spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (221) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  4. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  5. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  6. sparknlp/__init__.py +81 -28
  7. sparknlp/annotation.py +3 -2
  8. sparknlp/annotator/__init__.py +6 -0
  9. sparknlp/annotator/audio/__init__.py +2 -0
  10. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  11. sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
  12. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  13. sparknlp/{base → annotator}/chunk2_doc.py +4 -7
  14. sparknlp/annotator/chunker.py +1 -2
  15. sparknlp/annotator/classifier_dl/__init__.py +17 -0
  16. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  17. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
  18. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
  19. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
  20. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  21. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  22. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  23. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
  24. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
  25. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
  26. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  27. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  28. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
  29. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
  30. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  31. sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
  32. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
  33. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
  34. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
  35. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  36. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
  37. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
  38. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
  39. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  40. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  41. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
  42. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
  43. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
  44. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  45. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  46. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  47. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
  48. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  49. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
  50. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
  51. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
  52. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  53. sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
  54. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
  55. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  56. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
  57. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  60. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
  61. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
  62. sparknlp/annotator/cleaners/__init__.py +15 -0
  63. sparknlp/annotator/cleaners/cleaner.py +202 -0
  64. sparknlp/annotator/cleaners/extractor.py +191 -0
  65. sparknlp/annotator/coref/spanbert_coref.py +4 -18
  66. sparknlp/annotator/cv/__init__.py +15 -0
  67. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  68. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  69. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  70. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  71. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  72. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  73. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  74. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  75. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  76. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  77. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  78. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  79. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  80. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  81. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  82. sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
  83. sparknlp/annotator/dataframe_optimizer.py +216 -0
  84. sparknlp/annotator/date2_chunk.py +88 -0
  85. sparknlp/annotator/dependency/dependency_parser.py +2 -3
  86. sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
  87. sparknlp/annotator/document_character_text_splitter.py +228 -0
  88. sparknlp/annotator/document_normalizer.py +37 -1
  89. sparknlp/annotator/document_token_splitter.py +175 -0
  90. sparknlp/annotator/document_token_splitter_test.py +85 -0
  91. sparknlp/annotator/embeddings/__init__.py +11 -0
  92. sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
  93. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  94. sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
  95. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
  96. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  97. sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
  98. sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
  99. sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
  100. sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
  101. sparknlp/annotator/embeddings/doc2vec.py +7 -1
  102. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  103. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  104. sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
  105. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  106. sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
  107. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  108. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  109. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  110. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  111. sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
  112. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
  113. sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
