spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +81 -28
- sparknlp/annotation.py +3 -2
- sparknlp/annotator/__init__.py +6 -0
- sparknlp/annotator/audio/__init__.py +2 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/{base → annotator}/chunk2_doc.py +4 -7
- sparknlp/annotator/chunker.py +1 -2
- sparknlp/annotator/classifier_dl/__init__.py +17 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/spanbert_coref.py +4 -18
- sparknlp/annotator/cv/__init__.py +15 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/dependency_parser.py +2 -3
- sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +37 -1
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +11 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
- sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
- sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
- sparknlp/annotator/embeddings/doc2vec.py +7 -1
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
- sparknlp/annotator/embeddings/word2vec.py +7 -1
- sparknlp/annotator/embeddings/word_embeddings.py +4 -5
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
- sparknlp/annotator/er/entity_ruler.py +37 -23
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
- sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
- sparknlp/annotator/lemmatizer.py +3 -4
- sparknlp/annotator/matcher/date_matcher.py +35 -3
- sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
- sparknlp/annotator/matcher/regex_matcher.py +3 -3
- sparknlp/annotator/matcher/text_matcher.py +2 -3
- sparknlp/annotator/n_gram_generator.py +1 -2
- sparknlp/annotator/ner/__init__.py +3 -1
- sparknlp/annotator/ner/ner_converter.py +18 -0
- sparknlp/annotator/ner/ner_crf.py +4 -5
- sparknlp/annotator/ner/ner_dl.py +10 -5
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +2 -2
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +2 -2
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/pos/perceptron.py +6 -7
- sparknlp/annotator/sentence/sentence_detector.py +2 -2
- sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
- sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
- sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
- sparknlp/annotator/seq2seq/__init__.py +17 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
- sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
- sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
- sparknlp/annotator/stemmer.py +2 -3
- sparknlp/annotator/stop_words_cleaner.py +3 -4
- sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
- sparknlp/annotator/token/__init__.py +0 -1
- sparknlp/annotator/token/recursive_tokenizer.py +2 -3
- sparknlp/annotator/token/tokenizer.py +2 -3
- sparknlp/annotator/ws/word_segmenter.py +35 -10
- sparknlp/base/__init__.py +2 -3
- sparknlp/base/doc2_chunk.py +0 -3
- sparknlp/base/document_assembler.py +5 -5
- sparknlp/base/embeddings_finisher.py +14 -2
- sparknlp/base/finisher.py +15 -4
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/image_assembler.py +69 -0
- sparknlp/base/light_pipeline.py +53 -21
- sparknlp/base/multi_document_assembler.py +9 -13
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/token_assembler.py +1 -2
- sparknlp/common/__init__.py +2 -0
- sparknlp/common/annotator_type.py +1 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +914 -9
- sparknlp/internal/__init__.py +841 -116
- sparknlp/internal/annotator_java_ml.py +1 -1
- sparknlp/internal/annotator_transformer.py +3 -0
- sparknlp/logging/comet.py +2 -2
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/pretrained_pipeline.py +1 -1
- sparknlp/pretrained/resource_downloader.py +126 -2
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +1 -0
- sparknlp/training/conll.py +8 -2
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/util.py +26 -0
- spark_nlp-4.2.6.dist-info/METADATA +0 -1256
- spark_nlp-4.2.6.dist-info/RECORD +0 -196
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
- /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
|
@@ -0,0 +1,148 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class MPNetForQuestionAnswering(AnnotatorModel,
|
|
19
|
+
HasCaseSensitiveProperties,
|
|
20
|
+
HasBatchedAnnotate,
|
|
21
|
+
HasEngine,
|
|
22
|
+
HasMaxSentenceLengthLimit):
|
|
23
|
+
"""MPNetForQuestionAnswering can load MPNet Models with a span classification head on top for extractive
|
|
24
|
+
question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start
|
|
25
|
+
logits and span end logits).
|
|
26
|
+
|
|
27
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
28
|
+
object:
|
|
29
|
+
|
|
30
|
+
>>> spanClassifier = MPNetForQuestionAnswering.pretrained() \\
|
|
31
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
32
|
+
... .setOutputCol("answer")
|
|
33
|
+
|
|
34
|
+
The default model is ``"mpnet_base_question_answering_squad2"``, if no name is
|
|
35
|
+
provided.
