spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (221) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  4. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  5. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  6. sparknlp/__init__.py +81 -28
  7. sparknlp/annotation.py +3 -2
  8. sparknlp/annotator/__init__.py +6 -0
  9. sparknlp/annotator/audio/__init__.py +2 -0
  10. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  11. sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
  12. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  13. sparknlp/{base → annotator}/chunk2_doc.py +4 -7
  14. sparknlp/annotator/chunker.py +1 -2
  15. sparknlp/annotator/classifier_dl/__init__.py +17 -0
  16. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  17. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
  18. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
  19. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
  20. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  21. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  22. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  23. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
  24. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
  25. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
  26. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  27. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  28. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
  29. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
  30. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  31. sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
  32. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
  33. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
  34. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
  35. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  36. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
  37. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
  38. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
  39. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  40. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  41. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
  42. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
  43. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
  44. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  45. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  46. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  47. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
  48. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  49. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
  50. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
  51. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
  52. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  53. sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
  54. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
  55. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  56. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
  57. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  60. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
  61. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
  62. sparknlp/annotator/cleaners/__init__.py +15 -0
  63. sparknlp/annotator/cleaners/cleaner.py +202 -0
  64. sparknlp/annotator/cleaners/extractor.py +191 -0
  65. sparknlp/annotator/coref/spanbert_coref.py +4 -18
  66. sparknlp/annotator/cv/__init__.py +15 -0
  67. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  68. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  69. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  70. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  71. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  72. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  73. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  74. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  75. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  76. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  77. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  78. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  79. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  80. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  81. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  82. sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
  83. sparknlp/annotator/dataframe_optimizer.py +216 -0
  84. sparknlp/annotator/date2_chunk.py +88 -0
  85. sparknlp/annotator/dependency/dependency_parser.py +2 -3
  86. sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
  87. sparknlp/annotator/document_character_text_splitter.py +228 -0
  88. sparknlp/annotator/document_normalizer.py +37 -1
  89. sparknlp/annotator/document_token_splitter.py +175 -0
  90. sparknlp/annotator/document_token_splitter_test.py +85 -0
  91. sparknlp/annotator/embeddings/__init__.py +11 -0
  92. sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
  93. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  94. sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
  95. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
  96. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  97. sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
  98. sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
  99. sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
  100. sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
  101. sparknlp/annotator/embeddings/doc2vec.py +7 -1
  102. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  103. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  104. sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
  105. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  106. sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
  107. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  108. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  109. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  110. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  111. sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
  112. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
  113. sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
  114. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  115. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  116. sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
