vllm-cpu-amxbf16 0.9.1__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1197) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +53 -0
  3. vllm/_custom_ops.py +1828 -0
  4. vllm/_ipex_ops.py +244 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +115 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +308 -0
  20. vllm/attention/backends/blocksparse_attn.py +461 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1498 -0
  23. vllm/attention/backends/flash_attn.py +1003 -0
  24. vllm/attention/backends/flashinfer.py +1104 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +313 -0
  27. vllm/attention/backends/ipex_attn.py +398 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1385 -0
  30. vllm/attention/backends/pallas.py +351 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +975 -0
  34. vllm/attention/backends/torch_sdpa.py +703 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +802 -0
  38. vllm/attention/layer.py +468 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +906 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/prefix_prefill.py +902 -0
  52. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  53. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  54. vllm/attention/ops/triton_decode_attention.py +674 -0
  55. vllm/attention/ops/triton_flash_attention.py +979 -0
  56. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  57. vllm/attention/ops/triton_unified_attention.py +334 -0
  58. vllm/attention/selector.py +187 -0
  59. vllm/attention/utils/fa_utils.py +55 -0
  60. vllm/beam_search.py +87 -0
  61. vllm/benchmarks/__init__.py +0 -0
  62. vllm/benchmarks/datasets.py +1185 -0
  63. vllm/benchmarks/endpoint_request_func.py +381 -0
  64. vllm/benchmarks/latency.py +168 -0
  65. vllm/benchmarks/serve.py +1135 -0
  66. vllm/benchmarks/throughput.py +609 -0
  67. vllm/benchmarks/utils.py +70 -0
  68. vllm/collect_env.py +820 -0
  69. vllm/compilation/__init__.py +0 -0
  70. vllm/compilation/activation_quant_fusion.py +89 -0
  71. vllm/compilation/backends.py +563 -0
  72. vllm/compilation/base_piecewise_backend.py +72 -0
  73. vllm/compilation/collective_fusion.py +127 -0
  74. vllm/compilation/compiler_interface.py +544 -0
  75. vllm/compilation/counter.py +38 -0
  76. vllm/compilation/cuda_piecewise_backend.py +214 -0
  77. vllm/compilation/decorators.py +250 -0
  78. vllm/compilation/fix_functionalization.py +191 -0
  79. vllm/compilation/fusion.py +618 -0
  80. vllm/compilation/fx_utils.py +62 -0
  81. vllm/compilation/inductor_pass.py +115 -0
  82. vllm/compilation/monitor.py +39 -0
  83. vllm/compilation/multi_output_match.py +109 -0
  84. vllm/compilation/noop_elimination.py +137 -0
  85. vllm/compilation/pass_manager.py +78 -0
  86. vllm/compilation/sequence_parallelism.py +268 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  88. vllm/compilation/vllm_inductor_pass.py +67 -0
  89. vllm/compilation/wrapper.py +135 -0
  90. vllm/config.py +4746 -0
  91. vllm/connections.py +174 -0
  92. vllm/core/__init__.py +0 -0
  93. vllm/core/block/__init__.py +0 -0
  94. vllm/core/block/block_table.py +399 -0
  95. vllm/core/block/common.py +371 -0
  96. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  97. vllm/core/block/interfaces.py +319 -0
  98. vllm/core/block/naive_block.py +466 -0
  99. vllm/core/block/prefix_caching_block.py +1135 -0
  100. vllm/core/block/utils.py +28 -0
  101. vllm/core/block_manager.py +521 -0
  102. vllm/core/evictor.py +157 -0
  103. vllm/core/interfaces.py +135 -0
  104. vllm/core/placeholder_block_space_manager.py +100 -0
  105. vllm/core/scheduler.py +2093 -0
  106. vllm/device_allocator/__init__.py +0 -0
  107. vllm/device_allocator/cumem.py +281 -0
  108. vllm/distributed/__init__.py +6 -0
  109. vllm/distributed/communication_op.py +41 -0
  110. vllm/distributed/device_communicators/__init__.py +0 -0
  111. vllm/distributed/device_communicators/all2all.py +264 -0
  112. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  113. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  114. vllm/distributed/device_communicators/cuda_communicator.py +176 -0
  115. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  116. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  117. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  118. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  119. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  120. vllm/distributed/device_communicators/pynccl.py +218 -0
  121. vllm/distributed/device_communicators/pynccl_wrapper.py +341 -0
  122. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  123. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  124. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  125. vllm/distributed/kv_events.py +356 -0
  126. vllm/distributed/kv_transfer/README.md +29 -0
  127. vllm/distributed/kv_transfer/__init__.py +12 -0
  128. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  129. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  130. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  131. vllm/distributed/kv_transfer/kv_connector/factory.py +128 -0
  132. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  133. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  134. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +108 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +134 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1030 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +384 -0
  142. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  144. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  145. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  146. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  147. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  149. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +280 -0
  150. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  151. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  152. vllm/distributed/parallel_state.py +1296 -0
  153. vllm/distributed/tpu_distributed_utils.py +177 -0
  154. vllm/distributed/utils.py +536 -0
  155. vllm/engine/__init__.py +0 -0
  156. vllm/engine/arg_utils.py +1708 -0
  157. vllm/engine/async_llm_engine.py +1200 -0
  158. vllm/engine/async_timeout.py +173 -0
  159. vllm/engine/llm_engine.py +2097 -0
  160. vllm/engine/metrics.py +629 -0
  161. vllm/engine/metrics_types.py +94 -0
  162. vllm/engine/multiprocessing/__init__.py +148 -0
  163. vllm/engine/multiprocessing/client.py +681 -0
  164. vllm/engine/multiprocessing/engine.py +460 -0
  165. vllm/engine/output_processor/__init__.py +0 -0
  166. vllm/engine/output_processor/interfaces.py +75 -0
  167. vllm/engine/output_processor/multi_step.py +216 -0
  168. vllm/engine/output_processor/single_step.py +145 -0
  169. vllm/engine/output_processor/stop_checker.py +131 -0
  170. vllm/engine/output_processor/util.py +28 -0
  171. vllm/engine/protocol.py +317 -0
  172. vllm/entrypoints/__init__.py +0 -0
  173. vllm/entrypoints/api_server.py +178 -0
  174. vllm/entrypoints/chat_utils.py +1299 -0
  175. vllm/entrypoints/cli/__init__.py +0 -0
  176. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  177. vllm/entrypoints/cli/benchmark/base.py +39 -0
  178. vllm/entrypoints/cli/benchmark/latency.py +30 -0
  179. vllm/entrypoints/cli/benchmark/main.py +54 -0
  180. vllm/entrypoints/cli/benchmark/serve.py +30 -0
  181. vllm/entrypoints/cli/benchmark/throughput.py +30 -0
  182. vllm/entrypoints/cli/collect_env.py +35 -0
  183. vllm/entrypoints/cli/main.py +65 -0
  184. vllm/entrypoints/cli/openai.py +205 -0
  185. vllm/entrypoints/cli/run_batch.py +62 -0
  186. vllm/entrypoints/cli/serve.py +328 -0
  187. vllm/entrypoints/cli/types.py +25 -0
  188. vllm/entrypoints/launcher.py +147 -0
  189. vllm/entrypoints/llm.py +1544 -0
  190. vllm/entrypoints/logger.py +50 -0
  191. vllm/entrypoints/openai/__init__.py +0 -0
  192. vllm/entrypoints/openai/api_server.py +1387 -0
  193. vllm/entrypoints/openai/cli_args.py +315 -0
  194. vllm/entrypoints/openai/logits_processors.py +90 -0
  195. vllm/entrypoints/openai/protocol.py +1913 -0
  196. vllm/entrypoints/openai/run_batch.py +463 -0
  197. vllm/entrypoints/openai/serving_chat.py +1221 -0
  198. vllm/entrypoints/openai/serving_classification.py +160 -0
  199. vllm/entrypoints/openai/serving_completion.py +592 -0
  200. vllm/entrypoints/openai/serving_embedding.py +201 -0
  201. vllm/entrypoints/openai/serving_engine.py +986 -0
  202. vllm/entrypoints/openai/serving_models.py +315 -0
  203. vllm/entrypoints/openai/serving_pooling.py +232 -0
  204. vllm/entrypoints/openai/serving_score.py +433 -0
  205. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  206. vllm/entrypoints/openai/serving_transcription.py +424 -0
  207. vllm/entrypoints/openai/tool_parsers/__init__.py +23 -0
  208. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  209. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  210. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  211. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  212. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  213. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  214. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  215. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  216. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  217. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  218. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  219. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  220. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  221. vllm/entrypoints/score_utils.py +50 -0
  222. vllm/entrypoints/ssl.py +75 -0
  223. vllm/entrypoints/utils.py +233 -0
  224. vllm/env_override.py +41 -0
  225. vllm/envs.py +944 -0
  226. vllm/executor/__init__.py +0 -0
  227. vllm/executor/executor_base.py +401 -0
  228. vllm/executor/mp_distributed_executor.py +244 -0
  229. vllm/executor/msgspec_utils.py +30 -0
  230. vllm/executor/multiproc_worker_utils.py +313 -0
  231. vllm/executor/ray_distributed_executor.py +701 -0
  232. vllm/executor/ray_utils.py +399 -0
  233. vllm/executor/uniproc_executor.py +139 -0
  234. vllm/forward_context.py +179 -0
  235. vllm/inputs/__init__.py +41 -0
  236. vllm/inputs/data.py +331 -0
  237. vllm/inputs/parse.py +151 -0
  238. vllm/inputs/preprocess.py +909 -0
  239. vllm/inputs/registry.py +237 -0
  240. vllm/jsontree.py +80 -0
  241. vllm/logger.py +212 -0
  242. vllm/logging_utils/__init__.py +8 -0
  243. vllm/logging_utils/dump_input.py +85 -0
  244. vllm/logging_utils/formatter.py +18 -0
  245. vllm/logits_process.py +119 -0
  246. vllm/lora/__init__.py +0 -0
  247. vllm/lora/fully_sharded_layers.py +355 -0
  248. vllm/lora/layers.py +1285 -0
  249. vllm/lora/lora.py +199 -0
  250. vllm/lora/models.py +818 -0
  251. vllm/lora/ops/__init__.py +0 -0
  252. vllm/lora/ops/torch_ops/__init__.py +16 -0
  253. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  254. vllm/lora/ops/triton_ops/__init__.py +12 -0
  255. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  256. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  257. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  258. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  259. vllm/lora/ops/triton_ops/utils.py +120 -0
  260. vllm/lora/ops/xla_ops/__init__.py +7 -0
  261. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  262. vllm/lora/peft_helper.py +136 -0
  263. vllm/lora/punica_wrapper/__init__.py +10 -0
  264. vllm/lora/punica_wrapper/punica_base.py +485 -0
  265. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  266. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  267. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  268. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  269. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  270. vllm/lora/punica_wrapper/utils.py +164 -0
  271. vllm/lora/request.py +99 -0
  272. vllm/lora/resolver.py +85 -0
  273. vllm/lora/utils.py +240 -0
  274. vllm/lora/worker_manager.py +259 -0
  275. vllm/model_executor/__init__.py +16 -0
  276. vllm/model_executor/custom_op.py +152 -0
  277. vllm/model_executor/guided_decoding/__init__.py +181 -0
  278. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  279. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  280. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  281. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  282. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  283. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  284. vllm/model_executor/guided_decoding/utils.py +242 -0
  285. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  286. vllm/model_executor/layers/__init__.py +0 -0
  287. vllm/model_executor/layers/activation.py +369 -0
  288. vllm/model_executor/layers/fused_moe/__init__.py +54 -0
  289. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +125 -0
  290. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +117 -0
