spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (221) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  4. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  5. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  6. sparknlp/__init__.py +81 -28
  7. sparknlp/annotation.py +3 -2
  8. sparknlp/annotator/__init__.py +6 -0
  9. sparknlp/annotator/audio/__init__.py +2 -0
  10. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  11. sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
  12. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  13. sparknlp/{base → annotator}/chunk2_doc.py +4 -7
  14. sparknlp/annotator/chunker.py +1 -2
  15. sparknlp/annotator/classifier_dl/__init__.py +17 -0
  16. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  17. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
  18. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
  19. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
  20. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  21. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  22. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  23. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
  24. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
  25. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
  26. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  27. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  28. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
  29. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
  30. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  31. sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
  32. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
  33. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
  34. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
  35. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  36. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
  37. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
  38. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
  39. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  40. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  41. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
  42. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
  43. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
  44. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  45. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  46. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  47. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
  48. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  49. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
  50. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
  51. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
  52. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  53. sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
  54. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
  55. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  56. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
  57. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  60. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
  61. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
  62. sparknlp/annotator/cleaners/__init__.py +15 -0
  63. sparknlp/annotator/cleaners/cleaner.py +202 -0
  64. sparknlp/annotator/cleaners/extractor.py +191 -0
  65. sparknlp/annotator/coref/spanbert_coref.py +4 -18
  66. sparknlp/annotator/cv/__init__.py +15 -0
  67. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  68. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  69. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  70. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  71. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  72. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  73. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  74. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  75. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  76. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  77. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  78. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  79. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  80. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  81. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  82. sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
  83. sparknlp/annotator/dataframe_optimizer.py +216 -0
  84. sparknlp/annotator/date2_chunk.py +88 -0
  85. sparknlp/annotator/dependency/dependency_parser.py +2 -3
  86. sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
  87. sparknlp/annotator/document_character_text_splitter.py +228 -0
  88. sparknlp/annotator/document_normalizer.py +37 -1
  89. sparknlp/annotator/document_token_splitter.py +175 -0
  90. sparknlp/annotator/document_token_splitter_test.py +85 -0
  91. sparknlp/annotator/embeddings/__init__.py +11 -0
  92. sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
  93. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  94. sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
  95. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
  96. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  97. sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
  98. sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
  99. sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
  100. sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
  101. sparknlp/annotator/embeddings/doc2vec.py +7 -1
  102. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  103. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  104. sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
  105. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  106. sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
  107. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  108. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  109. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  110. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  111. sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
  112. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
  113. sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
  114. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  115. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  116. sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
  117. sparknlp/annotator/embeddings/word2vec.py +7 -1
  118. sparknlp/annotator/embeddings/word_embeddings.py +4 -5
  119. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