  117. sparknlp/annotator/embeddings/word2vec.py +7 -1
  118. sparknlp/annotator/embeddings/word_embeddings.py +4 -5
  119. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
  120. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
  121. sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
  122. sparknlp/annotator/er/entity_ruler.py +37 -23
  123. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
  124. sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
  125. sparknlp/annotator/lemmatizer.py +3 -4
  126. sparknlp/annotator/matcher/date_matcher.py +35 -3
  127. sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
  128. sparknlp/annotator/matcher/regex_matcher.py +3 -3
  129. sparknlp/annotator/matcher/text_matcher.py +2 -3
  130. sparknlp/annotator/n_gram_generator.py +1 -2
  131. sparknlp/annotator/ner/__init__.py +3 -1
  132. sparknlp/annotator/ner/ner_converter.py +18 -0
  133. sparknlp/annotator/ner/ner_crf.py +4 -5
  134. sparknlp/annotator/ner/ner_dl.py +10 -5
  135. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  136. sparknlp/annotator/ner/ner_overwriter.py +2 -2
  137. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  138. sparknlp/annotator/normalizer.py +2 -2
  139. sparknlp/annotator/openai/__init__.py +16 -0
  140. sparknlp/annotator/openai/openai_completion.py +349 -0
  141. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  142. sparknlp/annotator/pos/perceptron.py +6 -7
  143. sparknlp/annotator/sentence/sentence_detector.py +2 -2
  144. sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
  145. sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
  146. sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
  147. sparknlp/annotator/seq2seq/__init__.py +17 -0
  148. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  149. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  150. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  151. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  152. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  153. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  154. sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
  155. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  156. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  157. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  158. sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
  159. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  160. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  161. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  162. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  163. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  164. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  165. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  166. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  167. sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
  168. sparknlp/annotator/similarity/__init__.py +0 -0
  169. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  170. sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
  171. sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
  172. sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
  173. sparknlp/annotator/stemmer.py +2 -3
  174. sparknlp/annotator/stop_words_cleaner.py +3 -4
  175. sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
  176. sparknlp/annotator/token/__init__.py +0 -1
  177. sparknlp/annotator/token/recursive_tokenizer.py +2 -3
  178. sparknlp/annotator/token/tokenizer.py +2 -3
  179. sparknlp/annotator/ws/word_segmenter.py +35 -10
  180. sparknlp/base/__init__.py +2 -3
  181. sparknlp/base/doc2_chunk.py +0 -3
  182. sparknlp/base/document_assembler.py +5 -5
  183. sparknlp/base/embeddings_finisher.py +14 -2
  184. sparknlp/base/finisher.py +15 -4
  185. sparknlp/base/gguf_ranking_finisher.py +234 -0
  186. sparknlp/base/image_assembler.py +69 -0
  187. sparknlp/base/light_pipeline.py +53 -21
  188. sparknlp/base/multi_document_assembler.py +9 -13
  189. sparknlp/base/prompt_assembler.py +207 -0
  190. sparknlp/base/token_assembler.py +1 -2
  191. sparknlp/common/__init__.py +2 -0
  192. sparknlp/common/annotator_type.py +1 -0
  193. sparknlp/common/completion_post_processing.py +37 -0
  194. sparknlp/common/match_strategy.py +33 -0
  195. sparknlp/common/properties.py +914 -9
  196. sparknlp/internal/__init__.py +841 -116
  197. sparknlp/internal/annotator_java_ml.py +1 -1
  198. sparknlp/internal/annotator_transformer.py +3 -0
  199. sparknlp/logging/comet.py +2 -2
  200. sparknlp/partition/__init__.py +16 -0
  201. sparknlp/partition/partition.py +244 -0
  202. sparknlp/partition/partition_properties.py +902 -0
  203. sparknlp/partition/partition_transformer.py +200 -0
  204. sparknlp/pretrained/pretrained_pipeline.py +1 -1
  205. sparknlp/pretrained/resource_downloader.py +126 -2
  206. sparknlp/reader/__init__.py +15 -0
  207. sparknlp/reader/enums.py +19 -0
  208. sparknlp/reader/pdf_to_text.py +190 -0
  209. sparknlp/reader/reader2doc.py +124 -0
  210. sparknlp/reader/reader2image.py +136 -0
  211. sparknlp/reader/reader2table.py +44 -0
  212. sparknlp/reader/reader_assembler.py +159 -0
  213. sparknlp/reader/sparknlp_reader.py +461 -0
  214. sparknlp/training/__init__.py +1 -0
  215. sparknlp/training/conll.py +8 -2
  216. sparknlp/training/spacy_to_annotation.py +57 -0
  217. sparknlp/util.py +26 -0
  218. spark_nlp-4.2.6.dist-info/METADATA +0 -1256
  219. spark_nlp-4.2.6.dist-info/RECORD +0 -196
  220. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
  221. /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
@@ -0,0 +1,340 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for the QwenTransformer."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class QwenTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
20
+ """Qwen: comprehensive language model series
21
+
22
+ Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model
23
+ pretrained on a large amount of data. In comparison with the previous released Qwen, the
24
+ improvements include:
25
+
26
+ 6 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, and 72B; Significant performance improvement
27
+ in Chat models; Multilingual support of both base and chat models; Stable support of 32K
28
+ context length for models of all sizes
29
+
30
+ Qwen1.5 is a language model series including decoder language models of different model sizes.