  291. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  292. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  293. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  294. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  295. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  296. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  297. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  298. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  299. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  300. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  301. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  302. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  303. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  304. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  305. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  455. vllm/model_executor/layers/fused_moe/cutlass_moe.py +461 -0
  456. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +240 -0
  457. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +240 -0
  458. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +186 -0
  459. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +775 -0
  460. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +232 -0
  461. vllm/model_executor/layers/fused_moe/fused_moe.py +1724 -0
  462. vllm/model_executor/layers/fused_moe/layer.py +1535 -0
  463. vllm/model_executor/layers/fused_moe/modular_kernel.py +446 -0
  464. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +243 -0
  465. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  466. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  467. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  468. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +159 -0
  469. vllm/model_executor/layers/fused_moe/prepare_finalize.py +69 -0
  470. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +421 -0
  471. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +117 -0
  472. vllm/model_executor/layers/fused_moe/utils.py +98 -0
  473. vllm/model_executor/layers/layernorm.py +288 -0
  474. vllm/model_executor/layers/lightning_attn.py +652 -0
  475. vllm/model_executor/layers/linear.py +1524 -0
  476. vllm/model_executor/layers/logits_processor.py +197 -0
  477. vllm/model_executor/layers/mamba/__init__.py +0 -0
  478. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  479. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  480. vllm/model_executor/layers/mamba/mamba_mixer2.py +616 -0
  481. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  482. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  483. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  484. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  485. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  486. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  487. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  488. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  489. vllm/model_executor/layers/pooler.py +350 -0
  490. vllm/model_executor/layers/quantization/__init__.py +157 -0
  491. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  492. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  493. vllm/model_executor/layers/quantization/awq.py +194 -0
  494. vllm/model_executor/layers/quantization/awq_marlin.py +519 -0
  495. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  496. vllm/model_executor/layers/quantization/base_config.py +151 -0
  497. vllm/model_executor/layers/quantization/bitblas.py +461 -0
  498. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  499. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  500. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +668 -0
  501. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1260 -0
  502. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  503. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  504. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  505. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  506. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +93 -0
  507. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +178 -0
  508. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  509. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  510. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  511. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  512. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  513. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  514. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  515. vllm/model_executor/layers/quantization/experts_int8.py +196 -0
  516. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  517. vllm/model_executor/layers/quantization/fp8.py +906 -0
  518. vllm/model_executor/layers/quantization/gguf.py +565 -0
  519. vllm/model_executor/layers/quantization/gptq.py +278 -0
  520. vllm/model_executor/layers/quantization/gptq_bitblas.py +445 -0
  521. vllm/model_executor/layers/quantization/gptq_marlin.py +648 -0
  522. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  523. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  524. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  525. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  526. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  527. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  528. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  529. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  530. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  531. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +120 -0
  532. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  533. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  534. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  535. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  536. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  537. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  538. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  539. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  540. vllm/model_executor/layers/quantization/marlin.py +261 -0
  541. vllm/model_executor/layers/quantization/modelopt.py +737 -0
  542. vllm/model_executor/layers/quantization/moe_wna16.py +449 -0
  543. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  544. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  545. vllm/model_executor/layers/quantization/qqq.py +275 -0
  546. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  547. vllm/model_executor/layers/quantization/quark/quark.py +441 -0
  548. vllm/model_executor/layers/quantization/quark/quark_moe.py +237 -0
  549. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  550. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  551. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  552. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +146 -0
  553. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  554. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  555. vllm/model_executor/layers/quantization/schema.py +86 -0
  556. vllm/model_executor/layers/quantization/torchao.py +161 -0
  557. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  558. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  559. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  560. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  561. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  562. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  563. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  564. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  565. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  566. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  567. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  568. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  569. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  570. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  571. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  572. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  573. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  574. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  575. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  576. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  577. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  578. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  579. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  580. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  581. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  582. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  583. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  763. vllm/model_executor/layers/quantization/utils/fp8_utils.py +618 -0
  764. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  765. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  766. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  767. vllm/model_executor/layers/quantization/utils/machete_utils.py +33 -0
  768. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  769. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  770. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  771. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  772. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  773. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  774. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  775. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +104 -0
  776. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  777. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  778. vllm/model_executor/layers/rejection_sampler.py +406 -0
  779. vllm/model_executor/layers/resampler.py +270 -0
  780. vllm/model_executor/layers/rotary_embedding.py +1862 -0
  781. vllm/model_executor/layers/sampler.py +1204 -0
  782. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  783. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  784. vllm/model_executor/layers/utils.py +95 -0
  785. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  786. vllm/model_executor/model_loader/__init__.py +76 -0
  787. vllm/model_executor/model_loader/base_loader.py +43 -0
  788. vllm/model_executor/model_loader/bitsandbytes_loader.py +570 -0
  789. vllm/model_executor/model_loader/default_loader.py +282 -0
  790. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  791. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  792. vllm/model_executor/model_loader/neuron.py +476 -0
  793. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  794. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  795. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  796. vllm/model_executor/model_loader/tensorizer.py +600 -0
  797. vllm/model_executor/model_loader/tensorizer_loader.py +123 -0
  798. vllm/model_executor/model_loader/tpu.py +112 -0
  799. vllm/model_executor/model_loader/utils.py +302 -0
  800. vllm/model_executor/model_loader/weight_utils.py +782 -0
  801. vllm/model_executor/models/__init__.py +28 -0
  802. vllm/model_executor/models/adapters.py +248 -0
  803. vllm/model_executor/models/aimv2.py +246 -0
  804. vllm/model_executor/models/arctic.py +559 -0
  805. vllm/model_executor/models/aria.py +657 -0
  806. vllm/model_executor/models/aya_vision.py +466 -0
  807. vllm/model_executor/models/baichuan.py +474 -0
  808. vllm/model_executor/models/bamba.py +543 -0
  809. vllm/model_executor/models/bart.py +938 -0
  810. vllm/model_executor/models/bert.py +523 -0
  811. vllm/model_executor/models/bert_with_rope.py +769 -0
  812. vllm/model_executor/models/blip.py +339 -0
  813. vllm/model_executor/models/blip2.py +718 -0
  814. vllm/model_executor/models/bloom.py +373 -0
  815. vllm/model_executor/models/chameleon.py +1136 -0
  816. vllm/model_executor/models/chatglm.py +478 -0
  817. vllm/model_executor/models/clip.py +407 -0
  818. vllm/model_executor/models/commandr.py +472 -0
  819. vllm/model_executor/models/constant_size_cache.py +137 -0
  820. vllm/model_executor/models/dbrx.py +472 -0
  821. vllm/model_executor/models/deepseek.py +486 -0
  822. vllm/model_executor/models/deepseek_mtp.py +269 -0
  823. vllm/model_executor/models/deepseek_v2.py +843 -0
  824. vllm/model_executor/models/deepseek_vl2.py +648 -0
  825. vllm/model_executor/models/eagle.py +260 -0
  826. vllm/model_executor/models/exaone.py +551 -0
  827. vllm/model_executor/models/fairseq2_llama.py +154 -0
  828. vllm/model_executor/models/falcon.py +510 -0
  829. vllm/model_executor/models/falcon_h1.py +685 -0
  830. vllm/model_executor/models/florence2.py +1103 -0
  831. vllm/model_executor/models/fuyu.py +389 -0
  832. vllm/model_executor/models/gemma.py +425 -0
  833. vllm/model_executor/models/gemma2.py +425 -0
  834. vllm/model_executor/models/gemma3.py +533 -0
  835. vllm/model_executor/models/gemma3_mm.py +709 -0
  836. vllm/model_executor/models/glm.py +23 -0
  837. vllm/model_executor/models/glm4.py +305 -0
  838. vllm/model_executor/models/glm4v.py +648 -0
  839. vllm/model_executor/models/gpt2.py +328 -0
  840. vllm/model_executor/models/gpt_bigcode.py +335 -0
  841. vllm/model_executor/models/gpt_j.py +339 -0
  842. vllm/model_executor/models/gpt_neox.py +332 -0
  843. vllm/model_executor/models/granite.py +493 -0
  844. vllm/model_executor/models/granite_speech.py +779 -0
  845. vllm/model_executor/models/granitemoe.py +437 -0
  846. vllm/model_executor/models/granitemoehybrid.py +586 -0
  847. vllm/model_executor/models/granitemoeshared.py +341 -0
  848. vllm/model_executor/models/gritlm.py +224 -0
  849. vllm/model_executor/models/grok1.py +546 -0
  850. vllm/model_executor/models/h2ovl.py +546 -0