|
|
36
|
+
|
|
37
|
+
For available pretrained models please see the `Models Hub
|
|
38
|
+
<https://sparknlp.org/models?task=Question+Answering>`__.
|
|
39
|
+
|
|
40
|
+
To see which models are compatible and how to import them see
|
|
41
|
+
`Import Transformers into Spark NLP 🚀
|
|
42
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
43
|
+
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT, DOCUMENT`` ``CHUNK``
|
|
48
|
+
====================== ======================
|
|
49
|
+
|
|
50
|
+
Parameters
|
|
51
|
+
----------
|
|
52
|
+
batchSize
|
|
53
|
+
Batch size. Large values allows faster processing but requires more
|
|
54
|
+
memory, by default 8
|
|
55
|
+
caseSensitive
|
|
56
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
57
|
+
False
|
|
58
|
+
maxSentenceLength
|
|
59
|
+
Max sentence length to process, by default 128
|
|
60
|
+
|
|
61
|
+
Examples
|
|
62
|
+
--------
|
|
63
|
+
>>> import sparknlp
|
|
64
|
+
>>> from sparknlp.base import *
|
|
65
|
+
>>> from sparknlp.annotator import *
|
|
66
|
+
>>> from pyspark.ml import Pipeline
|
|
67
|
+
>>> documentAssembler = MultiDocumentAssembler() \\
|
|
68
|
+
... .setInputCols(["question", "context"]) \\
|
|
69
|
+
... .setOutputCol(["document_question", "document_context"])
|
|
70
|
+
>>> spanClassifier = MPNetForQuestionAnswering.pretrained() \\
|
|
71
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
72
|
+
... .setOutputCol("answer") \\
|
|
73
|
+
... .setCaseSensitive(False)
|
|
74
|
+
>>> pipeline = Pipeline().setStages([
|
|
75
|
+
... documentAssembler,
|
|
76
|
+
... spanClassifier
|
|
77
|
+
... ])
|
|
78
|
+
>>> data = spark.createDataFrame([["What's my name?", "My name is Clara and I live in Berkeley."]]).toDF("question", "context")
|
|
79
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
80
|
+
>>> result.select("answer.result").show(truncate=False)
|
|
81
|
+
+--------------------+
|
|
82
|
+
|result |
|
|
83
|
+
+--------------------+
|
|
84
|
+
|[Clara] |
|
|
85
|
+
+--------------------+
|
|
86
|
+
"""
|
|
87
|
+
name = "MPNetForQuestionAnswering"
|
|
88
|
+
|
|
89
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.DOCUMENT]
|
|
90
|
+
|
|
91
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
@keyword_only
|
|
95
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.MPNetForQuestionAnswering",
|
|
96
|
+
java_model=None):
|
|
97
|
+
super(MPNetForQuestionAnswering, self).__init__(
|
|
98
|
+
classname=classname,
|
|
99
|
+
java_model=java_model
|
|
100
|
+
)
|
|
101
|
+
self._setDefault(
|
|
102
|
+
batchSize=8,
|
|
103
|
+
maxSentenceLength=384,
|
|
104
|
+
caseSensitive=False
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
@staticmethod
|
|
108
|
+
def loadSavedModel(folder, spark_session):
|
|
109
|
+
"""Loads a locally saved model.
|
|
110
|
+
|
|
111
|
+
Parameters
|
|
112
|
+
----------
|
|
113
|
+
folder : str
|
|
114
|
+
Folder of the saved model
|
|
115
|
+
spark_session : pyspark.sql.SparkSession
|
|
116
|
+
The current SparkSession
|
|
117
|
+
|
|
118
|
+
Returns
|
|
119
|
+
-------
|
|
120
|
+
MPNetForQuestionAnswering
|
|
121
|
+
The restored model
|
|
122
|
+
"""
|
|
123
|
+
from sparknlp.internal import _MPNetForQuestionAnsweringLoader
|
|
124
|
+
jModel = _MPNetForQuestionAnsweringLoader(folder, spark_session._jsparkSession)._java_obj
|
|
125
|
+
return MPNetForQuestionAnswering(java_model=jModel)
|
|
126
|
+
|
|
127
|
+
@staticmethod
|
|
128
|
+
def pretrained(name="mpnet_base_question_answering_squad2", lang="en", remote_loc=None):
|
|
129
|
+
"""Downloads and loads a pretrained model.