  120. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
  121. sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
  122. sparknlp/annotator/er/entity_ruler.py +37 -23
  123. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
  124. sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
  125. sparknlp/annotator/lemmatizer.py +3 -4
  126. sparknlp/annotator/matcher/date_matcher.py +35 -3
  127. sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
  128. sparknlp/annotator/matcher/regex_matcher.py +3 -3
  129. sparknlp/annotator/matcher/text_matcher.py +2 -3
  130. sparknlp/annotator/n_gram_generator.py +1 -2
  131. sparknlp/annotator/ner/__init__.py +3 -1
  132. sparknlp/annotator/ner/ner_converter.py +18 -0
  133. sparknlp/annotator/ner/ner_crf.py +4 -5
  134. sparknlp/annotator/ner/ner_dl.py +10 -5
  135. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  136. sparknlp/annotator/ner/ner_overwriter.py +2 -2
  137. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  138. sparknlp/annotator/normalizer.py +2 -2
  139. sparknlp/annotator/openai/__init__.py +16 -0
  140. sparknlp/annotator/openai/openai_completion.py +349 -0
  141. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  142. sparknlp/annotator/pos/perceptron.py +6 -7
  143. sparknlp/annotator/sentence/sentence_detector.py +2 -2
  144. sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
  145. sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
  146. sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
  147. sparknlp/annotator/seq2seq/__init__.py +17 -0
  148. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  149. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  150. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  151. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  152. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  153. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  154. sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
  155. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  156. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  157. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  158. sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
  159. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  160. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  161. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  162. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  163. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  164. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  165. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  166. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  167. sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
  168. sparknlp/annotator/similarity/__init__.py +0 -0
  169. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  170. sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
  171. sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
  172. sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
  173. sparknlp/annotator/stemmer.py +2 -3
  174. sparknlp/annotator/stop_words_cleaner.py +3 -4
  175. sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
  176. sparknlp/annotator/token/__init__.py +0 -1
  177. sparknlp/annotator/token/recursive_tokenizer.py +2 -3
  178. sparknlp/annotator/token/tokenizer.py +2 -3
  179. sparknlp/annotator/ws/word_segmenter.py +35 -10
  180. sparknlp/base/__init__.py +2 -3
  181. sparknlp/base/doc2_chunk.py +0 -3
  182. sparknlp/base/document_assembler.py +5 -5
  183. sparknlp/base/embeddings_finisher.py +14 -2
  184. sparknlp/base/finisher.py +15 -4
  185. sparknlp/base/gguf_ranking_finisher.py +234 -0
  186. sparknlp/base/image_assembler.py +69 -0
  187. sparknlp/base/light_pipeline.py +53 -21
  188. sparknlp/base/multi_document_assembler.py +9 -13
  189. sparknlp/base/prompt_assembler.py +207 -0
  190. sparknlp/base/token_assembler.py +1 -2
  191. sparknlp/common/__init__.py +2 -0
  192. sparknlp/common/annotator_type.py +1 -0
  193. sparknlp/common/completion_post_processing.py +37 -0
  194. sparknlp/common/match_strategy.py +33 -0
  195. sparknlp/common/properties.py +914 -9
  196. sparknlp/internal/__init__.py +841 -116
  197. sparknlp/internal/annotator_java_ml.py +1 -1
  198. sparknlp/internal/annotator_transformer.py +3 -0
  199. sparknlp/logging/comet.py +2 -2
  200. sparknlp/partition/__init__.py +16 -0
  201. sparknlp/partition/partition.py +244 -0
  202. sparknlp/partition/partition_properties.py +902 -0
  203. sparknlp/partition/partition_transformer.py +200 -0
  204. sparknlp/pretrained/pretrained_pipeline.py +1 -1
  205. sparknlp/pretrained/resource_downloader.py +126 -2
  206. sparknlp/reader/__init__.py +15 -0
  207. sparknlp/reader/enums.py +19 -0
  208. sparknlp/reader/pdf_to_text.py +190 -0
  209. sparknlp/reader/reader2doc.py +124 -0
  210. sparknlp/reader/reader2image.py +136 -0
  211. sparknlp/reader/reader2table.py +44 -0
  212. sparknlp/reader/reader_assembler.py +159 -0
  213. sparknlp/reader/sparknlp_reader.py +461 -0
  214. sparknlp/training/__init__.py +1 -0
  215. sparknlp/training/conll.py +8 -2
  216. sparknlp/training/spacy_to_annotation.py +57 -0
  217. sparknlp/util.py +26 -0
  218. spark_nlp-4.2.6.dist-info/METADATA +0 -1256
  219. spark_nlp-4.2.6.dist-info/RECORD +0 -196
  220. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
  221. /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
@@ -0,0 +1,269 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """Contains classes concerning ConvNextForImageClassification."""
16
+
17
+ from sparknlp.common import *
18
+
19
+
20
+ class ConvNextForImageClassification(AnnotatorModel,
21
+ HasBatchedAnnotateImage,
22
+ HasImageFeatureProperties,
23
+ HasEngine):
24
+ """ConvNextForImageClassification is an image classifier based on ConvNet models.
25
+
26
+ The ConvNeXT model was proposed in A ConvNet for the 2020s by Zhuang Liu, Hanzi Mao, Chao-Yuan
27
+ Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie. ConvNeXT is a pure convolutional
28
+ model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform
29
+ them.
30
+
31
+ For available pretrained models please see the
32
+ `Models Hub <https://sparknlp.org/models?task=Image+Classification>`__.
33
+
34
+ Models from the HuggingFace 🤗 Transformers library are also compatible with Spark
35
+ NLP 🚀. To see which models are compatible and how to import them see
36
+ https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended
37
+ examples, see
38
+ `ConvNextForImageClassificationTestSpec <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/cv/ConvNextForImageClassificationTestSpec.scala>`__.
