spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +81 -28
- sparknlp/annotation.py +3 -2
- sparknlp/annotator/__init__.py +6 -0
- sparknlp/annotator/audio/__init__.py +2 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/{base → annotator}/chunk2_doc.py +4 -7
- sparknlp/annotator/chunker.py +1 -2
- sparknlp/annotator/classifier_dl/__init__.py +17 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/spanbert_coref.py +4 -18
- sparknlp/annotator/cv/__init__.py +15 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/dependency_parser.py +2 -3
- sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +37 -1
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +11 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
- sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
- sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
- sparknlp/annotator/embeddings/doc2vec.py +7 -1
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
- sparknlp/annotator/embeddings/word2vec.py +7 -1
- sparknlp/annotator/embeddings/word_embeddings.py +4 -5
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
- sparknlp/annotator/er/entity_ruler.py +37 -23
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
- sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
- sparknlp/annotator/lemmatizer.py +3 -4
- sparknlp/annotator/matcher/date_matcher.py +35 -3
- sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
- sparknlp/annotator/matcher/regex_matcher.py +3 -3
- sparknlp/annotator/matcher/text_matcher.py +2 -3
- sparknlp/annotator/n_gram_generator.py +1 -2
- sparknlp/annotator/ner/__init__.py +3 -1
- sparknlp/annotator/ner/ner_converter.py +18 -0
- sparknlp/annotator/ner/ner_crf.py +4 -5
- sparknlp/annotator/ner/ner_dl.py +10 -5
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +2 -2
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +2 -2
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/pos/perceptron.py +6 -7
- sparknlp/annotator/sentence/sentence_detector.py +2 -2
- sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
- sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
- sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
- sparknlp/annotator/seq2seq/__init__.py +17 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
- sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
- sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
- sparknlp/annotator/stemmer.py +2 -3
- sparknlp/annotator/stop_words_cleaner.py +3 -4
- sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
- sparknlp/annotator/token/__init__.py +0 -1
- sparknlp/annotator/token/recursive_tokenizer.py +2 -3
- sparknlp/annotator/token/tokenizer.py +2 -3
- sparknlp/annotator/ws/word_segmenter.py +35 -10
- sparknlp/base/__init__.py +2 -3
- sparknlp/base/doc2_chunk.py +0 -3
- sparknlp/base/document_assembler.py +5 -5
- sparknlp/base/embeddings_finisher.py +14 -2
- sparknlp/base/finisher.py +15 -4
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/image_assembler.py +69 -0
- sparknlp/base/light_pipeline.py +53 -21
- sparknlp/base/multi_document_assembler.py +9 -13
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/token_assembler.py +1 -2
- sparknlp/common/__init__.py +2 -0
- sparknlp/common/annotator_type.py +1 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +914 -9
- sparknlp/internal/__init__.py +841 -116
- sparknlp/internal/annotator_java_ml.py +1 -1
- sparknlp/internal/annotator_transformer.py +3 -0
- sparknlp/logging/comet.py +2 -2
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/pretrained_pipeline.py +1 -1
- sparknlp/pretrained/resource_downloader.py +126 -2
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +1 -0
- sparknlp/training/conll.py +8 -2
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/util.py +26 -0
- spark_nlp-4.2.6.dist-info/METADATA +0 -1256
- spark_nlp-4.2.6.dist-info/RECORD +0 -196
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
- /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
|
@@ -0,0 +1,326 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for the OLMoTransformer."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class OLMoTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
|
|
20
|
+
"""OLMo: Open Language Models
|
|
21
|
+
|
|
22
|
+
OLMo is a series of Open Language Models designed to enable the science of language models.
|
|
23
|
+
The OLMo models are trained on the Dolma dataset. We release all code, checkpoints, logs
|
|
24
|
+
(coming soon), and details involved in training these models.
|
|
25
|
+
|
|
26
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
27
|
+
object:
|
|
28
|
+
|
|
29
|
+
>>> olmo = OLMoTransformer.pretrained() \\
|
|
30
|
+
... .setInputCols(["document"]) \\
|
|
31
|
+
... .setOutputCol("generation")
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
The default model is ``"olmo_1b_int4"``, if no name is provided. For available
|
|
35
|
+
pretrained models please see the `Models Hub
|
|
36
|
+
<https://sparknlp.org/models?q=olmo>`__.