|
|
130
|
+
|
|
131
|
+
Parameters
|
|
132
|
+
----------
|
|
133
|
+
name : str, optional
|
|
134
|
+
Name of the pretrained model, by default
|
|
135
|
+
"mpnet_base_question_answering_squad2"
|
|
136
|
+
lang : str, optional
|
|
137
|
+
Language of the pretrained model, by default "en"
|
|
138
|
+
remote_loc : str, optional
|
|
139
|
+
Optional remote address of the resource, by default None. Will use
|
|
140
|
+
Spark NLPs repositories otherwise.
|
|
141
|
+
|
|
142
|
+
Returns
|
|
143
|
+
-------
|
|
144
|
+
MPNetForQuestionAnswering
|
|
145
|
+
The restored model
|
|
146
|
+
"""
|
|
147
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
148
|
+
return ResourceDownloader.downloadModel(MPNetForQuestionAnswering, name, lang, remote_loc)
|
|
@@ -0,0 +1,188 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for MPNetForSequenceClassification."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class MPNetForSequenceClassification(AnnotatorModel,
|
|
20
|
+
HasCaseSensitiveProperties,
|
|
21
|
+
HasBatchedAnnotate,
|
|
22
|
+
HasClassifierActivationProperties,
|
|
23
|
+
HasEngine,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
25
|
+
"""MPNetForSequenceClassification can load MPNet Models with sequence classification/regression head on
|
|
26
|
+
top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.
|
|
27
|
+
|
|
28
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
29
|
+
object:
|
|
30
|
+
|
|
31
|
+
>>> sequenceClassifier = MPNetForSequenceClassification.pretrained() \\
|
|
32
|
+
... .setInputCols(["token", "document"]) \\
|
|
33
|
+
... .setOutputCol("label")
|
|
34
|
+
|
|
35
|
+
The default model is ``"mpnet_sequence_classifier_ukr_message"``, if no name is
|
|
36
|
+
provided.
|
|
37
|
+
|
|
38
|
+
For available pretrained models please see the `Models Hub
|
|
39
|
+
<https://sparknlp.org/models?task=Text+Classification>`__.
|
|
40
|
+
|
|
41
|
+
To see which models are compatible and how to import them see
|
|
42
|
+
`Import Transformers into Spark NLP 🚀
|
|
43
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
44
|
+
|
|
45
|
+
====================== ======================
|
|
46
|
+
Input Annotation types Output Annotation type
|
|
47
|
+
====================== ======================
|
|
48
|
+
``DOCUMENT, TOKEN`` ``CATEGORY``
|
|
49
|
+
====================== ======================
|
|
50
|
+
|
|
51
|
+
Parameters
|
|
52
|
+
----------
|
|
53
|
+
batchSize
|
|
54
|
+
Batch size. Large values allows faster processing but requires more
|
|
55
|
+
memory, by default 8
|
|
56
|
+
caseSensitive
|
|
57
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
58
|
+
True
|
|
59
|
+
maxSentenceLength
|
|
60
|
+
Max sentence length to process, by default 128
|
|
61
|
+
coalesceSentences
|
|
62
|
+
Instead of 1 class per sentence (if inputCols is `sentence`) output
|
|
63
|
+
1 class per document by averaging probabilities in all sentences, by
|
|
64
|
+
default False.
|
|
65
|
+
activation
|
|
66
|
+
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
67
|
+
`"softmax"`.
