spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (221) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  4. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  5. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  6. sparknlp/__init__.py +81 -28
  7. sparknlp/annotation.py +3 -2
  8. sparknlp/annotator/__init__.py +6 -0
  9. sparknlp/annotator/audio/__init__.py +2 -0
  10. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  11. sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
  12. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  13. sparknlp/{base → annotator}/chunk2_doc.py +4 -7
  14. sparknlp/annotator/chunker.py +1 -2
  15. sparknlp/annotator/classifier_dl/__init__.py +17 -0
  16. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  17. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
  18. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
  19. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
  20. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  21. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  22. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  23. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
  24. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
  25. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
  26. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  27. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  28. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
  29. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
  30. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  31. sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
  32. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
  33. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
  34. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
  35. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  36. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
  37. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
  38. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
  39. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  40. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  41. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
  42. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
  43. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
  44. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  45. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  46. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  47. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
  48. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  49. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
  50. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
  51. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
  52. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  53. sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
  54. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
  55. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  56. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
  57. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  60. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
  61. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
  62. sparknlp/annotator/cleaners/__init__.py +15 -0
  63. sparknlp/annotator/cleaners/cleaner.py +202 -0
  64. sparknlp/annotator/cleaners/extractor.py +191 -0
  65. sparknlp/annotator/coref/spanbert_coref.py +4 -18
  66. sparknlp/annotator/cv/__init__.py +15 -0
  67. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  68. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  69. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  70. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  71. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  72. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  73. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  74. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  75. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  76. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  77. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  78. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  79. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  80. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  81. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  82. sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
  83. sparknlp/annotator/dataframe_optimizer.py +216 -0
  84. sparknlp/annotator/date2_chunk.py +88 -0
  85. sparknlp/annotator/dependency/dependency_parser.py +2 -3
  86. sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
  87. sparknlp/annotator/document_character_text_splitter.py +228 -0
  88. sparknlp/annotator/document_normalizer.py +37 -1
  89. sparknlp/annotator/document_token_splitter.py +175 -0
  90. sparknlp/annotator/document_token_splitter_test.py +85 -0
  91. sparknlp/annotator/embeddings/__init__.py +11 -0
  92. sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
  93. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  94. sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
  95. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
  96. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  97. sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
  98. sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
  99. sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
  100. sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
  101. sparknlp/annotator/embeddings/doc2vec.py +7 -1
  102. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  103. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  104. sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
  105. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  106. sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
  107. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  108. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  109. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  110. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  111. sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
  112. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
  113. sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
  114. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  115. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  116. sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
  117. sparknlp/annotator/embeddings/word2vec.py +7 -1
  118. sparknlp/annotator/embeddings/word_embeddings.py +4 -5
  119. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
  120. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
  121. sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
  122. sparknlp/annotator/er/entity_ruler.py +37 -23
  123. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
  124. sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
  125. sparknlp/annotator/lemmatizer.py +3 -4
  126. sparknlp/annotator/matcher/date_matcher.py +35 -3
  127. sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
