spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +81 -28
- sparknlp/annotation.py +3 -2
- sparknlp/annotator/__init__.py +6 -0
- sparknlp/annotator/audio/__init__.py +2 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/{base → annotator}/chunk2_doc.py +4 -7
- sparknlp/annotator/chunker.py +1 -2
- sparknlp/annotator/classifier_dl/__init__.py +17 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/spanbert_coref.py +4 -18
- sparknlp/annotator/cv/__init__.py +15 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/dependency_parser.py +2 -3
- sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +37 -1
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +11 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
- sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
- sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
- sparknlp/annotator/embeddings/doc2vec.py +7 -1
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
- sparknlp/annotator/embeddings/word2vec.py +7 -1
- sparknlp/annotator/embeddings/word_embeddings.py +4 -5
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
- sparknlp/annotator/er/entity_ruler.py +37 -23
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
- sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
- sparknlp/annotator/lemmatizer.py +3 -4
- sparknlp/annotator/matcher/date_matcher.py +35 -3
- sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
- sparknlp/annotator/matcher/regex_matcher.py +3 -3
- sparknlp/annotator/matcher/text_matcher.py +2 -3
- sparknlp/annotator/n_gram_generator.py +1 -2
- sparknlp/annotator/ner/__init__.py +3 -1
- sparknlp/annotator/ner/ner_converter.py +18 -0
- sparknlp/annotator/ner/ner_crf.py +4 -5
- sparknlp/annotator/ner/ner_dl.py +10 -5
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +2 -2
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +2 -2
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/pos/perceptron.py +6 -7
- sparknlp/annotator/sentence/sentence_detector.py +2 -2
- sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
- sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
- sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
- sparknlp/annotator/seq2seq/__init__.py +17 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
- sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
- sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
- sparknlp/annotator/stemmer.py +2 -3
- sparknlp/annotator/stop_words_cleaner.py +3 -4
- sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
- sparknlp/annotator/token/__init__.py +0 -1
- sparknlp/annotator/token/recursive_tokenizer.py +2 -3
- sparknlp/annotator/token/tokenizer.py +2 -3
- sparknlp/annotator/ws/word_segmenter.py +35 -10
- sparknlp/base/__init__.py +2 -3
- sparknlp/base/doc2_chunk.py +0 -3
- sparknlp/base/document_assembler.py +5 -5
- sparknlp/base/embeddings_finisher.py +14 -2
- sparknlp/base/finisher.py +15 -4
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/image_assembler.py +69 -0
- sparknlp/base/light_pipeline.py +53 -21
- sparknlp/base/multi_document_assembler.py +9 -13
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/token_assembler.py +1 -2
- sparknlp/common/__init__.py +2 -0
- sparknlp/common/annotator_type.py +1 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +914 -9
- sparknlp/internal/__init__.py +841 -116
- sparknlp/internal/annotator_java_ml.py +1 -1
- sparknlp/internal/annotator_transformer.py +3 -0
- sparknlp/logging/comet.py +2 -2
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/pretrained_pipeline.py +1 -1
- sparknlp/pretrained/resource_downloader.py +126 -2
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +1 -0
- sparknlp/training/conll.py +8 -2
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/util.py +26 -0
- spark_nlp-4.2.6.dist-info/METADATA +0 -1256
- spark_nlp-4.2.6.dist-info/RECORD +0 -196
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
- /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
|
@@ -0,0 +1,392 @@
|
|
|
1
|
+
# Copyright 2017-2024 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for the M2M100Transformer."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class M2M100Transformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
|
|
20
|
+
"""M2M100 : multilingual translation model
|
|
21
|
+
|
|
22
|
+
M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many
|
|
23
|
+
multilingual translation.
|
|
24
|
+
|
|
25
|
+
The model can directly translate between the 9,900 directions of 100 languages.