31
+ For each size, we release the base language model and the aligned chat model. It is based on
32
+ the Transformer architecture with SwiGLU activation, attention QKV bias, group query
33
+ attention, mixture of sliding window attention and full attention, etc. Additionally, we have
34
+ an improved tokenizer adaptive to multiple natural languages and codes. For the beta version,
35
+ temporarily we did not include GQA and the mixture of SWA and full attention.
36
+
37
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
38
+ object:
39
+
40
+ >>> qwen = QwenTransformer.pretrained() \\
41
+ ... .setInputCols(["document"]) \\
42
+ ... .setOutputCol("generation")
43
+
44
+
45
+ The default model is ``"qwen-13b"``, if no name is provided. For available
46
+ pretrained models please see the `Models Hub
47
+ <https://sparknlp.org/models?q=qwen>`__.
48
+
49
+ ====================== ======================
50
+ Input Annotation types Output Annotation type
51
+ ====================== ======================
52
+ ``DOCUMENT`` ``DOCUMENT``
53
+ ====================== ======================
54
+
55
+ **References**
56
+
57
+ - `Qwen Technical Report
58
+ <https://arxiv.org/pdf/2309.16609.pdf>`__
59
+ - https://qwenlm.github.io/blog/qwen1.5/
60
+ - https://github.com/QwenLM/Qwen1.5
61
+
62
+ **Paper Abstract:**
63
+
64
+ *Large language models (LLMs) have revolutionized the field of artificial intelligence,
65
+ enabling natural language processing tasks that were previously thought to be exclusive to
66
+ humans. In this work, we introduce Qwen, the first installment of our large language model
67
+ series. Qwen is a comprehensive language model series that encompasses distinct models with
68
+ varying parameter counts. It includes Qwen, the base pretrained language models, and
69
+ Qwen-Chat, the chat models finetuned with human alignment techniques. The base language models
70
+ consistently demonstrate superior performance across a multitude of downstream tasks, and the
71
+ chat models, particularly those trained using Reinforcement Learning from Human Feedback
72
+ (RLHF), are highly competitive. The chat models possess advanced tool-use and planning
73
+ capabilities for creating agent applications, showcasing impressive performance even when
74
+ compared to bigger models on complex tasks like utilizing a code interpreter. Furthermore, we
75
+ have developed coding-specialized models, Code-Qwen and Code-Qwen-Chat, as well as
76
+ mathematics-focused models, Math-Qwen-Chat, which are built upon base language models. These
77
+ models demonstrate significantly improved performance in comparison with open-source models,
78
+ and slightly fall behind the proprietary models.*
79
+
80
+
81
+ Parameters
82
+ ----------
83
+ configProtoBytes
84
+ ConfigProto from tensorflow, serialized into byte array.
85
+ minOutputLength
86
+ Minimum length of the sequence to be generated, by default 0
87
+ maxOutputLength
88
+ Maximum length of output text, by default 20
89
+ doSample
90
+ Whether or not to use sampling; use greedy decoding otherwise, by default False
91
+ temperature
92
+ The value used to module the next token probabilities, by default 1.0
93
+ topK
94
+ The number of highest probability vocabulary tokens to keep for
95
+ top-k-filtering, by default 50
96
+ topP
97
+ Top cumulative probability for vocabulary tokens, by default 1.0
98
+
99
+ If set to float < 1, only the most probable tokens with probabilities
100
+ that add up to ``topP`` or higher are kept for generation.
101
+ repetitionPenalty
102
+ The parameter for repetition penalty, 1.0 means no penalty. , by default
103
+ 1.0
104
+ noRepeatNgramSize
105
+ If set to int > 0, all ngrams of that size can only occur once, by
106
+ default 0
107
+ ignoreTokenIds
108
+ A list of token ids which are ignored in the decoder's output, by
109
+ default []
110
+
111
+ Notes
112
+ -----
113
+ This is a very computationally expensive module especially on larger
114
+ sequence. The use of an accelerator such as GPU is recommended.