  114. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  115. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  116. sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
  117. sparknlp/annotator/embeddings/word2vec.py +7 -1
  118. sparknlp/annotator/embeddings/word_embeddings.py +4 -5
  119. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
  120. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
  121. sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
  122. sparknlp/annotator/er/entity_ruler.py +37 -23
  123. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
  124. sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
  125. sparknlp/annotator/lemmatizer.py +3 -4
  126. sparknlp/annotator/matcher/date_matcher.py +35 -3
  127. sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
  128. sparknlp/annotator/matcher/regex_matcher.py +3 -3
  129. sparknlp/annotator/matcher/text_matcher.py +2 -3
  130. sparknlp/annotator/n_gram_generator.py +1 -2
  131. sparknlp/annotator/ner/__init__.py +3 -1
  132. sparknlp/annotator/ner/ner_converter.py +18 -0
  133. sparknlp/annotator/ner/ner_crf.py +4 -5
  134. sparknlp/annotator/ner/ner_dl.py +10 -5
  135. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  136. sparknlp/annotator/ner/ner_overwriter.py +2 -2
  137. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  138. sparknlp/annotator/normalizer.py +2 -2
  139. sparknlp/annotator/openai/__init__.py +16 -0
  140. sparknlp/annotator/openai/openai_completion.py +349 -0
  141. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  142. sparknlp/annotator/pos/perceptron.py +6 -7
  143. sparknlp/annotator/sentence/sentence_detector.py +2 -2
  144. sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
  145. sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
  146. sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
  147. sparknlp/annotator/seq2seq/__init__.py +17 -0
  148. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  149. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  150. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  151. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  152. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  153. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  154. sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
  155. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  156. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  157. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  158. sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
  159. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  160. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  161. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  162. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  163. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  164. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  165. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  166. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  167. sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
  168. sparknlp/annotator/similarity/__init__.py +0 -0
  169. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  170. sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
  171. sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
  172. sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
  173. sparknlp/annotator/stemmer.py +2 -3
  174. sparknlp/annotator/stop_words_cleaner.py +3 -4
  175. sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
  176. sparknlp/annotator/token/__init__.py +0 -1
  177. sparknlp/annotator/token/recursive_tokenizer.py +2 -3
  178. sparknlp/annotator/token/tokenizer.py +2 -3
  179. sparknlp/annotator/ws/word_segmenter.py +35 -10
  180. sparknlp/base/__init__.py +2 -3
  181. sparknlp/base/doc2_chunk.py +0 -3
  182. sparknlp/base/document_assembler.py +5 -5
  183. sparknlp/base/embeddings_finisher.py +14 -2
  184. sparknlp/base/finisher.py +15 -4
  185. sparknlp/base/gguf_ranking_finisher.py +234 -0
  186. sparknlp/base/image_assembler.py +69 -0
  187. sparknlp/base/light_pipeline.py +53 -21
  188. sparknlp/base/multi_document_assembler.py +9 -13
  189. sparknlp/base/prompt_assembler.py +207 -0
  190. sparknlp/base/token_assembler.py +1 -2
  191. sparknlp/common/__init__.py +2 -0
  192. sparknlp/common/annotator_type.py +1 -0
  193. sparknlp/common/completion_post_processing.py +37 -0
  194. sparknlp/common/match_strategy.py +33 -0
  195. sparknlp/common/properties.py +914 -9
  196. sparknlp/internal/__init__.py +841 -116
  197. sparknlp/internal/annotator_java_ml.py +1 -1
  198. sparknlp/internal/annotator_transformer.py +3 -0
  199. sparknlp/logging/comet.py +2 -2
  200. sparknlp/partition/__init__.py +16 -0
  201. sparknlp/partition/partition.py +244 -0
  202. sparknlp/partition/partition_properties.py +902 -0
  203. sparknlp/partition/partition_transformer.py +200 -0
  204. sparknlp/pretrained/pretrained_pipeline.py +1 -1
  205. sparknlp/pretrained/resource_downloader.py +126 -2
  206. sparknlp/reader/__init__.py +15 -0
  207. sparknlp/reader/enums.py +19 -0
  208. sparknlp/reader/pdf_to_text.py +190 -0
  209. sparknlp/reader/reader2doc.py +124 -0
  210. sparknlp/reader/reader2image.py +136 -0
  211. sparknlp/reader/reader2table.py +44 -0
  212. sparknlp/reader/reader_assembler.py +159 -0
  213. sparknlp/reader/sparknlp_reader.py +461 -0
  214. sparknlp/training/__init__.py +1 -0
  215. sparknlp/training/conll.py +8 -2
  216. sparknlp/training/spacy_to_annotation.py +57 -0
  217. sparknlp/util.py +26 -0
  218. spark_nlp-4.2.6.dist-info/METADATA +0 -1256
  219. spark_nlp-4.2.6.dist-info/RECORD +0 -196
  220. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
  221. /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
@@ -0,0 +1,392 @@
1
+ # Copyright 2017-2024 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for the M2M100Transformer."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class M2M100Transformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
20
+ """M2M100 : multilingual translation model
21
+
22
+ M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many
23
+ multilingual translation.
24
+
25
+ The model can directly translate between the 9,900 directions of 100 languages.
