We are skipping the logprobs. Hence don't serialize the
954
+ # logprobs related tensors from the GPU. Instead create
955
+ # empty/dummy lists.
956
+ (accepted_token_id_ranks_by_step,
957
+ accepted_token_id_logprobs_by_step,
958
+ topk_logprobs_by_step, topk_indices_by_step) =\
959
+ self._create_dummy_logprob_lists(
960
+ batch_size, num_steps,
961
+ self.scorer_worker.model_config.max_logprobs)
962
+ else:
963
+ # Organize input tensors by step instead of by sequence.
964
+ target_logprobs_by_step = target_logprobs.transpose(0, 1)
965
+ # Serialize all tensors into Python lists.
966
+ (accepted_token_id_ranks_by_step,
967
+ accepted_token_id_logprobs_by_step,
968
+ topk_logprobs_by_step, topk_indices_by_step) =\
969
+ self._create_logprob_lists_from_tensors(
970
+ target_logprobs_by_step, accepted_token_ids_by_step,
971
+ self.scorer_worker.model_config.max_logprobs)
972
+
973
+ # Get the sequence ids and num_logprobs (sampling parameter) in the
974
+ # batch.
975
+ seq_ids, request_ids_seq_ids_mapping = get_all_seq_ids_and_request_ids(
976
+ seq_group_metadata_list)
977
+
978
+ num_logprobs_per_seq = get_all_num_logprobs(seq_group_metadata_list)
979
+
980
+ # Serialize tensor to CPU Python list.
981
+ accepted_token_ids_by_step = accepted_token_ids_by_step.tolist()
982
+
983
+ # Construct the output on a per-step, per-sequence basis.
984
+ # Non-terminal prefill chunks will end up here as rows with just -1s
985
+ # i.e mixed-batch [[-1, 1576], [-1, 29884], [-1, -1], [-1, -1]] while
986
+ # terminal chunks will only have one generated token at time 0.
987
+ sampler_output_list: List[SamplerOutput] = []
988
+
989
+ # Prefills are not multi-step (return at most 1 token), in order to
990
+ # avoid padding or repetition to fit decodes, we separate them.
991
+ for i, sg in enumerate(seq_group_metadata_list):
992
+ if not sg.is_prompt:
993
+ # Requests are ordered as prefills|decodes=>no more prefills.
994
+ break
995
+ num_logprobs = num_logprobs_per_seq[i]
996
+ seq_kwargs = dict(token_id=-1,
997
+ token_id_logprob_rank=0,
998
+ token_id_logprob=-float('inf'),
999
+ topk_token_ids=[-1] * num_logprobs,
1000
+ topk_logprobs=[-float('inf')] * num_logprobs,
1001
+ seq_id=seq_ids[i])
1002
+ # Terminal chunk, has token.
1003
+ if sg.do_sample:
1004
+ seq_kwargs.update(
1005
+ dict(
1006
+ token_id=accepted_token_ids[i][0].item(),
1007
+ token_id_logprob_rank=accepted_token_id_ranks_by_step[
1008
+ 0][i],
1009
+ token_id_logprob=accepted_token_id_logprobs_by_step[0]
1010
+ [i],
1011
+ topk_token_ids=topk_indices_by_step[0][i]
1012
+ [:num_logprobs],
1013
+ # output only so step is 0
1014
+ topk_logprobs=topk_logprobs_by_step[0][i]
1015
+ [:num_logprobs],
1016
+ ))
1017
+ needs_plogs = (sg.sampling_params.prompt_logprobs
1018
+ and sg.sampling_params.prompt_logprobs > 0)
1019
+ plogs = None
1020
+ if prompt_logprobs is not None:
1021
+ # Even non-terminal prompt chunks can have logprobs here.
1022
+ plogs = prompt_logprobs[i]
1023
+ elif needs_plogs:
1024
+ # Prompt logprobs are requested but `_disable_logprobs` is set.
1025
+ seq_data = next(iter(sg.seq_data.values()))
1026
+ # Get only the tokens in this chunk!
1027
+ prompt_token_ids = seq_data.get_prompt_token_ids()
1028
+ prompt_token_ids = prompt_token_ids[
1029
+ seq_data.
1030
+ _num_computed_tokens:seq_data._num_computed_tokens +
1031
+ sg.token_chunk_size]
1032
+
1033
+ is_first_chunk = seq_data._num_computed_tokens == 0
1034
+ # There's no prob generated for the first token in a sequence.