39
+
40
+ ====================== ======================
41
+ Input Annotation types Output Annotation type
42
+ ====================== ======================
43
+ ``IMAGE`` ``CATEGORY``
44
+ ====================== ======================
45
+
46
+ **Paper Abstract:**
47
+
48
+ *The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly
49
+ superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces
50
+ difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is
51
+ the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making
52
+ Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide
53
+ variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the
54
+ intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we
55
+ reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually "modernize" a
56
+ standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to
57
+ the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed
58
+ ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms
59
+ of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO
60
+ detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets. *
61
+
62
+ References
63
+ ----------
64
+
65
+ `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`__
66
+
67
+ Parameters
68
+ ----------
69
+ doResize
70
+ Whether to resize the input to a certain size
71
+ doNormalize
72
+ Whether to normalize the input with mean and standard deviation
73
+ featureExtractorType
74
+ Name of model's architecture for feature extraction
75
+ imageMean
76
+ The sequence of means for each channel, to be used when normalizing images
77
+ imageStd
78
+ The sequence of standard deviations for each channel, to be used when normalizing images
79
+ resample
80
+ An optional resampling filter. This can be one of `PIL.Image.NEAREST`, `PIL.Image.BILINEAR` or
81
+ `PIL.Image.BICUBIC`. Only has an effect if do_resize is set to True.
82
+ size
83
+ Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is
84
+ provided, then the input will be resized to (size, size). Only has an effect if do_resize is set to True.
85
+ doRescale
86
+ Whether to rescale the image values by rescaleFactor
87
+ rescaleFactor
88
+ Factor to scale the image values
89
+ cropPct
90
+ Percentage of the resized image to crop
91
+ configProtoBytes
92
+ ConfigProto from tensorflow, serialized into byte array.
93
+
94
+ Examples
95
+ --------
96
+ >>> import sparknlp
97
+ >>> from sparknlp.base import *
98
+ >>> from sparknlp.annotator import *
99
+ >>> from pyspark.ml import Pipeline
100
+ >>> imageDF = spark.read \\
101
+ ... .format("image") \\
102
+ ... .option("dropInvalid", value = True) \\
103
+ ... .load("src/test/resources/image/")
104
+ >>> imageAssembler = ImageAssembler() \\
105
+ ... .setInputCol("image") \\
106
+ ... .setOutputCol("image_assembler")
107
+ >>> imageClassifier = ConvNextForImageClassification \\
108
+ ... .pretrained() \\
109
+ ... .setInputCols(["image_assembler"]) \\
110
+ ... .setOutputCol("class")
111
+ >>> pipeline = Pipeline().setStages([imageAssembler, imageClassifier])
112
+ >>> pipelineDF = pipeline.fit(imageDF).transform(imageDF)
113
+ >>> pipelineDF \\
114
+ ... .selectExpr("reverse(split(image.origin, '/'))[0] as image_name", "class.result") \\
115
+ ... .show(truncate=False)
116
+ +-----------------+----------------------------------------------------------+
117
+ |image_name |result |
118
+ +-----------------+----------------------------------------------------------+
119
+ |bluetick.jpg |[bluetick] |
120
+ |chihuahua.jpg |[Chihuahua] |
121
+ |egyptian_cat.jpeg|[tabby, tabby cat] |
122
+ |hen.JPEG |[hen] |
123
+ |hippopotamus.JPEG|[hippopotamus, hippo, river horse, Hippopotamus amphibius]|
124
+ |junco.JPEG |[junco, snowbird] |
125
+ |ostrich.JPEG |[ostrich, Struthio camelus] |
126
+ |ox.JPEG |[ox] |
127
+ |palace.JPEG |[palace] |
128
+ |tractor.JPEG |[thresher, thrasher, threshing machine |
129
+ +-----------------+----------------------------------------------------------+
130
+ """
131
+ name = "ConvNextForImageClassification"
132
+
133
+ inputAnnotatorTypes = [AnnotatorType.IMAGE]
134
+
135
+ outputAnnotatorType = AnnotatorType.CATEGORY
136
+
137
+ configProtoBytes = Param(Params._dummy(),
138
+ "configProtoBytes",
139
+ "ConfigProto from tensorflow, serialized into byte array. Get with "
140
+ "config_proto.SerializeToString()",
141
+ TypeConverters.toListInt)
142
+
143
+ doRescale = Param(Params._dummy(), "doRescale",
144
+ "Whether to rescale the image values by rescaleFactor.",
145
+ TypeConverters.toBoolean)
146
+
147
+ rescaleFactor = Param(Params._dummy(), "rescaleFactor",
148
+ "Factor to scale the image values",
149
+ TypeConverters.toFloat)
150
+
151
+ cropPct = Param(Params._dummy(), "cropPct",
152
+ "Percentage of the resized image to crop",
153
+ TypeConverters.toFloat)
154
+
155
+ def setDoRescale(self, value):
156
+ """Sets Whether to rescale the image values by rescaleFactor, by default `True`.