  851. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  852. vllm/model_executor/models/idefics3.py +776 -0
  853. vllm/model_executor/models/interfaces.py +572 -0
  854. vllm/model_executor/models/interfaces_base.py +164 -0
  855. vllm/model_executor/models/intern_vit.py +480 -0
  856. vllm/model_executor/models/internlm2.py +455 -0
  857. vllm/model_executor/models/internlm2_ve.py +147 -0
  858. vllm/model_executor/models/internvl.py +1418 -0
  859. vllm/model_executor/models/jais.py +373 -0
  860. vllm/model_executor/models/jamba.py +592 -0
  861. vllm/model_executor/models/kimi_vl.py +577 -0
  862. vllm/model_executor/models/llama.py +644 -0
  863. vllm/model_executor/models/llama4.py +532 -0
  864. vllm/model_executor/models/llama_eagle.py +165 -0
  865. vllm/model_executor/models/llama_eagle3.py +263 -0
  866. vllm/model_executor/models/llava.py +866 -0
  867. vllm/model_executor/models/llava_next.py +586 -0
  868. vllm/model_executor/models/llava_next_video.py +471 -0
  869. vllm/model_executor/models/llava_onevision.py +956 -0
  870. vllm/model_executor/models/mamba.py +273 -0
  871. vllm/model_executor/models/mamba2.py +308 -0
  872. vllm/model_executor/models/mamba_cache.py +76 -0
  873. vllm/model_executor/models/medusa.py +219 -0
  874. vllm/model_executor/models/mimo.py +192 -0
  875. vllm/model_executor/models/mimo_mtp.py +285 -0
  876. vllm/model_executor/models/minicpm.py +592 -0
  877. vllm/model_executor/models/minicpm3.py +230 -0
  878. vllm/model_executor/models/minicpm_eagle.py +391 -0
  879. vllm/model_executor/models/minicpmo.py +759 -0
  880. vllm/model_executor/models/minicpmv.py +1287 -0
  881. vllm/model_executor/models/minimax_cache.py +36 -0
  882. vllm/model_executor/models/minimax_text_01.py +1301 -0
  883. vllm/model_executor/models/minimax_vl_01.py +364 -0
  884. vllm/model_executor/models/mistral3.py +604 -0
  885. vllm/model_executor/models/mixtral.py +488 -0
  886. vllm/model_executor/models/mixtral_quant.py +453 -0
  887. vllm/model_executor/models/mllama.py +1624 -0
  888. vllm/model_executor/models/mllama4.py +938 -0
  889. vllm/model_executor/models/mlp_speculator.py +206 -0
  890. vllm/model_executor/models/modernbert.py +331 -0
  891. vllm/model_executor/models/module_mapping.py +72 -0
  892. vllm/model_executor/models/molmo.py +1568 -0
  893. vllm/model_executor/models/moonvit.py +630 -0
  894. vllm/model_executor/models/mpt.py +331 -0
  895. vllm/model_executor/models/nemotron.py +508 -0
  896. vllm/model_executor/models/nemotron_h.py +573 -0
  897. vllm/model_executor/models/nemotron_nas.py +484 -0
  898. vllm/model_executor/models/nvlm_d.py +216 -0
  899. vllm/model_executor/models/olmo.py +389 -0
  900. vllm/model_executor/models/olmo2.py +414 -0
  901. vllm/model_executor/models/olmoe.py +468 -0
  902. vllm/model_executor/models/opt.py +412 -0
  903. vllm/model_executor/models/orion.py +349 -0
  904. vllm/model_executor/models/ovis.py +567 -0
  905. vllm/model_executor/models/paligemma.py +398 -0
  906. vllm/model_executor/models/persimmon.py +344 -0
  907. vllm/model_executor/models/phi.py +356 -0
  908. vllm/model_executor/models/phi3.py +19 -0
  909. vllm/model_executor/models/phi3_small.py +465 -0
  910. vllm/model_executor/models/phi3v.py +723 -0
  911. vllm/model_executor/models/phi4mm.py +1246 -0
  912. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  913. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  914. vllm/model_executor/models/phimoe.py +665 -0
  915. vllm/model_executor/models/pixtral.py +1316 -0
  916. vllm/model_executor/models/plamo2.py +738 -0
  917. vllm/model_executor/models/prithvi_geospatial_mae.py +232 -0
  918. vllm/model_executor/models/qwen.py +362 -0
  919. vllm/model_executor/models/qwen2.py +497 -0
  920. vllm/model_executor/models/qwen2_5_omni_thinker.py +904 -0
  921. vllm/model_executor/models/qwen2_5_vl.py +1166 -0
  922. vllm/model_executor/models/qwen2_audio.py +410 -0
  923. vllm/model_executor/models/qwen2_moe.py +540 -0
  924. vllm/model_executor/models/qwen2_rm.py +132 -0
  925. vllm/model_executor/models/qwen2_vl.py +1405 -0
  926. vllm/model_executor/models/qwen3.py +321 -0
  927. vllm/model_executor/models/qwen3_moe.py +535 -0
  928. vllm/model_executor/models/qwen_vl.py +785 -0
  929. vllm/model_executor/models/registry.py +622 -0
  930. vllm/model_executor/models/roberta.py +276 -0
  931. vllm/model_executor/models/siglip.py +524 -0
  932. vllm/model_executor/models/skyworkr1v.py +951 -0
  933. vllm/model_executor/models/smolvlm.py +52 -0
  934. vllm/model_executor/models/solar.py +506 -0
  935. vllm/model_executor/models/stablelm.py +343 -0
  936. vllm/model_executor/models/starcoder2.py +356 -0
  937. vllm/model_executor/models/tarsier.py +643 -0
  938. vllm/model_executor/models/telechat2.py +140 -0
  939. vllm/model_executor/models/teleflm.py +79 -0
  940. vllm/model_executor/models/transformers.py +508 -0
  941. vllm/model_executor/models/ultravox.py +656 -0
  942. vllm/model_executor/models/utils.py +731 -0
  943. vllm/model_executor/models/vision.py +147 -0
  944. vllm/model_executor/models/whisper.py +747 -0
  945. vllm/model_executor/models/zamba2.py +1009 -0
  946. vllm/model_executor/parameter.py +459 -0
  947. vllm/model_executor/pooling_metadata.py +72 -0
  948. vllm/model_executor/sampling_metadata.py +597 -0
  949. vllm/model_executor/utils.py +77 -0
  950. vllm/multimodal/__init__.py +33 -0
  951. vllm/multimodal/audio.py +106 -0
  952. vllm/multimodal/base.py +219 -0
  953. vllm/multimodal/hasher.py +118 -0
  954. vllm/multimodal/image.py +97 -0
  955. vllm/multimodal/inputs.py +876 -0
  956. vllm/multimodal/parse.py +461 -0
  957. vllm/multimodal/processing.py +1895 -0
  958. vllm/multimodal/profiling.py +258 -0
  959. vllm/multimodal/registry.py +331 -0
  960. vllm/multimodal/utils.py +436 -0
  961. vllm/multimodal/video.py +198 -0
  962. vllm/outputs.py +512 -0
  963. vllm/platforms/__init__.py +291 -0
  964. vllm/platforms/cpu.py +266 -0
  965. vllm/platforms/cuda.py +526 -0
  966. vllm/platforms/hpu.py +106 -0
  967. vllm/platforms/interface.py +538 -0
  968. vllm/platforms/neuron.py +150 -0
  969. vllm/platforms/rocm.py +435 -0
  970. vllm/platforms/tpu.py +216 -0
  971. vllm/platforms/xpu.py +156 -0
  972. vllm/plugins/__init__.py +94 -0
  973. vllm/plugins/lora_resolvers/README.md +15 -0
  974. vllm/plugins/lora_resolvers/__init__.py +0 -0
  975. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  976. vllm/pooling_params.py +54 -0
  977. vllm/profiler/__init__.py +0 -0
  978. vllm/profiler/layerwise_profile.py +375 -0
  979. vllm/profiler/utils.py +148 -0
  980. vllm/prompt_adapter/__init__.py +0 -0
  981. vllm/prompt_adapter/layers.py +83 -0
  982. vllm/prompt_adapter/models.py +358 -0
  983. vllm/prompt_adapter/request.py +37 -0
  984. vllm/prompt_adapter/utils.py +98 -0
  985. vllm/prompt_adapter/worker_manager.py +179 -0
  986. vllm/py.typed +2 -0
  987. vllm/reasoning/__init__.py +15 -0
  988. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  989. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  990. vllm/reasoning/granite_reasoning_parser.py +363 -0
  991. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  992. vllm/sampling_params.py +602 -0
  993. vllm/scalar_type.py +347 -0
  994. vllm/scripts.py +15 -0
  995. vllm/sequence.py +1568 -0
  996. vllm/spec_decode/__init__.py +0 -0
  997. vllm/spec_decode/batch_expansion.py +506 -0
  998. vllm/spec_decode/draft_model_runner.py +349 -0
  999. vllm/spec_decode/interfaces.py +99 -0
  1000. vllm/spec_decode/medusa_worker.py +138 -0
  1001. vllm/spec_decode/metrics.py +213 -0
  1002. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1003. vllm/spec_decode/mqa_scorer.py +160 -0
  1004. vllm/spec_decode/multi_step_worker.py +423 -0
  1005. vllm/spec_decode/ngram_worker.py +196 -0
  1006. vllm/spec_decode/proposer_worker_base.py +59 -0
  1007. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1008. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1009. vllm/spec_decode/target_model_runner.py +45 -0
  1010. vllm/spec_decode/top1_proposer.py +275 -0
  1011. vllm/spec_decode/util.py +277 -0
  1012. vllm/test_utils.py +130 -0
  1013. vllm/third_party/__init__.py +0 -0
  1014. vllm/third_party/pynvml.py +6140 -0
  1015. vllm/tracing.py +131 -0
  1016. vllm/transformers_utils/__init__.py +24 -0
  1017. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1018. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1019. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1020. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1021. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1022. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1023. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1024. vllm/transformers_utils/config.py +887 -0
  1025. vllm/transformers_utils/configs/__init__.py +61 -0
  1026. vllm/transformers_utils/configs/arctic.py +207 -0
  1027. vllm/transformers_utils/configs/chatglm.py +72 -0
  1028. vllm/transformers_utils/configs/cohere2.py +195 -0
  1029. vllm/transformers_utils/configs/dbrx.py +280 -0
  1030. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1031. vllm/transformers_utils/configs/eagle.py +85 -0
  1032. vllm/transformers_utils/configs/exaone.py +190 -0
  1033. vllm/transformers_utils/configs/falcon.py +90 -0
  1034. vllm/transformers_utils/configs/h2ovl.py +16 -0
  1035. vllm/transformers_utils/configs/internvl.py +54 -0
  1036. vllm/transformers_utils/configs/jais.py +238 -0
  1037. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1038. vllm/transformers_utils/configs/medusa.py +63 -0
  1039. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1040. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1041. vllm/transformers_utils/configs/mllama.py +31 -0
  1042. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1043. vllm/transformers_utils/configs/moonvit.py +33 -0
  1044. vllm/transformers_utils/configs/mpt.py +180 -0
  1045. vllm/transformers_utils/configs/nemotron.py +205 -0
  1046. vllm/transformers_utils/configs/nemotron_h.py +258 -0
  1047. vllm/transformers_utils/configs/nvlm_d.py +15 -0
  1048. vllm/transformers_utils/configs/ovis.py +184 -0
  1049. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1050. vllm/transformers_utils/configs/solar.py +247 -0
  1051. vllm/transformers_utils/configs/telechat2.py +64 -0
  1052. vllm/transformers_utils/configs/ultravox.py +108 -0
  1053. vllm/transformers_utils/detokenizer.py +168 -0
  1054. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1055. vllm/transformers_utils/processor.py +221 -0
  1056. vllm/transformers_utils/processors/__init__.py +8 -0
  1057. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1058. vllm/transformers_utils/processors/ovis.py +420 -0
  1059. vllm/transformers_utils/s3_utils.py +162 -0
  1060. vllm/transformers_utils/tokenizer.py +302 -0
  1061. vllm/transformers_utils/tokenizer_base.py +149 -0
  1062. vllm/transformers_utils/tokenizer_group.py +120 -0
  1063. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1064. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1065. vllm/transformers_utils/utils.py +99 -0
  1066. vllm/triton_utils/__init__.py +14 -0
  1067. vllm/triton_utils/importing.py +50 -0
  1068. vllm/usage/__init__.py +0 -0
  1069. vllm/usage/usage_lib.py +256 -0
  1070. vllm/utils.py +2910 -0
  1071. vllm/v1/__init__.py +0 -0
  1072. vllm/v1/attention/__init__.py +0 -0
  1073. vllm/v1/attention/backends/__init__.py +0 -0
  1074. vllm/v1/attention/backends/cpu_attn.py +163 -0
  1075. vllm/v1/attention/backends/flash_attn.py +869 -0
  1076. vllm/v1/attention/backends/flashinfer.py +651 -0
  1077. vllm/v1/attention/backends/flex_attention.py +477 -0
  1078. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1079. vllm/v1/attention/backends/mla/common.py +931 -0
  1080. vllm/v1/attention/backends/mla/cutlass_mla.py +97 -0
  1081. vllm/v1/attention/backends/mla/flashmla.py +152 -0
  1082. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +220 -0
  1083. vllm/v1/attention/backends/mla/triton_mla.py +120 -0
  1084. vllm/v1/attention/backends/pallas.py +240 -0
  1085. vllm/v1/attention/backends/triton_attn.py +285 -0
  1086. vllm/v1/attention/backends/utils.py +52 -0
  1087. vllm/v1/core/__init__.py +0 -0
  1088. vllm/v1/core/block_pool.py +349 -0
  1089. vllm/v1/core/encoder_cache_manager.py +150 -0
  1090. vllm/v1/core/kv_cache_coordinator.py +363 -0
  1091. vllm/v1/core/kv_cache_manager.py +392 -0
  1092. vllm/v1/core/kv_cache_utils.py +996 -0
  1093. vllm/v1/core/sched/__init__.py +0 -0
  1094. vllm/v1/core/sched/interface.py +150 -0
  1095. vllm/v1/core/sched/output.py +154 -0
  1096. vllm/v1/core/sched/scheduler.py +1044 -0
  1097. vllm/v1/core/sched/utils.py +23 -0
  1098. vllm/v1/core/single_type_kv_cache_manager.py +403 -0
  1099. vllm/v1/engine/__init__.py +173 -0
  1100. vllm/v1/engine/async_llm.py +558 -0
  1101. vllm/v1/engine/coordinator.py +253 -0
  1102. vllm/v1/engine/core.py +961 -0
  1103. vllm/v1/engine/core_client.py +1129 -0
  1104. vllm/v1/engine/detokenizer.py +261 -0
  1105. vllm/v1/engine/exceptions.py +17 -0
  1106. vllm/v1/engine/llm_engine.py +317 -0
  1107. vllm/v1/engine/logprobs.py +199 -0
  1108. vllm/v1/engine/mm_input_cache.py +91 -0
  1109. vllm/v1/engine/output_processor.py +428 -0
  1110. vllm/v1/engine/parallel_sampling.py +133 -0
  1111. vllm/v1/engine/processor.py +407 -0