|
|
26
|
+
|
|
27
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
28
|
+
object:
|
|
29
|
+
|
|
30
|
+
>>> m2m100 = M2M100Transformer.pretrained() \\
|
|
31
|
+
... .setInputCols(["document"]) \\
|
|
32
|
+
... .setOutputCol("generation")
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
The default model is ``"m2m100_418M"``, if no name is provided. For available
|
|
36
|
+
pretrained models please see the `Models Hub
|
|
37
|
+
<https://sparknlp.org/models?q=m2m100>`__.
|
|
38
|
+
|
|
39
|
+
====================== ======================
|
|
40
|
+
Input Annotation types Output Annotation type
|
|
41
|
+
====================== ======================
|
|
42
|
+
``DOCUMENT`` ``DOCUMENT``
|
|
43
|
+
====================== ======================
|
|
44
|
+
|
|
45
|
+
Parameters
|
|
46
|
+
----------
|
|
47
|
+
configProtoBytes
|
|
48
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
49
|
+
minOutputLength
|
|
50
|
+
Minimum length of the sequence to be generated, by default 0
|
|
51
|
+
maxOutputLength
|
|
52
|
+
Maximum length of output text, by default 20
|
|
53
|
+
doSample
|
|
54
|
+
Whether or not to use sampling; use greedy decoding otherwise, by default False
|
|
55
|
+
temperature
|
|
56
|
+
The value used to module the next token probabilities, by default 1.0
|
|
57
|
+
topK
|
|
58
|
+
The number of highest probability vocabulary tokens to keep for
|
|
59
|
+
top-k-filtering, by default 50
|
|
60
|
+
topP
|
|
61
|
+
Top cumulative probability for vocabulary tokens, by default 1.0
|
|
62
|
+
|
|
63
|
+
If set to float < 1, only the most probable tokens with probabilities
|
|
64
|
+
that add up to ``topP`` or higher are kept for generation.
|
|
65
|
+
repetitionPenalty
|
|
66
|
+
The parameter for repetition penalty, 1.0 means no penalty. , by default
|
|
67
|
+
1.0
|
|
68
|
+
noRepeatNgramSize
|
|
69
|
+
If set to int > 0, all ngrams of that size can only occur once, by
|
|
70
|
+
default 0
|
|
71
|
+
ignoreTokenIds
|
|
72
|
+
A list of token ids which are ignored in the decoder's output, by
|
|
73
|
+
default []
|
|
74
|
+
srcLang
|
|
75
|
+
Source Language (Default: `en`)
|
|
76
|
+
tgtLang
|
|
77
|
+
Target Language (Default: `fr`)
|
|
78
|
+
|
|
79
|
+
Languages Covered
|
|
80
|
+
-----------------
|
|
81
|
+
Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba),
|
|
82
|
+
Belarusian (be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian
|
|
83
|
+
(ca), Cebuano (ceb), Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English
|
|
84
|
+
(en), Spanish (es), Estonian (et), Persian (fa), Fulah (ff), Finnish (fi), French (fr),
|
|
85
|
+
Western Frisian (fy), Irish (ga), Gaelic; Scottish Gaelic (gd), Galician (gl), Gujarati (gu),
|
|
86
|
+
Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian; Haitian Creole (ht), Hungarian
|
|
87
|
+
(hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic (is), Italian (it),
|
|
88
|
+
Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km), Kannada (kn),
|
|
89
|
+
Korean (ko), Luxembourgish; Letzeburgesch (lb), Ganda (lg), Lingala (ln), Lao (lo), Lithuanian
|
|
90
|
+
(lt), Latvian (lv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn), Marathi
|
|
91
|
+
(mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern
|
|
92
|
+
Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto;
|
|
93
|
+
Pashto (ps), Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd),
|
|
94
|
+
Sinhala; Sinhalese (si), Slovak (sk), Slovenian (sl), Somali (so), Albanian (sq), Serbian
|
|