1035
+ if is_first_chunk:
1036
+ prompt_token_ids = prompt_token_ids[1:]
1037
+ plogs = [
1038
+ create_logprobs_output(
1039
+ token_id=p_token_id,
1040
+ token_id_logprob_rank=-1,
1041
+ token_id_logprob=0.0,
1042
+ topk_token_ids=[],
1043
+ topk_logprobs=[],
1044
+ ) for p_token_id in prompt_token_ids
1045
+ ]
1046
+ seq_kwargs.update(dict(prompt_logprobs=plogs))
1047
+
1048
+ sampler_output_list.append(
1049
+ SamplerOutput(
1050
+ outputs=[create_sequence_group_output(
1051
+ **seq_kwargs)])) # type: ignore
1052
+
1053
+ # Decodes, create one SamplerOutput per-step (at most K+1).
1054
+ for step_index in range(num_steps):
1055
+ if all(token_id == -1 for sg, token_id in zip(
1056
+ seq_group_metadata_list,
1057
+ accepted_token_ids_by_step[step_index])
1058
+ if not sg.is_prompt):
1059
+ break
1060
+
1061
+ step_output_token_ids: List[CompletionSequenceGroupOutput] = []
1062
+ for sequence_index in range(batch_size):
1063
+ seq_meta = seq_group_metadata_list[sequence_index]
1064
+ # Prompts already processed above.
1065
+ if seq_meta.is_prompt:
1066
+ continue
1067
+
1068
+ # Each sequence may have a different num_logprobs; retrieve it.
1069
+ num_logprobs = num_logprobs_per_seq[sequence_index]
1070
+ step_output_token_ids.append(
1071
+ create_sequence_group_output(
1072
+ token_id=accepted_token_ids_by_step[step_index]
1073
+ [sequence_index],
1074
+ token_id_logprob_rank=accepted_token_id_ranks_by_step[
1075
+ step_index][sequence_index],
1076
+ token_id_logprob=accepted_token_id_logprobs_by_step[
1077
+ step_index][sequence_index],
1078
+ seq_id=seq_ids[sequence_index],
1079
+ topk_token_ids=topk_indices_by_step[step_index]
1080
+ [sequence_index][:num_logprobs],
1081
+ topk_logprobs=topk_logprobs_by_step[step_index]
1082
+ [sequence_index][:num_logprobs],
1083
+ step_index=step_index))
1084
+ sampler_output_list.append(
1085
+ SamplerOutput(outputs=step_output_token_ids))
1086
+
1087
+ # Populate the data structures needed to keep track of sequences with
1088
+ # bonus tokens.
1089
+ self._track_sequences_with_bonus_tokens(seq_ids,
1090
+ request_ids_seq_ids_mapping,
1091
+ accepted_token_ids_by_step)
1092
+ maybe_rejsample_metrics = (
1093
+ self._metrics.maybe_collect_rejsample_metrics(k))
1094
+ if maybe_rejsample_metrics is not None:
1095
+ sampler_output_list[
1096
+ 0].spec_decode_worker_metrics = maybe_rejsample_metrics
1097
+
1098
+ # Log time spent in each stage periodically.
1099
+ # This is periodic because the rejection sampler emits metrics
1100
+ # periodically.
1101
+ self._maybe_log_stage_times(*stage_times)
1102
+ # First `n_prefills` entries will contain prefills SamplerOutput when
1103
+ # chunked prefill is enabled, the rest is decodes in multi-step format.
1104
+ return sampler_output_list
1105
+
1106
+ def _maybe_log_stage_times(self, average_time_per_proposal_tok_ms: float,
1107
+ scoring_time_ms: float,
1108
+ verification_time_ms: float) -> None:
1109
+ """Log the speculative stage times. If stat logging is disabled, do
1110
+ nothing.
1111
+ """
1112
+ if self._disable_log_stats:
1113
+ return
1114
+
1115
+ logger.info(
1116
+ "SpecDecodeWorker stage times: "
1117
+ "average_time_per_proposal_tok_ms=%.02f "
1118
+ "scoring_time_ms=%.02f verification_time_ms=%.02f",
1119
+ average_time_per_proposal_tok_ms, scoring_time_ms,
1120
+ verification_time_ms)
1121
+
1122
+ def _create_dummy_logprob_lists(
1123
+ self,
1124
+ batch_size: int,
1125
+ num_steps: int,
1126
+ num_top_k: int,
1127
+ ) -> Tuple[List[List[int]], List[List[float]],
1128
+ List[List[List[Optional[float]]]],
1129
+ List[List[List[Optional[int]]]]]:
1130
+ """
1131
+ Creates and returns four dummy lists representing token probabilities
1132
+ and their ranks.
1133
+
1134
+ This method initializes and returns:
1135
+ - The ranks of the accepted tokens, shaped (num_steps, batch_size)
1136
+ - The log probabilities of the accepted tokens,
1137
+ shaped (num_steps, batch_size)
1138
+ - The log probabilities of the top k tokens,
1139
+ shaped (num_steps, batch_size, num_top_k)
1140
+ - The token IDs of the top k tokens,
1141
+ shaped (num_steps, batch_size, num_top_k)
1142
+
1143
+ Args:
1144
+ batch_size (int): The size of the batch.
