spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (221) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  4. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  5. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  6. sparknlp/__init__.py +81 -28
  7. sparknlp/annotation.py +3 -2
  8. sparknlp/annotator/__init__.py +6 -0
  9. sparknlp/annotator/audio/__init__.py +2 -0
  10. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  11. sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
  12. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  13. sparknlp/{base → annotator}/chunk2_doc.py +4 -7
  14. sparknlp/annotator/chunker.py +1 -2
  15. sparknlp/annotator/classifier_dl/__init__.py +17 -0
  16. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  17. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
  18. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
  19. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
  20. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  21. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  22. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  23. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
  24. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
  25. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
  26. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  27. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  28. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
  29. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
  30. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  31. sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
  32. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
  33. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
  34. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
  35. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  36. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
  37. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
  38. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
  39. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  40. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  41. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
  42. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
  43. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
  44. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  45. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  46. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  47. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
  48. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  49. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
  50. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
  51. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
  52. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  53. sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
  54. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
  55. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  56. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
  57. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  60. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
  61. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
  62. sparknlp/annotator/cleaners/__init__.py +15 -0
  63. sparknlp/annotator/cleaners/cleaner.py +202 -0
  64. sparknlp/annotator/cleaners/extractor.py +191 -0
  65. sparknlp/annotator/coref/spanbert_coref.py +4 -18
  66. sparknlp/annotator/cv/__init__.py +15 -0
  67. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  68. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  69. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  70. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  71. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  72. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  73. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  74. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  75. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  76. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  77. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  78. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  79. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  80. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  81. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  82. sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
  83. sparknlp/annotator/dataframe_optimizer.py +216 -0
  84. sparknlp/annotator/date2_chunk.py +88 -0
  85. sparknlp/annotator/dependency/dependency_parser.py +2 -3
  86. sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
  87. sparknlp/annotator/document_character_text_splitter.py +228 -0
  88. sparknlp/annotator/document_normalizer.py +37 -1
  89. sparknlp/annotator/document_token_splitter.py +175 -0
  90. sparknlp/annotator/document_token_splitter_test.py +85 -0
  91. sparknlp/annotator/embeddings/__init__.py +11 -0
  92. sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
  93. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  94. sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
  95. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
  96. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  97. sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
  98. sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
  99. sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
  100. sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
  101. sparknlp/annotator/embeddings/doc2vec.py +7 -1
  102. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  103. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  104. sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
  105. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  106. sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
  107. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  108. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  109. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  110. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  111. sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
  112. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
  113. sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
  114. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  115. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  116. sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
  117. sparknlp/annotator/embeddings/word2vec.py +7 -1
  118. sparknlp/annotator/embeddings/word_embeddings.py +4 -5
  119. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
  120. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