95
|
+
(sr), Swati (ss), Sundanese (su), Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog
|
|
96
|
+
(tl), Tswana (tn), Turkish (tr), Ukrainian (uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof
|
|
97
|
+
(wo), Xhosa (xh), Yiddish (yi), Yoruba (yo), Chinese (zh), Zulu (zu)
|
|
98
|
+
|
|
99
|
+
References
|
|
100
|
+
----------
|
|
101
|
+
- `Beyond English-Centric Multilingual Machine Translation
|
|
102
|
+
<https://arxiv.org/pdf/2010.11125.pdf>`__
|
|
103
|
+
- https://github.com/pytorch/fairseq/tree/master/examples/m2m_100
|
|
104
|
+
|
|
105
|
+
**Paper Abstract:**
|
|
106
|
+
|
|
107
|
+
* Existing work in translation demonstrated the potential of massively multilingual machine translation by training
|
|
108
|
+
a single model able to translate between any pair of languages. However, much of this work is English-Centric by
|
|
109
|
+
training only on data which was translated from or to English. While this is supported by large sources of
|
|
110
|
+
training data, it does not reflect translation needs worldwide. In this work, we create a true Many-to-Many
|
|
111
|
+
multilingual translation model that can translate directly between any pair of 100 languages. We build and open
|
|
112
|
+
source a training dataset that covers thousands of language directions with supervised data, created through
|
|
113
|
+
large-scale mining. Then, we explore how to effectively increase model capacity through a combination of dense
|
|
114
|
+
scaling and language-specific sparse parameters to create high quality models. Our focus on non-English-Centric
|
|
115
|
+
models brings gains of more than 10 BLEU when directly translating between non-English directions while performing
|
|
116
|
+
competitively to the best single systems of WMT. We open-source our scripts so that others may reproduce the data,
|
|
117
|
+
evaluation, and final M2M-100 model.*
|
|
118
|
+
|
|
119
|
+
Examples
|
|
120
|
+
--------
|
|
121
|
+
>>> import sparknlp
|
|
122
|
+
>>> from sparknlp.base import *
|
|
123
|
+
>>> from sparknlp.annotator import *
|
|
124
|
+
>>> from pyspark.ml import Pipeline
|
|
125
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
126
|
+
... .setInputCol("text") \\
|
|
127
|
+
... .setOutputCol("documents")
|
|
128
|
+
>>> m2m100 = M2M100Transformer.pretrained("m2m100_418M") \\
|
|
129
|
+
... .setInputCols(["documents"]) \\
|
|
130
|
+
... .setMaxOutputLength(50) \\
|
|
131
|
+
... .setOutputCol("generation") \\
|
|
132
|
+
... .setSrcLang("en") \\
|
|
133
|
+
... .setTgtLang("fr")
|
|
134
|
+
>>> pipeline = Pipeline().setStages([documentAssembler, m2m100])
|
|
135
|
+
>>> data = spark.createDataFrame([["生活就像一盒巧克力。"]]).toDF("text")
|
|
136
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
137
|
+
>>> result.select("summaries.generation").show(truncate=False)
|
|
138
|
+
+-------------------------------------------------------------------------------------------+
|
|
139
|
+
|result |
|
|
140
|
+
+-------------------------------------------------------------------------------------------+
|
|
141
|
+
|[ Life is like a box of chocolate.] |
|
|
142
|
+
+-------------------------------------------------------------------------------------------+
|
|
143
|
+
"""
|
|
144
|
+
|
|
145
|
+
name = "M2M100Transformer"
|
|
146
|
+
|
|
147
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
148
|
+
|
|
149
|
+
outputAnnotatorType = AnnotatorType.DOCUMENT
|
|
150
|
+
|
|
151
|
+
configProtoBytes = Param(Params._dummy(), "configProtoBytes",