  1112. vllm/v1/executor/__init__.py +0 -0
  1113. vllm/v1/executor/abstract.py +113 -0
  1114. vllm/v1/executor/multiproc_executor.py +537 -0
  1115. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1116. vllm/v1/kv_cache_interface.py +194 -0
  1117. vllm/v1/metrics/__init__.py +0 -0
  1118. vllm/v1/metrics/loggers.py +523 -0
  1119. vllm/v1/metrics/prometheus.py +82 -0
  1120. vllm/v1/metrics/ray_wrappers.py +131 -0
  1121. vllm/v1/metrics/reader.py +246 -0
  1122. vllm/v1/metrics/stats.py +239 -0
  1123. vllm/v1/outputs.py +116 -0
  1124. vllm/v1/request.py +193 -0
  1125. vllm/v1/sample/__init__.py +0 -0
  1126. vllm/v1/sample/metadata.py +44 -0
  1127. vllm/v1/sample/ops/__init__.py +0 -0
  1128. vllm/v1/sample/ops/bad_words.py +39 -0
  1129. vllm/v1/sample/ops/penalties.py +59 -0
  1130. vllm/v1/sample/ops/topk_topp_sampler.py +293 -0
  1131. vllm/v1/sample/rejection_sampler.py +631 -0
  1132. vllm/v1/sample/sampler.py +286 -0
  1133. vllm/v1/sample/tpu/__init__.py +0 -0
  1134. vllm/v1/sample/tpu/metadata.py +124 -0
  1135. vllm/v1/sample/tpu/sampler.py +145 -0
  1136. vllm/v1/serial_utils.py +315 -0
  1137. vllm/v1/spec_decode/__init__.py +0 -0
  1138. vllm/v1/spec_decode/eagle.py +432 -0
  1139. vllm/v1/spec_decode/medusa.py +62 -0
  1140. vllm/v1/spec_decode/metadata.py +62 -0
  1141. vllm/v1/spec_decode/metrics.py +178 -0
  1142. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1143. vllm/v1/spec_decode/utils.py +46 -0
  1144. vllm/v1/structured_output/__init__.py +222 -0
  1145. vllm/v1/structured_output/backend_guidance.py +245 -0
  1146. vllm/v1/structured_output/backend_types.py +134 -0
  1147. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1148. vllm/v1/structured_output/request.py +86 -0
  1149. vllm/v1/structured_output/utils.py +175 -0
  1150. vllm/v1/utils.py +743 -0
  1151. vllm/v1/worker/__init__.py +0 -0
  1152. vllm/v1/worker/block_table.py +142 -0
  1153. vllm/v1/worker/cpu_model_runner.py +86 -0
  1154. vllm/v1/worker/cpu_worker.py +152 -0
  1155. vllm/v1/worker/gpu_input_batch.py +681 -0
  1156. vllm/v1/worker/gpu_model_runner.py +2320 -0
  1157. vllm/v1/worker/gpu_worker.py +393 -0
  1158. vllm/v1/worker/lora_model_runner_mixin.py +173 -0
  1159. vllm/v1/worker/tpu_model_runner.py +1673 -0
  1160. vllm/v1/worker/tpu_worker.py +299 -0
  1161. vllm/v1/worker/utils.py +111 -0
  1162. vllm/v1/worker/worker_base.py +65 -0
  1163. vllm/version.py +41 -0
  1164. vllm/vllm_flash_attn/.gitkeep +0 -0
  1165. vllm/worker/__init__.py +0 -0
  1166. vllm/worker/cache_engine.py +145 -0
  1167. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1168. vllm/worker/cpu_model_runner.py +671 -0
  1169. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1170. vllm/worker/cpu_worker.py +450 -0
  1171. vllm/worker/enc_dec_model_runner.py +555 -0
  1172. vllm/worker/hpu_model_runner.py +2320 -0
  1173. vllm/worker/hpu_worker.py +484 -0
  1174. vllm/worker/model_runner.py +2178 -0
  1175. vllm/worker/model_runner_base.py +282 -0
  1176. vllm/worker/multi_step_hpu_worker.py +123 -0
  1177. vllm/worker/multi_step_model_runner.py +911 -0
  1178. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1179. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1180. vllm/worker/multi_step_tpu_worker.py +108 -0
  1181. vllm/worker/multi_step_worker.py +197 -0
  1182. vllm/worker/neuron_model_runner.py +460 -0
  1183. vllm/worker/neuron_worker.py +193 -0
  1184. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1185. vllm/worker/pooling_model_runner.py +211 -0
  1186. vllm/worker/tpu_model_runner.py +909 -0
  1187. vllm/worker/tpu_worker.py +337 -0
  1188. vllm/worker/utils.py +53 -0
  1189. vllm/worker/worker.py +577 -0
  1190. vllm/worker/worker_base.py +646 -0
  1191. vllm/worker/xpu_model_runner.py +606 -0
  1192. vllm/worker/xpu_worker.py +186 -0
  1193. vllm_cpu_amxbf16-0.9.1.dist-info/METADATA +305 -0
  1194. vllm_cpu_amxbf16-0.9.1.dist-info/RECORD +1197 -0
  1195. vllm_cpu_amxbf16-0.9.1.dist-info/WHEEL +5 -0
  1196. vllm_cpu_amxbf16-0.9.1.dist-info/entry_points.txt +5 -0
  1197. vllm_cpu_amxbf16-0.9.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1568 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import math
5
+ from collections.abc import Iterable, Mapping, Sequence
6
+ from dataclasses import dataclass
7
+ from functools import cached_property, partial
8
+ from typing import Optional, TypedDict, Union
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+ from einops import rearrange
15
+ from transformers import (BatchFeature, PretrainedConfig, ProcessorMixin,
16
+ TensorType)
17
+ from transformers.image_utils import ImageInput
18
+ from transformers.tokenization_utils_base import TextInput
19
+
20
+ from vllm.attention import Attention
21
+ from vllm.attention.layer import MultiHeadAttention
22
+ from vllm.compilation.decorators import support_torch_compile
23
+ from vllm.config import CacheConfig, VllmConfig
24
+ from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
25
+ get_tensor_model_parallel_world_size,
26
+ split_tensor_along_last_dim,
27
+ tensor_model_parallel_all_gather)
28
+ from vllm.model_executor import SamplingMetadata
29
+ from vllm.model_executor.layers.activation import (MulAndSilu, QuickGELU,
30
+ SiluAndMul)
31
+ from vllm.model_executor.layers.layernorm import RMSNorm
32
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
33
+ MergedColumnParallelLinear,
34
+ QKVParallelLinear,
35
+ RowParallelLinear)
36
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
37
+ from vllm.model_executor.layers.quantization import QuantizationConfig
38
+ from vllm.model_executor.layers.rotary_embedding import get_rope
39
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
40
+ ParallelLMHead, VocabParallelEmbedding)
41
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
42
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
43
+ from vllm.multimodal import MULTIMODAL_REGISTRY
44
+ from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
45
+ MultiModalKwargs)
46
+ from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
47
+ MultiModalDataItems)
48
+ from vllm.multimodal.processing import (BaseMultiModalProcessor,
49
+ BaseProcessingInfo, PromptIndexTargets,
50
+ PromptInsertion, PromptUpdate,
51
+ PromptUpdateDetails)
52
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
53
+ from vllm.sequence import IntermediateTensors
54
+
55
+ from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
56
+ SupportsMultiModal, SupportsPP, SupportsQuant)
57
+ from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
58
+ is_pp_missing_parameter,
59
+ make_empty_intermediate_tensors_factory, make_layers,
60
+ maybe_prefix, merge_multimodal_embeddings)
61
+
62
+ # TODO: hard-coded for now. Consider making it configurable.
63
+ VIT_LAYERS = [-2, -9]
64
+ NUM_PREFIX_TOKENS = 1
65
+ ADDITIONAL_VOCAB_SIZE = 128
66
+ IMAGE_PATCH_TOKEN = "<im_patch>"
67
+ IM_COL_TOKEN = "<im_col>"
68
+ IM_START_TOKEN = "<im_start>"
69
+ IM_END_TOKEN = "<im_end>"
70
+ POOLING_SIZE = 2
71
+
72
+
73
+ class MolmoImageInputs(TypedDict):
74
+ images: Union[torch.Tensor, list[torch.Tensor]]
75
+ """Shape: `(batch_size * num_images, num_crops, num_patch, patch_dim)`"""
76
+
77
+ image_masks: Optional[Union[torch.Tensor, list[torch.Tensor]]]
78
+ """Shape: `(batch_size * num_images, num_crops, num_patch)`"""
79
+
80
+ feat_is_patch: Union[torch.Tensor, list[torch.Tensor]]
81
+ """
82
+ A boolean mask indicating which image features correspond
83
+ to patch tokens.
84
+
85
+ Shape: `(batch_size * num_images, num_crops, num_patch)`
86
+ """
87
+
88
+ num_crops: torch.Tensor
89
+ """Shape: `(batch_size * num_images)`"""
90
+
91
+
92
+ @dataclass
93
+ class VisionBackboneConfig:
94
+ image_default_input_size: tuple[int, int] = (336, 336)
95
+ image_patch_size: int = 14
96
+ image_pos_patch_size: int = 14
97
+ image_emb_dim: int = 1024
98
+ image_num_heads: int = 16
99
+ image_num_key_value_heads: int = 16
100
+ image_num_layers: int = 23
101
+ image_mlp_dim: int = 4096
102
+ image_mlp_activations: str = "quick_gelu"
103
+ image_num_pos: int = 577
104
+ image_norm_eps: float = 1e-5
105
+
106
+ def __post_init__(self):
107
+ self.image_default_input_size = tuple(
108
+ self.image_default_input_size) # type: ignore[assignment]
109
+
110
+ @property
111
+ def image_num_patch(self):
112
+ h, w = self.image_default_input_size
113
+ return h // self.image_patch_size, w // self.image_patch_size
114
+
115
+
116
+ class ViTMLP(nn.Module):
117
+ """MLP used in Vision Transformer."""
118
+
119
+ def __init__(
120
+ self,
121
+ config: VisionBackboneConfig,
122
+ quant_config: Optional[QuantizationConfig] = None,
123
+ ):
124
+ super().__init__()
125
+ self.w1 = ColumnParallelLinear(
126
+ config.image_emb_dim,
127
+ config.image_mlp_dim,
128
+ bias=True,
129
+ quant_config=quant_config,
130
+ )
131
+ # Activation function.
132
+ assert config.image_mlp_activations == "quick_gelu"
133
+ self.act = QuickGELU()
134
+ self.w2 = RowParallelLinear(
135
+ config.image_mlp_dim,
136
+ config.image_emb_dim,
137
+ bias=True,
138
+ quant_config=quant_config,
139
+ )
140
+
141
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
142
+ x, _ = self.w1(x)
143
+ x = self.act(x)
144
+ x, _ = self.w2(x)
145
+ return x
146
+
147
+
148
+ class MultiHeadDotProductAttention(nn.Module):
149
+ """Multi-head attention used in Vision Transformer."""
150
+
151
+ def __init__(
152
+ self,
153
+ config: VisionBackboneConfig,
154
+ use_bias: bool = True,
155
+ nlayers: int = 1,
156
+ quant_config: Optional[QuantizationConfig] = None,
157
+ ):
158
+ super().__init__()
159
+
160
+ self.hidden_size = config.image_emb_dim
161
+ self.total_num_heads = config.image_num_heads
162
+ tp_size = get_tensor_model_parallel_world_size()
163
+
164
+ assert self.hidden_size % self.total_num_heads == 0
165
+ assert self.total_num_heads % tp_size == 0
166
+
167
+ self.num_heads = self.total_num_heads // tp_size
168
+ self.head_dim = self.hidden_size // self.total_num_heads
169
+
170
+ self.total_num_kv_heads = config.image_num_key_value_heads
171
+ if self.total_num_kv_heads >= tp_size:
172
+ assert self.total_num_kv_heads % tp_size == 0
173
+ else:
174
+ assert tp_size % self.total_num_kv_heads == 0
175
+
176
+ self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
177
+
178
+ self.wq = ColumnParallelLinear(
179
+ nlayers * self.hidden_size,
180
+ self.total_num_heads * self.head_dim,
181
+ bias=use_bias,
182
+ quant_config=quant_config,
183
+ )
184
+ self.wk = ColumnParallelLinear(
185
+ nlayers * self.hidden_size,
186
+ self.total_num_kv_heads * self.head_dim,
187
+ bias=use_bias,
188
+ quant_config=quant_config,
189
+ )
190
+ self.wv = ColumnParallelLinear(
191
+ nlayers * self.hidden_size,
192
+ self.total_num_kv_heads * self.head_dim,
193
+ bias=use_bias,
194
+ quant_config=quant_config,
195
+ )
196
+ self.wo = RowParallelLinear(
197
+ self.total_num_heads * self.head_dim,
198
+ self.hidden_size,
199
+ bias=use_bias,
200
+ quant_config=quant_config,
201
+ )
202
+
203
+ self.scale = self.head_dim**-0.5
204
+ self.attn = MultiHeadAttention(self.num_heads,
205
+ self.head_dim,
206
+ self.scale,
207
+ num_kv_heads=self.num_kv_heads)
208
+
209
+ def forward(self,
210
+ inputs_q: torch.Tensor,
211
+ inputs_kv: Optional[torch.Tensor] = None) -> torch.Tensor:
212
+
213
+ if inputs_kv is not None:
214
+ inputs_k = inputs_kv
215
+ inputs_v = inputs_kv
216
+ else:
217
+ inputs_k = inputs_q
218
+ inputs_v = inputs_q
219
+
220
+ xq, _ = self.wq(inputs_q)
221
+ xk, _ = self.wk(inputs_k)
222
+ xv, _ = self.wv(inputs_v)
223
+
224
+ output = self.attn(xq, xk, xv)
225
+ output, _ = self.wo(output)
226
+
227
+ return output
228
+
229
+
230
+ class ResidualAttentionBlock(nn.Module):
231
+ """Residual attention block used in Vision Transformer."""
232
+
233
+ def __init__(
234
+ self,
235
+ config: VisionBackboneConfig,
236
+ quant_config: Optional[QuantizationConfig] = None,
237
+ ):
238
+ super().__init__()
239
+ self.attention = MultiHeadDotProductAttention(
240
+ config, quant_config=quant_config)
241
+ self.feed_forward = ViTMLP(config, quant_config)
242
+ self.attention_norm = nn.LayerNorm(
243
+ config.image_emb_dim,
244
+ eps=config.image_norm_eps,
245
+ )
246
+ self.ffn_norm = nn.LayerNorm(
247
+ config.image_emb_dim,
248
+ eps=config.image_norm_eps,
249
+ )
250
+
251
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
252
+ x = x + self.attention(self.attention_norm(x))
253
+ x = x + self.feed_forward(self.ffn_norm(x))
254
+ return x
255
+
256
+
257
+ class BlockCollection(nn.Module):
258
+ """Collection of residual attention blocks used in Vision Transformer."""
259
+
260
+ def __init__(
261
+ self,
262
+ config: VisionBackboneConfig,
263
+ quant_config: Optional[QuantizationConfig] = None,
264
+ ):
265
+ super().__init__()
266
+ self.resblocks = nn.ModuleList([
267
+ ResidualAttentionBlock(config, quant_config)
268
+ for _ in range(config.image_num_layers)
269
+ ])
270
+
271
+ def forward(self, x: torch.Tensor) -> list[torch.Tensor]:
272
+ hidden_states = []
273
+ for r in self.resblocks:
274
+ x = r(x)
275
+ hidden_states.append(x)
276
+ return hidden_states
277
+
278
+
279
+ def _expand_token(token: torch.Tensor, batch_size: int) -> torch.Tensor:
280
+ return token.view(1, 1, -1).expand(batch_size, -1, -1)
281
+
282
+
283
+ class VisionTransformer(nn.Module):
284
+ """Vision Transformer used in Vision Backbone."""