1145
+ num_steps (int): The number of steps in the sequence.
1146
+ num_top_k (int): The number of top-k token log probabilities to
1147
+ return.
1148
+
1149
+ Returns:
1150
+ A tuple containing four dummy lists as described above.
1151
+ """
1152
+ accepted_token_id_ranks_by_step = [[-1] * batch_size
1153
+ for _ in range(num_steps)]
1154
+ accepted_token_id_logprobs_by_step = [[0.0] * batch_size
1155
+ for _ in range(num_steps)]
1156
+ topk_logprobs_by_step: List[List[List[Optional[float]]]] = [[
1157
+ [None] * num_top_k for _ in range(batch_size)
1158
+ ] for _ in range(num_steps)]
1159
+ topk_indices_by_step: List[List[List[Optional[int]]]] = [[
1160
+ [None] * num_top_k for _ in range(batch_size)
1161
+ ] for _ in range(num_steps)]
1162
+ return (accepted_token_id_ranks_by_step,
1163
+ accepted_token_id_logprobs_by_step, topk_logprobs_by_step,
1164
+ topk_indices_by_step)
1165
+
1166
+ def _create_logprob_lists_from_tensors(
1167
+ self,
1168
+ target_logprobs_by_step: torch.Tensor,
1169
+ accepted_token_ids_by_step: torch.Tensor,
1170
+ num_top_k: int,
1171
+ ) -> Tuple[List[List[int]], List[List[float]],
1172
+ List[List[List[Optional[float]]]],
1173
+ List[List[List[Optional[int]]]]]:
1174
+ """
1175
+ Creates and returns four lists representing token probabilities and
1176
+ their ranks.
1177
+
1178
+ This method initializes and returns four lists containing:
1179
+ - The ranks of the accepted tokens, shaped (num_steps, batch_size)
1180
+ - The log probabilities of the accepted tokens,
1181
+ shaped (num_steps, batch_size)
1182
+ - The log probabilities of the top k tokens,
1183
+ shaped (num_steps, batch_size, num_top_k)
1184
+ - The token IDs of the top k tokens,
1185
+ shaped (num_steps, batch_size, num_top_k)
1186
+
1187
+ Args:
1188
+ target_logprobs_by_step (torch.Tensor): Tensor representing the
1189
+ log probabilities of the target model,
1190
+ shaped (num_steps, batch_size, vocab_size)
1191
+ accepted_token_ids_by_step (torch.Tensor): Tensor representing
1192
+ the accepted token_ids, shaped (num_steps, batch_size)
1193
+ num_top_k (int): The number of top-k token log probabilities to
1194
+ return.
1195
+
1196
+ Returns:
1197
+ A tuple containing the lists as described above.
1198
+ """
1199
+ # Serialize all tensors to CPU Python lists.
1200
+ # Get the logprobs/rank of the accepted tokens.
1201
+ (accepted_token_id_ranks_by_step_tensor,
1202
+ accepted_token_id_logprobs_by_step_tensor
1203
+ ) = get_sampled_token_logprobs(
1204
+ logprob_tensor=target_logprobs_by_step,
1205
+ sampled_token_ids=accepted_token_ids_by_step,
1206
+ )
1207
+ # Get the top-k logprobs (which may or may not include the
1208
+ # logprob of the accepted token).
1209
+ (topk_logprobs_by_step_tensor,
1210
+ topk_indices_by_step_tensor) = target_logprobs_by_step.topk(
1211
+ k=num_top_k,
1212
+ dim=-1,
1213
+ )
1214
+ accepted_token_id_ranks_by_step = (
1215
+ accepted_token_id_ranks_by_step_tensor.tolist())
1216
+ accepted_token_id_logprobs_by_step = (
1217
+ accepted_token_id_logprobs_by_step_tensor.tolist())
1218
+ topk_logprobs_by_step = topk_logprobs_by_step_tensor.tolist()
1219
+ topk_indices_by_step = topk_indices_by_step_tensor.tolist()
1220
+ return (accepted_token_id_ranks_by_step,
1221
+ accepted_token_id_logprobs_by_step, topk_logprobs_by_step,
1222
+ topk_indices_by_step)
1223
+
1224
+ def _track_finished_requests(self, execute_model_req: ExecuteModelRequest):
1225
+ """
1226
+ Removes the finished requests and their associated sequence ids from
1227
+ internal book keeping data structures.