|
|
152
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
153
|
+
TypeConverters.toListInt)
|
|
154
|
+
|
|
155
|
+
minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
|
|
156
|
+
typeConverter=TypeConverters.toInt)
|
|
157
|
+
|
|
158
|
+
maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
|
|
159
|
+
typeConverter=TypeConverters.toInt)
|
|
160
|
+
|
|
161
|
+
doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
|
|
162
|
+
typeConverter=TypeConverters.toBoolean)
|
|
163
|
+
|
|
164
|
+
temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
|
|
165
|
+
typeConverter=TypeConverters.toFloat)
|
|
166
|
+
|
|
167
|
+
topK = Param(Params._dummy(), "topK",
|
|
168
|
+
"The number of highest probability vocabulary tokens to keep for top-k-filtering",
|
|
169
|
+
typeConverter=TypeConverters.toInt)
|
|
170
|
+
|
|
171
|
+
topP = Param(Params._dummy(), "topP",
|
|
172
|
+
"If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
|
|
173
|
+
typeConverter=TypeConverters.toFloat)
|
|
174
|
+
|
|
175
|
+
repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
|
|
176
|
+
"The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
|
|
177
|
+
typeConverter=TypeConverters.toFloat)
|
|
178
|
+
|
|
179
|
+
noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
|
|
180
|
+
"If set to int > 0, all ngrams of that size can only occur once",
|
|
181
|
+
typeConverter=TypeConverters.toInt)
|
|
182
|
+
|
|
183
|
+
ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
|
|
184
|
+
"A list of token ids which are ignored in the decoder's output",
|
|
185
|
+
typeConverter=TypeConverters.toListInt)
|
|
186
|
+
beamSize = Param(Params._dummy(), "beamSize",
|
|
187
|
+
"The Number of beams for beam search.",
|
|
188
|
+
typeConverter=TypeConverters.toInt)
|
|
189
|
+
srcLang = Param(Params._dummy(), "srcLang", "Source Language (Default: `en`)",
|
|
190
|
+
typeConverter=TypeConverters.toString)
|
|
191
|
+
tgtLang = Param(Params._dummy(), "tgtLang", "Target Language (Default: `fr`)",
|
|
192
|
+
typeConverter=TypeConverters.toString)
|
|
193
|
+
|
|
194
|
+
def setIgnoreTokenIds(self, value):
|
|
195
|
+
"""A list of token ids which are ignored in the decoder's output.
|
|
196
|
+
|
|
197
|
+
Parameters
|
|
198
|
+
----------
|
|
199
|
+
value : List[int]
|
|
200
|
+
The words to be filtered out
|
|
201
|
+
"""
|
|
202
|
+
return self._set(ignoreTokenIds=value)
|
|
203
|
+
|
|
204
|
+
def setConfigProtoBytes(self, b):
|
|
205
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
206
|
+
|
|
207
|
+
Parameters
|
|
208
|
+
----------
|
|
209
|
+
b : List[int]
|
|
210
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
211
|
+
"""
|
|
212
|
+
return self._set(configProtoBytes=b)
|
|
213
|
+
|
|
214
|
+
def setMinOutputLength(self, value):
|
|
215
|
+
"""Sets minimum length of the sequence to be generated.
|
|
216
|
+
|
|
217
|
+
Parameters
|
|
218
|
+
----------
|
|
219
|
+
value : int
|
|
220
|
+
Minimum length of the sequence to be generated
|
|
221
|
+
"""
|
|
222
|
+
return self._set(minOutputLength=value)
|
|
223
|
+
|
|
224
|
+
def setMaxOutputLength(self, value):
|
|
225
|
+
"""Sets maximum length of output text.
|
|
226
|
+
|
|
227
|
+
Parameters
|
|
228
|
+
----------
|
|
229
|
+
value : int
|
|
230
|
+
Maximum length of output text
|
|
231
|
+
"""
|
|
232
|
+
return self._set(maxOutputLength=value)
|
|
233
|
+
|
|
234
|
+
def setDoSample(self, value):
|
|
235
|
+
"""Sets whether or not to use sampling, use greedy decoding otherwise.