285
+
286
+ def __init__(
287
+ self,
288
+ config: VisionBackboneConfig,
289
+ quant_config: Optional[QuantizationConfig] = None,
290
+ ):
291
+ super().__init__()
292
+ scale = config.image_emb_dim**-0.5
293
+ self.patch_num = config.image_num_patch
294
+ self.class_embedding = nn.Parameter(
295
+ torch.randn(config.image_emb_dim) * scale)
296
+ self.num_prefix_tokens: int = NUM_PREFIX_TOKENS
297
+ self.positional_embedding = nn.Parameter(
298
+ torch.randn(config.image_num_pos, config.image_emb_dim) * scale)
299
+ image_patch_size = config.image_patch_size
300
+ self.patch_embedding = nn.Linear(
301
+ image_patch_size * image_patch_size * 3,
302
+ config.image_emb_dim,
303
+ bias=False,
304
+ )
305
+ self.pre_ln = nn.LayerNorm(config.image_emb_dim,
306
+ eps=config.image_norm_eps)
307
+ self.transformer = BlockCollection(config, quant_config)
308
+
309
+ def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor:
310
+ cls_emb = self.positional_embedding[0:1]
311
+ pos_emb = self.positional_embedding[1:]
312
+
313
+ pos_emb = pos_emb.reshape(
314
+ (int(math.sqrt(pos_emb.shape[0])),
315
+ int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1]))
316
+
317
+ (patch_num_0, patch_num_1) = patch_num
318
+
319
+ if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
320
+ # from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
321
+ pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
322
+ pos_emb = F.interpolate(
323
+ pos_emb,
324
+ size=(patch_num_0, patch_num_1),
325
+ mode="bicubic",
326
+ align_corners=False,
327
+ antialias=True,
328
+ )
329
+ pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0)
330
+
331
+ pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1])
332
+ x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]],
333
+ dim=1).to(x.dtype)
334
+ return x
335
+
336
+ def forward(self,
337
+ x: torch.Tensor,
338
+ patch_num: Optional[int] = None) -> list[torch.Tensor]:
339
+ """
340
+ : param x: (batch_size, num_patch, n_pixels)
341
+ """
342
+ if patch_num is None:
343
+ patch_num = self.patch_num
344
+ B, N, D = x.shape
345
+
346
+ x = self.patch_embedding(x)
347
+
348
+ # class embeddings and positional embeddings
349
+ x = torch.cat(
350
+ [_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x],
351
+ dim=1)
352
+ x = self.add_pos_emb(x, patch_num)
353
+
354
+ x = self.pre_ln(x)
355
+
356
+ hidden_states = self.transformer(x)
357
+ return hidden_states
358
+
359
+
360
+ class MolmoAttention(nn.Module):
361
+ """Molmo's LLM attention."""
362
+
363
+ def __init__(
364
+ self,
365
+ config: PretrainedConfig,
366
+ cache_config: Optional[CacheConfig] = None,
367
+ quant_config: Optional[QuantizationConfig] = None,
368
+ prefix: str = "",
369
+ ) -> None:
370
+ super().__init__()
371
+ self.hidden_size = config.hidden_size
372
+ self.tp_size = get_tensor_model_parallel_world_size()
373
+ self.total_num_heads = config.num_attention_heads
374
+
375
+ assert self.hidden_size % self.total_num_heads == 0
376
+ assert self.total_num_heads % self.tp_size == 0
377
+
378
+ self.num_heads = self.total_num_heads // self.tp_size
379
+ self.total_num_kv_heads = config.num_key_value_heads \
380
+ or self.total_num_heads
381
+ if self.total_num_kv_heads >= self.tp_size:
382
+ assert self.total_num_kv_heads % self.tp_size == 0
383
+ else:
384
+ assert self.tp_size % self.total_num_kv_heads == 0
385
+
386
+ self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size)
387
+ self.head_dim = self.hidden_size // self.total_num_heads
388
+ self.q_size = self.num_heads * self.head_dim
389
+ self.kv_size = self.num_kv_heads * self.head_dim
390
+ self.max_position_embeddings = config.max_position_embeddings
391
+ self.rope_theta = config.rope_theta
392
+
393
+ # Attention input projection. Projects x -> (q, k, v)
394
+ self.qkv_proj = QKVParallelLinear(
395
+ self.hidden_size,
396
+ self.head_dim,
397
+ self.total_num_heads,
398
+ self.total_num_kv_heads,
399
+ bias=config.qkv_bias,
400
+ quant_config=quant_config,
401
+ )
402
+
403
+ self.tp_rank: Optional[int] = None
404
+ self.k_norm: Optional[nn.Module] = None
405
+ self.q_norm: Optional[nn.Module] = None
406
+ if config.attention_layer_norm:
407
+ self.tp_rank = get_tensor_model_parallel_rank()
408
+ self.k_norm = RMSNorm(self.total_num_kv_heads * self.head_dim,
409
+ eps=config.layer_norm_eps)
410
+ self.q_norm = RMSNorm(config.hidden_size,
411
+ eps=config.layer_norm_eps)
412
+
413
+ # Rotary embeddings.
414
+ self.rotary_emb = get_rope(
415
+ self.head_dim,
416
+ rotary_dim=self.head_dim,
417
+ max_position=self.max_position_embeddings,
418
+ base=self.rope_theta,
419
+ )
420
+ self.scaling = self.head_dim**-0.5
421
+ self.attn = Attention(self.num_heads,
422
+ self.head_dim,
423
+ self.scaling,
424
+ num_kv_heads=self.num_kv_heads,
425
+ cache_config=cache_config,
426
+ quant_config=quant_config,
427
+ prefix=f"{prefix}.attn")
428
+
429
+ # Attention output projection.
430
+ self.o_proj = RowParallelLinear(
431
+ self.total_num_heads * self.head_dim,
432
+ self.hidden_size,
433
+ bias=False,
434
+ quant_config=quant_config,
435
+ )
436
+
437
+ def _apply_qk_norm(self, q: torch.Tensor,
438
+ k: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
439
+ if self.tp_size > 1:
440
+ q = tensor_model_parallel_all_gather(q.contiguous())
441
+ k = tensor_model_parallel_all_gather(k.contiguous())
442
+ q = self.q_norm(q)
443
+ k = self.k_norm(k)
444
+ if self.tp_size > 1:
445
+ splitter = partial(split_tensor_along_last_dim,
446
+ num_partitions=self.tp_size)
447
+ q = splitter(q)[self.tp_rank]
448
+ k = splitter(k)[self.tp_rank]
449
+ return q, k
450
+
451
+ def forward(
452
+ self,
453
+ positions: torch.Tensor,
454
+ hidden_states: torch.Tensor,
455
+ ) -> torch.Tensor:
456
+ qkv, _ = self.qkv_proj(hidden_states)
457
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
458
+ if self.q_norm is not None and self.k_norm is not None:
459
+ q, k = self._apply_qk_norm(q, k)
460
+ q, k = self.rotary_emb(positions, q, k)
461
+ attn_output = self.attn(q, k, v)
462
+ output, _ = self.o_proj(attn_output)
463
+ return output
464
+
465
+
466
+ class LanguageModelMLP(nn.Module):
467
+ """Molmo's LLM mlp."""
468
+
469
+ def __init__(self,
470
+ config: PretrainedConfig,
471
+ input_dim: Optional[int] = None,
472
+ quant_config: Optional[QuantizationConfig] = None) -> None:
473
+ super().__init__()
474
+ self.hidden_size = config.hidden_size
475
+ self.intermediate_size = config.intermediate_size // 2
476
+
477
+ self.gate_up_proj = MergedColumnParallelLinear(
478
+ input_dim or self.hidden_size,
479
+ [self.intermediate_size] * 2,
480
+ bias=False,
481
+ quant_config=quant_config,
482
+ )
483
+ # Activation function.
484
+ self.act_fn = MulAndSilu()
485
+ # Feed-forward output projection.
486
+ self.down_proj = RowParallelLinear(
487
+ self.intermediate_size,
488
+ self.hidden_size,
489
+ bias=False,
490
+ quant_config=quant_config,
491
+ )
492
+
493
+ def forward(
494
+ self,
495
+ x: torch.Tensor,
496
+ ) -> torch.Tensor:
497
+ gate_up, _ = self.gate_up_proj(x)
498
+ x = self.act_fn(gate_up)
499
+ x, _ = self.down_proj(x)
500
+ return x
501
+
502
+
503
+ class ImageProjectorMLP(nn.Module):
504
+ """Molmo's image_projector mlp."""
505
+
506
+ def __init__(
507
+ self,
508
+ config: PretrainedConfig,
509
+ input_dim: Optional[int] = None,
510
+ quant_config: Optional[QuantizationConfig] = None,
511
+ ) -> None:
512
+ super().__init__()
513
+ self.hidden_size = config.hidden_size
514
+ self.intermediate_size = config.intermediate_size // 2
515
+
516
+ self.merged_linear = MergedColumnParallelLinear(
517
+ input_dim or self.hidden_size,
518
+ [self.intermediate_size] * 2,
519
+ bias=False,
520
+ quant_config=quant_config,
521
+ )
522
+ # Activation function.
523
+ self.act_fn = SiluAndMul()
524
+
525
+ # Feed-forward output projection.
526
+ self.down_proj = RowParallelLinear(
527
+ self.intermediate_size,
528
+ self.hidden_size,
529
+ bias=False,
530
+ quant_config=quant_config,
531
+ )
532
+
533
+ def forward(
534
+ self,
535
+ x: torch.Tensor,
536
+ ) -> torch.Tensor:
537
+ gate_up, _ = self.merged_linear(x)
538
+ x = self.act_fn(gate_up)
539
+ x, _ = self.down_proj(x)
540
+ return x
541
+
542
+
543
+ class MolmoDecoderLayer(nn.Module):
544
+
545
+ def __init__(
546
+ self,
547
+ config: PretrainedConfig,
548
+ cache_config: Optional[CacheConfig] = None,
549
+ quant_config: Optional[QuantizationConfig] = None,
550
+ prefix: str = "",
551
+ ) -> None:
552
+ super().__init__()
553
+ # Attention block.
554
+ self.self_attn = MolmoAttention(config,
555
+ cache_config,
556
+ quant_config,
557
+ prefix=f"{prefix}.self_attn")
558
+
559
+ # MLP block.
