spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +81 -28
- sparknlp/annotation.py +3 -2
- sparknlp/annotator/__init__.py +6 -0
- sparknlp/annotator/audio/__init__.py +2 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/{base → annotator}/chunk2_doc.py +4 -7
- sparknlp/annotator/chunker.py +1 -2
- sparknlp/annotator/classifier_dl/__init__.py +17 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/spanbert_coref.py +4 -18
- sparknlp/annotator/cv/__init__.py +15 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/dependency_parser.py +2 -3
- sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +37 -1
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +11 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
- sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
- sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
- sparknlp/annotator/embeddings/doc2vec.py +7 -1
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
- sparknlp/annotator/embeddings/word2vec.py +7 -1
- sparknlp/annotator/embeddings/word_embeddings.py +4 -5
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
- sparknlp/annotator/er/entity_ruler.py +37 -23
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
- sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
- sparknlp/annotator/lemmatizer.py +3 -4
- sparknlp/annotator/matcher/date_matcher.py +35 -3
- sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
- sparknlp/annotator/matcher/regex_matcher.py +3 -3
- sparknlp/annotator/matcher/text_matcher.py +2 -3
- sparknlp/annotator/n_gram_generator.py +1 -2
- sparknlp/annotator/ner/__init__.py +3 -1
- sparknlp/annotator/ner/ner_converter.py +18 -0
- sparknlp/annotator/ner/ner_crf.py +4 -5
- sparknlp/annotator/ner/ner_dl.py +10 -5
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +2 -2
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +2 -2
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/pos/perceptron.py +6 -7
- sparknlp/annotator/sentence/sentence_detector.py +2 -2
- sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
- sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
- sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
- sparknlp/annotator/seq2seq/__init__.py +17 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
- sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
- sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
- sparknlp/annotator/stemmer.py +2 -3
- sparknlp/annotator/stop_words_cleaner.py +3 -4
- sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
- sparknlp/annotator/token/__init__.py +0 -1
- sparknlp/annotator/token/recursive_tokenizer.py +2 -3
- sparknlp/annotator/token/tokenizer.py +2 -3
- sparknlp/annotator/ws/word_segmenter.py +35 -10
- sparknlp/base/__init__.py +2 -3
- sparknlp/base/doc2_chunk.py +0 -3
- sparknlp/base/document_assembler.py +5 -5
- sparknlp/base/embeddings_finisher.py +14 -2
- sparknlp/base/finisher.py +15 -4
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/image_assembler.py +69 -0
- sparknlp/base/light_pipeline.py +53 -21
- sparknlp/base/multi_document_assembler.py +9 -13
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/token_assembler.py +1 -2
- sparknlp/common/__init__.py +2 -0
- sparknlp/common/annotator_type.py +1 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +914 -9
- sparknlp/internal/__init__.py +841 -116
- sparknlp/internal/annotator_java_ml.py +1 -1
- sparknlp/internal/annotator_transformer.py +3 -0
- sparknlp/logging/comet.py +2 -2
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/pretrained_pipeline.py +1 -1
- sparknlp/pretrained/resource_downloader.py +126 -2
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +1 -0
- sparknlp/training/conll.py +8 -2
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/util.py +26 -0
- spark_nlp-4.2.6.dist-info/METADATA +0 -1256
- spark_nlp-4.2.6.dist-info/RECORD +0 -196
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
- /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
|
@@ -20,7 +20,8 @@ class DistilBertForSequenceClassification(AnnotatorModel,
|
|
|
20
20
|
HasCaseSensitiveProperties,
|
|
21
21
|
HasBatchedAnnotate,
|
|
22
22
|
HasClassifierActivationProperties,
|
|
23
|
-
HasEngine
|
|
23
|
+
HasEngine,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
24
25
|
"""DistilBertForSequenceClassification can load DistilBERT Models with sequence classification/regression head on
|
|
25
26
|
top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.
|
|
26
27
|
|
|
@@ -35,7 +36,7 @@ class DistilBertForSequenceClassification(AnnotatorModel,
|
|
|
35
36
|
provided.
|
|
36
37
|
|
|
37
38
|
For available pretrained models please see the `Models Hub
|
|
38
|
-
<https://
|
|
39
|
+
<https://sparknlp.org/models?task=Text+Classification>`__.