|
|
236
|
+
|
|
237
|
+
Parameters
|
|
238
|
+
----------
|
|
239
|
+
value : bool
|
|
240
|
+
Whether or not to use sampling; use greedy decoding otherwise
|
|
241
|
+
"""
|
|
242
|
+
return self._set(doSample=value)
|
|
243
|
+
|
|
244
|
+
def setTemperature(self, value):
|
|
245
|
+
"""Sets the value used to module the next token probabilities.
|
|
246
|
+
|
|
247
|
+
Parameters
|
|
248
|
+
----------
|
|
249
|
+
value : float
|
|
250
|
+
The value used to module the next token probabilities
|
|
251
|
+
"""
|
|
252
|
+
return self._set(temperature=value)
|
|
253
|
+
|
|
254
|
+
def setTopK(self, value):
|
|
255
|
+
"""Sets the number of highest probability vocabulary tokens to keep for
|
|
256
|
+
top-k-filtering.
|
|
257
|
+
|
|
258
|
+
Parameters
|
|
259
|
+
----------
|
|
260
|
+
value : int
|
|
261
|
+
Number of highest probability vocabulary tokens to keep
|
|
262
|
+
"""
|
|
263
|
+
return self._set(topK=value)
|
|
264
|
+
|
|
265
|
+
def setTopP(self, value):
|
|
266
|
+
"""Sets the top cumulative probability for vocabulary tokens.
|
|
267
|
+
|
|
268
|
+
If set to float < 1, only the most probable tokens with probabilities
|
|
269
|
+
that add up to ``topP`` or higher are kept for generation.
|
|
270
|
+
|
|
271
|
+
Parameters
|
|
272
|
+
----------
|
|
273
|
+
value : float
|
|
274
|
+
Cumulative probability for vocabulary tokens
|
|
275
|
+
"""
|
|
276
|
+
return self._set(topP=value)
|
|
277
|
+
|
|
278
|
+
def setRepetitionPenalty(self, value):
|
|
279
|
+
"""Sets the parameter for repetition penalty. 1.0 means no penalty.
|
|
280
|
+
|
|
281
|
+
Parameters
|
|
282
|
+
----------
|
|
283
|
+
value : float
|
|
284
|
+
The repetition penalty
|
|
285
|
+
|
|
286
|
+
References
|
|
287
|
+
----------
|
|
288
|
+
See `Ctrl: A Conditional Transformer Language Model For Controllable
|
|
289
|
+
Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
|
|
290
|
+
"""
|
|
291
|
+
return self._set(repetitionPenalty=value)
|
|
292
|
+
|
|
293
|
+
def setNoRepeatNgramSize(self, value):
|
|
294
|
+
"""Sets size of n-grams that can only occur once.
|
|
295
|
+
|
|
296
|
+
If set to int > 0, all ngrams of that size can only occur once.
|
|
297
|
+
|
|
298
|
+
Parameters
|
|
299
|
+
----------
|
|
300
|
+
value : int
|
|
301
|
+
N-gram size can only occur once
|
|
302
|
+
"""
|
|
303
|
+
return self._set(noRepeatNgramSize=value)
|
|
304
|
+
|
|
305
|
+
def setBeamSize(self, value):
|
|
306
|
+
"""Sets the number of beam size for beam search, by default `4`.
|
|
307
|
+
|
|
308
|
+
Parameters
|
|
309
|
+
----------
|
|
310
|
+
value : int
|
|
311
|
+
Number of beam size for beam search
|
|
312
|
+
"""
|
|
313
|
+
return self._set(beamSize=value)
|
|
314
|
+
|
|
315
|
+
def setSrcLang(self, value):
|
|
316
|
+
"""Sets source language.
|
|
317
|
+
|
|
318
|
+
Parameters
|
|
319
|
+
----------
|
|
320
|
+
value : str
|
|
321
|
+
Source language
|
|
322
|
+
"""
|
|
323
|
+
return self._set(srcLang=value)
|
|
324
|
+
|
|
325
|
+
def setTgtLang(self, value):
|
|
326
|
+
"""Sets target language.