|
|
68
|
+
|
|
69
|
+
Examples
|
|
70
|
+
--------
|
|
71
|
+
>>> import sparknlp
|
|
72
|
+
>>> from sparknlp.base import *
|
|
73
|
+
>>> from sparknlp.annotator import *
|
|
74
|
+
>>> from pyspark.ml import Pipeline
|
|
75
|
+
>>> document = DocumentAssembler() \\
|
|
76
|
+
... .setInputCol("text") \\
|
|
77
|
+
... .setOutputCol("document")
|
|
78
|
+
>>> tokenizer = Tokenizer() \\
|
|
79
|
+
... .setInputCols(["document"]) \\
|
|
80
|
+
... .setOutputCol("token")
|
|
81
|
+
>>> sequenceClassifier = MPNetForSequenceClassification \\
|
|
82
|
+
... .pretrained() \\
|
|
83
|
+
... .setInputCols(["document", "token"]) \\
|
|
84
|
+
... .setOutputCol("label")
|
|
85
|
+
>>> data = spark.createDataFrame([
|
|
86
|
+
... ["I love driving my car."],
|
|
87
|
+
... ["The next bus will arrive in 20 minutes."],
|
|
88
|
+
... ["pineapple on pizza is the worst 🤮"],
|
|
89
|
+
... ]).toDF("text")
|
|
90
|
+
>>> pipeline = Pipeline().setStages([document, tokenizer, sequenceClassifier])
|
|
91
|
+
>>> pipelineModel = pipeline.fit(data)
|
|
92
|
+
>>> results = pipelineModel.transform(data)
|
|
93
|
+
>>> results.select("label.result").show()
|
|
94
|
+
+--------------------+
|
|
95
|
+
| result|
|
|
96
|
+
+--------------------+
|
|
97
|
+
| [TRANSPORT/CAR]|
|
|
98
|
+
|[TRANSPORT/MOVEMENT]|
|
|
99
|
+
| [FOOD]|
|
|
100
|
+
+--------------------+
|
|
101
|
+
"""
|
|
102
|
+
name = "MPNetForSequenceClassification"
|
|
103
|
+
|
|
104
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
105
|
+
|
|
106
|
+
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
coalesceSentences = Param(Params._dummy(), "coalesceSentences",
|
|
110
|
+
"Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.",
|
|
111
|
+
TypeConverters.toBoolean)
|
|
112
|
+
|
|
113
|
+
def getClasses(self):
|
|
114
|
+
"""
|
|
115
|
+
Returns labels used to train this model
|
|
116
|
+
"""
|
|
117
|
+
return self._call_java("getClasses")
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
def setCoalesceSentences(self, value):
|
|
121
|
+
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.
|
|
122
|
+
Due to max sequence length limit in almost all transformer models such as BERT (512 tokens), this parameter helps feeding all the sentences
|
|
123
|
+
into the model and averaging all the probabilities for the entire document instead of probabilities per sentence. (Default: true)
|
|
124
|
+
|
|
125
|
+
Parameters
|
|
126
|
+
----------
|
|
127
|
+
value : bool
|
|
128
|
+
If the output of all sentences will be averaged to one output
|
|
129
|
+
"""
|
|
130
|
+
return self._set(coalesceSentences=value)
|
|
131
|
+
|
|
132
|
+
@keyword_only
|
|
133
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.MPNetForSequenceClassification",
|
|
134
|
+
java_model=None):
|
|
135
|
+
super(MPNetForSequenceClassification, self).__init__(
|
|
136
|
+
classname=classname,
|
|
137
|
+
java_model=java_model
|
|
138
|
+
)
|
|
139
|
+
self._setDefault(
|
|
140
|
+
batchSize=8,
|
|
141
|
+
maxSentenceLength=128,
|
|
142
|
+
caseSensitive=True,
|
|
143
|
+
coalesceSentences=False,
|
|
144
|
+
activation="softmax"
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
@staticmethod
|
|
148
|
+
def loadSavedModel(folder, spark_session):
|
|
149
|
+
"""Loads a locally saved model.
|
|
150
|
+
|
|
151
|
+
Parameters
|
|
152
|
+
----------
|
|
153
|
+
folder : str
|
|
154
|
+
Folder of the saved model
|
|
155
|
+
spark_session : pyspark.sql.SparkSession
|
|
156
|
+
The current SparkSession
|
|
157
|
+
|
|
158
|
+
Returns
|
|
159
|
+
-------
|
|
160
|
+
MPNetForSequenceClassification
|
|
161
|
+
The restored model
|
|
162
|
+
"""
|
|
163
|
+
from sparknlp.internal import _MPNetForSequenceClassificationLoader
|
|
164
|
+
jModel = _MPNetForSequenceClassificationLoader(folder, spark_session._jsparkSession)._java_obj
|
|
165
|
+
return MPNetForSequenceClassification(java_model=jModel)
|
|
166
|
+
|
|
167
|
+
@staticmethod
|
|
168
|
+
def pretrained(name="mpnet_sequence_classifier_ukr_message", lang="en", remote_loc=None):
|
|
169
|
+
"""Downloads and loads a pretrained model.