|
|
37
|
+
|
|
38
|
+
====================== ======================
|
|
39
|
+
Input Annotation types Output Annotation type
|
|
40
|
+
====================== ======================
|
|
41
|
+
``DOCUMENT`` ``DOCUMENT``
|
|
42
|
+
====================== ======================
|
|
43
|
+
|
|
44
|
+
Parameters
|
|
45
|
+
----------
|
|
46
|
+
configProtoBytes
|
|
47
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
48
|
+
minOutputLength
|
|
49
|
+
Minimum length of the sequence to be generated, by default 0
|
|
50
|
+
maxOutputLength
|
|
51
|
+
Maximum length of output text, by default 20
|
|
52
|
+
doSample
|
|
53
|
+
Whether or not to use sampling; use greedy decoding otherwise, by default False
|
|
54
|
+
temperature
|
|
55
|
+
The value used to module the next token probabilities, by default 1.0
|
|
56
|
+
topK
|
|
57
|
+
The number of highest probability vocabulary tokens to keep for
|
|
58
|
+
top-k-filtering, by default 50
|
|
59
|
+
topP
|
|
60
|
+
Top cumulative probability for vocabulary tokens, by default 1.0
|
|
61
|
+
|
|
62
|
+
If set to float < 1, only the most probable tokens with probabilities
|
|
63
|
+
that add up to ``topP`` or higher are kept for generation.
|
|
64
|
+
repetitionPenalty
|
|
65
|
+
The parameter for repetition penalty, 1.0 means no penalty. , by default
|
|
66
|
+
1.0
|
|
67
|
+
noRepeatNgramSize
|
|
68
|
+
If set to int > 0, all ngrams of that size can only occur once, by
|
|
69
|
+
default 0
|
|
70
|
+
ignoreTokenIds
|
|
71
|
+
A list of token ids which are ignored in the decoder's output, by
|
|
72
|
+
default []
|
|
73
|
+
|
|
74
|
+
Notes
|
|
75
|
+
-----
|
|
76
|
+
This is a very computationally expensive module especially on larger
|
|
77
|
+
sequence. The use of an accelerator such as GPU is recommended.
|
|
78
|
+
|
|
79
|
+
References
|
|
80
|
+
----------
|
|
81
|
+
- `OLMo Project Page.
|
|
82
|
+
<https://allenai.org/olmo>`__
|
|
83
|
+
- `OLMO GitHub Repository.
|
|
84
|
+
<https://github.com/allenai/OLMo>`__
|
|
85
|
+
- `OLMo: Accelerating the Science of Language Models
|
|
86
|
+
<https://arxiv.org/pdf/2402.00838.pdf>`__
|
|
87
|
+
|
|
88
|
+
**Paper Abstract:**
|
|
89
|
+
|
|
90
|
+
*Language models (LMs) have become ubiquitous in both NLP research and in commercial product offerings.
|
|
91
|
+
As their commercial importance has surged, the most powerful models have become closed off, gated behind
|
|
92
|
+
proprietary interfaces, with important details of their training data, architectures, and development
|
|
93
|
+
undisclosed. Given the importance of these details in scientifically studying these models, including
|
|
94
|
+
their biases and potential risks, we believe it is essential for the research community to have access
|
|
95
|
+
to powerful, truly open LMs. To this end, this technical report details the first release of OLMo,
|
|
96
|
+
a state-of-the-art, truly Open Language Model and its framework to build and study the science of
|
|
97
|
+
language modeling. Unlike most prior efforts that have only released model weights and inference code,
|
|
98
|
+
we release OLMo and the whole framework, including training data and training and evaluation code.