  121. sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
  122. sparknlp/annotator/er/entity_ruler.py +37 -23
  123. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
  124. sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
  125. sparknlp/annotator/lemmatizer.py +3 -4
  126. sparknlp/annotator/matcher/date_matcher.py +35 -3
  127. sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
  128. sparknlp/annotator/matcher/regex_matcher.py +3 -3
  129. sparknlp/annotator/matcher/text_matcher.py +2 -3
  130. sparknlp/annotator/n_gram_generator.py +1 -2
  131. sparknlp/annotator/ner/__init__.py +3 -1
  132. sparknlp/annotator/ner/ner_converter.py +18 -0
  133. sparknlp/annotator/ner/ner_crf.py +4 -5
  134. sparknlp/annotator/ner/ner_dl.py +10 -5
  135. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  136. sparknlp/annotator/ner/ner_overwriter.py +2 -2
  137. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  138. sparknlp/annotator/normalizer.py +2 -2
  139. sparknlp/annotator/openai/__init__.py +16 -0
  140. sparknlp/annotator/openai/openai_completion.py +349 -0
  141. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  142. sparknlp/annotator/pos/perceptron.py +6 -7
  143. sparknlp/annotator/sentence/sentence_detector.py +2 -2
  144. sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
  145. sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
  146. sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
  147. sparknlp/annotator/seq2seq/__init__.py +17 -0
  148. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  149. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  150. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  151. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  152. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  153. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  154. sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
  155. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  156. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  157. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  158. sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
  159. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  160. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  161. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  162. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  163. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  164. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  165. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  166. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  167. sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
  168. sparknlp/annotator/similarity/__init__.py +0 -0
  169. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  170. sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
  171. sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
  172. sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
  173. sparknlp/annotator/stemmer.py +2 -3
  174. sparknlp/annotator/stop_words_cleaner.py +3 -4
  175. sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
  176. sparknlp/annotator/token/__init__.py +0 -1
  177. sparknlp/annotator/token/recursive_tokenizer.py +2 -3
  178. sparknlp/annotator/token/tokenizer.py +2 -3
  179. sparknlp/annotator/ws/word_segmenter.py +35 -10
  180. sparknlp/base/__init__.py +2 -3
  181. sparknlp/base/doc2_chunk.py +0 -3
  182. sparknlp/base/document_assembler.py +5 -5
  183. sparknlp/base/embeddings_finisher.py +14 -2
  184. sparknlp/base/finisher.py +15 -4
  185. sparknlp/base/gguf_ranking_finisher.py +234 -0
  186. sparknlp/base/image_assembler.py +69 -0
  187. sparknlp/base/light_pipeline.py +53 -21
  188. sparknlp/base/multi_document_assembler.py +9 -13
  189. sparknlp/base/prompt_assembler.py +207 -0
  190. sparknlp/base/token_assembler.py +1 -2
  191. sparknlp/common/__init__.py +2 -0
  192. sparknlp/common/annotator_type.py +1 -0
  193. sparknlp/common/completion_post_processing.py +37 -0
  194. sparknlp/common/match_strategy.py +33 -0
  195. sparknlp/common/properties.py +914 -9
  196. sparknlp/internal/__init__.py +841 -116
  197. sparknlp/internal/annotator_java_ml.py +1 -1
  198. sparknlp/internal/annotator_transformer.py +3 -0
  199. sparknlp/logging/comet.py +2 -2
  200. sparknlp/partition/__init__.py +16 -0
  201. sparknlp/partition/partition.py +244 -0
  202. sparknlp/partition/partition_properties.py +902 -0
  203. sparknlp/partition/partition_transformer.py +200 -0
  204. sparknlp/pretrained/pretrained_pipeline.py +1 -1
  205. sparknlp/pretrained/resource_downloader.py +126 -2
  206. sparknlp/reader/__init__.py +15 -0
  207. sparknlp/reader/enums.py +19 -0
  208. sparknlp/reader/pdf_to_text.py +190 -0
  209. sparknlp/reader/reader2doc.py +124 -0
  210. sparknlp/reader/reader2image.py +136 -0
  211. sparknlp/reader/reader2table.py +44 -0
  212. sparknlp/reader/reader_assembler.py +159 -0
  213. sparknlp/reader/sparknlp_reader.py +461 -0
  214. sparknlp/training/__init__.py +1 -0
  215. sparknlp/training/conll.py +8 -2
  216. sparknlp/training/spacy_to_annotation.py +57 -0
  217. sparknlp/util.py +26 -0
  218. spark_nlp-4.2.6.dist-info/METADATA +0 -1256
  219. spark_nlp-4.2.6.dist-info/RECORD +0 -196
  220. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
  221. /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
@@ -0,0 +1,346 @@
1
+ # Copyright 2017-2024 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from sparknlp.common import *
16
+
17
+ class Gemma3ForMultiModal(AnnotatorModel,
18
+ HasBatchedAnnotateImage,
19
+ HasImageFeatureProperties,
20
+ HasEngine,
21
+ HasGeneratorProperties):
22
+ """Gemma3ForMultiModal can load Gemma 3 Vision models for visual question answering.
23
+ The model consists of a vision encoder, a text encoder, a text decoder and a model merger.
24
+ The vision encoder will encode the input image, the text encoder will encode the input text,
25
+ the model merger will merge the image and text embeddings, and the text decoder will output the answer.
26
+
27
+ Gemma 3 is a family of lightweight, state-of-the-art open models from Google, built from the same
28
+ research and technology used to create the Gemini models. It features:
29
+ - Large 128K context window
30
+ - Multilingual support in over 140 languages
31
+ - Multimodal capabilities handling both text and image inputs
32
+ - Optimized for deployment on limited resources (laptops, desktops, cloud)
33
+
34
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
35
+ object:
36
+
37
+ >>> visualQA = Gemma3ForMultiModal.pretrained() \
38
+ ... .setInputCols(["image_assembler"]) \
39
+ ... .setOutputCol("answer")
40
+
41
+ The default model is ``"gemma3_4b_it_int4"``, if no name is
42
+ provided.