|
|
170
|
+
|
|
171
|
+
Parameters
|
|
172
|
+
----------
|
|
173
|
+
name : str, optional
|
|
174
|
+
Name of the pretrained model, by default
|
|
175
|
+
"MPNet_base_sequence_classifier_imdb"
|
|
176
|
+
lang : str, optional
|
|
177
|
+
Language of the pretrained model, by default "en"
|
|
178
|
+
remote_loc : str, optional
|
|
179
|
+
Optional remote address of the resource, by default None. Will use
|
|
180
|
+
Spark NLPs repositories otherwise.
|
|
181
|
+
|
|
182
|
+
Returns
|
|
183
|
+
-------
|
|
184
|
+
MPNetForSequenceClassification
|
|
185
|
+
The restored model
|
|
186
|
+
"""
|
|
187
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
188
|
+
return ResourceDownloader.downloadModel(MPNetForSequenceClassification, name, lang, remote_loc)
|
|
@@ -0,0 +1,173 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for MPNetForTokenClassification."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class MPNetForTokenClassification(AnnotatorModel,
|
|
20
|
+
HasCaseSensitiveProperties,
|
|
21
|
+
HasBatchedAnnotate,
|
|
22
|
+
HasEngine,
|
|
23
|
+
HasMaxSentenceLengthLimit):
|
|
24
|
+
"""MPNetForTokenClassification can load XLM-RoBERTa Models with a token
|
|
25
|
+
classification head on top (a linear layer on top of the hidden-states
|
|
26
|
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
|
27
|
+
|
|
28
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
29
|
+
object:
|
|
30
|
+
|
|
31
|
+
>>> token_classifier = MPNetForTokenClassification.pretrained() \\
|
|
32
|
+
... .setInputCols(["token", "document"]) \\
|
|
33
|
+
... .setOutputCol("label")
|
|
34
|
+
The default model is ``"mpnet_base_token_classifier"``, if no
|
|
35
|
+
name is provided.
|
|
36
|
+
|
|
37
|
+
For available pretrained models please see the `Models Hub
|
|
38
|
+
<https://sparknlp.org/models?task=Named+Entity+Recognition>`__.
|
|
39
|
+
To see which models are compatible and how to import them see
|
|
40
|
+
`Import Transformers into Spark NLP 🚀
|
|
41
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
42
|
+
|
|
43
|
+
====================== ======================
|
|
44
|
+
Input Annotation types Output Annotation type
|
|
45
|
+
====================== ======================
|
|
46
|
+
``DOCUMENT, TOKEN`` ``NAMED_ENTITY``
|
|
47
|
+
====================== ======================
|
|
48
|
+
|
|
49
|
+
Parameters
|
|
50
|
+
----------
|
|
51
|
+
batchSize
|
|
52
|
+
Batch size. Large values allows faster processing but requires more
|
|
53
|
+
memory, by default 8
|
|
54
|
+
caseSensitive
|
|
55
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
56
|
+
True
|
|
57
|
+
configProtoBytes
|
|
58
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
59
|
+
maxSentenceLength
|
|
60
|
+
Max sentence length to process, by default 128
|
|
61
|
+
|
|
62
|
+
Examples
|
|
63
|
+
--------
|
|
64
|
+
>>> import sparknlp
|
|
65
|
+
>>> from sparknlp.base import *
|
|
66
|
+
>>> from sparknlp.annotator import *
|
|
67
|
+
>>> from pyspark.ml import Pipeline
|
|
68
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
69
|
+
... .setInputCol("text") \\
|
|
70
|
+
... .setOutputCol("document")
|
|
71
|
+
>>> tokenizer = Tokenizer() \\
|
|
72
|
+
... .setInputCols(["document"]) \\
|
|
73
|
+
... .setOutputCol("token")
|
|
74
|
+
>>> tokenClassifier = MPNetForTokenClassification.pretrained() \\
|
|
75
|
+
... .setInputCols(["token", "document"]) \\
|
|
76
|
+
... .setOutputCol("label") \\
|
|
77
|
+
... .setCaseSensitive(True)
|
|
78
|
+
>>> pipeline = Pipeline().setStages([