115
+
116
+ Examples
117
+ --------
118
+ >>> import sparknlp
119
+ >>> from sparknlp.base import *
120
+ >>> from sparknlp.annotator import *
121
+ >>> from pyspark.ml import Pipeline
122
+ >>> documentAssembler = DocumentAssembler() \\
123
+ ... .setInputCol("text") \\
124
+ ... .setOutputCol("documents")
125
+ >>> qwen = QwenTransformer.pretrained("qwen_7.5b_chat") \\
126
+ ... .setInputCols(["documents"]) \\
127
+ ... .setMaxOutputLength(50) \\
128
+ ... .setOutputCol("generation")
129
+ >>> pipeline = Pipeline().setStages([documentAssembler, qwen])
130
+ >>> data = spark.createDataFrame([["My name is Leonardo."]]).toDF("text")
131
+ >>> result = pipeline.fit(data).transform(data)
132
+ >>> result.select("summaries.generation").show(truncate=False)
133
+ +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
134
+ |result |
135
+ +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
136
+ |[My name is Leonardo . I am a student of the University of California, Berkeley. I am interested in the field of Artificial Intelligence and its applications in the real world. I have a strong |
137
+ | passion for learning and am always looking for ways to improve my knowledge and skills] |
138
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
139
+ """
140
+
141
+ name = "QwenTransformer"
142
+
143
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
144
+
145
+ outputAnnotatorType = AnnotatorType.DOCUMENT
146
+
147
+ configProtoBytes = Param(Params._dummy(), "configProtoBytes",
148
+ "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
149
+ TypeConverters.toListInt)
150
+
151
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
152
+ typeConverter=TypeConverters.toInt)
153
+
154
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
155
+ typeConverter=TypeConverters.toInt)
156
+
157
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
158
+ typeConverter=TypeConverters.toBoolean)
159
+
160
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
161
+ typeConverter=TypeConverters.toFloat)
162
+
163
+ topK = Param(Params._dummy(), "topK",
164
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
165
+ typeConverter=TypeConverters.toInt)
166
+
167
+ topP = Param(Params._dummy(), "topP",
168
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
169
+ typeConverter=TypeConverters.toFloat)
170
+
171
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
172
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
173
+ typeConverter=TypeConverters.toFloat)
174
+
175
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
176
+ "If set to int > 0, all ngrams of that size can only occur once",
177
+ typeConverter=TypeConverters.toInt)
178
+
179
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
180
+ "A list of token ids which are ignored in the decoder's output",
181
+ typeConverter=TypeConverters.toListInt)
182
+
183
+ def setIgnoreTokenIds(self, value):
184
+ """A list of token ids which are ignored in the decoder's output.
185
+
186
+ Parameters
187
+ ----------
188
+ value : List[int]
189
+ The words to be filtered out
190
+ """
191
+ return self._set(ignoreTokenIds=value)
192
+
193
+ def setConfigProtoBytes(self, b):
194
+ """Sets configProto from tensorflow, serialized into byte array.
195
+
196
+ Parameters
197
+ ----------
198
+ b : List[int]
199
+ ConfigProto from tensorflow, serialized into byte array
200
+ """
201
+ return self._set(configProtoBytes=b)
202
+
203
+ def setMinOutputLength(self, value):
204
+ """Sets minimum length of the sequence to be generated.
205
+
206
+ Parameters
207
+ ----------
208
+ value : int
209
+ Minimum length of the sequence to be generated
210
+ """
211
+ return self._set(minOutputLength=value)
212
+
213
+ def setMaxOutputLength(self, value):
214
+ """Sets maximum length of output text.