  128. sparknlp/annotator/matcher/regex_matcher.py +3 -3
  129. sparknlp/annotator/matcher/text_matcher.py +2 -3
  130. sparknlp/annotator/n_gram_generator.py +1 -2
  131. sparknlp/annotator/ner/__init__.py +3 -1
  132. sparknlp/annotator/ner/ner_converter.py +18 -0
  133. sparknlp/annotator/ner/ner_crf.py +4 -5
  134. sparknlp/annotator/ner/ner_dl.py +10 -5
  135. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  136. sparknlp/annotator/ner/ner_overwriter.py +2 -2
  137. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  138. sparknlp/annotator/normalizer.py +2 -2
  139. sparknlp/annotator/openai/__init__.py +16 -0
  140. sparknlp/annotator/openai/openai_completion.py +349 -0
  141. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  142. sparknlp/annotator/pos/perceptron.py +6 -7
  143. sparknlp/annotator/sentence/sentence_detector.py +2 -2
  144. sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
  145. sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
  146. sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
  147. sparknlp/annotator/seq2seq/__init__.py +17 -0
  148. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  149. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  150. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  151. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  152. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  153. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  154. sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
  155. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  156. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  157. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  158. sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
  159. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  160. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  161. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  162. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  163. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  164. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  165. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  166. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  167. sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
  168. sparknlp/annotator/similarity/__init__.py +0 -0
  169. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  170. sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
  171. sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
  172. sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
  173. sparknlp/annotator/stemmer.py +2 -3
  174. sparknlp/annotator/stop_words_cleaner.py +3 -4
  175. sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
  176. sparknlp/annotator/token/__init__.py +0 -1
  177. sparknlp/annotator/token/recursive_tokenizer.py +2 -3
  178. sparknlp/annotator/token/tokenizer.py +2 -3
  179. sparknlp/annotator/ws/word_segmenter.py +35 -10
  180. sparknlp/base/__init__.py +2 -3
  181. sparknlp/base/doc2_chunk.py +0 -3
  182. sparknlp/base/document_assembler.py +5 -5
  183. sparknlp/base/embeddings_finisher.py +14 -2
  184. sparknlp/base/finisher.py +15 -4
  185. sparknlp/base/gguf_ranking_finisher.py +234 -0
  186. sparknlp/base/image_assembler.py +69 -0
  187. sparknlp/base/light_pipeline.py +53 -21
  188. sparknlp/base/multi_document_assembler.py +9 -13
  189. sparknlp/base/prompt_assembler.py +207 -0
  190. sparknlp/base/token_assembler.py +1 -2
  191. sparknlp/common/__init__.py +2 -0
  192. sparknlp/common/annotator_type.py +1 -0
  193. sparknlp/common/completion_post_processing.py +37 -0
  194. sparknlp/common/match_strategy.py +33 -0
  195. sparknlp/common/properties.py +914 -9
  196. sparknlp/internal/__init__.py +841 -116
  197. sparknlp/internal/annotator_java_ml.py +1 -1
  198. sparknlp/internal/annotator_transformer.py +3 -0
  199. sparknlp/logging/comet.py +2 -2
  200. sparknlp/partition/__init__.py +16 -0
  201. sparknlp/partition/partition.py +244 -0
  202. sparknlp/partition/partition_properties.py +902 -0
  203. sparknlp/partition/partition_transformer.py +200 -0
  204. sparknlp/pretrained/pretrained_pipeline.py +1 -1
  205. sparknlp/pretrained/resource_downloader.py +126 -2
  206. sparknlp/reader/__init__.py +15 -0
  207. sparknlp/reader/enums.py +19 -0
  208. sparknlp/reader/pdf_to_text.py +190 -0
  209. sparknlp/reader/reader2doc.py +124 -0
  210. sparknlp/reader/reader2image.py +136 -0
  211. sparknlp/reader/reader2table.py +44 -0
  212. sparknlp/reader/reader_assembler.py +159 -0
  213. sparknlp/reader/sparknlp_reader.py +461 -0
  214. sparknlp/training/__init__.py +1 -0
  215. sparknlp/training/conll.py +8 -2
  216. sparknlp/training/spacy_to_annotation.py +57 -0
  217. sparknlp/util.py +26 -0
  218. spark_nlp-4.2.6.dist-info/METADATA +0 -1256
  219. spark_nlp-4.2.6.dist-info/RECORD +0 -196
  220. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
  221. /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
@@ -0,0 +1,420 @@
1
+ # Copyright 2017-2023 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for the BartTransformer."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class BartTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
20
+ """BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
21
+ Translation, and Comprehension Transformer
22
+
23
+ The Facebook BART (Bidirectional and Auto-Regressive Transformer) model is a state-of-the-art
24
+ language generation model that was introduced by Facebook AI in 2019. It is based on the
25
+ transformer architecture and is designed to handle a wide range of natural language processing
26
+ tasks such as text generation, summarization, and machine translation.
27
+
28
+ BART is unique in that it is both bidirectional and auto-regressive, meaning that it can
29
+ generate text both from left-to-right and from right-to-left. This allows it to capture
30
+ contextual information from both past and future tokens in a sentence,resulting in more
31
+ accurate and natural language generation.
32
+
33
+ The model was trained on a large corpus of text data using a combination of unsupervised and
34
+ supervised learning techniques. It incorporates pretraining and fine-tuning phases, where the
35
+ model is first trained on a large unlabeled corpus of text, and then fine-tuned on specific
36
+ downstream tasks.
37
+
38
+ BART has achieved state-of-the-art performance on a wide range of NLP tasks, including
39
+ summarization, question-answering, and language translation. Its ability to handle multiple
40
+ tasks and its high performance on each of these tasks make it a versatile and valuable tool
41
+ for natural language processing applications.
42
+
43
+
44
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
45
+ object:
46
+
47
+ >>> bart = BartTransformer.pretrained() \\
48
+ ... .setTask("summarize:") \\
49
+ ... .setInputCols(["document"]) \\
50
+ ... .setOutputCol("summaries")
51
+
52
+
53
+ The default model is ``"distilbart_xsum_12_6"``, if no name is provided. For available
54
+ pretrained models please see the `Models Hub
55
+ <https://sparknlp.org/models?q=bart>`__.