|
|
79
|
+
... documentAssembler,
|
|
80
|
+
... tokenizer,
|
|
81
|
+
... tokenClassifier
|
|
82
|
+
... ])
|
|
83
|
+
>>> data = spark.createDataFrame([["John Lenon was born in London and lived in Paris. My name is Sarah and I live in London"]]).toDF("text")
|
|
84
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
85
|
+
>>> result.select("label.result").show(truncate=False)
|
|
86
|
+
+------------------------------------------------------------------------------------+
|
|
87
|
+
|result |
|
|
88
|
+
+------------------------------------------------------------------------------------+
|
|
89
|
+
|[B-PER, I-PER, O, O, O, B-LOC, O, O, O, B-LOC, O, O, O, O, B-PER, O, O, O, O, B-LOC]|
|
|
90
|
+
+------------------------------------------------------------------------------------+
|
|
91
|
+
"""
|
|
92
|
+
name = "MPNetForTokenClassification"
|
|
93
|
+
|
|
94
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
95
|
+
|
|
96
|
+
outputAnnotatorType = AnnotatorType.NAMED_ENTITY
|
|
97
|
+
|
|
98
|
+
configProtoBytes = Param(Params._dummy(),
|
|
99
|
+
"configProtoBytes",
|
|
100
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
101
|
+
TypeConverters.toListInt)
|
|
102
|
+
|
|
103
|
+
def getClasses(self):
|
|
104
|
+
"""
|
|
105
|
+
Returns labels used to train this model
|
|
106
|
+
"""
|
|
107
|
+
return self._call_java("getClasses")
|
|
108
|
+
|
|
109
|
+
def setConfigProtoBytes(self, b):
|
|
110
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
111
|
+
|
|
112
|
+
Parameters
|
|
113
|
+
----------
|
|
114
|
+
b : List[int]
|
|
115
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
116
|
+
"""
|
|
117
|
+
return self._set(configProtoBytes=b)
|
|
118
|
+
|
|
119
|
+
@keyword_only
|
|
120
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.MPNetForTokenClassification",
|
|
121
|
+
java_model=None):
|
|
122
|
+
super(MPNetForTokenClassification, self).__init__(
|
|
123
|
+
classname=classname,
|
|
124
|
+
java_model=java_model
|
|
125
|
+
)
|
|
126
|
+
self._setDefault(
|
|
127
|
+
batchSize=8,
|
|
128
|
+
maxSentenceLength=128,
|
|
129
|
+
caseSensitive=True
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
@staticmethod
|
|
133
|
+
def loadSavedModel(folder, spark_session):
|
|
134
|
+
"""Loads a locally saved model.
|
|
135
|
+
|
|
136
|
+
Parameters
|
|
137
|
+
----------
|
|
138
|
+
folder : str
|
|
139
|
+
Folder of the saved model
|
|
140
|
+
spark_session : pyspark.sql.SparkSession
|
|
141
|
+
The current SparkSession
|
|
142
|
+
|
|
143
|
+
Returns
|
|
144
|
+
-------
|
|
145
|
+
XlmRoBertaForTokenClassification
|
|
146
|
+
The restored model
|
|
147
|
+
"""
|
|
148
|
+
from sparknlp.internal import _MPNetForTokenClassifierLoader
|
|
149
|
+
jModel = _MPNetForTokenClassifierLoader(folder, spark_session._jsparkSession)._java_obj
|
|
150
|
+
return MPNetForTokenClassification(java_model=jModel)
|
|
151
|
+
|
|
152
|
+
@staticmethod
|
|
153
|
+
def pretrained(name="mpnet_base_token_classifier", lang="en", remote_loc=None):
|
|
154
|
+
"""Downloads and loads a pretrained model.
|
|
155
|
+
|
|
156
|
+
Parameters
|
|
157
|
+
----------
|
|
158
|
+
name : str, optional
|
|
159
|
+
Name of the pretrained model, by default
|
|
160
|
+
"mpnet_base_token_classifier"
|
|
161
|
+
lang : str, optional
|
|
162
|
+
Language of the pretrained model, by default "en"
|
|
163
|
+
remote_loc : str, optional
|
|
164
|
+
Optional remote address of the resource, by default None. Will use
|
|
165
|
+
Spark NLPs repositories otherwise.