|
|
99
|
+
We hope this release will empower and strengthen the open research community and inspire a new wave
|
|
100
|
+
of innovation.*
|
|
101
|
+
|
|
102
|
+
Examples
|
|
103
|
+
--------
|
|
104
|
+
>>> import sparknlp
|
|
105
|
+
>>> from sparknlp.base import *
|
|
106
|
+
>>> from sparknlp.annotator import *
|
|
107
|
+
>>> from pyspark.ml import Pipeline
|
|
108
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
109
|
+
... .setInputCol("text") \\
|
|
110
|
+
... .setOutputCol("documents")
|
|
111
|
+
>>> olmo = OLMoTransformer.pretrained("olmo-7b") \\
|
|
112
|
+
... .setInputCols(["documents"]) \\
|
|
113
|
+
... .setMaxOutputLength(50) \\
|
|
114
|
+
... .setOutputCol("generation")
|
|
115
|
+
>>> pipeline = Pipeline().setStages([documentAssembler, olmo])
|
|
116
|
+
>>> data = spark.createDataFrame([["My name is Leonardo."]]).toDF("text")
|
|
117
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
118
|
+
>>> result.select("summaries.generation").show(truncate=False)
|
|
119
|
+
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
|
120
|
+
|result |
|
|
121
|
+
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
|
122
|
+
|[My name is Leonardo . I am a student of the University of California, Berkeley. I am interested in the field of Artificial Intelligence and its applications in the real world. I have a strong |
|
|
123
|
+
| passion for learning and am always looking for ways to improve my knowledge and skills] |
|
|
124
|
+
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
|
125
|
+
"""
|
|
126
|
+
|
|
127
|
+
name = "OLMoTransformer"
|
|
128
|
+
|
|
129
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
130
|
+
|
|
131
|
+
outputAnnotatorType = AnnotatorType.DOCUMENT
|
|
132
|
+
|
|
133
|
+
configProtoBytes = Param(Params._dummy(), "configProtoBytes",
|
|
134
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
135
|
+
TypeConverters.toListInt)
|
|
136
|
+
|
|
137
|
+
minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
|
|
138
|
+
typeConverter=TypeConverters.toInt)
|
|
139
|
+
|
|
140
|
+
maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
|
|
141
|
+
typeConverter=TypeConverters.toInt)
|
|
142
|
+
|
|
143
|
+
doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
|
|
144
|
+
typeConverter=TypeConverters.toBoolean)
|
|
145
|
+
|
|
146
|
+
temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
|
|
147
|
+
typeConverter=TypeConverters.toFloat)
|
|
148
|
+
|
|
149
|
+
topK = Param(Params._dummy(), "topK",
|
|
150
|
+
"The number of highest probability vocabulary tokens to keep for top-k-filtering",
|
|
151
|
+
typeConverter=TypeConverters.toInt)
|
|
152
|
+
|
|
153
|
+
topP = Param(Params._dummy(), "topP",
|
|
154
|
+
"If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
|
|
155
|
+
typeConverter=TypeConverters.toFloat)
|
|
156
|
+
|
|
157
|
+
repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
|
|
158
|
+
"The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
|
|
159
|
+
typeConverter=TypeConverters.toFloat)
|
|
160
|
+
|
|
161
|
+
noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
|
|
162
|
+
"If set to int > 0, all ngrams of that size can only occur once",
|
|
163
|
+
typeConverter=TypeConverters.toInt)
|
|
164
|
+
|
|
165
|
+
ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
|
|
166
|
+
"A list of token ids which are ignored in the decoder's output",
|
|
167
|
+
typeConverter=TypeConverters.toListInt)
|
|
168
|
+
|
|
169
|
+
def setIgnoreTokenIds(self, value):
|
|
170
|
+
"""A list of token ids which are ignored in the decoder's output.
|
|
171
|
+
|
|
172
|
+
Parameters
|
|
173
|
+
----------
|
|
174
|
+
value : List[int]
|
|
175
|
+
The words to be filtered out
|
|
176
|
+
"""
|
|
177
|
+
return self._set(ignoreTokenIds=value)
|
|
178
|
+
|
|
179
|
+
def setConfigProtoBytes(self, b):
|
|
180
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
181
|
+
|
|
182
|
+
Parameters
|
|
183
|
+
----------
|
|
184
|
+
b : List[int]
|
|
185
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
186
|
+
"""
|
|
187
|
+
return self._set(configProtoBytes=b)
|
|
188
|
+
|
|
189
|
+
def setMinOutputLength(self, value):
|
|
190
|
+
"""Sets minimum length of the sequence to be generated.
|
|
191
|
+
|
|
192
|
+
Parameters
|
|
193
|
+
----------
|
|
194
|
+
value : int
|
|
195
|
+
Minimum length of the sequence to be generated
|
|
196
|
+
"""
|
|
197
|
+
return self._set(minOutputLength=value)
|
|
198
|
+
|
|
199
|
+
def setMaxOutputLength(self, value):
|
|
200
|
+
"""Sets maximum length of output text.