43
+
44
+ For available pretrained models please see the `Models Hub
45
+ <https://sparknlp.org/models?task=Question+Answering>`__.
46
+
47
+ ====================== ======================
48
+ Input Annotation types Output Annotation type
49
+ ====================== ======================
50
+ ``IMAGE`` ``DOCUMENT``
51
+ ====================== ======================
52
+
53
+ Parameters
54
+ ----------
55
+ batchSize
56
+ Batch size. Large values allows faster processing but requires more
57
+ memory, by default 1
58
+ minOutputLength
59
+ Minimum length of the sequence to be generated, by default 0
60
+ maxOutputLength
61
+ Maximum length of output text, by default 20
62
+ doSample
63
+ Whether or not to use sampling; use greedy decoding otherwise, by default False
64
+ temperature
65
+ The value used to module the next token probabilities, by default 0.6
66
+ topK
67
+ The number of highest probability vocabulary tokens to keep for top-k-filtering, by default -1
68
+ topP
69
+ If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation, by default 0.9
70
+ repetitionPenalty
71
+ The parameter for repetition penalty. 1.0 means no penalty, by default 1.0
72
+ noRepeatNgramSize
73
+ If set to int > 0, all ngrams of that size can only occur once, by default 3
74
+ beamSize
75
+ The Number of beams for beam search, by default 1
76
+ maxInputLength
77
+ Maximum length of input text, by default 4096
78
+
79
+ Examples
80
+ --------
81
+ >>> import sparknlp
82
+ >>> from sparknlp.base import *
83
+ >>> from sparknlp.annotator import *
84
+ >>> from pyspark.ml import Pipeline
85
+ >>> from pyspark.sql.functions import lit
86
+ >>> imageDF = spark.read.format("image").load(images_path)
87
+ >>> testDF = imageDF.withColumn("text", lit("<bos><start_of_turn>user\\nYou are a helpful assistant.\\n\\n<start_of_image>Describe this image in detail.<end_of_turn>\\n<start_of_turn>model\\n"))
88
+ >>> imageAssembler = ImageAssembler() \\
89
+ ... .setInputCol("image") \\
90
+ ... .setOutputCol("image_assembler")
91
+ >>> visualQA = Gemma3ForMultiModal.pretrained() \\
92
+ ... .setInputCols("image_assembler") \\
93
+ ... .setOutputCol("answer")
94
+ >>> pipeline = Pipeline().setStages([
95
+ ... imageAssembler,
96
+ ... visualQA
97
+ ... ])
98
+ >>> result = pipeline.fit(testDF).transform(testDF)
99
+ >>> result.select("image_assembler.origin", "answer.result").show(truncate=False)
100
+ """
101
+
102
+ name = "Gemma3ForMultiModal"
103
+
104
+ inputAnnotatorTypes = [AnnotatorType.IMAGE]
105
+
106
+ outputAnnotatorType = AnnotatorType.DOCUMENT
107
+
108
+ configProtoBytes = Param(Params._dummy(),
109
+ "configProtoBytes",
110
+ "ConfigProto from tensorflow, serialized into byte array. Get with "
111
+ "config_proto.SerializeToString()",
112
+ TypeConverters.toListInt)
113
+
114
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
115
+ typeConverter=TypeConverters.toInt)
116
+
117
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
118
+ typeConverter=TypeConverters.toInt)
119
+
120
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
121
+ typeConverter=TypeConverters.toBoolean)
122
+
123
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
124
+ typeConverter=TypeConverters.toFloat)
125
+
126
+ topK = Param(Params._dummy(), "topK",
127
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
128
+ typeConverter=TypeConverters.toInt)
129
+
130
+ topP = Param(Params._dummy(), "topP",
131
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
132
+ typeConverter=TypeConverters.toFloat)
133
+
134
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
135
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
136
+ typeConverter=TypeConverters.toFloat)
137
+
138
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
139
+ "If set to int > 0, all ngrams of that size can only occur once",
140
+ typeConverter=TypeConverters.toInt)
141
+
142
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
143
+ "A list of token ids which are ignored in the decoder's output",
144
+ typeConverter=TypeConverters.toListInt)
145
+ beamSize = Param(Params._dummy(), "beamSize",
146
+ "The Number of beams for beam search.",
147
+ typeConverter=TypeConverters.toInt)
148
+
149
+ maxInputLength = Param(Params._dummy(), "maxInputLength", "Maximum length of input text",
150
+ typeConverter=TypeConverters.toInt)
151
+
152
+ def setMaxSentenceSize(self, value):
153
+ """Sets Maximum sentence length that the annotator will process, by
154
+ default 50.