|
|
327
|
+
|
|
328
|
+
Parameters
|
|
329
|
+
----------
|
|
330
|
+
value : str
|
|
331
|
+
Target language
|
|
332
|
+
"""
|
|
333
|
+
return self._set(tgtLang=value)
|
|
334
|
+
|
|
335
|
+
@keyword_only
|
|
336
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.M2M100Transformer", java_model=None):
|
|
337
|
+
super(M2M100Transformer, self).__init__(classname=classname, java_model=java_model)
|
|
338
|
+
self._setDefault(minOutputLength=0,
|
|
339
|
+
maxOutputLength=200,
|
|
340
|
+
doSample=False,
|
|
341
|
+
temperature=1,
|
|
342
|
+
topK=50,
|
|
343
|
+
topP=1,
|
|
344
|
+
repetitionPenalty=1.0,
|
|
345
|
+
noRepeatNgramSize=0,
|
|
346
|
+
ignoreTokenIds=[],
|
|
347
|
+
batchSize=1,
|
|
348
|
+
beamSize=1,
|
|
349
|
+
srcLang="en",
|
|
350
|
+
tgtLang="fr")
|
|
351
|
+
|
|
352
|
+
@staticmethod
|
|
353
|
+
def loadSavedModel(folder, spark_session, use_openvino=False):
|
|
354
|
+
"""Loads a locally saved model.
|
|
355
|
+
|
|
356
|
+
Parameters
|
|
357
|
+
----------
|
|
358
|
+
folder : str
|
|
359
|
+
Folder of the saved model
|
|
360
|
+
spark_session : pyspark.sql.SparkSession
|
|
361
|
+
The current SparkSession
|
|
362
|
+
|
|
363
|
+
Returns
|
|
364
|
+
-------
|
|
365
|
+
M2M100Transformer
|
|
366
|
+
The restored model
|
|
367
|
+
"""
|
|
368
|
+
from sparknlp.internal import _M2M100Loader
|
|
369
|
+
jModel = _M2M100Loader(folder, spark_session._jsparkSession, use_openvino)._java_obj
|
|
370
|
+
return M2M100Transformer(java_model=jModel)
|
|
371
|
+
|
|
372
|
+
@staticmethod
|
|
373
|
+
def pretrained(name="m2m100_418M", lang="xx", remote_loc=None):
|
|
374
|
+
"""Downloads and loads a pretrained model.
|
|
375
|
+
|
|
376
|
+
Parameters
|
|
377
|
+
----------
|
|
378
|
+
name : str, optional
|
|
379
|
+
Name of the pretrained model, by default "m2m100_418M"
|
|
380
|
+
lang : str, optional
|
|
381
|
+
Language of the pretrained model, by default "en"
|
|
382
|
+
remote_loc : str, optional
|
|
383
|
+
Optional remote address of the resource, by default None. Will use
|
|
384
|
+
Spark NLPs repositories otherwise.
|
|
385
|
+
|
|
386
|
+
Returns
|
|
387
|
+
-------
|
|
388
|
+
M2M100Transformer
|
|
389
|
+
The restored model
|
|
390
|
+
"""
|
|
391
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
392
|
+
return ResourceDownloader.downloadModel(M2M100Transformer, name, lang, remote_loc)
|
|
@@ -30,6 +30,11 @@ class MarianTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
|
|
|
30
30
|
Translation services and being deployed by many companies, organizations and
|
|
31
31
|
research projects.
|
|
32
32
|
|
|
33
|
+
Note that this model only supports inputs up to 512 tokens. If you are
|
|
34
|
+
working with longer inputs, consider splitting them first. For example, you
|
|
35
|
+
can use the SentenceDetectorDL annotator to split longer texts into
|
|
36
|
+
sentences.
|
|
37
|
+
|
|
33
38
|
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
34
39
|
object:
|
|
35
40
|
|
|
@@ -40,9 +45,9 @@ class MarianTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
|
|
|
40
45
|
The default model is ``"opus_mt_en_fr"``, default language is ``"xx"``
|
|
41
46
|
(meaning multi-lingual), if no values are provided.