215
+
216
+ Parameters
217
+ ----------
218
+ value : int
219
+ Maximum length of output text
220
+ """
221
+ return self._set(maxOutputLength=value)
222
+
223
+ def setDoSample(self, value):
224
+ """Sets whether or not to use sampling, use greedy decoding otherwise.
225
+
226
+ Parameters
227
+ ----------
228
+ value : bool
229
+ Whether or not to use sampling; use greedy decoding otherwise
230
+ """
231
+ return self._set(doSample=value)
232
+
233
+ def setTemperature(self, value):
234
+ """Sets the value used to module the next token probabilities.
235
+
236
+ Parameters
237
+ ----------
238
+ value : float
239
+ The value used to module the next token probabilities
240
+ """
241
+ return self._set(temperature=value)
242
+
243
+ def setTopK(self, value):
244
+ """Sets the number of highest probability vocabulary tokens to keep for
245
+ top-k-filtering.
246
+
247
+ Parameters
248
+ ----------
249
+ value : int
250
+ Number of highest probability vocabulary tokens to keep
251
+ """
252
+ return self._set(topK=value)
253
+
254
+ def setTopP(self, value):
255
+ """Sets the top cumulative probability for vocabulary tokens.
256
+
257
+ If set to float < 1, only the most probable tokens with probabilities
258
+ that add up to ``topP`` or higher are kept for generation.
259
+
260
+ Parameters
261
+ ----------
262
+ value : float
263
+ Cumulative probability for vocabulary tokens
264
+ """
265
+ return self._set(topP=value)
266
+
267
+ def setRepetitionPenalty(self, value):
268
+ """Sets the parameter for repetition penalty. 1.0 means no penalty.
269
+
270
+ Parameters
271
+ ----------
272
+ value : float
273
+ The repetition penalty
274
+
275
+ References
276
+ ----------
277
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
278
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
279
+ """
280
+ return self._set(repetitionPenalty=value)
281
+
282
+ def setNoRepeatNgramSize(self, value):
283
+ """Sets size of n-grams that can only occur once.
284
+
285
+ If set to int > 0, all ngrams of that size can only occur once.
286
+
287
+ Parameters
288
+ ----------
289
+ value : int
290
+ N-gram size can only occur once
291
+ """
292
+ return self._set(noRepeatNgramSize=value)
293
+
294
+ @keyword_only
295
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.QwenTransformer", java_model=None):
296
+ super(QwenTransformer, self).__init__(classname=classname, java_model=java_model)
297
+ self._setDefault(minOutputLength=0, maxOutputLength=50, doSample=False, temperature=0.6, topK=50, topP=0.9,
298
+ repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], batchSize=1)
299
+
300
+ @staticmethod
301
+ def loadSavedModel(folder, spark_session, use_openvino=False):
302
+ """Loads a locally saved model.
303
+
304
+ Parameters
305
+ ----------
306
+ folder : str
307
+ Folder of the saved model
308
+ spark_session : pyspark.sql.SparkSession
309
+ The current SparkSession
310
+
311
+ Returns
312
+ -------
313
+ QwenTransformer
314
+ The restored model
315
+ """
316
+ from sparknlp.internal import _QwenLoader
317
+ jModel = _QwenLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
318
+ return QwenTransformer(java_model=jModel)
319
+
320
+ @staticmethod
321
+ def pretrained(name="qwen_7.5b_chat", lang="en", remote_loc=None):
322
+ """Downloads and loads a pretrained model.
323
+
324
+ Parameters
325
+ ----------
326
+ name : str, optional
327
+ Name of the pretrained model, by default "qwen_7.5b_chat"
328
+ lang : str, optional
329
+ Language of the pretrained model, by default "en"
330
+ remote_loc : str, optional
331
+ Optional remote address of the resource, by default None. Will use
332
+ Spark NLPs repositories otherwise.