26
+
27
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
28
+ object:
29
+
30
+ >>> m2m100 = M2M100Transformer.pretrained() \\
31
+ ... .setInputCols(["document"]) \\
32
+ ... .setOutputCol("generation")
33
+
34
+
35
+ The default model is ``"m2m100_418M"``, if no name is provided. For available
36
+ pretrained models please see the `Models Hub
37
+ <https://sparknlp.org/models?q=m2m100>`__.
38
+
39
+ ====================== ======================
40
+ Input Annotation types Output Annotation type
41
+ ====================== ======================
42
+ ``DOCUMENT`` ``DOCUMENT``
43
+ ====================== ======================
44
+
45
+ Parameters
46
+ ----------
47
+ configProtoBytes
48
+ ConfigProto from tensorflow, serialized into byte array.
49
+ minOutputLength
50
+ Minimum length of the sequence to be generated, by default 0
51
+ maxOutputLength
52
+ Maximum length of output text, by default 20
53
+ doSample
54
+ Whether or not to use sampling; use greedy decoding otherwise, by default False
55
+ temperature
56
+ The value used to module the next token probabilities, by default 1.0
57
+ topK
58
+ The number of highest probability vocabulary tokens to keep for
59
+ top-k-filtering, by default 50
60
+ topP
61
+ Top cumulative probability for vocabulary tokens, by default 1.0
62
+
63
+ If set to float < 1, only the most probable tokens with probabilities
64
+ that add up to ``topP`` or higher are kept for generation.
65
+ repetitionPenalty
66
+ The parameter for repetition penalty, 1.0 means no penalty. , by default
67
+ 1.0
68
+ noRepeatNgramSize
69
+ If set to int > 0, all ngrams of that size can only occur once, by
70
+ default 0
71
+ ignoreTokenIds
72
+ A list of token ids which are ignored in the decoder's output, by
73
+ default []
74
+ srcLang
75
+ Source Language (Default: `en`)
76
+ tgtLang
77
+ Target Language (Default: `fr`)
78
+
79
+ Languages Covered
80
+ -----------------
81
+ Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba),
82
+ Belarusian (be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian
83
+ (ca), Cebuano (ceb), Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English
84
+ (en), Spanish (es), Estonian (et), Persian (fa), Fulah (ff), Finnish (fi), French (fr),
85
+ Western Frisian (fy), Irish (ga), Gaelic; Scottish Gaelic (gd), Galician (gl), Gujarati (gu),
86
+ Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian; Haitian Creole (ht), Hungarian
87
+ (hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic (is), Italian (it),
88
+ Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km), Kannada (kn),
89
+ Korean (ko), Luxembourgish; Letzeburgesch (lb), Ganda (lg), Lingala (ln), Lao (lo), Lithuanian
90
+ (lt), Latvian (lv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn), Marathi
91
+ (mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern
92
+ Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto;
93
+ Pashto (ps), Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd),
94
+ Sinhala; Sinhalese (si), Slovak (sk), Slovenian (sl), Somali (so), Albanian (sq), Serbian
95
+ (sr), Swati (ss), Sundanese (su), Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog
96
+ (tl), Tswana (tn), Turkish (tr), Ukrainian (uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof
97
+ (wo), Xhosa (xh), Yiddish (yi), Yoruba (yo), Chinese (zh), Zulu (zu)
98
+
99
+ References
100
+ ----------
101
+ - `Beyond English-Centric Multilingual Machine Translation
102
+ <https://arxiv.org/pdf/2010.11125.pdf>`__
103
+ - https://github.com/pytorch/fairseq/tree/master/examples/m2m_100
104
+
105
+ **Paper Abstract:**
106
+
107
+ * Existing work in translation demonstrated the potential of massively multilingual machine translation by training
108
+ a single model able to translate between any pair of languages. However, much of this work is English-Centric by
109
+ training only on data which was translated from or to English. While this is supported by large sources of
110
+ training data, it does not reflect translation needs worldwide. In this work, we create a true Many-to-Many
111
+ multilingual translation model that can translate directly between any pair of 100 languages. We build and open