56
+
57
+ For extended examples of usage, see the `BartTestSpec
58
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/seq2seq/BartTestSpec.scala>`__.
59
+
60
+ ====================== ======================
61
+ Input Annotation types Output Annotation type
62
+ ====================== ======================
63
+ ``DOCUMENT`` ``DOCUMENT``
64
+ ====================== ======================
65
+
66
+ Parameters
67
+ ----------
68
+ batchSize
69
+ Batch Size, by default `1`.
70
+ configProtoBytes
71
+ ConfigProto from tensorflow, serialized into byte array.
72
+ task
73
+ Transformer's task, e.g. ``summarize:``, by default `""`.
74
+ minOutputLength
75
+ Minimum length of the sequence to be generated, by default `0`.
76
+ maxOutputLength
77
+ Maximum length of output text, by default `20`.
78
+ doSample
79
+ Whether or not to use sampling; use greedy decoding otherwise, by default `False`.
80
+ temperature
81
+ The value used to module the next token probabilities, by default `1.0`.
82
+ topK
83
+ The number of highest probability vocabulary tokens to keep for
84
+ top-k-filtering, by default `50`.
85
+ beamSize
86
+ The number of beam size for beam search, by default `1`.
87
+ topP
88
+ Top cumulative probability for vocabulary tokens, by default `1.0`.
89
+
90
+ If set to float < 1, only the most probable tokens with probabilities
91
+ that add up to ``topP`` or higher are kept for generation.
92
+ repetitionPenalty
93
+ The parameter for repetition penalty. 1.0 means no penalty, by default `1.0`.
94
+ noRepeatNgramSize
95
+ If set to int > 0, all ngrams of that size can only occur once, by default `0`.
96
+ ignoreTokenIds
97
+ A list of token ids which are ignored in the decoder's output, by default `[]`.
98
+ useCache
99
+ Whether or not to use cache, by default `False`.
100
+ Notes
101
+ -----
102
+ This is a very computationally expensive module especially on larger
103
+ sequence. The use of an accelerator such as GPU is recommended.
104
+
105
+ References
106
+ ----------
107
+ - `Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
108
+ <https://arxiv.org/abs/1910.13461>`__
109
+ - https://github.com/pytorch/fairseq
110
+
111
+ **Paper Abstract:**
112
+ *We present BART, a denoising autoencoder for pretraining sequence-to-sequence models.
113
+ BART is trained by (1) corrupting text with an arbitrary noising function, and (2)
114
+ learning a model to reconstruct the original text. It uses a standard Tranformer-based
115
+ neural machine translation architecture which, despite its simplicity, can be seen as
116
+ generalizing BERT (due to the bidirectional encoder), GPT (with the left-to-right decoder),
117
+ and many other more recent pretraining schemes. We evaluate a number of noising approaches,
118
+ finding the best performance by both randomly shuffling the order of the original sentences
119
+ and using a novel in-filling scheme, where spans of text are replaced with a single mask token.
120
+ BART is particularly effective when fine tuned for text generation but also works well for
121
+ comprehension tasks. It matches the performance of RoBERTa with comparable training resources
122
+ on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue,
123
+ question answering, and summarization tasks, with gains of up to 6 ROUGE. BART also provides
124
+ a 1.1 BLEU increase over a back-translation system for machine translation, with only target
125
+ language pretraining. We also report ablation experiments that replicate other pretraining
126
+ schemes within the BART framework, to better measure which factors most influence end-task performance.*
127
+
128
+ Examples
129
+ --------
130
+ >>> import sparknlp
131
+ >>> from sparknlp.base import *
132
+ >>> from sparknlp.annotator import *
133
+ >>> from pyspark.ml import Pipeline
134
+ >>> documentAssembler = DocumentAssembler() \\
135
+ ... .setInputCol("text") \\
136
+ ... .setOutputCol("documents")
137
+ >>> bart = BartTransformer.pretrained("distilbart_xsum_12_6") \\
138
+ ... .setTask("summarize:") \\
139
+ ... .setInputCols(["documents"]) \\
140
+ ... .setMaxOutputLength(200) \\
141
+ ... .setOutputCol("summaries")
142
+ >>> pipeline = Pipeline().setStages([documentAssembler, bart])
143
+ >>> data = spark.createDataFrame([[
144
+ ... "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a " +
145
+ ... "downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness" +
146
+ ... " of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this " +
147
+ ... "paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework " +
148
+ ... "that converts all text-based language problems into a text-to-text format. Our systematic study compares " +
149
+ ... "pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens " +
150
+ ... "of language understanding tasks. By combining the insights from our exploration with scale and our new " +
151
+ ... "Colossal Clean Crawled Corpus, we achieve state-of-the-art results on many benchmarks covering " +
152
+ ... "summarization, question answering, text classification, and more. To facilitate future work on transfer " +
153
+ ... "learning for NLP, we release our data set, pre-trained models, and code."