|
|
42
47
|
|
|
43
|
-
For available pretrained models please see the `Models Hub <https://
|
|
48
|
+
For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Translation>`__.
|
|
44
49
|
|
|
45
|
-
For extended examples of usage, see the `
|
|
50
|
+
For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/multilingual/Translation_Marian.ipynb>`__.
|
|
46
51
|
|
|
47
52
|
====================== ======================
|
|
48
53
|
Input Annotation types Output Annotation type
|
|
@@ -140,6 +145,29 @@ class MarianTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
|
|
|
140
145
|
"Controls the maximum length for decoder outputs (target language texts)",
|
|
141
146
|
typeConverter=TypeConverters.toInt)
|
|
142
147
|
|
|
148
|
+
doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
|
|
149
|
+
typeConverter=TypeConverters.toBoolean)
|
|
150
|
+
|
|
151
|
+
temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
|
|
152
|
+
typeConverter=TypeConverters.toFloat)
|
|
153
|
+
|
|
154
|
+
topK = Param(Params._dummy(), "topK",
|
|
155
|
+
"The number of highest probability vocabulary tokens to keep for top-k-filtering",
|
|
156
|
+
typeConverter=TypeConverters.toInt)
|
|
157
|
+
|
|
158
|
+
topP = Param(Params._dummy(), "topP",
|
|
159
|
+
"If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
|
|
160
|
+
typeConverter=TypeConverters.toFloat)
|
|
161
|
+
|
|
162
|
+
repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
|
|
163
|
+
"The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
|
|
164
|
+
typeConverter=TypeConverters.toFloat)
|
|
165
|
+
|
|
166
|
+
noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
|
|
167
|
+
"If set to int > 0, all ngrams of that size can only occur once",
|
|
168
|
+
typeConverter=TypeConverters.toInt)
|
|
169
|
+
|
|
170
|
+
|
|
143
171
|
ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
|
|
144
172
|
"A list of token ids which are ignored in the decoder's output",
|
|
145
173
|
typeConverter=TypeConverters.toListInt)
|
|
@@ -176,13 +204,16 @@ class MarianTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
|
|
|
176
204
|
|
|
177
205
|
def setMaxInputLength(self, value):
|
|
178
206
|
"""Sets the maximum length for encoder inputs (source language texts),
|
|
179
|
-
by default 40.
|
|
207
|
+
by default 40. The value should be less than 512, as the Marian Transformer does not
|
|
208
|
+
support inputs longer than 512 tokens.
|
|
180
209
|
|
|
181
210
|
Parameters
|
|
182
211
|
----------
|
|
183
212
|
value : int
|
|
184
213
|
The maximum length for encoder inputs (source language texts)
|
|
185
214
|
"""
|
|
215
|
+
if value > 512:
|
|
216
|
+
raise ValueError("MarianTransformer model does not support sequences longer than 512.")
|
|
186
217
|
return self._set(maxInputLength=value)
|
|
187
218
|
|
|
188
219
|
def setMaxOutputLength(self, value):
|
|
@@ -196,6 +227,90 @@ class MarianTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
|
|
|
196
227
|
"""
|
|
197
228
|
return self._set(maxOutputLength=value)
|
|
198
229
|
|
|
230
|
+
|
|
231
|
+
def setDoSample(self, value):
|
|
232
|
+
"""Sets whether or not to use sampling, use greedy decoding otherwise.
|
|
233
|
+
|
|
234
|
+
Parameters
|
|
235
|
+
----------
|
|
236
|
+
value : bool
|
|
237
|
+
Whether or not to use sampling; use greedy decoding otherwise
|
|
238
|
+
"""
|
|
239
|
+
return self._set(doSample=value)
|
|
240
|
+
|
|
241
|
+
def setTemperature(self, value):
|
|
242
|
+
"""Sets the value used to module the next token probabilities.