112
+ source a training dataset that covers thousands of language directions with supervised data, created through
113
+ large-scale mining. Then, we explore how to effectively increase model capacity through a combination of dense
114
+ scaling and language-specific sparse parameters to create high quality models. Our focus on non-English-Centric
115
+ models brings gains of more than 10 BLEU when directly translating between non-English directions while performing
116
+ competitively to the best single systems of WMT. We open-source our scripts so that others may reproduce the data,
117
+ evaluation, and final M2M-100 model.*
118
+
119
+ Examples
120
+ --------
121
+ >>> import sparknlp
122
+ >>> from sparknlp.base import *
123
+ >>> from sparknlp.annotator import *
124
+ >>> from pyspark.ml import Pipeline
125
+ >>> documentAssembler = DocumentAssembler() \\
126
+ ... .setInputCol("text") \\
127
+ ... .setOutputCol("documents")
128
+ >>> m2m100 = M2M100Transformer.pretrained("m2m100_418M") \\
129
+ ... .setInputCols(["documents"]) \\
130
+ ... .setMaxOutputLength(50) \\
131
+ ... .setOutputCol("generation") \\
132
+ ... .setSrcLang("en") \\
133
+ ... .setTgtLang("fr")
134
+ >>> pipeline = Pipeline().setStages([documentAssembler, m2m100])
135
+ >>> data = spark.createDataFrame([["生活就像一盒巧克力。"]]).toDF("text")
136
+ >>> result = pipeline.fit(data).transform(data)
137
+ >>> result.select("summaries.generation").show(truncate=False)
138
+ +-------------------------------------------------------------------------------------------+
139
+ |result |
140
+ +-------------------------------------------------------------------------------------------+
141
+ |[ Life is like a box of chocolate.] |
142
+ +-------------------------------------------------------------------------------------------+
143
+ """
144
+
145
+ name = "M2M100Transformer"
146
+
147
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
148
+
149
+ outputAnnotatorType = AnnotatorType.DOCUMENT
150
+
151
+ configProtoBytes = Param(Params._dummy(), "configProtoBytes",
152
+ "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
153
+ TypeConverters.toListInt)
154
+
155
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
156
+ typeConverter=TypeConverters.toInt)
157
+
158
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
159
+ typeConverter=TypeConverters.toInt)
160
+
161
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
162
+ typeConverter=TypeConverters.toBoolean)
163
+
164
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
165
+ typeConverter=TypeConverters.toFloat)
166
+
167
+ topK = Param(Params._dummy(), "topK",
168
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
169
+ typeConverter=TypeConverters.toInt)
170
+
171
+ topP = Param(Params._dummy(), "topP",
172
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
173
+ typeConverter=TypeConverters.toFloat)
174
+
175
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
176
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
177
+ typeConverter=TypeConverters.toFloat)
178
+
179
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
180
+ "If set to int > 0, all ngrams of that size can only occur once",
181
+ typeConverter=TypeConverters.toInt)
182
+
183
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
184
+ "A list of token ids which are ignored in the decoder's output",
185
+ typeConverter=TypeConverters.toListInt)
186
+ beamSize = Param(Params._dummy(), "beamSize",
187
+ "The Number of beams for beam search.",
188
+ typeConverter=TypeConverters.toInt)
189
+ srcLang = Param(Params._dummy(), "srcLang", "Source Language (Default: `en`)",
190
+ typeConverter=TypeConverters.toString)
191
+ tgtLang = Param(Params._dummy(), "tgtLang", "Target Language (Default: `fr`)",
192
+ typeConverter=TypeConverters.toString)
193
+
194
+ def setIgnoreTokenIds(self, value):
195
+ """A list of token ids which are ignored in the decoder's output.
196
+
197
+ Parameters
198
+ ----------
199
+ value : List[int]
200
+ The words to be filtered out
201
+ """
202
+ return self._set(ignoreTokenIds=value)
203
+
204
+ def setConfigProtoBytes(self, b):
205
+ """Sets configProto from tensorflow, serialized into byte array.