560
+ self.mlp = LanguageModelMLP(config, quant_config=quant_config)
561
+
562
+ # LayerNorm
563
+ assert config.layer_norm_type == "rms"
564
+ self.input_layernorm = RMSNorm(config.hidden_size,
565
+ eps=config.layer_norm_eps)
566
+ self.post_attention_layernorm = RMSNorm(config.hidden_size,
567
+ eps=config.layer_norm_eps)
568
+
569
+ def forward(
570
+ self,
571
+ positions: torch.Tensor,
572
+ hidden_states: torch.Tensor,
573
+ residual: Optional[torch.Tensor],
574
+ ) -> tuple[torch.Tensor, Optional[tuple[torch.Tensor, torch.Tensor]]]:
575
+ # Self Attention
576
+ if residual is None:
577
+ residual = hidden_states
578
+ hidden_states = self.input_layernorm(hidden_states)
579
+ else:
580
+ hidden_states, residual = self.input_layernorm(
581
+ hidden_states, residual)
582
+ hidden_states = self.self_attn(
583
+ positions=positions,
584
+ hidden_states=hidden_states,
585
+ )
586
+
587
+ hidden_states, residual = self.post_attention_layernorm(
588
+ hidden_states, residual)
589
+ hidden_states = self.mlp(hidden_states)
590
+ return hidden_states, residual
591
+
592
+
593
+ class MolmoDecoderNormAfterLayer(MolmoDecoderLayer):
594
+
595
+ def forward(
596
+ self,
597
+ positions: torch.Tensor,
598
+ hidden_states: torch.Tensor,
599
+ residual: Optional[torch.Tensor],
600
+ ) -> tuple[torch.Tensor, Optional[tuple[torch.Tensor, torch.Tensor]]]:
601
+ # Self Attention
602
+ residual = hidden_states
603
+ hidden_states = self.self_attn(
604
+ positions=positions,
605
+ hidden_states=hidden_states,
606
+ )
607
+
608
+ hidden_states = self.input_layernorm(hidden_states)
609
+ hidden_states = hidden_states + residual
610
+ residual = hidden_states
611
+
612
+ hidden_states = self.mlp(hidden_states)
613
+ hidden_states = self.post_attention_layernorm(hidden_states)
614
+ hidden_states = hidden_states + residual
615
+ residual = None
616
+ return hidden_states, residual
617
+
618
+
619
+ class MolmoVisionBackbone(nn.Module, SupportsQuant):
620
+ packed_modules_mapping = {"merged_linear": ["gate_proj", "up_proj"]}
621
+
622
+ def __init__(
623
+ self,
624
+ config: PretrainedConfig,
625
+ vision_config: VisionBackboneConfig,
626
+ quant_config: Optional[QuantizationConfig] = None,
627
+ ) -> None:
628
+ super().__init__()
629
+ self.vit_layers = VIT_LAYERS
630
+ self.image_num_patch = vision_config.image_num_patch
631
+ self.llm_patches_per_crop = (
632
+ (self.image_num_patch[0] + 1) // POOLING_SIZE,
633
+ (self.image_num_patch[1] + 1) // POOLING_SIZE,
634
+ )
635
+ self.image_vit = VisionTransformer(vision_config,
636
+ quant_config=quant_config)
637
+ self.num_prefix_tokens = self.image_vit.num_prefix_tokens
638
+ assert self.num_prefix_tokens in {
639
+ 0, 1
640
+ }, "Only 0 or 1 prefix tokens are supported"
641
+ self.image_pooling_2d = MultiHeadDotProductAttention(
642
+ vision_config,
643
+ nlayers=len(self.vit_layers),
644
+ quant_config=quant_config)
645
+ self.image_projector = ImageProjectorMLP(
646
+ config,
647
+ input_dim=vision_config.image_emb_dim,
648
+ quant_config=quant_config,
649
+ )
650
+
651
+ image_dim = vision_config.image_emb_dim * len(self.vit_layers)
652
+ self.pad_embed = nn.Parameter(torch.zeros((2, image_dim)))
653
+
654
+ @property
655
+ def dtype(self) -> torch.dtype:
656
+ return self.image_vit.patch_embedding.weight.dtype
657
+
658
+ @property
659
+ def device(self) -> torch.device:
660
+ return self.image_vit.patch_embedding.weight.device
661
+
662
+ def encode_image(self, images: torch.Tensor) -> torch.Tensor:
663
+ """
664
+ : param images: (batch_size, num_crops, num_patch, n_pixels)
665
+ """
666
+ B, T, N, D = images.shape
667
+
668
+ mask = ~torch.all(
669
+ images.view(B * T, N, D) == -1, dim=(1, 2), keepdim=True)
670
+
671
+ images = images.view(B * T, N, D)
672
+ image_features = self.image_vit(images)
673
+
674
+ if self.vit_layers is not None:
675
+ features = []
676
+ for layer in self.vit_layers:
677
+ features.append(image_features[layer])
678
+ image_features = torch.cat(features, dim=-1)
679
+ else:
680
+ image_features = image_features[-1]
681
+
682
+ if self.num_prefix_tokens > 0:
683
+ image_features = image_features[:, 1:]
684
+
685
+ image_features = image_features * mask
686
+ image_features = image_features.view(B, T, N, -1)
687
+
688
+ return image_features
689
+
690
+ def forward(
691
+ self,
692
+ images: torch.Tensor,
693
+ image_masks: torch.Tensor,
694
+ ) -> torch.Tensor:
695
+ # image_features: (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim) # noqa: E501
696
+ batch_size, num_image = images.shape[:2]
697
+ images = images.to(device=self.device, dtype=self.dtype)
698
+ image_features = self.encode_image(images)
699
+
700
+ og_dtype = image_features.dtype
701
+ assert image_masks is not None
702
+ pad_embed = self.pad_embed[:, None, None, None, :]
703
+ all_pad = image_masks == 0
704
+ partial_pad = torch.logical_and(
705
+ image_masks < 1,
706
+ torch.logical_not(all_pad)).to(dtype=torch.float32)
707
+ all_pad = all_pad.to(dtype=torch.float32)
708
+ image_features = image_features + pad_embed[0] * torch.unsqueeze(
709
+ all_pad, -1)
710
+ image_features = image_features + pad_embed[1] * torch.unsqueeze(
711
+ partial_pad, -1)
712
+
713
+ image_features = image_features.to(og_dtype)
714
+
715
+ image_features = image_features.reshape(
716
+ (batch_size, num_image) + self.image_num_patch + (-1, ), )
717
+
718
+ if (missing_w := self.image_num_patch[0] % POOLING_SIZE):
719
+ # Padding for image pooling (see below)
720
+ image_features = F.pad(
721
+ image_features,
722
+ (0, 0, 0, missing_w, 0, missing_w, 0, 0, 0, 0),
723
+ )
724
+
725
+ # image pooling
726
+ image_features = rearrange(
727
+ image_features,
728
+ 'b n (h dh) (w dw) c -> (b n h w) (dh dw) c',
729
+ dh=POOLING_SIZE,
730
+ dw=POOLING_SIZE,
731
+ )
732
+
733
+ query = image_features.mean(-2, keepdim=True)
734
+ image_features = self.image_pooling_2d(query, image_features)
735
+
736
+ h, w = self.llm_patches_per_crop
737
+ image_features = image_features.view(batch_size, num_image, h * w, -1)
738
+
739
+ image_features = self.image_projector(image_features)
740
+
741
+ # image_features: (batch_size, num_image, num_patch, d_model)
742
+ return image_features
743
+
744
+ def load_weights(self, weights: Iterable[tuple[str,
745
+ torch.Tensor]]) -> set[str]:
746
+ stacked_params_mapping = [
747
+ # (param_name, shard_name, shard_id)
748
+ ("merged_linear", "gate_proj", 0),
749
+ ("merged_linear", "up_proj", 1),
750
+ ]
751
+ params_dict = dict(self.named_parameters())
752
+ loaded_params: set[str] = set()
753
+
754
+ for name, loaded_weight in weights:
755
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
756
+ if weight_name not in name:
757
+ continue
758
+ name = name.replace(weight_name, param_name)
759
+ # Skip loading extra bias for GPTQ models.
760
+ if name.endswith(".bias") and name not in params_dict:
761
+ continue
762
+ if is_pp_missing_parameter(name, self):
763
+ continue
764
+ param = params_dict[name]
765
+ weight_loader = param.weight_loader
766
+ weight_loader(param, loaded_weight, shard_id)
767
+ break
768
+ else:
769
+ if name.endswith(".bias") and name not in params_dict:
770
+ continue
771
+ if is_pp_missing_parameter(name, self):
772
+ continue
773
+ param = params_dict[name]
774
+ weight_loader = getattr(param, "weight_loader",
775
+ default_weight_loader)
776
+ weight_loader(param, loaded_weight)
777
+ loaded_params.add(name)
778
+ return loaded_params
779
+
780
+
781
+ @support_torch_compile
782
+ class MolmoModel(nn.Module, SupportsQuant):
783
+
784
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
785
+ super().__init__()
786
+
787
+ config = vllm_config.model_config.hf_config
788
+ cache_config = vllm_config.cache_config
789
+ quant_config = vllm_config.quant_config
790
+
791
+ self.config = config
792
+
793
+ self.embedding_size = config.embedding_size or config.vocab_size
794
+ self.embedding_size += ADDITIONAL_VOCAB_SIZE
795
+ self.embed_tokens = VocabParallelEmbedding(
796
+ self.embedding_size,
797
+ config.hidden_size,
798
+ quant_config=quant_config,
799
+ )
800
+
801
+ decoder_layer = MolmoDecoderNormAfterLayer if config.norm_after \
802
+ else MolmoDecoderLayer
803
+ self.start_layer, self.end_layer, self.layers = make_layers(
804
+ config.num_hidden_layers,
805
+ lambda prefix: decoder_layer(
806
+ config, cache_config, quant_config, prefix=prefix),
807
+ prefix=f"{prefix}.layers",
808
+ )
809
+
810
+ assert config.layer_norm_type == "rms"
811
+ self.norm = RMSNorm(config.hidden_size, config.layer_norm_eps)
812
+
813
+ self.make_empty_intermediate_tensors = (
814
+ make_empty_intermediate_tensors_factory(
815
+ ["hidden_states", "residual"], config.hidden_size))
816
+
817
+ def get_input_embeddings(
818
+ self,
819
+ input_ids: torch.Tensor,
820
+ ) -> torch.Tensor:
821
+ return self.embed_tokens(input_ids)
822
+
823
+ def forward(
824
+ self,
825
+ input_ids: torch.Tensor,
826
+ positions: torch.Tensor,
827
+ intermediate_tensors: Optional[IntermediateTensors] = None,
828
+ inputs_embeds: Optional[torch.Tensor] = None,
829
+ ) -> torch.Tensor:
830
+ if get_pp_group().is_first_rank:
831
+ if inputs_embeds is not None:
832
+ hidden_states = inputs_embeds
833
+ else:
834
+ hidden_states = self.embed_tokens(input_ids)
835
+ residual = None
836
+ else:
837
+ assert intermediate_tensors is not None
838
+ hidden_states = intermediate_tensors["hidden_states"]
839
+ residual = intermediate_tensors["residual"]
840
+
841
+ # Apply blocks one-by-one.
842
+ for layer in self.layers[self.start_layer:self.end_layer]:
843
+ hidden_states, residual = layer(
844
+ positions,
845
+ hidden_states,
846
+ residual,
847
+ )
848
+ if not get_pp_group().is_last_rank:
849
+ return IntermediateTensors({
850
+ "hidden_states": hidden_states,
851
+ "residual": residual
852
+ })
853
+ if residual is not None:
854
+ hidden_states, _ = self.norm(hidden_states, residual)
855
+ else:
856
+ hidden_states = self.norm(hidden_states)
857
+ return hidden_states
858
+
859
+ def load_weights(self, weights: Iterable[tuple[str,
860
+ torch.Tensor]]) -> set[str]:
861
+ params_dict = dict(self.named_parameters())
862
+ loaded_params: set[str] = set()
863
+
864
+ for name, loaded_weight in weights:
865
+ if name.endswith(".bias") and name not in params_dict:
866
+ continue
867
+ if is_pp_missing_parameter(name, self):
868
+ continue
869
+
870
+ param = params_dict[name]
871
+ weight_loader = getattr(param, "weight_loader",
872
+ default_weight_loader)
873
+ weight_loader(param, loaded_weight)
874
+ loaded_params.add(name)
875
+ return loaded_params
876
+
877
+
878
+ def _lowest_multiple(x: int, k: int) -> int:
879
+ return (x // k) * k
880
+
881
+
882
+ def get_num_patches(
883
+ num_tiles: int,
884
+ *,
885
+ crop_patches: int,
886
+ left_margin: int,
887
+ right_margin: int,
888
+ pooling_size: int,
889
+ ) -> int:
890
+ if num_tiles == 1:
891
+ return _lowest_multiple(crop_patches + pooling_size - 1, pooling_size)
892
+
893
+ crop_window_patches = crop_patches - (left_margin + right_margin)
894
+
895
+ left_num = _lowest_multiple(
896
+ crop_window_patches + left_margin + pooling_size - 1,
897
+ pooling_size,
898
+ )
899
+ middle_num = _lowest_multiple(
900
+ crop_window_patches + pooling_size - 1,
901
+ pooling_size,
902
+ )
903
+ right_num = _lowest_multiple(
904
+ crop_window_patches + right_margin + pooling_size - 1,
905
+ pooling_size,
906
+ )
907
+
908
+ return left_num + (num_tiles - 2) * middle_num + right_num
909
+
910
+
911
+ def get_patches_grid_size(
912
+ *,
913
+ tiling_h: int,
914
+ tiling_w: int,
915
+ crop_patches: int,
916
+ left_margin: int,
917
+ right_margin: int,
918
+ pooling_size: int,
919
+ ) -> tuple[int, int]:
920
+ nrows = get_num_patches(
921
+ tiling_h,
922
+ crop_patches=crop_patches,
923
+ left_margin=left_margin,
924
+ right_margin=right_margin,
925
+ pooling_size=pooling_size,
926
+ )
927
+ ncols = get_num_patches(
928
+ tiling_w,
929
+ crop_patches=crop_patches,
930
+ left_margin=left_margin,
931
+ right_margin=right_margin,
932
+ pooling_size=pooling_size,
933
+ )
934
+
935
+ return nrows, ncols
936
+
937
+
938
+ def get_candidate_tilings(max_num: int) -> list[tuple[int, int]]:
939
+ tilings = [(i, j) for i in range(1, max_num + 1)
940
+ for j in range(1, max_num + 1) if i * j <= max_num]
941
+ return sorted(tilings, key=lambda x: x[0] * x[1])
942
+
943
+
944
+ def select_tiling(
945
+ *,
946
+ height: int,
947
+ width: int,
948
+ patch_size: int,
949
+ max_num_patches: int,
950
+ ):
951
+ tilings = get_candidate_tilings(max_num_patches)
952
+ candidate_tilings = np.array(tilings, dtype=np.int32)
953
+ candidate_resolutions = candidate_tilings * patch_size
954
+
955
+ original_size = np.array([height, width], dtype=np.float32)
956
+ required_scale_d = candidate_resolutions.astype(np.float32) / original_size
957
+ required_scale = required_scale_d.min(axis=-1, keepdims=True)
958
+
959
+ if (required_scale < 1).all():
960
+ ix = required_scale.argmax()
961
+ else:
962
+ ix = np.where(required_scale < 1.0, 10e9, required_scale).argmin()
963
+
964
+ return candidate_tilings[ix]
965
+
966
+
967
+ class MolmoProcessorWrapper:
968
+ """
969
+ Wraps `MolmoProcessor` so that it can be called directly.