|
|
201
|
+
|
|
202
|
+
Parameters
|
|
203
|
+
----------
|
|
204
|
+
value : int
|
|
205
|
+
Maximum length of output text
|
|
206
|
+
"""
|
|
207
|
+
return self._set(maxOutputLength=value)
|
|
208
|
+
|
|
209
|
+
def setDoSample(self, value):
|
|
210
|
+
"""Sets whether or not to use sampling, use greedy decoding otherwise.
|
|
211
|
+
|
|
212
|
+
Parameters
|
|
213
|
+
----------
|
|
214
|
+
value : bool
|
|
215
|
+
Whether or not to use sampling; use greedy decoding otherwise
|
|
216
|
+
"""
|
|
217
|
+
return self._set(doSample=value)
|
|
218
|
+
|
|
219
|
+
def setTemperature(self, value):
|
|
220
|
+
"""Sets the value used to module the next token probabilities.
|
|
221
|
+
|
|
222
|
+
Parameters
|
|
223
|
+
----------
|
|
224
|
+
value : float
|
|
225
|
+
The value used to module the next token probabilities
|
|
226
|
+
"""
|
|
227
|
+
return self._set(temperature=value)
|
|
228
|
+
|
|
229
|
+
def setTopK(self, value):
|
|
230
|
+
"""Sets the number of highest probability vocabulary tokens to keep for
|
|
231
|
+
top-k-filtering.
|
|
232
|
+
|
|
233
|
+
Parameters
|
|
234
|
+
----------
|
|
235
|
+
value : int
|
|
236
|
+
Number of highest probability vocabulary tokens to keep
|
|
237
|
+
"""
|
|
238
|
+
return self._set(topK=value)
|
|
239
|
+
|
|
240
|
+
def setTopP(self, value):
|
|
241
|
+
"""Sets the top cumulative probability for vocabulary tokens.
|
|
242
|
+
|
|
243
|
+
If set to float < 1, only the most probable tokens with probabilities
|
|
244
|
+
that add up to ``topP`` or higher are kept for generation.
|
|
245
|
+
|
|
246
|
+
Parameters
|
|
247
|
+
----------
|
|
248
|
+
value : float
|
|
249
|
+
Cumulative probability for vocabulary tokens
|
|
250
|
+
"""
|
|
251
|
+
return self._set(topP=value)
|
|
252
|
+
|
|
253
|
+
def setRepetitionPenalty(self, value):
|
|
254
|
+
"""Sets the parameter for repetition penalty. 1.0 means no penalty.
|
|
255
|
+
|
|
256
|
+
Parameters
|
|
257
|
+
----------
|
|
258
|
+
value : float
|
|
259
|
+
The repetition penalty
|
|
260
|
+
|
|
261
|
+
References
|
|
262
|
+
----------
|
|
263
|
+
See `Ctrl: A Conditional Transformer Language Model For Controllable
|
|
264
|
+
Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
|
|
265
|
+
"""
|
|
266
|
+
return self._set(repetitionPenalty=value)
|
|
267
|
+
|
|
268
|
+
def setNoRepeatNgramSize(self, value):
|
|
269
|
+
"""Sets size of n-grams that can only occur once.
|
|
270
|
+
|
|
271
|
+
If set to int > 0, all ngrams of that size can only occur once.
|
|
272
|
+
|
|
273
|
+
Parameters
|
|
274
|
+
----------
|
|
275
|
+
value : int
|
|
276
|
+
N-gram size can only occur once
|
|
277
|
+
"""
|
|
278
|
+
return self._set(noRepeatNgramSize=value)
|
|
279
|
+
|
|
280
|
+
@keyword_only
|
|
281
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.OLMoTransformer", java_model=None):
|
|
282
|
+
super(OLMoTransformer, self).__init__(classname=classname, java_model=java_model)
|
|
283
|
+
self._setDefault(minOutputLength=0, maxOutputLength=20, doSample=False, temperature=0.6, topK=50, topP=0.9,
|
|
284
|
+
repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], batchSize=1)
|
|
285
|
+
|
|
286
|
+
@staticmethod
|
|
287
|
+
def loadSavedModel(folder, spark_session):
|
|
288
|
+
"""Loads a locally saved model.