206
+
207
+ Parameters
208
+ ----------
209
+ b : List[int]
210
+ ConfigProto from tensorflow, serialized into byte array
211
+ """
212
+ return self._set(configProtoBytes=b)
213
+
214
+ def setMinOutputLength(self, value):
215
+ """Sets minimum length of the sequence to be generated.
216
+
217
+ Parameters
218
+ ----------
219
+ value : int
220
+ Minimum length of the sequence to be generated
221
+ """
222
+ return self._set(minOutputLength=value)
223
+
224
+ def setMaxOutputLength(self, value):
225
+ """Sets maximum length of output text.
226
+
227
+ Parameters
228
+ ----------
229
+ value : int
230
+ Maximum length of output text
231
+ """
232
+ return self._set(maxOutputLength=value)
233
+
234
+ def setDoSample(self, value):
235
+ """Sets whether or not to use sampling, use greedy decoding otherwise.
236
+
237
+ Parameters
238
+ ----------
239
+ value : bool
240
+ Whether or not to use sampling; use greedy decoding otherwise
241
+ """
242
+ return self._set(doSample=value)
243
+
244
+ def setTemperature(self, value):
245
+ """Sets the value used to module the next token probabilities.
246
+
247
+ Parameters
248
+ ----------
249
+ value : float
250
+ The value used to module the next token probabilities
251
+ """
252
+ return self._set(temperature=value)
253
+
254
+ def setTopK(self, value):
255
+ """Sets the number of highest probability vocabulary tokens to keep for
256
+ top-k-filtering.
257
+
258
+ Parameters
259
+ ----------
260
+ value : int
261
+ Number of highest probability vocabulary tokens to keep
262
+ """
263
+ return self._set(topK=value)
264
+
265
+ def setTopP(self, value):
266
+ """Sets the top cumulative probability for vocabulary tokens.
267
+
268
+ If set to float < 1, only the most probable tokens with probabilities
269
+ that add up to ``topP`` or higher are kept for generation.
270
+
271
+ Parameters
272
+ ----------
273
+ value : float
274
+ Cumulative probability for vocabulary tokens
275
+ """
276
+ return self._set(topP=value)
277
+
278
+ def setRepetitionPenalty(self, value):
279
+ """Sets the parameter for repetition penalty. 1.0 means no penalty.
280
+
281
+ Parameters
282
+ ----------
283
+ value : float
284
+ The repetition penalty
285
+
286
+ References
287
+ ----------
288
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
289
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
290
+ """
291
+ return self._set(repetitionPenalty=value)
292
+
293
+ def setNoRepeatNgramSize(self, value):
294
+ """Sets size of n-grams that can only occur once.
295
+
296
+ If set to int > 0, all ngrams of that size can only occur once.
297
+
298
+ Parameters
299
+ ----------
300
+ value : int
301
+ N-gram size can only occur once
302
+ """
303
+ return self._set(noRepeatNgramSize=value)
304
+
305
+ def setBeamSize(self, value):
306
+ """Sets the number of beam size for beam search, by default `4`.
307
+
308
+ Parameters
309
+ ----------
310
+ value : int
311
+ Number of beam size for beam search
312
+ """
313
+ return self._set(beamSize=value)
314
+
315
+ def setSrcLang(self, value):
316
+ """Sets source language.
317
+
318
+ Parameters
319
+ ----------
320
+ value : str
321
+ Source language
322
+ """
323
+ return self._set(srcLang=value)
324
+
325
+ def setTgtLang(self, value):
326
+ """Sets target language.
327
+
328
+ Parameters
329
+ ----------
330
+ value : str
331
+ Target language
332
+ """
333
+ return self._set(tgtLang=value)
334
+
335
+ @keyword_only
336
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.M2M100Transformer", java_model=None):
337
+ super(M2M100Transformer, self).__init__(classname=classname, java_model=java_model)
338
+ self._setDefault(minOutputLength=0,
339
+ maxOutputLength=200,
340
+ doSample=False,
341
+ temperature=1,
342
+ topK=50,
343
+ topP=1,
344
+ repetitionPenalty=1.0,
345
+ noRepeatNgramSize=0,
346
+ ignoreTokenIds=[],
347
+ batchSize=1,
348
+ beamSize=1,
349
+ srcLang="en",
350
+ tgtLang="fr")
351
+
352
+ @staticmethod
353
+ def loadSavedModel(folder, spark_session, use_openvino=False):
354
+ """Loads a locally saved model.