970
+
971
+ The original definition can be found here:
972
+ https://huggingface.co/allenai/Molmo-7B-D-0924/blob/main/preprocessing_molmo.py
973
+ """
974
+
975
+ def __init__(self, processor: ProcessorMixin):
976
+ super().__init__()
977
+
978
+ self.processor = processor
979
+
980
+ @cached_property
981
+ def vocab(self) -> dict[str, int]:
982
+ return self.processor.tokenizer.vocab # type: ignore
983
+
984
+ @cached_property
985
+ def max_crops(self) -> int:
986
+ image_processor = self.processor.image_processor # type: ignore
987
+
988
+ max_crops = image_processor.max_crops
989
+ assert isinstance(max_crops, int)
990
+
991
+ return max_crops
992
+
993
+ @cached_property
994
+ def base_image_input_size(self) -> tuple[int, int]:
995
+ image_processor = self.processor.image_processor # type: ignore
996
+
997
+ base_image_input_size = image_processor.base_image_input_size
998
+ if isinstance(base_image_input_size, int):
999
+ return base_image_input_size, base_image_input_size
1000
+
1001
+ return tuple(base_image_input_size)
1002
+
1003
+ @cached_property
1004
+ def image_patch_size(self) -> int:
1005
+ image_processor = self.processor.image_processor # type: ignore
1006
+
1007
+ image_patch_size = image_processor.image_patch_size
1008
+ assert isinstance(image_patch_size, int)
1009
+
1010
+ return image_patch_size
1011
+
1012
+ @cached_property
1013
+ def overlap_margins(self) -> tuple[int, int]:
1014
+ image_processor = self.processor.image_processor # type: ignore
1015
+
1016
+ left_margin, right_margin = image_processor.overlap_margins
1017
+ assert isinstance(left_margin, int)
1018
+ assert isinstance(right_margin, int)
1019
+
1020
+ return left_margin, right_margin
1021
+
1022
+ @cached_property
1023
+ def image_token_length_w(self) -> int:
1024
+ image_processor = self.processor.image_processor # type: ignore
1025
+
1026
+ image_token_length_w = image_processor.image_token_length_w
1027
+ assert isinstance(image_token_length_w, int)
1028
+
1029
+ return image_token_length_w
1030
+
1031
+ @cached_property
1032
+ def image_token_length_h(self) -> int:
1033
+ image_processor = self.processor.image_processor # type: ignore
1034
+
1035
+ image_token_length_h = image_processor.image_token_length_h
1036
+ assert isinstance(image_token_length_h, int)
1037
+
1038
+ return image_token_length_h
1039
+
1040
+ @property
1041
+ def message_format(self) -> Optional[str]:
1042
+ return "role"
1043
+
1044
+ @property
1045
+ def always_start_with_space(self) -> bool:
1046
+ return True
1047
+
1048
+ @cached_property
1049
+ def image_patch_id(self) -> int:
1050
+ return self.vocab[IMAGE_PATCH_TOKEN]
1051
+
1052
+ @cached_property
1053
+ def im_col_id(self) -> int:
1054
+ return self.vocab[IM_COL_TOKEN]
1055
+
1056
+ @cached_property
1057
+ def im_start_id(self) -> int:
1058
+ return self.vocab[IM_START_TOKEN]
1059
+
1060
+ @cached_property
1061
+ def im_end_id(self) -> int:
1062
+ return self.vocab[IM_END_TOKEN]
1063
+
1064
+ @property
1065
+ def pooling_size(self) -> int:
1066
+ return POOLING_SIZE
1067
+
1068
+ def select_tiling(
1069
+ self,
1070
+ *,
1071
+ image_width: int,
1072
+ image_height: int,
1073
+ ) -> tuple[int, int]:
1074
+ max_crops = self.max_crops
1075
+ left_margin, right_margin = self.overlap_margins
1076
+ base_image_input_size = self.base_image_input_size
1077
+ base_image_input_d = self.image_patch_size
1078
+
1079
+ total_margin_pixels = base_image_input_d * (right_margin + left_margin)
1080
+ crop_patches = base_image_input_size[0] // base_image_input_d
1081
+ crop_window_patches = crop_patches - (right_margin + left_margin)
1082
+ crop_window_size = crop_window_patches * base_image_input_d
1083
+ tiling_h, tiling_w = select_tiling(
1084
+ height=image_height - total_margin_pixels,
1085
+ width=image_width - total_margin_pixels,
1086
+ patch_size=crop_window_size,
1087
+ max_num_patches=max_crops,
1088
+ )
1089
+
1090
+ return tiling_w, tiling_h
1091
+
1092
+ def get_patches_grid_size(
1093
+ self,
1094
+ *,
1095
+ image_width: int,
1096
+ image_height: int,
1097
+ ) -> tuple[int, int]:
1098
+ left_margin, right_margin = self.overlap_margins
1099
+ base_image_input_size = self.base_image_input_size
1100
+ base_image_input_d = self.image_patch_size
1101
+ pooling_size = self.pooling_size
1102
+
1103
+ crop_patches = base_image_input_size[0] // base_image_input_d
1104
+ tiling_w, tiling_h = self.select_tiling(
1105
+ image_height=image_height,
1106
+ image_width=image_width,
1107
+ )
1108
+
1109
+ nrows, ncols = get_patches_grid_size(
1110
+ tiling_h=tiling_h,
1111
+ tiling_w=tiling_w,
1112
+ crop_patches=crop_patches,
1113
+ left_margin=left_margin,
1114
+ right_margin=right_margin,
1115
+ pooling_size=pooling_size,
1116
+ )
1117
+
1118
+ return ncols, nrows
1119
+
1120
+ def __call__(
1121
+ self,
1122
+ text: Optional[Union[TextInput, list[TextInput]]] = None,
1123
+ images: Optional[Union[ImageInput, list[ImageInput]]] = None,
1124
+ return_tensors: Optional[Union[str, TensorType]] = None,
1125
+ **kwargs,
1126
+ ) -> BatchFeature:
1127
+ outputs = self.processor.process( # type: ignore
1128
+ text, images, **kwargs)
1129
+
1130
+ if images is None:
1131
+ images = []
1132
+ if not isinstance(images, list):
1133
+ images = [images]
1134
+
1135
+ input_ids: torch.Tensor = outputs.pop("input_ids")
1136
+ outputs["input_ids"] = input_ids.unsqueeze(0)
1137
+
1138
+ image_input_idx = outputs.pop("image_input_idx", None)
1139
+ if image_input_idx is not None:
1140
+ feat_is_patch = image_input_idx >= 0
1141
+
1142
+ tilings = [
1143
+ self.select_tiling(
1144
+ image_width=image.size[0],
1145
+ image_height=image.size[1],
1146
+ ) for image in images
1147
+ ]
1148
+ # For each image: tiling_h * tiling_w + extra
1149
+ num_crops = torch.tensor(tilings).prod(-1) + 1
1150
+ assert num_crops.sum() == len(feat_is_patch)
1151
+
1152
+ outputs["feat_is_patch"] = feat_is_patch
1153
+ outputs["num_crops"] = num_crops
1154
+ outputs["img_patch_id"] = self.image_patch_id
1155
+
1156
+ return BatchFeature(outputs)
1157
+
1158
+
1159
+ class MolmoProcessingInfo(BaseProcessingInfo):
1160
+
1161
+ def get_hf_processor(self, **kwargs: object) -> MolmoProcessorWrapper:
1162
+ processor = self.ctx.get_hf_processor(**kwargs)
1163
+ return MolmoProcessorWrapper(processor)
1164
+
1165
+ def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
1166
+ return {"image": None}
1167
+
1168
+ def get_num_image_tokens(
1169
+ self,
1170
+ *,
1171
+ image_width: int,
1172
+ image_height: int,
1173
+ processor: Optional[MolmoProcessorWrapper],
1174
+ ) -> int:
1175
+ if processor is None:
1176
+ processor = self.get_hf_processor()
1177
+
1178
+ ncols, nrows = processor.get_patches_grid_size(
1179
+ image_width=image_width,
1180
+ image_height=image_height,
1181
+ )
1182
+ pooling_size = processor.pooling_size
1183
+
1184
+ image_token_length_w = processor.image_token_length_w
1185
+ image_token_length_h = processor.image_token_length_h
1186
+
1187
+ extra = image_token_length_w * image_token_length_h
1188
+ joint = ((ncols + 1) // pooling_size) * ((nrows + 1) // pooling_size)
1189
+
1190
+ return extra + joint
1191
+
1192
+ def get_image_size_with_most_features(self) -> ImageSize:
1193
+ processor = self.get_hf_processor()
1194
+
1195
+ tilings = get_candidate_tilings(processor.max_crops)
1196
+ base_h, base_w = processor.base_image_input_size
1197
+
1198
+ largest_feature_size, largest_feature_pinpoint = 0, None
1199
+ for wr, hr in tilings:
1200
+ width, height = base_w * wr, base_h * hr
1201
+
1202
+ feat_size = self.get_num_image_tokens(
1203
+ image_width=width,
1204
+ image_height=height,
1205
+ processor=processor,
1206
+ )
1207
+ if feat_size > largest_feature_size:
1208
+ largest_feature_size = feat_size
1209
+ largest_feature_pinpoint = ImageSize(width=width,
1210
+ height=height)
1211
+
1212
+ if largest_feature_size == 0 or largest_feature_pinpoint is None:
1213
+ raise ValueError("Cannot have a largest feature size of 0!")