1228
+ """
1229
+ for finished_request in execute_model_req.finished_requests_ids:
1230
+ for seq_id in self._request_id_seq_id_mapping[finished_request]:
1231
+ self._seq_with_bonus_token_in_last_step.discard(seq_id)
1232
+ del self._request_id_seq_id_mapping[finished_request]
1233
+
1234
+ def _track_sequences_with_bonus_tokens(
1235
+ self, seq_ids: List[int],
1236
+ request_ids_seq_ids_mapping: Dict[str, Set[int]],
1237
+ accepted_token_ids_by_step: List[List[int]]):
1238
+ """
1239
+ Updates the internal data structures which keep track of sequences
1240
+ which have been assigned bonus tokens in their last forward pass.
1241
+ """
1242
+ for seq_index, seq_id in enumerate(seq_ids):
1243
+ last_token_id = accepted_token_ids_by_step[-1][seq_index]
1244
+ if last_token_id == -1:
1245
+ self._seq_with_bonus_token_in_last_step.discard(seq_id)
1246
+ else:
1247
+ self._seq_with_bonus_token_in_last_step.add(seq_id)
1248
+ for request_id, sequences in request_ids_seq_ids_mapping.items():
1249
+ self._request_id_seq_id_mapping[request_id].update(sequences)
1250
+
1251
+ @cached_property
1252
+ def _vocab_size(self) -> int:
1253
+ """Get the vocab size of the model and make sure it's consistent between
1254
+ draft and target workers.
1255
+ """
1256
+ vocab_sizes = [
1257
+ worker.vocab_size
1258
+ for worker in [self.proposer_worker, self.scorer_worker]
1259
+ ]
1260
+ assert all(vocab_sizes[0] == vocab_size for vocab_size in vocab_sizes)
1261
+ return vocab_sizes[0]
1262
+
1263
+ @property
1264
+ def rank(self):
1265
+ return self.scorer_worker.rank
1266
+
1267
+ @property
1268
+ def device(self):
1269
+ return self.scorer_worker.device
1270
+
1271
+ @property
1272
+ def _driver_rank(self) -> int:
1273
+ return 0
1274
+
1275
+ def get_cache_block_size_bytes(self):
1276
+ """Return the size of a cache block in bytes.
1277
+
1278
+ This function is only used to compose workers within a SpecDecodeWorker.
1279
+ We leave composing a SpecDecodeWorker within a SpecDecodeWorker
1280
+ undefined for now, although it could be implemented in the future.
1281
+ See https://arxiv.org/abs/2308.04623.
1282
+ """
1283
+ raise NotImplementedError
1284
+
1285
+ def start_profile(self):
1286
+ if isinstance(self.scorer_worker, WorkerBase):
1287
+ self.scorer_worker.start_profile()
1288
+
1289
+ def stop_profile(self):
1290
+ if isinstance(self.scorer_worker, WorkerBase):
1291
+ self.scorer_worker.stop_profile()
1292
+
1293
+
1294
+ def split_num_cache_blocks_evenly(scorer_cache_block_size_bytes: int,
1295
+ proposer_cache_block_size_bytes: int,
1296
+ total_num_gpu_blocks: int) -> int:
1297
+ """Given total_num_gpu_blocks, the number of GPU blocks that could be
1298
+ allocate to the target model, this function calculates how many blocks
1299
+ should be given to the draft and target model.
1300
+
1301
+ Note that usually the block size, in bytes, of each model is different,
1302
+ as it's a function of number of KV/layer, number of heads, and hidden
1303
+ dimension size.
1304
+
1305
+ Since the target and draft models allocate the same number of blocks, we
1306
+ simply calculate the number of blocks where if allocated by both models,
1307
+ the total memory usage from KV cache is no larger than the number of
1308
+ blocks allocatable by the target model alone.
1309
+ """
1310
+ new_num_gpu_blocks = int(
1311
+ total_num_gpu_blocks * scorer_cache_block_size_bytes /
1312
+ (proposer_cache_block_size_bytes + scorer_cache_block_size_bytes))
1313
+
1314
+ return new_num_gpu_blocks
1315
+
1316
+
1317
+ def prepare_prefill_hidden_states(
1318
+ prefill_hidden_states: torch.Tensor) -> HiddenStates:
1319
+ # For prefill step in proposer, we run the model for N-1 tokens
1320
+ # because Nth token will be processed in the first decode step. For
1321
+ # N-1 tokens, the input should be 0:N-1 hidden states which should
1322
+ # be concatanated with 1:N token (since output of scorer has to be
1323
+ # the input for proposer). Therefore, we shift the hidden states to
1324
+ # align n-1th hidden state with nth token.
1325
+ return HiddenStates(prefill_hidden_states.roll(
1326
+ shifts=1, dims=0)) if prefill_hidden_states is not None else None