355
+
356
+ Parameters
357
+ ----------
358
+ folder : str
359
+ Folder of the saved model
360
+ spark_session : pyspark.sql.SparkSession
361
+ The current SparkSession
362
+
363
+ Returns
364
+ -------
365
+ M2M100Transformer
366
+ The restored model
367
+ """
368
+ from sparknlp.internal import _M2M100Loader
369
+ jModel = _M2M100Loader(folder, spark_session._jsparkSession, use_openvino)._java_obj
370
+ return M2M100Transformer(java_model=jModel)
371
+
372
+ @staticmethod
373
+ def pretrained(name="m2m100_418M", lang="xx", remote_loc=None):
374
+ """Downloads and loads a pretrained model.
375
+
376
+ Parameters
377
+ ----------
378
+ name : str, optional
379
+ Name of the pretrained model, by default "m2m100_418M"
380
+ lang : str, optional
381
+ Language of the pretrained model, by default "en"
382
+ remote_loc : str, optional
383
+ Optional remote address of the resource, by default None. Will use
384
+ Spark NLPs repositories otherwise.
385
+
386
+ Returns
387
+ -------
388
+ M2M100Transformer
389
+ The restored model
390
+ """
391
+ from sparknlp.pretrained import ResourceDownloader
392
+ return ResourceDownloader.downloadModel(M2M100Transformer, name, lang, remote_loc)
@@ -30,6 +30,11 @@ class MarianTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
30
30
  Translation services and being deployed by many companies, organizations and
31
31
  research projects.
32
32
 
33
+ Note that this model only supports inputs up to 512 tokens. If you are
34
+ working with longer inputs, consider splitting them first. For example, you
35
+ can use the SentenceDetectorDL annotator to split longer texts into
36
+ sentences.
37
+
33
38
  Pretrained models can be loaded with :meth:`.pretrained` of the companion
34
39
  object:
35
40
 
@@ -40,9 +45,9 @@ class MarianTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
40
45
  The default model is ``"opus_mt_en_fr"``, default language is ``"xx"``
41
46
  (meaning multi-lingual), if no values are provided.
42
47
 
43
- For available pretrained models please see the `Models Hub <https://nlp.johnsnowlabs.com/models?task=Translation>`__.
48
+ For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Translation>`__.
44
49
 
45
- For extended examples of usage, see the `Spark NLP Workshop <https://github.com/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/TRANSLATION_MARIAN.ipynb>`__.
50
+ For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/multilingual/Translation_Marian.ipynb>`__.
46
51
 
47
52
  ====================== ======================
48
53
  Input Annotation types Output Annotation type
@@ -140,6 +145,29 @@ class MarianTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
140
145
  "Controls the maximum length for decoder outputs (target language texts)",
141
146
  typeConverter=TypeConverters.toInt)
142
147
 
148
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
149
+ typeConverter=TypeConverters.toBoolean)
150
+
151
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
152
+ typeConverter=TypeConverters.toFloat)
153
+
154
+ topK = Param(Params._dummy(), "topK",
155
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
156
+ typeConverter=TypeConverters.toInt)
157
+
158
+ topP = Param(Params._dummy(), "topP",
159
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
160
+ typeConverter=TypeConverters.toFloat)
161
+
162
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
163
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
164
+ typeConverter=TypeConverters.toFloat)
165
+
166
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
167
+ "If set to int > 0, all ngrams of that size can only occur once",
168
+ typeConverter=TypeConverters.toInt)
169
+
170
+
143
171
  ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
144
172
  "A list of token ids which are ignored in the decoder's output",
145
173
  typeConverter=TypeConverters.toListInt)
@@ -176,13 +204,16 @@ class MarianTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
176
204
 
177
205
  def setMaxInputLength(self, value):
178
206
  """Sets the maximum length for encoder inputs (source language texts),
179
- by default 40.