154
+ ... ]]).toDF("text")
155
+ >>> result = pipeline.fit(data).transform(data)
156
+ >>> result.select("summaries.result").show(truncate=False)
157
+ +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
158
+ |result |
159
+ +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
160
+ |[transfer learning has emerged as a powerful technique in natural language processing (NLP) the effectiveness of transfer learning has given rise to a diversity of approaches, methodologies, and practice .]|
161
+ +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
162
+ """
163
+
164
+ name = "BartTransformer"
165
+
166
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
167
+
168
+ outputAnnotatorType = AnnotatorType.DOCUMENT
169
+
170
+ configProtoBytes = Param(Params._dummy(),
171
+ "configProtoBytes",
172
+ "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
173
+ TypeConverters.toListInt)
174
+
175
+ task = Param(Params._dummy(), "task", "Transformer's task, e.g. summarize>", typeConverter=TypeConverters.toString)
176
+
177
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
178
+ typeConverter=TypeConverters.toInt)
179
+
180
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
181
+ typeConverter=TypeConverters.toInt)
182
+
183
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
184
+ typeConverter=TypeConverters.toBoolean)
185
+
186
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
187
+ typeConverter=TypeConverters.toFloat)
188
+
189
+ topK = Param(Params._dummy(), "topK",
190
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
191
+ typeConverter=TypeConverters.toInt)
192
+
193
+ topP = Param(Params._dummy(), "topP",
194
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
195
+ typeConverter=TypeConverters.toFloat)
196
+
197
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
198
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
199
+ typeConverter=TypeConverters.toFloat)
200
+
201
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
202
+ "If set to int > 0, all ngrams of that size can only occur once",
203
+ typeConverter=TypeConverters.toInt)
204
+
205
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
206
+ "A list of token ids which are ignored in the decoder's output",
207
+ typeConverter=TypeConverters.toListInt)
208
+
209
+ beamSize = Param(Params._dummy(), "beamSize",
210
+ "The Number of beams for beam search.",
211
+ typeConverter=TypeConverters.toInt)
212
+
213
+ useCache = Param(Params._dummy(), "useCache", "Use caching to enhance performance", typeConverter=TypeConverters.toBoolean)
214
+
215
+ def setIgnoreTokenIds(self, value):
216
+ """A list of token ids which are ignored in the decoder's output, by default `[]`.
217
+
218
+ Parameters
219
+ ----------
220
+ value : List[int]
221
+ The words to be filtered out
222
+ """
223
+ return self._set(ignoreTokenIds=value)
224
+
225
+ def setConfigProtoBytes(self, b):
226
+ """Sets configProto from tensorflow, serialized into byte array.
227
+
228
+ Parameters
229
+ ----------
230
+ b : List[int]
231
+ ConfigProto from tensorflow, serialized into byte array
232
+ """
233
+ return self._set(configProtoBytes=b)
234
+
235
+ def setTask(self, value):
236
+ """Sets the transformer's task, e.g. ``summarize:``, by default `""`.
237
+
238
+ Parameters
239
+ ----------
240
+ value : str
241
+ The transformer's task
242
+ """
243
+ return self._set(task=value)
244
+
245
+ def setMinOutputLength(self, value):
246
+ """Sets minimum length of the sequence to be generated, by default `0`.
247
+
248
+ Parameters
249
+ ----------
250
+ value : int
251
+ Minimum length of the sequence to be generated
252
+ """
253
+ return self._set(minOutputLength=value)
254
+
255
+ def setMaxOutputLength(self, value):
256
+ """Sets maximum length of output text, by default `20`.
257
+
258
+ Parameters
259
+ ----------
260
+ value : int
261
+ Maximum length of output text
262
+ """
263
+ return self._set(maxOutputLength=value)
264
+
265
+ def setDoSample(self, value):
266
+ """Sets whether or not to use sampling, use greedy decoding otherwise, by default `False`.
267
+
268
+ Parameters
269
+ ----------
270
+ value : bool
271
+ Whether or not to use sampling; use greedy decoding otherwise
272
+ """
273
+ return self._set(doSample=value)
274
+
275
+ def setTemperature(self, value):
276
+ """Sets the value used to module the next token probabilities, by default `1.0`.