157
+
158
+ Parameters
159
+ ----------
160
+ value : Boolean
161
+ Whether to rescale the image values by rescaleFactor.
162
+ """
163
+ return self._set(doRescale=value)
164
+
165
+ def setRescaleFactor(self, value):
166
+ """Sets Factor to scale the image values, by default `1/255.0`.
167
+
168
+ Parameters
169
+ ----------
170
+ value : Boolean
171
+ Whether to rescale the image values by rescaleFactor.
172
+ """
173
+ return self._set(rescaleFactor=value)
174
+
175
+ def setCropPct(self, value):
176
+ """Determines rescale and crop percentage for images smaller than the configured size, by default `224 / 256`.
177
+
178
+ If the image size is smaller than the specified size, the smaller edge of the image will be
179
+ matched to `int(size / cropPct)`. Afterwards the image is cropped to `(size, size)`.
180
+
181
+ Parameters
182
+ ----------
183
+ value : Float
184
+ Percentage of the resized image to crop
185
+ """
186
+ return self._set(cropPct=value)
187
+
188
+ def getClasses(self):
189
+ """
190
+ Returns labels used to train this model
191
+ """
192
+ return self._call_java("getClasses")
193
+
194
+ def setConfigProtoBytes(self, b):
195
+ """Sets configProto from tensorflow, serialized into byte array.
196
+
197
+ Parameters
198
+ ----------
199
+ b : List[int]
200
+ ConfigProto from tensorflow, serialized into byte array
201
+ """
202
+ return self._set(configProtoBytes=b)
203
+
204
+ @keyword_only
205
+ def __init__(self,
206
+ classname="com.johnsnowlabs.nlp.annotators.cv.ConvNextForImageClassification",
207
+ java_model=None):
208
+ super(ConvNextForImageClassification, self).__init__(
209
+ classname=classname,
210
+ java_model=java_model
211
+ )
212
+ self._setDefault(
213
+ batchSize=2,
214
+ doNormalize=True,
215
+ doRescale=True,
216
+ doResize=True,
217
+ imageMean=[0.485, 0.456, 0.406],
218
+ imageStd=[0.229, 0.224, 0.225],
219
+ resample=3,
220
+ size=224,
221
+ rescaleFactor=1 / 255.0,
222
+ cropPct=224 / 256.0
223
+ )
224
+
225
+ @staticmethod
226
+ def loadSavedModel(folder, spark_session):
227
+ """Loads a locally saved model.
228
+
229
+ Parameters
230
+ ----------
231
+ folder : str
232
+ Folder of the saved model
233
+ spark_session : pyspark.sql.SparkSession
234
+ The current SparkSession
235
+
236
+ Returns
237
+ -------
238
+ ConvNextForImageClassification
239
+ The restored model
240
+ """
241
+ from sparknlp.internal import _ConvNextForImageClassification
242
+ jModel = _ConvNextForImageClassification(folder,
243
+ spark_session._jsparkSession)._java_obj
244
+ return ConvNextForImageClassification(java_model=jModel)
245
+
246
+ @staticmethod
247
+ def pretrained(name="image_classifier_convnext_tiny_224_local", lang="en",
248
+ remote_loc=None):
249
+ """Downloads and loads a pretrained model.