|
|
243
|
+
|
|
244
|
+
Parameters
|
|
245
|
+
----------
|
|
246
|
+
value : float
|
|
247
|
+
The value used to module the next token probabilities
|
|
248
|
+
"""
|
|
249
|
+
return self._set(temperature=value)
|
|
250
|
+
|
|
251
|
+
def setTopK(self, value):
|
|
252
|
+
"""Sets the number of highest probability vocabulary tokens to keep for
|
|
253
|
+
top-k-filtering.
|
|
254
|
+
|
|
255
|
+
Parameters
|
|
256
|
+
----------
|
|
257
|
+
value : int
|
|
258
|
+
Number of highest probability vocabulary tokens to keep
|
|
259
|
+
"""
|
|
260
|
+
return self._set(topK=value)
|
|
261
|
+
|
|
262
|
+
def setTopP(self, value):
|
|
263
|
+
"""Sets the top cumulative probability for vocabulary tokens.
|
|
264
|
+
|
|
265
|
+
If set to float < 1, only the most probable tokens with probabilities
|
|
266
|
+
that add up to ``topP`` or higher are kept for generation.
|
|
267
|
+
|
|
268
|
+
Parameters
|
|
269
|
+
----------
|
|
270
|
+
value : float
|
|
271
|
+
Cumulative probability for vocabulary tokens
|
|
272
|
+
"""
|
|
273
|
+
return self._set(topP=value)
|
|
274
|
+
|
|
275
|
+
def setRepetitionPenalty(self, value):
|
|
276
|
+
"""Sets the parameter for repetition penalty. 1.0 means no penalty.
|
|
277
|
+
|
|
278
|
+
Parameters
|
|
279
|
+
----------
|
|
280
|
+
value : float
|
|
281
|
+
The repetition penalty
|
|
282
|
+
|
|
283
|
+
References
|
|
284
|
+
----------
|
|
285
|
+
See `Ctrl: A Conditional Transformer Language Model For Controllable
|
|
286
|
+
Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
|
|
287
|
+
"""
|
|
288
|
+
return self._set(repetitionPenalty=value)
|
|
289
|
+
|
|
290
|
+
def setNoRepeatNgramSize(self, value):
|
|
291
|
+
"""Sets size of n-grams that can only occur once.
|
|
292
|
+
|
|
293
|
+
If set to int > 0, all ngrams of that size can only occur once.
|
|
294
|
+
|
|
295
|
+
Parameters
|
|
296
|
+
----------
|
|
297
|
+
value : int
|
|
298
|
+
N-gram size can only occur once
|
|
299
|
+
"""
|
|
300
|
+
return self._set(noRepeatNgramSize=value)
|
|
301
|
+
|
|
302
|
+
def setRandomSeed(self, seed):
|
|
303
|
+
"""Sets random seed.
|
|
304
|
+
|
|
305
|
+
Parameters
|
|
306
|
+
----------
|
|
307
|
+
seed : int
|
|
308
|
+
Random seed
|
|
309
|
+
"""
|
|
310
|
+
self._call_java("setRandomSeed", seed)
|
|
311
|
+
|
|
312
|
+
return self
|
|
313
|
+
|
|
199
314
|
@keyword_only
|
|
200
315
|
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.MarianTransformer", java_model=None):
|
|
201
316
|
super(MarianTransformer, self).__init__(
|
|
@@ -207,6 +322,12 @@ class MarianTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
|
|
|
207
322
|
maxInputLength=40,
|
|
208
323
|
maxOutputLength=40,
|
|
209
324
|
langId="",
|
|
325
|
+
doSample=False,
|
|
326
|
+
temperature=1.0,
|
|
327
|
+
topK=50,
|
|
328
|
+
topP=1.0,
|
|
329
|
+
repetitionPenalty=1.0,
|
|
330
|
+
noRepeatNgramSize=0,
|
|
210
331
|
ignoreTokenIds=[]
|
|
211
332
|
)
|
|
212
333
|
|