155
+
156
+ Parameters
157
+ ----------
158
+ value : int
159
+ Maximum sentence length that the annotator will process
160
+ """
161
+ return self._set(maxSentenceLength=value)
162
+
163
+ def setIgnoreTokenIds(self, value):
164
+ """A list of token ids which are ignored in the decoder's output.
165
+
166
+ Parameters
167
+ ----------
168
+ value : List[int]
169
+ The words to be filtered out
170
+ """
171
+ return self._set(ignoreTokenIds=value)
172
+
173
+ def setConfigProtoBytes(self, b):
174
+ """Sets configProto from tensorflow, serialized into byte array.
175
+
176
+ Parameters
177
+ ----------
178
+ b : List[int]
179
+ ConfigProto from tensorflow, serialized into byte array
180
+ """
181
+ return self._set(configProtoBytes=b)
182
+
183
+ def setMinOutputLength(self, value):
184
+ """Sets minimum length of the sequence to be generated.
185
+
186
+ Parameters
187
+ ----------
188
+ value : int
189
+ Minimum length of the sequence to be generated
190
+ """
191
+ return self._set(minOutputLength=value)
192
+
193
+ def setMaxOutputLength(self, value):
194
+ """Sets maximum length of output text.
195
+
196
+ Parameters
197
+ ----------
198
+ value : int
199
+ Maximum length of output text
200
+ """
201
+ return self._set(maxOutputLength=value)
202
+
203
+ def setDoSample(self, value):
204
+ """Sets whether or not to use sampling, use greedy decoding otherwise.
205
+
206
+ Parameters
207
+ ----------
208
+ value : bool
209
+ Whether or not to use sampling; use greedy decoding otherwise
210
+ """
211
+ return self._set(doSample=value)
212
+
213
+ def setTemperature(self, value):
214
+ """Sets the value used to module the next token probabilities.
215
+
216
+ Parameters
217
+ ----------
218
+ value : float
219
+ The value used to module the next token probabilities
220
+ """
221
+ return self._set(temperature=value)
222
+
223
+ def setTopK(self, value):
224
+ """Sets the number of highest probability vocabulary tokens to keep for
225
+ top-k-filtering.
226
+
227
+ Parameters
228
+ ----------
229
+ value : int
230
+ Number of highest probability vocabulary tokens to keep
231
+ """
232
+ return self._set(topK=value)
233
+
234
+ def setTopP(self, value):
235
+ """Sets the top cumulative probability for vocabulary tokens.
236
+
237
+ If set to float < 1, only the most probable tokens with probabilities
238
+ that add up to ``topP`` or higher are kept for generation.
239
+
240
+ Parameters
241
+ ----------
242
+ value : float
243
+ Cumulative probability for vocabulary tokens
244
+ """
245
+ return self._set(topP=value)
246
+
247
+ def setRepetitionPenalty(self, value):
248
+ """Sets the parameter for repetition penalty. 1.0 means no penalty.
249
+
250
+ Parameters
251
+ ----------
252
+ value : float
253
+ The repetition penalty
254
+
255
+ References
256
+ ----------
257
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
258
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
259
+ """
260
+ return self._set(repetitionPenalty=value)
261
+
262
+ def setNoRepeatNgramSize(self, value):
263
+ """Sets size of n-grams that can only occur once.
264
+
265
+ If set to int > 0, all ngrams of that size can only occur once.
266
+
267
+ Parameters
268
+ ----------
269
+ value : int
270
+ N-gram size can only occur once
271
+ """
272
+ return self._set(noRepeatNgramSize=value)
273
+
274
+ def setBeamSize(self, value):
275
+ """Sets the number of beam size for beam search, by default `4`.