207
+ by default 40. The value should be less than 512, as the Marian Transformer does not
208
+ support inputs longer than 512 tokens.
180
209
 
181
210
  Parameters
182
211
  ----------
183
212
  value : int
184
213
  The maximum length for encoder inputs (source language texts)
185
214
  """
215
+ if value > 512:
216
+ raise ValueError("MarianTransformer model does not support sequences longer than 512.")
186
217
  return self._set(maxInputLength=value)
187
218
 
188
219
  def setMaxOutputLength(self, value):
@@ -196,6 +227,90 @@ class MarianTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
196
227
  """
197
228
  return self._set(maxOutputLength=value)
198
229
 
230
+
231
+ def setDoSample(self, value):
232
+ """Sets whether or not to use sampling, use greedy decoding otherwise.
233
+
234
+ Parameters
235
+ ----------
236
+ value : bool
237
+ Whether or not to use sampling; use greedy decoding otherwise
238
+ """
239
+ return self._set(doSample=value)
240
+
241
+ def setTemperature(self, value):
242
+ """Sets the value used to module the next token probabilities.
243
+
244
+ Parameters
245
+ ----------
246
+ value : float
247
+ The value used to module the next token probabilities
248
+ """
249
+ return self._set(temperature=value)
250
+
251
+ def setTopK(self, value):
252
+ """Sets the number of highest probability vocabulary tokens to keep for
253
+ top-k-filtering.
254
+
255
+ Parameters
256
+ ----------
257
+ value : int
258
+ Number of highest probability vocabulary tokens to keep
259
+ """
260
+ return self._set(topK=value)
261
+
262
+ def setTopP(self, value):
263
+ """Sets the top cumulative probability for vocabulary tokens.
264
+
265
+ If set to float < 1, only the most probable tokens with probabilities
266
+ that add up to ``topP`` or higher are kept for generation.
267
+
268
+ Parameters
269
+ ----------
270
+ value : float
271
+ Cumulative probability for vocabulary tokens
272
+ """
273
+ return self._set(topP=value)
274
+
275
+ def setRepetitionPenalty(self, value):
276
+ """Sets the parameter for repetition penalty. 1.0 means no penalty.
277
+
278
+ Parameters
279
+ ----------
280
+ value : float
281
+ The repetition penalty
282
+
283
+ References
284
+ ----------
285
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
286
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
287
+ """
288
+ return self._set(repetitionPenalty=value)
289
+
290
+ def setNoRepeatNgramSize(self, value):
291
+ """Sets size of n-grams that can only occur once.
292
+
293
+ If set to int > 0, all ngrams of that size can only occur once.
294
+
295
+ Parameters
296
+ ----------
297
+ value : int
298
+ N-gram size can only occur once
299
+ """
300
+ return self._set(noRepeatNgramSize=value)
301
+
302
+ def setRandomSeed(self, seed):
303
+ """Sets random seed.
304
+
305
+ Parameters
306
+ ----------
307
+ seed : int
308
+ Random seed
309
+ """
310
+ self._call_java("setRandomSeed", seed)
311
+
312
+ return self
313
+
199
314
  @keyword_only
200
315
  def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.MarianTransformer", java_model=None):
201
316
  super(MarianTransformer, self).__init__(
@@ -207,6 +322,12 @@ class MarianTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
207
322
  maxInputLength=40,
208
323
  maxOutputLength=40,
209
324
  langId="",
325
+ doSample=False,
326
+ temperature=1.0,
327
+ topK=50,
328
+ topP=1.0,
329
+ repetitionPenalty=1.0,
330
+ noRepeatNgramSize=0,
210
331
  ignoreTokenIds=[]
211
332
  )
212
333