250
+
251
+ Parameters
252
+ ----------
253
+ name : str, optional
254
+ Name of the pretrained model, by default
255
+ "image_classifier_convnext_tiny_224_local"
256
+ lang : str, optional
257
+ Language of the pretrained model, by default "en"
258
+ remote_loc : str, optional
259
+ Remote address of the resource, by default None. Will use
260
+ Spark NLPs repositories otherwise.
261
+
262
+ Returns
263
+ -------
264
+ ConvNextForImageClassification
265
+ The restored model
266
+ """
267
+ from sparknlp.pretrained import ResourceDownloader
268
+ return ResourceDownloader.downloadModel(ConvNextForImageClassification, name, lang,
269
+ remote_loc)
@@ -0,0 +1,180 @@
1
+ # Copyright 2017-2024 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from sparknlp.common import *
16
+
17
+ class Florence2Transformer(AnnotatorModel,
18
+ HasBatchedAnnotateImage,
19
+ HasImageFeatureProperties,
20
+ HasEngine):
21
+ """Florence2Transformer can load Florence-2 models for a variety of vision and vision-language tasks using prompt-based inference.
22
+
23
+ The model supports image captioning, object detection, segmentation, OCR, and more, using prompt tokens as described in the Florence-2 documentation.
24
+
25
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion object:
26
+
27
+ >>> florence2 = Florence2Transformer.pretrained() \
28
+ ... .setInputCols(["image_assembler"]) \
29
+ ... .setOutputCol("answer")
30
+
31
+ The default model is ``"florence2_base_ft_int4"``, if no name is provided.
32
+
33
+ For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Vision+Tasks>`__.
34
+
35
+ ====================== ======================
36
+ Input Annotation types Output Annotation type
37
+ ====================== ======================
38
+ ``IMAGE`` ``DOCUMENT``
39
+ ====================== ======================
40
+
41
+ Parameters
42
+ ----------
43
+ batchSize
44
+ Batch size. Large values allows faster processing but requires more memory, by default 2
45
+ maxOutputLength
46
+ Maximum length of output text, by default 200
47
+ minOutputLength
48
+ Minimum length of the sequence to be generated, by default 10
49
+ doSample
50
+ Whether or not to use sampling; use greedy decoding otherwise, by default False
51
+ temperature
52
+ The value used to module the next token probabilities, by default 1.0
53
+ topK
54
+ The number of highest probability vocabulary tokens to keep for top-k-filtering, by default 50
55
+ topP
56
+ If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation, by default 1.0
57
+ repetitionPenalty
58
+ The parameter for repetition penalty. 1.0 means no penalty, by default 1.0
59
+ noRepeatNgramSize
60
+ If set to int > 0, all ngrams of that size can only occur once, by default 3
61
+ ignoreTokenIds
62
+ A list of token ids which are ignored in the decoder's output, by default []
63
+ beamSize
64
+ The Number of beams for beam search, by default 1
65
+
66
+ Examples
67
+ --------
68
+ >>> import sparknlp
69
+ >>> from sparknlp.base import *
70
+ >>> from sparknlp.annotator import *
71
+ >>> from pyspark.ml import Pipeline
72
+ >>> image_df = spark.read.format("image").load(path=images_path)
73
+ >>> test_df = image_df.withColumn("text", lit("<OD>"))
74
+ >>> imageAssembler = ImageAssembler() \
75
+ ... .setInputCol("image") \
76
+ ... .setOutputCol("image_assembler")
77
+ >>> florence2 = Florence2Transformer.pretrained() \
78
+ ... .setInputCols(["image_assembler"]) \
79
+ ... .setOutputCol("answer")
80
+ >>> pipeline = Pipeline().setStages([
81
+ ... imageAssembler,
82
+ ... florence2
83
+ ... ])
84
+ >>> result = pipeline.fit(test_df).transform(test_df)
85
+ >>> result.select("image_assembler.origin", "answer.result").show(False)
86
+ """
87
+
88
+ name = "Florence2Transformer"
89
+
90
+ inputAnnotatorTypes = [AnnotatorType.IMAGE]
91
+ outputAnnotatorType = AnnotatorType.DOCUMENT
92
+
93
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated", typeConverter=TypeConverters.toInt)
94
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text", typeConverter=TypeConverters.toInt)
95