276
+
277
+ Parameters
278
+ ----------
279
+ value : int
280
+ Number of beam size for beam search
281
+ """
282
+ return self._set(beamSize=value)
283
+
284
+ @keyword_only
285
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.Gemma3ForMultiModal",
286
+ java_model=None):
287
+ super(Gemma3ForMultiModal, self).__init__(
288
+ classname=classname,
289
+ java_model=java_model
290
+ )
291
+ self._setDefault(
292
+ batchSize=1,
293
+ minOutputLength=0,
294
+ maxOutputLength=20,
295
+ doSample=False,
296
+ temperature=0.6,
297
+ topK=-1,
298
+ topP=0.9,
299
+ repetitionPenalty=1.0,
300
+ noRepeatNgramSize=3,
301
+ ignoreTokenIds=[],
302
+ beamSize=1,
303
+ maxInputLength=4096,
304
+ )
305
+
306
+ @staticmethod
307
+ def loadSavedModel(folder, spark_session, use_openvino=False):
308
+ """Loads a locally saved model.
309
+
310
+ Parameters
311
+ ----------
312
+ folder : str
313
+ Folder of the saved model
314
+ spark_session : pyspark.sql.SparkSession
315
+ The current SparkSession
316
+
317
+ Returns
318
+ -------
319
+ Gemma3ForMultiModal
320
+ The restored model
321
+ """
322
+ from sparknlp.internal import _Gemma3ForMultiModalLoader
323
+ jModel = _Gemma3ForMultiModalLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
324
+ return Gemma3ForMultiModal(java_model=jModel)
325
+
326
+ @staticmethod
327
+ def pretrained(name="gemma3_4b_it_int4", lang="en", remote_loc=None):
328
+ """Downloads and loads a pretrained model.
329
+
330
+ Parameters
331
+ ----------
332
+ name : str, optional
333
+ Name of the pretrained model, by default "gemma3_4b_it_int4"
334
+ lang : str, optional
335
+ Language of the pretrained model, by default "en"
336
+ remote_loc : str, optional
337
+ Optional remote address of the resource, by default None. Will use
338
+ Spark NLPs repositories otherwise.
339
+
340
+ Returns
341
+ -------
342
+ Gemma3ForMultiModal
343
+ The restored model
344
+ """
345
+ from sparknlp.pretrained import ResourceDownloader
346
+ return ResourceDownloader.downloadModel(Gemma3ForMultiModal, name, lang, remote_loc)
@@ -0,0 +1,280 @@
1
+ from sparknlp.common import *
2
+
3
+ class InternVLForMultiModal(AnnotatorModel,
4
+ HasBatchedAnnotateImage,
5
+ HasImageFeatureProperties,
6
+ HasEngine,
7
+ HasGeneratorProperties):
8
+ """
9
+ InternVLForMultiModal can load InternVL Vision models for visual question answering.
10
+ The model consists of a vision encoder, a text encoder, a text decoder and a model merger.
11
+ The vision encoder will encode the input image, the text encoder will encode the input text,
12
+ the model merger will merge the image and text embeddings, and the text decoder will output the answer.
13
+
14
+ InternVL 2.5 is an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0,
15
+ maintaining its core model architecture while introducing significant enhancements in training and testing
16
+ strategies as well as data quality. Key features include:
17
+ - Large context window support
18
+ - Multilingual support
19
+ - Multimodal capabilities handling both text and image inputs
20
+ - Optimized for deployment with int4 quantization
21
+
22
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion object:
23
+ >>> visualQA = InternVLForMultiModal.pretrained() \\
24
+ ... .setInputCols("image_assembler") \\
25
+ ... .setOutputCol("answer")
26
+
27
+ The default model is `"internvl2_5_1b_int4"`, if no name is provided.
28
+ For available pretrained models, refer to the `Models Hub
29
+ <https://sparknlp.org/models?task=Question+Answering>`__.
30
+
31
+ ====================== ======================
32
+ Input Annotation types Output Annotation type
33
+ ====================== ======================
34
+ ``IMAGE`` ``DOCUMENT``
35
+ ====================== ======================
36
+
37
+ Parameters
38
+ ----------
39
+ batchSize : int, optional
40
+ Batch size. Larger values allow faster processing but require more memory,
41
+ by default 1.