|
|
289
|
+
|
|
290
|
+
Parameters
|
|
291
|
+
----------
|
|
292
|
+
folder : str
|
|
293
|
+
Folder of the saved model
|
|
294
|
+
spark_session : pyspark.sql.SparkSession
|
|
295
|
+
The current SparkSession
|
|
296
|
+
|
|
297
|
+
Returns
|
|
298
|
+
-------
|
|
299
|
+
OLMoTransformer
|
|
300
|
+
The restored model
|
|
301
|
+
"""
|
|
302
|
+
from sparknlp.internal import _OLMoLoader
|
|
303
|
+
jModel = _OLMoLoader(folder, spark_session._jsparkSession)._java_obj
|
|
304
|
+
return OLMoTransformer(java_model=jModel)
|
|
305
|
+
|
|
306
|
+
@staticmethod
|
|
307
|
+
def pretrained(name="olmo_1b_int4", lang="en", remote_loc=None):
|
|
308
|
+
"""Downloads and loads a pretrained model.
|
|
309
|
+
|
|
310
|
+
Parameters
|
|
311
|
+
----------
|
|
312
|
+
name : str, optional
|
|
313
|
+
Name of the pretrained model, by default "olmo-7b"
|
|
314
|
+
lang : str, optional
|
|
315
|
+
Language of the pretrained model, by default "en"
|
|
316
|
+
remote_loc : str, optional
|
|
317
|
+
Optional remote address of the resource, by default None. Will use
|
|
318
|
+
Spark NLPs repositories otherwise.
|
|
319
|
+
|
|
320
|
+
Returns
|
|
321
|
+
-------
|
|
322
|
+
OLMoTransformer
|
|
323
|
+
The restored model
|
|
324
|
+
"""
|
|
325
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
326
|
+
return ResourceDownloader.downloadModel(OLMoTransformer, name, lang, remote_loc)
|
|
@@ -0,0 +1,326 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for the Phi2Transformer."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class Phi2Transformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
|
|
20
|
+
"""Phi-2: Textbooks Are All You Need.
|
|
21
|
+
|
|
22
|
+
Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5,
|
|
23
|
+
augmented with a new data source that consists of various NLP synthetic texts and filtered websites
|
|
24
|
+
(for safety and educational value). When assessed against benchmarks testing common sense, language understanding,
|
|
25
|
+
and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion
|
|
26
|
+
parameters.
|
|
27
|
+
|
|
28
|
+
Phi-2 hasn't been fine-tuned through reinforcement learning from human feedback. The intention behind crafting
|
|
29
|
+
this open-source model is to provide the research community with a non-restricted small model to explore vital
|
|
30
|
+
safety challenges, such as reducing toxicity, understanding societal biases, enhancing controllability, and more.
|
|
31
|
+
|
|
32
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
33
|
+
object:
|
|
34
|
+
|
|
35
|
+
>>> phi2 = Phi2Transformer.pretrained() \\
|
|
36
|
+
... .setInputCols(["document"]) \\
|
|
37
|
+
... .setOutputCol("generation")
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
The default model is ``"llam2-7b"``, if no name is provided. For available
|
|
41
|
+
pretrained models please see the `Models Hub
|
|
42
|
+
<https://sparknlp.org/models?q=phi2>`__.
|
|
43
|
+
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT`` ``DOCUMENT``
|
|
48
|
+
====================== ======================
|
|
49
|
+
|
|
50
|
+
Parameters
|
|
51
|
+
----------
|
|
52
|
+
configProtoBytes
|
|
53
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
54
|
+
minOutputLength
|
|
55
|
+
Minimum length of the sequence to be generated, by default 0
|
|
56
|
+
maxOutputLength
|
|
57
|
+
Maximum length of output text, by default 20
|
|
58
|
+
doSample
|
|
59
|
+
Whether or not to use sampling; use greedy decoding otherwise, by default False
|
|
60
|
+
temperature
|
|
61
|
+
The value used to module the next token probabilities, by default 1.0
|
|
62
|
+
topK
|
|
63
|
+
The number of highest probability vocabulary tokens to keep for
|
|
64
|
+
top-k-filtering, by default 50
|
|
65
|
+
topP
|
|
66
|
+
Top cumulative probability for vocabulary tokens, by default 1.0
|
|
67
|
+
|
|
68
|
+
If set to float < 1, only the most probable tokens with probabilities
|
|
69
|
+
that add up to ``topP`` or higher are kept for generation.