|
|
166
|
+
|
|
167
|
+
Returns
|
|
168
|
+
-------
|
|
169
|
+
XlmRoBertaForTokenClassification
|
|
170
|
+
The restored model
|
|
171
|
+
"""
|
|
172
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
173
|
+
return ResourceDownloader.downloadModel(MPNetForTokenClassification, name, lang, remote_loc)
|
|
@@ -68,7 +68,7 @@ class MultiClassifierDLApproach(AnnotatorApproach, EvaluationDLParams, Classifie
|
|
|
68
68
|
... .setLabelColumn("label") \\
|
|
69
69
|
... .setTestDataset("test_data")
|
|
70
70
|
|
|
71
|
-
For extended examples of usage, see the `
|
|
71
|
+
For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/MultiClassifierDL_train_multi_label_E2E_challenge_classifier.ipynb>`__.
|
|
72
72
|
|
|
73
73
|
======================= ======================
|
|
74
74
|
Input Annotation types Output Annotation type
|
|
@@ -265,9 +265,9 @@ class MultiClassifierDLModel(AnnotatorModel, HasStorageRef, HasEngine):
|
|
|
265
265
|
|
|
266
266
|
The data is based on the
|
|
267
267
|
`Jigsaw Toxic Comment Classification Challenge <https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/overview>`__.
|
|
268
|
-
For available pretrained models please see the `Models Hub <https://
|
|
268
|
+
For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Text+Classification>`__.
|
|
269
269
|
|
|
270
|
-
For extended examples of usage, see the `
|
|
270
|
+
For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/MultiClassifierDL_train_multi_label_E2E_challenge_classifier.ipynb>`__.
|
|
271
271
|
|
|
272
272
|
======================= ======================
|
|
273
273
|
Input Annotation types Output Annotation type
|
|
@@ -0,0 +1,161 @@
|
|
|
1
|
+
# Copyright 2017-2025 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
class RoBertaForMultipleChoice(AnnotatorModel,
|
|
18
|
+
HasCaseSensitiveProperties,
|
|
19
|
+
HasBatchedAnnotate,
|
|
20
|
+
HasEngine,
|
|
21
|
+
HasMaxSentenceLengthLimit):
|
|
22
|
+
"""RoBertaForMultipleChoice can load RoBERTa Models with a multiple choice classification head on top
|
|
23
|
+
(a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
|
|
24
|
+
|
|
25
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
26
|
+
object:
|
|
27
|
+
|
|
28
|
+
>>> spanClassifier = RoBertaForMultipleChoice.pretrained() \\
|
|
29
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
30
|
+
... .setOutputCol("answer")
|
|
31
|
+
|
|
32
|
+
The default model is ``"roberta_base_uncased_multiple_choice"``, if no name is
|
|
33
|
+
provided.
|
|
34
|
+
|
|
35
|
+
For available pretrained models please see the `Models Hub
|
|
36
|
+
<https://sparknlp.org/models?task=Multiple+Choice>`__.
|
|
37
|
+
|
|
38
|
+
To see which models are compatible and how to import them see
|
|
39
|
+
`Import Transformers into Spark NLP 🚀
|
|
40
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
41
|
+
|
|
42
|
+
====================== ======================
|
|
43
|
+
Input Annotation types Output Annotation type
|
|
44
|
+
====================== ======================
|
|
45
|
+
``DOCUMENT, DOCUMENT`` ``CHUNK``
|
|
46
|
+
====================== ======================
|
|
47
|
+
|
|
48
|
+
Parameters
|
|
49
|
+
----------
|
|
50
|
+
batchSize
|
|
51
|
+
Batch size. Large values allows faster processing but requires more
|
|
52
|
+
memory, by default 8
|
|
53
|
+
caseSensitive
|
|
54
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
55
|
+
False
|
|
56
|
+
maxSentenceLength
|
|
57
|
+
Max sentence length to process, by default 512
|
|
58
|
+
|
|
59
|
+
Examples
|
|
60
|
+
--------
|
|
61
|
+
>>> import sparknlp
|
|
62
|
+
>>> from sparknlp.base import *
|
|
63
|
+
>>> from sparknlp.annotator import *
|
|
64
|
+
>>> from pyspark.ml import Pipeline
|
|
65
|
+
>>> documentAssembler = MultiDocumentAssembler() \\
|
|