42
+ maxSentenceLength : int, optional
43
+ Maximum sentence length to process, by default 4096.
44
+
45
+ Examples
46
+ --------
47
+ >>> import sparknlp
48
+ >>> from sparknlp.base import *
49
+ >>> from sparknlp.annotator import *
50
+ >>> from pyspark.ml import Pipeline
51
+ >>> from pyspark.sql.functions import lit
52
+ >>> image_df = spark.read.format("image").load(path=images_path)
53
+ >>> test_df = image_df.withColumn(
54
+ ... "text",
55
+ ... lit("<|im_start|><image>\\nDescribe this image in detail.<|im_end|><|im_start|>assistant\\n")
56
+ ... )
57
+ >>> imageAssembler = ImageAssembler() \\
58
+ ... .setInputCol("image") \\
59
+ ... .setOutputCol("image_assembler")
60
+ >>> visualQA = InternVLForMultiModal.pretrained() \\
61
+ ... .setInputCols("image_assembler") \\
62
+ ... .setOutputCol("answer")
63
+ >>> pipeline = Pipeline().setStages([
64
+ ... imageAssembler,
65
+ ... visualQA
66
+ ... ])
67
+
68
+ >>> result = pipeline.fit(test_df).transform(test_df)
69
+ >>> result.select("image_assembler.origin", "answer.result").show(truncate=False)
70
+ """
71
+
72
+ name = "InternVLForMultiModal"
73
+
74
+ inputAnnotatorTypes = [AnnotatorType.IMAGE]
75
+
76
+ outputAnnotatorType = AnnotatorType.DOCUMENT
77
+
78
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
79
+ typeConverter=TypeConverters.toInt)
80
+
81
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
82
+ typeConverter=TypeConverters.toInt)
83
+
84
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
85
+ typeConverter=TypeConverters.toBoolean)
86
+
87
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
88
+ typeConverter=TypeConverters.toFloat)
89
+
90
+ topK = Param(Params._dummy(), "topK",
91
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
92
+ typeConverter=TypeConverters.toInt)
93
+
94
+ topP = Param(Params._dummy(), "topP",
95
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
96
+ typeConverter=TypeConverters.toFloat)
97
+
98
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
99
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
100
+ typeConverter=TypeConverters.toFloat)
101
+
102
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
103
+ "If set to int > 0, all ngrams of that size can only occur once",
104
+ typeConverter=TypeConverters.toInt)
105
+
106
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
107
+ "A list of token ids which are ignored in the decoder's output",
108
+ typeConverter=TypeConverters.toListInt)
109
+
110
+ beamSize = Param(Params._dummy(), "beamSize",
111
+ "The Number of beams for beam search.",
112
+ typeConverter=TypeConverters.toInt)
113
+
114
+ def setMaxSentenceSize(self, value):
115
+ """Sets Maximum sentence length that the annotator will process, by
116
+ default 4096.
117
+ Parameters
118
+ ----------
119
+ value : int
120
+ Maximum sentence length that the annotator will process
121
+ """
122
+ return self._set(maxSentenceLength=value)
123
+
124
+ def setIgnoreTokenIds(self, value):
125
+ """A list of token ids which are ignored in the decoder's output.
126
+ Parameters
127
+ ----------
128
+ value : List[int]
129
+ The words to be filtered out
130
+ """
131
+ return self._set(ignoreTokenIds=value)
132
+
133
+ def setMinOutputLength(self, value):
134
+ """Sets minimum length of the sequence to be generated.
135
+ Parameters
136
+ ----------
137
+ value : int
138
+ Minimum length of the sequence to be generated
139
+ """
140
+ return self._set(minOutputLength=value)
141
+
142
+ def setMaxOutputLength(self, value):
143
+ """Sets maximum length of output text.
144
+ Parameters
145
+ ----------
146
+ value : int
147
+ Maximum length of output text
148
+ """
149
+ return self._set(maxOutputLength=value)
150
+
151
+ def setDoSample(self, value):
152
+ """Sets whether or not to use sampling, use greedy decoding otherwise.