1214
+
1215
+ return largest_feature_pinpoint
1216
+
1217
+
1218
+ class MolmoDummyInputsBuilder(BaseDummyInputsBuilder[MolmoProcessingInfo]):
1219
+
1220
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
1221
+ return ""
1222
+
1223
+ def get_dummy_mm_data(
1224
+ self,
1225
+ seq_len: int,
1226
+ mm_counts: Mapping[str, int],
1227
+ ) -> MultiModalDataDict:
1228
+ target_width, target_height = \
1229
+ self.info.get_image_size_with_most_features()
1230
+ num_images = mm_counts.get("image", 0)
1231
+
1232
+ return {
1233
+ "image":
1234
+ self._get_dummy_images(width=target_width,
1235
+ height=target_height,
1236
+ num_images=num_images)
1237
+ }
1238
+
1239
+
1240
+ class MolmoMultiModalProcessor(BaseMultiModalProcessor[MolmoProcessingInfo]):
1241
+
1242
+ def _apply_hf_processor_tokens_only(
1243
+ self,
1244
+ prompt_tokens: list[int],
1245
+ ) -> list[int]:
1246
+ processor = self.info.get_hf_processor()
1247
+
1248
+ # Apply the chat template to the tokens
1249
+ tokens = processor.processor.get_tokens_input( # type: ignore
1250
+ self.info.get_tokenizer().decode(prompt_tokens),
1251
+ message_format=processor.message_format,
1252
+ always_start_with_space=processor.always_start_with_space,
1253
+ )
1254
+
1255
+ processed_data = self.info.ctx.call_hf_processor(
1256
+ processor, # type: ignore
1257
+ dict(tokens=tokens),
1258
+ )
1259
+ prompt_ids, = processed_data.pop("input_ids").tolist()
1260
+
1261
+ return prompt_ids
1262
+
1263
+ def _get_mm_fields_config(
1264
+ self,
1265
+ hf_inputs: BatchFeature,
1266
+ hf_processor_mm_kwargs: Mapping[str, object],
1267
+ ) -> Mapping[str, MultiModalFieldConfig]:
1268
+ num_crops = hf_inputs.get("num_crops", torch.empty(0))
1269
+ num_images = len(num_crops)
1270
+
1271
+ return dict(
1272
+ images=MultiModalFieldConfig.flat_from_sizes("image", num_crops),
1273
+ image_masks=MultiModalFieldConfig.flat_from_sizes(
1274
+ "image", num_crops),
1275
+ feat_is_patch=MultiModalFieldConfig.flat_from_sizes(
1276
+ "image", num_crops),
1277
+ num_crops=MultiModalFieldConfig.batched("image"),
1278
+ img_patch_id=MultiModalFieldConfig.shared("image", num_images),
1279
+ )
1280
+
1281
+ def _get_prompt_updates(
1282
+ self,
1283
+ mm_items: MultiModalDataItems,
1284
+ hf_processor_mm_kwargs: Mapping[str, object],
1285
+ out_mm_kwargs: MultiModalKwargs,
1286
+ ) -> Sequence[PromptUpdate]:
1287
+ processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
1288
+
1289
+ image_token_length_w = processor.image_token_length_w
1290
+ image_token_length_h = processor.image_token_length_h
1291
+ pooling_size = processor.pooling_size
1292
+
1293
+ img_patch_id = processor.image_patch_id
1294
+ img_col_id = processor.im_col_id
1295
+ img_start_id = processor.im_start_id
1296
+ img_end_id = processor.im_end_id
1297
+
1298
+ extra_row = [img_patch_id] * image_token_length_w + [img_col_id]
1299
+ extra_joint = ([img_start_id] + extra_row * image_token_length_h +
1300
+ [img_end_id])
1301
+
1302
+ def get_insertion_molmo(item_idx: int):
1303
+ images = mm_items.get_items("image", ImageProcessorItems)
1304
+ image_size = images.get_image_size(item_idx)
1305
+
1306
+ ncols, nrows = processor.get_patches_grid_size(
1307
+ image_width=image_size.width,
1308
+ image_height=image_size.height,
1309
+ )
1310
+
1311
+ joint_row = ([img_patch_id] * ((ncols + 1) // pooling_size) +
1312
+ [img_col_id])
1313
+ joint = ([img_start_id] + joint_row *
1314
+ ((nrows + 1) // pooling_size) + [img_end_id])
1315
+
1316
+ return PromptUpdateDetails.select_token_id(
1317
+ extra_joint + joint,
1318
+ embed_token_id=img_patch_id,
1319
+ )
1320
+
1321
+ return [
1322
+ PromptInsertion(
1323
+ modality="image",
1324
+ target=PromptIndexTargets.prefix("<|endoftext|>"),
1325
+ insertion=get_insertion_molmo,
1326
+ )
1327
+ ]
1328
+
1329
+
1330
+ @MULTIMODAL_REGISTRY.register_processor(MolmoMultiModalProcessor,
1331
+ info=MolmoProcessingInfo,
1332
+ dummy_inputs=MolmoDummyInputsBuilder)
1333
+ class MolmoForCausalLM(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA,
1334
+ SupportsQuant):
1335
+ hf_to_vllm_mapper = WeightsMapper(
1336
+ orig_to_new_substr={
1337
+ # vision backbone mapping
1338
+ "image_projector.w1.": "image_projector.gate_proj.",
1339
+ "image_projector.w3.": "image_projector.up_proj.",
1340
+ "image_projector.w2.": "image_projector.down_proj.",
1341
+ # language backbone mapping
1342
+ "att_proj": "self_attn.qkv_proj",
1343
+ "attn_out": "self_attn.o_proj",
1344
+ "q_norm": "self_attn.q_norm",
1345
+ "k_norm": "self_attn.k_norm",
1346
+ "ff_proj": "mlp.gate_up_proj",
1347
+ "ff_out": "mlp.down_proj",
1348
+ "attn_norm": "input_layernorm",
1349
+ "ff_norm": "post_attention_layernorm",
1350
+ },
1351
+ orig_to_new_prefix={
1352
+ # vision backbone mapping
1353
+ "model.vision_backbone.": "vision_backbone.",
1354
+ # language backbone mapping
1355
+ "model.transformer.blocks.": "model.layers.",
1356
+ "model.transformer.ln_f.": "model.norm.",
1357
+ # lm_head is renamed to model.transformer.mlp.down_proj firstly,
1358
+ # we need to run a second renaming for it
1359
+ "model.transformer.mlp.down_proj.": "lm_head.",
1360
+ },
1361
+ )
1362
+
1363
+ packed_modules_mapping = {
1364
+ "qkv_proj": ["qkv_proj"],
1365
+ "gate_up_proj": ["gate_up_proj"], # language model
1366
+ "merged_linear": ["gate_proj", "up_proj"] # image_projector
1367
+ }
1368
+
1369
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1370
+ super().__init__()
1371
+ config = vllm_config.model_config.hf_config
1372
+ quant_config = vllm_config.quant_config
1373
+ multimodal_config = vllm_config.model_config.multimodal_config
1374
+ lora_config = vllm_config.lora_config
1375
+ self.config = config
1376
+ self.multimodal_config = multimodal_config
1377
+ self.lora_config = lora_config
1378
+
1379
+ vision_config = VisionBackboneConfig()
1380
+ self.vision_backbone = MolmoVisionBackbone(config, vision_config,
1381
+ quant_config)
1382
+ self.model = MolmoModel(vllm_config=vllm_config,
1383
+ prefix=maybe_prefix(prefix, "model"))
1384
+ self.img_patch_id = None
1385
+
1386
+ if self.config.weight_tying:
1387
+ self.lm_head = self.model.transformer.wte
1388
+ else:
1389
+ self.lm_head = ParallelLMHead(
1390
+ config.embedding_size or config.vocab_size,
1391
+ config.hidden_size,
1392
+ quant_config=quant_config,
1393
+ )
1394
+
1395
+ self.logits_processor = LogitsProcessor(config.embedding_size
1396
+ or config.vocab_size)
1397
+
1398
+ self.make_empty_intermediate_tensors = (
1399
+ self.model.make_empty_intermediate_tensors)
1400
+
1401
+ def _parse_and_validate_image_input(
1402
+ self,
1403
+ **kwargs: object,
1404
+ ) -> Optional[MolmoImageInputs]:
1405
+ images = kwargs.pop("images", None)
1406
+ if images is None:
1407
+ return None
1408
+
1409
+ if not isinstance(images, (torch.Tensor, list)):
1410
+ raise ValueError("Incorrect type of images. "
1411
+ f"Got type: {type(images)}")
1412
+
1413
+ image_masks = kwargs.pop("image_masks", None)
1414
+ if not (image_masks is None or isinstance(image_masks,
1415
+ (torch.Tensor, list))):
1416
+ raise ValueError("Incorrect type of image_masks. "
1417
+ f"Got type: {type(image_masks)}")
1418
+
1419
+ feat_is_patch = kwargs.pop("feat_is_patch", None)
1420
+ if not isinstance(feat_is_patch, (torch.Tensor, list)):
1421
+ raise ValueError("Incorrect type of feat_is_patch. "
1422
+ f"Got type: {type(feat_is_patch)}")
1423
+
1424
+ num_crops = kwargs.pop("num_crops", None)
1425
+ if not isinstance(num_crops, (torch.Tensor, list)):
1426
+ raise ValueError("Incorrect type of num_crops. "
1427
+ f"Got type: {type(num_crops)}")
1428
+
1429
+ img_patch_id = kwargs.pop("img_patch_id", None)
1430
+ if not isinstance(img_patch_id, torch.Tensor):
1431
+ raise ValueError("Incorrect type of img_patch_id. "
1432
+ f"Got type: {type(img_patch_id)}")
1433
+ self.img_patch_id = img_patch_id.flatten().unique().item()
1434
+
1435
+ num_crops = flatten_bn(num_crops, concat=True)
1436
+
1437
+ return MolmoImageInputs(
1438
+ images=images,
1439
+ image_masks=image_masks,
1440
+ feat_is_patch=feat_is_patch,
1441
+ num_crops=num_crops,
1442
+ )
1443
+
1444
+ def _process_image_input(
1445
+ self,
1446
+ image_input: MolmoImageInputs,
1447
+ ) -> list[torch.Tensor]:
1448
+ images = image_input["images"]
1449
+ image_masks = image_input["image_masks"]
1450
+ feat_is_patch = image_input["feat_is_patch"]
1451
+ num_crops = image_input["num_crops"]
1452
+
1453
+ # Call the vision backbone on the whole batch at once
1454
+ images_flat = flatten_bn(images, concat=True)
1455
+ image_masks_flat = (None if image_masks is None else flatten_bn(
1456
+ image_masks, concat=True))
1457
+ feat_is_patch_flat = flatten_bn(feat_is_patch, concat=True)
1458
+
1459
+ image_features_flat = self.vision_backbone(
1460
+ images=images_flat.unsqueeze(0),
1461
+ image_masks=(None if image_masks_flat is None else
1462
+ image_masks_flat.unsqueeze(0)),
1463
+ ).squeeze(0)
1464
+
1465
+ # Only the features corresponding to patch tokens are relevant
1466
+ return [
1467
+ feats[f_is_patch] for feats, f_is_patch in zip(
1468
+ image_features_flat.split(num_crops.tolist()),
1469
+ feat_is_patch_flat.split(num_crops.tolist()),
1470
+ )
1471
+ ]
1472
+
1473
+ def get_language_model(self) -> torch.nn.Module:
1474
+ return self.model
1475
+
1476
+ def get_multimodal_embeddings(
1477
+ self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
1478
+ image_input = self._parse_and_validate_image_input(**kwargs)
1479
+ if image_input is None:
1480
+ return None
1481
+
1482
+ return self._process_image_input(image_input)
1483
+
1484
+ def get_input_embeddings(
1485
+ self,
1486
+ input_ids: torch.Tensor,
1487
+ multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
1488
+ ) -> torch.Tensor:
1489
+ inputs_embeds = self.model.get_input_embeddings(input_ids)
1490
+ if multimodal_embeddings is not None:
1491
+ assert self.img_patch_id is not None
1492
+
1493
+ inputs_embeds = merge_multimodal_embeddings(
1494
+ input_ids,
1495
+ inputs_embeds,
1496
+ multimodal_embeddings,
1497
+ self.img_patch_id,
1498
+ )
1499
+ return inputs_embeds
1500
+
1501
+ def forward(
1502
+ self,
1503
+ input_ids: torch.LongTensor,
1504
+ positions: torch.LongTensor,
1505
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1506
+ inputs_embeds: Optional[torch.Tensor] = None,
1507
+ **kwargs: object,
1508
+ ) -> torch.Tensor:
1509
+
1510
+ if intermediate_tensors is not None:
1511
+ inputs_embeds = None
1512
+
1513
+ # NOTE: In v1, inputs_embeds is always generated at model runner, this
1514
+ # condition is for v0 compatibility.
1515
+ elif inputs_embeds is None:
1516
+ vision_embeddings = self.get_multimodal_embeddings(**kwargs)
1517
+ inputs_embeds = self.get_input_embeddings(input_ids,
1518
+ vision_embeddings)
1519
+ input_ids = None
1520
+
1521
+ hidden_states = self.model(input_ids,
1522
+ positions,
1523
+ intermediate_tensors,
1524
+ inputs_embeds=inputs_embeds)
1525
+
1526
+ return hidden_states
1527
+
1528
+ def compute_logits(self, hidden_states: torch.Tensor,
1529
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
1530
+ logits = self.logits_processor(self.lm_head, hidden_states,
1531
+ sampling_metadata)
1532
+ return logits
1533
+
1534
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
1535
+
1536
+ loader = AutoWeightsLoader(self)
1537
+ weights = _get_weights_with_merged_embedding(weights)
1538
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
1539
+
1540
+ def get_mm_mapping(self) -> MultiModelKeys:
1541
+ """
1542
+ Get the module prefix in multimodal models
1543
+ """
1544
+ return MultiModelKeys.from_string_field(
1545
+ language_model="model",
1546
+ connector="vision_backbone.image_projector",
1547
+ tower_model="vision_backbone",
1548
+ )
1549
+
1550
+
1551
+ def _get_weights_with_merged_embedding(
1552
+ weights: Iterable[tuple[str, torch.Tensor]]
1553
+ ) -> Iterable[tuple[str, torch.Tensor]]:
1554
+ embedding_weights = {}
1555
+ for name, weight in weights:
1556
+ if "wte.embedding" in name:
1557
+ embedding_weights["embedding"] = weight
1558
+ elif "wte.new_embedding" in name:
1559
+ embedding_weights["new_embedding"] = weight
1560
+ else:
1561
+ yield (name, weight)
1562
+ # this is compatible with most of quantization,
1563
+ # because they won't quantize embed_tokens
1564
+ embedding_weights = torch.cat(
1565
+ [embedding_weights["embedding"], embedding_weights["new_embedding"]],
1566
+ dim=0,
1567
+ )
1568
+ yield ("model.embed_tokens.weight", embedding_weights)