333
+
334
+ Returns
335
+ -------
336
+ QwenTransformer
337
+ The restored model
338
+ """
339
+ from sparknlp.pretrained import ResourceDownloader
340
+ return ResourceDownloader.downloadModel(QwenTransformer, name, lang, remote_loc)
@@ -0,0 +1,335 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for the StarCoderTransformer."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class StarCoderTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
20
+ """StarCoder2: The Versatile Code Companion.
21
+
22
+ StarCoder2 is a Transformer model designed specifically for code generation and understanding.
23
+ With 13 billion parameters, it builds upon the advancements of its predecessors and is trained
24
+ on a diverse dataset that includes multiple programming languages. This extensive training
25
+ allows StarCoder2 to support a wide array of coding tasks, from code completion to generation.
26
+
27
+ StarCoder2 was developed to assist developers in writing and understanding code more efficiently,
28
+ making it a valuable tool for various software development and data science tasks.
29
+
30
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
31
+ object:
32
+
33
+ >>> starcoder2 = StarCoder2Transformer.pretrained() \\
34
+ ... .setInputCols(["document"]) \\
35
+ ... .setOutputCol("generation")
36
+
37
+ The default model is ``"starcoder2-13b"``, if no name is provided. For available
38
+ pretrained models please see the `Models Hub
39
+ <https://sparknlp.org/models?q=starcoder2>`__.
40
+
41
+ ====================== ======================
42
+ Input Annotation types Output Annotation type
43
+ ====================== ======================
44
+ ``DOCUMENT`` ``DOCUMENT``
45
+ ====================== ======================
46
+
47
+ Parameters
48
+ ----------
49
+ configProtoBytes
50
+ ConfigProto from tensorflow, serialized into byte array.
51
+ minOutputLength
52
+ Minimum length of the sequence to be generated, by default 0
53
+ maxOutputLength
54
+ Maximum length of output text, by default 20
55
+ doSample
56
+ Whether or not to use sampling; use greedy decoding otherwise, by default False
57
+ temperature
58
+ The value used to modulate the next token probabilities, by default 1.0
59
+ topK
60
+ The number of highest probability vocabulary tokens to keep for
61
+ top-k-filtering, by default 50
62
+ topP
63
+ Top cumulative probability for vocabulary tokens, by default 1.0
64
+
65
+ If set to float < 1, only the most probable tokens with probabilities
66
+ that add up to ``topP`` or higher are kept for generation.
67
+ repetitionPenalty
68
+ The parameter for repetition penalty, 1.0 means no penalty. , by default
69
+ 1.0
70
+ noRepeatNgramSize
71
+ If set to int > 0, all ngrams of that size can only occur once, by
72
+ default 0
73
+ ignoreTokenIds
74
+ A list of token ids which are ignored in the decoder's output, by
75
+ default []
76
+
77
+ Notes
78
+ -----
79
+ This is a very computationally expensive module especially on larger
80
+ sequence. The use of an accelerator such as GPU is recommended.
81
+
82
+ References
83
+ ----------
84
+ - `StarCoder2: The Versatile Code Companion.