277
+
278
+ Parameters
279
+ ----------
280
+ value : float
281
+ The value used to module the next token probabilities
282
+ """
283
+ return self._set(temperature=value)
284
+
285
+ def setTopK(self, value):
286
+ """Sets the number of highest probability vocabulary tokens to keep for
287
+ top-k-filtering, by default `50`.
288
+
289
+ Parameters
290
+ ----------
291
+ value : int
292
+ Number of highest probability vocabulary tokens to keep
293
+ """
294
+ return self._set(topK=value)
295
+
296
+ def setTopP(self, value):
297
+ """Sets the top cumulative probability for vocabulary tokens, by default `1.0`.
298
+
299
+ If set to float < 1, only the most probable tokens with probabilities
300
+ that add up to ``topP`` or higher are kept for generation.
301
+
302
+ Parameters
303
+ ----------
304
+ value : float
305
+ Cumulative probability for vocabulary tokens
306
+ """
307
+ return self._set(topP=value)
308
+
309
+ def setRepetitionPenalty(self, value):
310
+ """Sets the parameter for repetition penalty. 1.0 means no penalty, by default `1.0`.
311
+
312
+ Parameters
313
+ ----------
314
+ value : float
315
+ The repetition penalty
316
+
317
+ References
318
+ ----------
319
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
320
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
321
+ """
322
+ return self._set(repetitionPenalty=value)
323
+
324
+ def setNoRepeatNgramSize(self, value):
325
+ """Sets size of n-grams that can only occur once, by default `0`.
326
+
327
+ If set to int > 0, all ngrams of that size can only occur once.
328
+
329
+ Parameters
330
+ ----------
331
+ value : int
332
+ N-gram size can only occur once
333
+ """
334
+ return self._set(noRepeatNgramSize=value)
335
+
336
+ def setBeamSize(self, value):
337
+ """Sets the number of beam size for beam search, by default `4`.
338
+
339
+ Parameters
340
+ ----------
341
+ value : int
342
+ Number of beam size for beam search
343
+ """
344
+ return self._set(beamSize=value)
345
+
346
+ def setCache(self, value):
347
+ """Sets whether or not to use caching to enhance performance, by default `False`.
348
+
349
+ Parameters
350
+ ----------
351
+ value : bool
352
+ Whether or not to use caching to enhance performance
353
+ """
354
+ return self._set(useCache=value)
355
+
356
+ @keyword_only
357
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.BartTransformer", java_model=None):
358
+ super(BartTransformer, self).__init__(
359
+ classname=classname,
360
+ java_model=java_model
361
+ )
362
+ self._setDefault(
363
+ task="",
364
+ minOutputLength=0,
365
+ maxOutputLength=20,
366
+ doSample=False,
367
+ temperature=1.0,
368
+ topK=50,
369
+ topP=1.0,
370
+ repetitionPenalty=1.0,
371
+ noRepeatNgramSize=0,
372
+ ignoreTokenIds=[],
373
+ batchSize=1,
374
+ beamSize=4,
375
+ useCache=False,
376
+ )
377
+
378
+ @staticmethod
379
+ def loadSavedModel(folder, spark_session, use_cache=False):
380
+ """Loads a locally saved model.
381
+
382
+ Parameters
383
+ ----------
384
+ folder : str
385
+ Folder of the saved model
386
+ spark_session : pyspark.sql.SparkSession
387
+ The current SparkSession
388
+ use_cache: bool
389
+ The model uses caching to facilitate performance
390
+
391
+ Returns
392
+ -------
393
+ BartTransformer
394
+ The restored model
395
+ """
396
+ from sparknlp.internal import _BartLoader
397
+ jModel = _BartLoader(folder, spark_session._jsparkSession, use_cache)._java_obj
398
+ return BartTransformer(java_model=jModel)
399
+
400
+ @staticmethod
401
+ def pretrained(name="distilbart_xsum_12_6", lang="en", remote_loc=None):
402
+ """Downloads and loads a pretrained model.
403
+
404
+ Parameters
405
+ ----------
406
+ name : str, optional
407
+ Name of the pretrained model, by default "distilbart_xsum_12_6"
408
+ lang : str, optional
409
+ Language of the pretrained model, by default "en"
410
+ remote_loc : str, optional
411
+ Optional remote address of the resource, by default None. Will use
412
+ Spark NLPs repositories otherwise.
413
+
414
+ Returns
415
+ -------
416
+ BartTransformer
417
+ The restored model
418
+ """
419
+ from sparknlp.pretrained import ResourceDownloader
420
+ return ResourceDownloader.downloadModel(BartTransformer, name, lang, remote_loc)