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise", typeConverter=TypeConverters.toBoolean)
96
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities", typeConverter=TypeConverters.toFloat)
97
+ topK = Param(Params._dummy(), "topK", "The number of highest probability vocabulary tokens to keep for top-k-filtering", typeConverter=TypeConverters.toInt)
98
+ topP = Param(Params._dummy(), "topP", "If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation", typeConverter=TypeConverters.toFloat)
99
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty", "The parameter for repetition penalty. 1.0 means no penalty.", typeConverter=TypeConverters.toFloat)
100
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize", "If set to int > 0, all ngrams of that size can only occur once", typeConverter=TypeConverters.toInt)
101
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds", "A list of token ids which are ignored in the decoder's output", typeConverter=TypeConverters.toListInt)
102
+ beamSize = Param(Params._dummy(), "beamSize", "The Number of beams for beam search.", typeConverter=TypeConverters.toInt)
103
+ batchSize = Param(Params._dummy(), "batchSize", "Batch size. Large values allows faster processing but requires more memory", typeConverter=TypeConverters.toInt)
104
+
105
+ @keyword_only
106
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.Florence2Transformer", java_model=None):
107
+ super(Florence2Transformer, self).__init__(
108
+ classname=classname,
109
+ java_model=java_model
110
+ )
111
+ self._setDefault(
112
+ batchSize=2,
113
+ minOutputLength=10,
114
+ maxOutputLength=200,
115
+ doSample=False,
116
+ temperature=1.0,
117
+ topK=50,
118
+ topP=1.0,
119
+ repetitionPenalty=1.0,
120
+ noRepeatNgramSize=3,
121
+ ignoreTokenIds=[],
122
+ beamSize=1,
123
+ )
124
+
125
+ def setMinOutputLength(self, value):
126
+ """Sets minimum length of the sequence to be generated."""
127
+ return self._set(minOutputLength=value)
128
+
129
+ def setMaxOutputLength(self, value):
130
+ """Sets maximum length of output text."""
131
+ return self._set(maxOutputLength=value)
132
+
133
+ def setDoSample(self, value):
134
+ """Sets whether or not to use sampling; use greedy decoding otherwise."""
135
+ return self._set(doSample=value)
136
+
137
+ def setTemperature(self, value):
138
+ """Sets the value used to module the next token probabilities."""
139
+ return self._set(temperature=value)
140
+
141
+ def setTopK(self, value):
142
+ """Sets the number of highest probability vocabulary tokens to keep for top-k-filtering."""
143
+ return self._set(topK=value)
144
+
145
+ def setTopP(self, value):
146
+ """Sets the top cumulative probability for vocabulary tokens."""
147
+ return self._set(topP=value)
148
+
149
+ def setRepetitionPenalty(self, value):
150
+ """Sets the parameter for repetition penalty. 1.0 means no penalty."""
151
+ return self._set(repetitionPenalty=value)
152
+
153
+ def setNoRepeatNgramSize(self, value):
154
+ """Sets size of n-grams that can only occur once."""
155
+ return self._set(noRepeatNgramSize=value)
156
+
157
+ def setIgnoreTokenIds(self, value):
158
+ """A list of token ids which are ignored in the decoder's output."""
159
+ return self._set(ignoreTokenIds=value)
160
+
161
+ def setBeamSize(self, value):
162
+ """Sets the number of beams for beam search."""
163
+ return self._set(beamSize=value)
164
+
165
+ def setBatchSize(self, value):
166
+ """Sets the batch size."""
167
+ return self._set(batchSize=value)
168
+
169
+ @staticmethod
170
+ def loadSavedModel(folder, spark_session, use_openvino=False):
171
+ """Loads a locally saved model."""
172
+ from sparknlp.internal import _Florence2TransformerLoader
173
+ jModel = _Florence2TransformerLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
174
+ return Florence2Transformer(java_model=jModel)
175
+
176
+ @staticmethod
177
+ def pretrained(name="florence2_base_ft_int4", lang="en", remote_loc=None):
178
+ """Downloads and loads a pretrained model."""
179
+ from sparknlp.pretrained import ResourceDownloader
180
+ return ResourceDownloader.downloadModel(Florence2Transformer, name, lang, remote_loc)