66
|
+
... .setInputCols(["question", "context"]) \\
|
|
67
|
+
... .setOutputCols(["document_question", "document_context"])
|
|
68
|
+
>>> questionAnswering = RoBertaForMultipleChoice.pretrained() \\
|
|
69
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
70
|
+
... .setOutputCol("answer") \\
|
|
71
|
+
... .setCaseSensitive(False)
|
|
72
|
+
>>> pipeline = Pipeline().setStages([
|
|
73
|
+
... documentAssembler,
|
|
74
|
+
... questionAnswering
|
|
75
|
+
... ])
|
|
76
|
+
>>> data = spark.createDataFrame([["The Eiffel Tower is located in which country??", "Germany, France, Italy"]]).toDF("question", "context")
|
|
77
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
78
|
+
>>> result.select("answer.result").show(truncate=False)
|
|
79
|
+
+--------------------+
|
|
80
|
+
|result |
|
|
81
|
+
+--------------------+
|
|
82
|
+
|[France] |
|
|
83
|
+
+--------------------+
|
|
84
|
+
"""
|
|
85
|
+
name = "RobertaForMultipleChoice"
|
|
86
|
+
|
|
87
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.DOCUMENT]
|
|
88
|
+
|
|
89
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
90
|
+
|
|
91
|
+
choicesDelimiter = Param(Params._dummy(),
|
|
92
|
+
"choicesDelimiter",
|
|
93
|
+
"Delimiter character use to split the choices",
|
|
94
|
+
TypeConverters.toString)
|
|
95
|
+
|
|
96
|
+
def setChoicesDelimiter(self, value):
|
|
97
|
+
"""Sets delimiter character use to split the choices
|
|
98
|
+
|
|
99
|
+
Parameters
|
|
100
|
+
----------
|
|
101
|
+
value : string
|
|
102
|
+
Delimiter character use to split the choices
|
|
103
|
+
"""
|
|
104
|
+
return self._set(caseSensitive=value)
|
|
105
|
+
|
|
106
|
+
@keyword_only
|
|
107
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.RoBertaForMultipleChoice",
|
|
108
|
+
java_model=None):
|
|
109
|
+
super(RoBertaForMultipleChoice, self).__init__(
|
|
110
|
+
classname=classname,
|
|
111
|
+
java_model=java_model
|
|
112
|
+
)
|
|
113
|
+
self._setDefault(
|
|
114
|
+
batchSize=4,
|
|
115
|
+
maxSentenceLength=512,
|
|
116
|
+
caseSensitive=False,
|
|
117
|
+
choicesDelimiter = ","
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
@staticmethod
|
|
121
|
+
def loadSavedModel(folder, spark_session):
|
|
122
|
+
"""Loads a locally saved model.
|
|
123
|
+
|
|
124
|
+
Parameters
|
|
125
|
+
----------
|
|
126
|
+
folder : str
|
|
127
|
+
Folder of the saved model
|
|
128
|
+
spark_session : pyspark.sql.SparkSession
|
|
129
|
+
The current SparkSession
|
|
130
|
+
|
|
131
|
+
Returns
|
|
132
|
+
-------
|
|
133
|
+
RobertaForQuestionAnswering
|
|
134
|
+
The restored model
|
|
135
|
+
"""
|
|
136
|
+
from sparknlp.internal import _RoBertaMultipleChoiceLoader
|
|
137
|
+
jModel = _RoBertaMultipleChoiceLoader(folder, spark_session._jsparkSession)._java_obj
|
|
138
|
+
return RoBertaForMultipleChoice(java_model=jModel)
|
|
139
|
+
|
|
140
|
+
@staticmethod
|
|
141
|
+
def pretrained(name="Roberta_base_uncased_multiple_choice", lang="en", remote_loc=None):
|
|
142
|
+
"""Downloads and loads a pretrained model.
|
|
143
|
+
|
|
144
|
+
Parameters
|
|
145
|
+
----------
|
|
146
|
+
name : str, optional
|
|
147
|
+
Name of the pretrained model, by default
|
|
148
|
+
"Roberta_base_uncased_multiple_choice"
|
|
149
|
+
lang : str, optional
|
|
150
|
+
Language of the pretrained model, by default "en"
|
|
151
|
+
remote_loc : str, optional
|
|
152
|
+
Optional remote address of the resource, by default None. Will use
|
|
153
|
+
Spark NLPs repositories otherwise.
|
|
154
|
+
|
|
155
|
+
Returns
|
|
156
|
+
-------
|
|
157
|
+
RoBertaForMultipleChoice
|
|
158
|
+
The restored model
|
|
159
|
+
"""
|
|
160
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
161
|
+
return ResourceDownloader.downloadModel(RoBertaForMultipleChoice, name, lang, remote_loc)
|