|
|
70
|
+
repetitionPenalty
|
|
71
|
+
The parameter for repetition penalty, 1.0 means no penalty. , by default
|
|
72
|
+
1.0
|
|
73
|
+
noRepeatNgramSize
|
|
74
|
+
If set to int > 0, all ngrams of that size can only occur once, by
|
|
75
|
+
default 0
|
|
76
|
+
ignoreTokenIds
|
|
77
|
+
A list of token ids which are ignored in the decoder's output, by
|
|
78
|
+
default []
|
|
79
|
+
|
|
80
|
+
Notes
|
|
81
|
+
-----
|
|
82
|
+
This is a very computationally expensive module especially on larger
|
|
83
|
+
sequence. The use of an accelerator such as GPU is recommended.
|
|
84
|
+
|
|
85
|
+
References
|
|
86
|
+
----------
|
|
87
|
+
- `Phi-2: Textbooks Are All You Need.
|
|
88
|
+
<https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/>`__
|
|
89
|
+
- https://huggingface.co/microsoft/phi-2
|
|
90
|
+
|
|
91
|
+
**Paper Abstract:**
|
|
92
|
+
|
|
93
|
+
*In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned
|
|
94
|
+
large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our
|
|
95
|
+
fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models
|
|
96
|
+
outperform open-source chat models on most benchmarks we tested, and based on our human
|
|
97
|
+
evaluations for helpfulness and safety, may be a suitable substitute for closed-source models.
|
|
98
|
+
We provide a detailed description of our approach to fine-tuning and safety improvements of
|
|
99
|
+
Llama 2-Chat in order to enable the community to build on our work and contribute to the
|
|
100
|
+
responsible development of LLMs.*
|
|
101
|
+
|
|
102
|
+
Examples
|
|
103
|
+
--------
|
|
104
|
+
>>> import sparknlp
|
|
105
|
+
>>> from sparknlp.base import *
|
|
106
|
+
>>> from sparknlp.annotator import *
|
|
107
|
+
>>> from pyspark.ml import Pipeline
|
|
108
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
109
|
+
... .setInputCol("text") \\
|
|
110
|
+
... .setOutputCol("documents")
|
|
111
|
+
>>> phi2 = Phi2Transformer.pretrained("phi2") \\
|
|
112
|
+
... .setInputCols(["documents"]) \\
|
|
113
|
+
... .setMaxOutputLength(50) \\
|
|
114
|
+
... .setOutputCol("generation")
|
|
115
|
+
>>> pipeline = Pipeline().setStages([documentAssembler, phi2])
|
|
116
|
+
>>> data = spark.createDataFrame([["My name is Leonardo."]]).toDF("text")
|
|
117
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
118
|
+
>>> result.select("summaries.generation").show(truncate=False)
|
|
119
|
+
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
|
120
|
+
|result |
|
|
121
|
+
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
|
122
|
+
|[My name is Leonardo . I am a student of the University of California, Berkeley. I am interested in the field of Artificial Intelligence and its applications in the real world. I have a strong |
|
|
123
|
+
| passion for learning and am always looking for ways to improve my knowledge and skills] |
|
|
124
|
+
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
|
125
|
+
"""
|
|
126
|
+
|
|
127
|
+
name = "Phi2Transformer"
|
|
128
|
+
|
|
129
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
130
|
+
|
|
131
|
+
outputAnnotatorType = AnnotatorType.DOCUMENT
|
|
132
|
+
|
|
133
|
+
configProtoBytes = Param(Params._dummy(), "configProtoBytes",
|
|
134
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
135
|
+
TypeConverters.toListInt)
|
|
136
|
+
|
|
137
|
+
minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
|
|
138
|
+
typeConverter=TypeConverters.toInt)
|
|
139
|
+
|
|
140
|
+
maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
|
|
141
|
+
typeConverter=TypeConverters.toInt)
|
|
142
|
+
|
|
143
|
+
doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
|
|
144
|
+
typeConverter=TypeConverters.toBoolean)
|
|
145
|
+
|
|
146
|
+
temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
|
|
147
|
+
typeConverter=TypeConverters.toFloat)
|
|
148
|
+
|
|
149
|
+
topK = Param(Params._dummy(), "topK",
|
|
150
|
+
"The number of highest probability vocabulary tokens to keep for top-k-filtering",
|
|
151
|
+
typeConverter=TypeConverters.toInt)
|
|
152
|
+
|
|
153
|
+
topP = Param(Params._dummy(), "topP",
|
|
154
|
+
"If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
|
|
155
|
+
typeConverter=TypeConverters.toFloat)
|
|
156
|
+
|
|
157
|
+
repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
|
|
158
|
+
"The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
|
|
159
|
+
typeConverter=TypeConverters.toFloat)
|
|
160
|
+
|
|
161
|
+
noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
|
|
162
|
+
"If set to int > 0, all ngrams of that size can only occur once",
|
|
163
|
+
typeConverter=TypeConverters.toInt)
|
|
164
|
+
|
|
165
|
+
ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
|
|
166
|
+
"A list of token ids which are ignored in the decoder's output",
|
|
167
|
+
typeConverter=TypeConverters.toListInt)
|
|
168
|
+
|
|
169
|
+
def setIgnoreTokenIds(self, value):
|
|
170
|
+
"""A list of token ids which are ignored in the decoder's output.