153
+ Parameters
154
+ ----------
155
+ value : bool
156
+ Whether or not to use sampling; use greedy decoding otherwise
157
+ """
158
+ return self._set(doSample=value)
159
+
160
+ def setTemperature(self, value):
161
+ """Sets the value used to module the next token probabilities.
162
+ Parameters
163
+ ----------
164
+ value : float
165
+ The value used to module the next token probabilities
166
+ """
167
+ return self._set(temperature=value)
168
+
169
+ def setTopK(self, value):
170
+ """Sets the number of highest probability vocabulary tokens to keep for
171
+ top-k-filtering.
172
+ Parameters
173
+ ----------
174
+ value : int
175
+ Number of highest probability vocabulary tokens to keep
176
+ """
177
+ return self._set(topK=value)
178
+
179
+ def setTopP(self, value):
180
+ """Sets the top cumulative probability for vocabulary tokens.
181
+ If set to float < 1, only the most probable tokens with probabilities
182
+ that add up to ``topP`` or higher are kept for generation.
183
+ Parameters
184
+ ----------
185
+ value : float
186
+ Cumulative probability for vocabulary tokens
187
+ """
188
+ return self._set(topP=value)
189
+
190
+ def setRepetitionPenalty(self, value):
191
+ """Sets the parameter for repetition penalty. 1.0 means no penalty.
192
+ Parameters
193
+ ----------
194
+ value : float
195
+ The repetition penalty
196
+ References
197
+ ----------
198
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
199
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
200
+ """
201
+ return self._set(repetitionPenalty=value)
202
+
203
+ def setNoRepeatNgramSize(self, value):
204
+ """Sets size of n-grams that can only occur once.
205
+ If set to int > 0, all ngrams of that size can only occur once.
206
+ Parameters
207
+ ----------
208
+ value : int
209
+ N-gram size can only occur once
210
+ """
211
+ return self._set(noRepeatNgramSize=value)
212
+
213
+ def setBeamSize(self, value):
214
+ """Sets the number of beam size for beam search, by default `1`.
215
+ Parameters
216
+ ----------
217
+ value : int
218
+ Number of beam size for beam search
219
+ """
220
+ return self._set(beamSize=value)
221
+
222
+ @keyword_only
223
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.InternVLForMultiModal",
224
+ java_model=None):
225
+ super(InternVLForMultiModal, self).__init__(
226
+ classname=classname,
227
+ java_model=java_model
228
+ )
229
+ self._setDefault(
230
+ batchSize=1,
231
+ minOutputLength=0,
232
+ maxOutputLength=20,
233
+ doSample=False,
234
+ temperature=0.6,
235
+ topK=-1,
236
+ topP=0.9,
237
+ repetitionPenalty=1.0,
238
+ noRepeatNgramSize=3,
239
+ ignoreTokenIds=[],
240
+ beamSize=1
241
+ )
242
+
243
+ @staticmethod
244
+ def loadSavedModel(folder, spark_session, use_openvino=False):
245
+ """Loads a locally saved model.
246
+ Parameters
247
+ ----------
248
+ folder : str
249
+ Folder of the saved model
250
+ spark_session : pyspark.sql.SparkSession
251
+ The current SparkSession
252
+ Returns
253
+ -------
254
+ InternVLForMultiModal
255
+ The restored model
256
+ """
257
+ from sparknlp.internal import _InternVLForMultiModalLoader
258
+ jModel = _InternVLForMultiModalLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
259
+ return InternVLForMultiModal(java_model=jModel)
260
+
261
+ @staticmethod
262
+ def pretrained(name="internvl2_5_1b_int4", lang="en", remote_loc=None):
263
+ """Downloads and loads a pretrained model.
264
+ Parameters
265
+ ----------
266
+ name : str, optional
267
+ Name of the pretrained model, by default
268
+ "internvl2_5_1b_int4"
269
+ lang : str, optional
270
+ Language of the pretrained model, by default "en"
271
+ remote_loc : str, optional
272
+ Optional remote address of the resource, by default None. Will use
273
+ Spark NLPs repositories otherwise.
274
+ Returns
275
+ -------
276
+ InternVLForMultiModal
277
+ The restored model
278
+ """
279
+ from sparknlp.pretrained import ResourceDownloader
280
+ return ResourceDownloader.downloadModel(InternVLForMultiModal, name, lang, remote_loc)