85
+ <https://huggingface.co/blog/starcoder>`__
86
+ - https://github.com/bigcode-project/starcoder
87
+
88
+ **Paper Abstract:**
89
+
90
+ *The BigCode project, an open-scientific collaboration focused on the responsible
91
+ development of Large Language Models for Code (Code LLMs), introduces StarCoder2. In
92
+ partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons
93
+ of their source code archive. Alongside the SWH repositories spanning 619 programming
94
+ languages, we carefully select other high-quality data sources, such as GitHub pull requests,
95
+ Kaggle notebooks, and code documentation. This results in a training set that is 4× larger
96
+ than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters
97
+ on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM
98
+ benchmarks.*
99
+
100
+ *We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on
101
+ most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2-15B,
102
+ significantly outperforms other models of comparable size. In addition, it matches or
103
+ outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder-33B is
104
+ the best-performing model at code completion for high-resource languages, we find that
105
+ StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several
106
+ low-resource languages. We make the model weights available under an OpenRAIL license and
107
+ ensure full transparency regarding the training data by releasing the Software Heritage
108
+ persistent Identifiers (SWHIDs) of the source code data.*
109
+
110
+ Examples
111
+ --------
112
+ >>> import sparknlp
113
+ >>> from sparknlp.base import *
114
+ >>> from sparknlp.annotator import *
115
+ >>> from pyspark.ml import Pipeline
116
+ >>> documentAssembler = DocumentAssembler() \\
117
+ ... .setInputCol("text") \\
118
+ ... .setOutputCol("documents")
119
+ >>> starcoder2 = StarCoder2Transformer.pretrained("starcoder2") \\
120
+ ... .setInputCols(["documents"]) \\
121
+ ... .setMaxOutputLength(50) \\
122
+ ... .setOutputCol("generation")
123
+ >>> pipeline = Pipeline().setStages([documentAssembler, starcoder2])
124
+ >>> data = spark.createDataFrame([["def add(a, b):"]]).toDF("text")
125
+ >>> result = pipeline.fit(data).transform(data)
126
+ >>> result.select("generation.result").show(truncate=False)
127
+ +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
128
+ |result |
129
+ +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
130
+ |[def add(a, b): return a + b] |
131
+ +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
132
+ """
133
+
134
+
135
+
136
+ name = "StarCoderTransformer"
137
+
138
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
139
+
140
+ outputAnnotatorType = AnnotatorType.DOCUMENT
141
+
142
+ configProtoBytes = Param(Params._dummy(), "configProtoBytes",
143
+ "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
144
+ TypeConverters.toListInt)
145
+
146
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
147
+ typeConverter=TypeConverters.toInt)
148
+
149
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
150
+ typeConverter=TypeConverters.toInt)
151
+
152
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
153
+ typeConverter=TypeConverters.toBoolean)
154
+
155
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
156
+ typeConverter=TypeConverters.toFloat)
157
+
158
+ topK = Param(Params._dummy(), "topK",
159
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
160
+ typeConverter=TypeConverters.toInt)
161
+
162
+ topP = Param(Params._dummy(), "topP",
163
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
164
+ typeConverter=TypeConverters.toFloat)
165
+
166
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
167
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
168
+ typeConverter=TypeConverters.toFloat)
169
+
170
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
171
+ "If set to int > 0, all ngrams of that size can only occur once",
172
+ typeConverter=TypeConverters.toInt)
173
+
174
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
175
+ "A list of token ids which are ignored in the decoder's output",
176
+ typeConverter=TypeConverters.toListInt)
177
+
178
+ def setIgnoreTokenIds(self, value):
179
+ """A list of token ids which are ignored in the decoder's output.
180
+
181
+ Parameters
182
+ ----------
183
+ value : List[int]
184
+ The words to be filtered out
185
+ """
186
+ return self._set(ignoreTokenIds=value)
187
+
188
+ def setConfigProtoBytes(self, b):
189
+ """Sets configProto from tensorflow, serialized into byte array.
190
+
191
+ Parameters
192
+ ----------
193
+ b : List[int]
194
+ ConfigProto from tensorflow, serialized into byte array
195
+ """
196
+ return self._set(configProtoBytes=b)
197
+
198
+ def setMinOutputLength(self, value):
199
+ """Sets minimum length of the sequence to be generated.
200
+
201
+ Parameters
202
+ ----------
203
+ value : int
204
+ Minimum length of the sequence to be generated
205
+ """
206
+ return self._set(minOutputLength=value)
207
+
208
+ def setMaxOutputLength(self, value):
209
+ """Sets maximum length of output text.
210
+
211
+ Parameters
212
+ ----------
213
+ value : int
214
+ Maximum length of output text
215
+ """
216
+ return self._set(maxOutputLength=value)
217
+
218
+ def setDoSample(self, value):
219
+ """Sets whether or not to use sampling, use greedy decoding otherwise.