|
|
171
|
+
|
|
172
|
+
Parameters
|
|
173
|
+
----------
|
|
174
|
+
value : List[int]
|
|
175
|
+
The words to be filtered out
|
|
176
|
+
"""
|
|
177
|
+
return self._set(ignoreTokenIds=value)
|
|
178
|
+
|
|
179
|
+
def setConfigProtoBytes(self, b):
|
|
180
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
181
|
+
|
|
182
|
+
Parameters
|
|
183
|
+
----------
|
|
184
|
+
b : List[int]
|
|
185
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
186
|
+
"""
|
|
187
|
+
return self._set(configProtoBytes=b)
|
|
188
|
+
|
|
189
|
+
def setMinOutputLength(self, value):
|
|
190
|
+
"""Sets minimum length of the sequence to be generated.
|
|
191
|
+
|
|
192
|
+
Parameters
|
|
193
|
+
----------
|
|
194
|
+
value : int
|
|
195
|
+
Minimum length of the sequence to be generated
|
|
196
|
+
"""
|
|
197
|
+
return self._set(minOutputLength=value)
|
|
198
|
+
|
|
199
|
+
def setMaxOutputLength(self, value):
|
|
200
|
+
"""Sets maximum length of output text.
|
|
201
|
+
|
|
202
|
+
Parameters
|
|
203
|
+
----------
|
|
204
|
+
value : int
|
|
205
|
+
Maximum length of output text
|
|
206
|
+
"""
|
|
207
|
+
return self._set(maxOutputLength=value)
|
|
208
|
+
|
|
209
|
+
def setDoSample(self, value):
|
|
210
|
+
"""Sets whether or not to use sampling, use greedy decoding otherwise.
|
|
211
|
+
|
|
212
|
+
Parameters
|
|
213
|
+
----------
|
|
214
|
+
value : bool
|
|
215
|
+
Whether or not to use sampling; use greedy decoding otherwise
|
|
216
|
+
"""
|
|
217
|
+
return self._set(doSample=value)
|
|
218
|
+
|
|
219
|
+
def setTemperature(self, value):
|
|
220
|
+
"""Sets the value used to module the next token probabilities.
|
|
221
|
+
|
|
222
|
+
Parameters
|
|
223
|
+
----------
|
|
224
|
+
value : float
|
|
225
|
+
The value used to module the next token probabilities
|
|
226
|
+
"""
|
|
227
|
+
return self._set(temperature=value)
|
|
228
|
+
|
|
229
|
+
def setTopK(self, value):
|
|
230
|
+
"""Sets the number of highest probability vocabulary tokens to keep for
|
|
231
|
+
top-k-filtering.
|
|
232
|
+
|
|
233
|
+
Parameters
|
|
234
|
+
----------
|
|
235
|
+
value : int
|
|
236
|
+
Number of highest probability vocabulary tokens to keep
|
|
237
|
+
"""
|
|
238
|
+
return self._set(topK=value)
|
|
239
|
+
|
|
240
|
+
def setTopP(self, value):
|
|
241
|
+
"""Sets the top cumulative probability for vocabulary tokens.
|
|
242
|
+
|
|
243
|
+
If set to float < 1, only the most probable tokens with probabilities
|
|
244
|
+
that add up to ``topP`` or higher are kept for generation.
|
|
245
|
+
|
|
246
|
+
Parameters
|
|
247
|
+
----------
|
|
248
|
+
value : float
|
|
249
|
+
Cumulative probability for vocabulary tokens
|
|
250
|
+
"""
|
|
251
|
+
return self._set(topP=value)
|
|
252
|
+
|
|
253
|
+
def setRepetitionPenalty(self, value):
|
|
254
|
+
"""Sets the parameter for repetition penalty. 1.0 means no penalty.
|
|
255
|
+
|
|
256
|
+
Parameters
|
|
257
|
+
----------
|
|
258
|
+
value : float
|
|
259
|
+
The repetition penalty
|
|
260
|
+
|
|
261
|
+
References
|
|
262
|
+
----------
|
|
263
|
+
See `Ctrl: A Conditional Transformer Language Model For Controllable
|
|
264
|
+
Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
|
|
265
|
+
"""
|
|
266
|
+
return self._set(repetitionPenalty=value)
|
|
267
|
+
|
|
268
|
+
def setNoRepeatNgramSize(self, value):
|
|
269
|
+
"""Sets size of n-grams that can only occur once.
|
|
270
|
+
|
|
271
|
+
If set to int > 0, all ngrams of that size can only occur once.
|
|
272
|
+
|
|
273
|
+
Parameters
|
|
274
|
+
----------
|
|
275
|
+
value : int
|
|
276
|
+
N-gram size can only occur once
|
|
277
|
+
"""
|
|
278
|
+
return self._set(noRepeatNgramSize=value)
|
|
279
|
+
|
|
280
|
+
@keyword_only
|
|
281
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.Phi2Transformer", java_model=None):
|
|
282
|
+
super(Phi2Transformer, self).__init__(classname=classname, java_model=java_model)
|
|
283
|
+
self._setDefault(minOutputLength=0, maxOutputLength=20, doSample=False, temperature=0.6, topK=50, topP=0.9,
|
|
284
|
+
repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], batchSize=1)
|
|
285
|
+
|
|
286
|
+
@staticmethod
|
|
287
|
+
def loadSavedModel(folder, spark_session, use_openvino=False):
|
|
288
|
+
"""Loads a locally saved model.
|
|
289
|
+
|
|
290
|
+
Parameters
|
|
291
|
+
----------
|
|
292
|
+
folder : str
|
|
293
|
+
Folder of the saved model
|
|
294
|
+
spark_session : pyspark.sql.SparkSession
|
|
295
|
+
The current SparkSession
|
|
296
|
+
|
|
297
|
+
Returns
|
|
298
|
+
-------
|
|
299
|
+
Phi2Transformer
|
|
300
|
+
The restored model
|
|
301
|
+
"""
|
|
302
|
+
from sparknlp.internal import _Phi2Loader
|
|
303
|
+
jModel = _Phi2Loader(folder, spark_session._jsparkSession, use_openvino)._java_obj
|
|
304
|
+
return Phi2Transformer(java_model=jModel)
|
|
305
|
+
|
|
306
|
+
@staticmethod
|
|
307
|
+
def pretrained(name="phi2", lang="en", remote_loc=None):
|
|
308
|
+
"""Downloads and loads a pretrained model.
|
|
309
|
+
|
|
310
|
+
Parameters
|
|
311
|
+
----------
|
|
312
|
+
name : str, optional
|
|
313
|
+
Name of the pretrained model, by default "phi2"
|
|
314
|
+
lang : str, optional
|
|
315
|
+
Language of the pretrained model, by default "en"
|
|
316
|
+
remote_loc : str, optional
|
|
317
|
+
Optional remote address of the resource, by default None. Will use
|
|
318
|
+
Spark NLPs repositories otherwise.
|
|
319
|
+
|
|
320
|
+
Returns
|
|
321
|
+
-------
|
|
322
|
+
Phi2Transformer
|
|
323
|
+
The restored model
|
|
324
|
+
"""
|
|
325
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
326
|
+
return ResourceDownloader.downloadModel(Phi2Transformer, name, lang, remote_loc)
|