220
+
221
+ Parameters
222
+ ----------
223
+ value : bool
224
+ Whether or not to use sampling; use greedy decoding otherwise
225
+ """
226
+ return self._set(doSample=value)
227
+
228
+ def setTemperature(self, value):
229
+ """Sets the value used to module the next token probabilities.
230
+
231
+ Parameters
232
+ ----------
233
+ value : float
234
+ The value used to module the next token probabilities
235
+ """
236
+ return self._set(temperature=value)
237
+
238
+ def setTopK(self, value):
239
+ """Sets the number of highest probability vocabulary tokens to keep for
240
+ top-k-filtering.
241
+
242
+ Parameters
243
+ ----------
244
+ value : int
245
+ Number of highest probability vocabulary tokens to keep
246
+ """
247
+ return self._set(topK=value)
248
+
249
+ def setTopP(self, value):
250
+ """Sets the top cumulative probability for vocabulary tokens.
251
+
252
+ If set to float < 1, only the most probable tokens with probabilities
253
+ that add up to ``topP`` or higher are kept for generation.
254
+
255
+ Parameters
256
+ ----------
257
+ value : float
258
+ Cumulative probability for vocabulary tokens
259
+ """
260
+ return self._set(topP=value)
261
+
262
+ def setRepetitionPenalty(self, value):
263
+ """Sets the parameter for repetition penalty. 1.0 means no penalty.
264
+
265
+ Parameters
266
+ ----------
267
+ value : float
268
+ The repetition penalty
269
+
270
+ References
271
+ ----------
272
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
273
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
274
+ """
275
+ return self._set(repetitionPenalty=value)
276
+
277
+ def setNoRepeatNgramSize(self, value):
278
+ """Sets size of n-grams that can only occur once.
279
+
280
+ If set to int > 0, all ngrams of that size can only occur once.
281
+
282
+ Parameters
283
+ ----------
284
+ value : int
285
+ N-gram size can only occur once
286
+ """
287
+ return self._set(noRepeatNgramSize=value)
288
+
289
+ @keyword_only
290
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.StarCoderTransformer", java_model=None):
291
+ super(StarCoderTransformer, self).__init__(classname=classname, java_model=java_model)
292
+ self._setDefault(minOutputLength=0, maxOutputLength=20, doSample=False, temperature=0.6, topK=50, topP=0.9,
293
+ repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], batchSize=1)
294
+
295
+ @staticmethod
296
+ def loadSavedModel(folder, spark_session, use_openvino=False):
297
+ """Loads a locally saved model.
298
+
299
+ Parameters
300
+ ----------
301
+ folder : str
302
+ Folder of the saved model
303
+ spark_session : pyspark.sql.SparkSession
304
+ The current SparkSession
305
+
306
+ Returns
307
+ -------
308
+ StarCoderTransformer
309
+ The restored model
310
+ """
311
+ from sparknlp.internal import _StarCoderLoader
312
+ jModel = _StarCoderLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
313
+ return StarCoderTransformer(java_model=jModel)
314
+
315
+ @staticmethod
316
+ def pretrained(name="starcoder", lang="en", remote_loc=None):
317
+ """Downloads and loads a pretrained model.
318
+
319
+ Parameters
320
+ ----------
321
+ name : str, optional
322
+ Name of the pretrained model, by default "starcoder"
323
+ lang : str, optional
324
+ Language of the pretrained model, by default "en"
325
+ remote_loc : str, optional
326
+ Optional remote address of the resource, by default None. Will use
327
+ Spark NLPs repositories otherwise.
328
+
329
+ Returns
330
+ -------
331
+ StarCoderTransformer
332
+ The restored model
333
+ """
334
+ from sparknlp.pretrained import ResourceDownloader
335
+ return ResourceDownloader.downloadModel(StarCoderTransformer, name, lang, remote_loc)