|
|
39
40
|
|
|
40
41
|
To see which models are compatible and how to import them see
|
|
41
42
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -61,7 +62,7 @@ class DistilBertForSequenceClassification(AnnotatorModel,
|
|
|
61
62
|
Max sentence length to process, by default 128
|
|
62
63
|
coalesceSentences
|
|
63
64
|
Instead of 1 class per sentence (if inputCols is `sentence`) output
|
|
64
|
-
1 class per document by averaging probabilities in all sentences, by
|
|
65
|
+
1 class per document by averaging probabilities in all sentences, by
|
|
65
66
|
default False.
|
|
66
67
|
activation
|
|
67
68
|
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
@@ -104,11 +105,6 @@ class DistilBertForSequenceClassification(AnnotatorModel,
|
|
|
104
105
|
|
|
105
106
|
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
106
107
|
|
|
107
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
108
|
-
"maxSentenceLength",
|
|
109
|
-
"Max sentence length to process",
|
|
110
|
-
typeConverter=TypeConverters.toInt)
|
|
111
|
-
|
|
112
108
|
configProtoBytes = Param(Params._dummy(),
|
|
113
109
|
"configProtoBytes",
|
|
114
110
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -134,16 +130,6 @@ class DistilBertForSequenceClassification(AnnotatorModel,
|
|
|
134
130
|
"""
|
|
135
131
|
return self._set(configProtoBytes=b)
|
|
136
132
|
|
|
137
|
-
def setMaxSentenceLength(self, value):
|
|
138
|
-
"""Sets max sentence length to process, by default 128.
|
|
139
|
-
|
|
140
|
-
Parameters
|
|
141
|
-
----------
|
|
142
|
-
value : int
|
|
143
|
-
Max sentence length to process
|
|
144
|
-
"""
|
|
145
|
-
return self._set(maxSentenceLength=value)
|
|
146
|
-
|
|
147
133
|
def setCoalesceSentences(self, value):
|
|
148
134
|
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.
|
|
149
135
|
Due to max sequence length limit in almost all transformer models such as BERT (512 tokens), this parameter helps feeding all the sentences
|
|
@@ -19,7 +19,8 @@ from sparknlp.common import *
|
|
|
19
19
|
class DistilBertForTokenClassification(AnnotatorModel,
|
|
20
20
|
HasCaseSensitiveProperties,
|
|
21
21
|
HasBatchedAnnotate,
|
|
22
|
-
HasEngine
|
|
22
|
+
HasEngine,
|
|
23
|
+
HasMaxSentenceLengthLimit):
|
|
23
24
|
"""DistilBertForTokenClassification can load Bert Models with a token
|
|
24
25
|
classification head on top (a linear layer on top of the hidden-states
|
|
25
26
|
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
|
@@ -35,7 +36,7 @@ class DistilBertForTokenClassification(AnnotatorModel,
|
|
|
35
36
|
name is provided.
|
|
36
37
|
|
|
37
38
|
For available pretrained models please see the `Models Hub
|
|
38
|
-
<https://
|
|
39
|
+
<https://sparknlp.org/models?task=Named+Entity+Recognition>`__.
|
|
39
40
|
|
|
40
41
|
To see which models are compatible and how to import them see
|
|
41
42
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -96,11 +97,6 @@ class DistilBertForTokenClassification(AnnotatorModel,
|
|
|
96
97
|
|
|
97
98
|
outputAnnotatorType = AnnotatorType.NAMED_ENTITY
|
|
98
99
|
|
|
99
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
100
|
-
"maxSentenceLength",
|
|
101
|
-
"Max sentence length to process",
|
|
102
|
-
typeConverter=TypeConverters.toInt)
|
|
103
|
-
|
|
104
100
|
configProtoBytes = Param(Params._dummy(),
|
|
105
101
|
"configProtoBytes",
|
|
106
102
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -122,16 +118,6 @@ class DistilBertForTokenClassification(AnnotatorModel,
|
|
|
122
118
|
"""
|
|
123
119
|
return self._set(configProtoBytes=b)
|
|
124
120
|
|
|
125
|
-
def setMaxSentenceLength(self, value):
|
|
126
|
-
"""Sets max sentence length to process, by default 128.
|
|
127
|
-
|
|
128
|
-
Parameters
|
|
129
|
-
----------
|
|
130
|
-
value : int
|
|
131
|
-
Max sentence length to process
|
|
132
|
-
"""
|
|
133
|
-
return self._set(maxSentenceLength=value)
|
|
134
|
-
|
|
135
121
|
@keyword_only
|
|
136
122
|
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.DistilBertForTokenClassification",
|
|
137
123
|
java_model=None):
|
|
@@ -0,0 +1,211 @@
|
|
|
1
|
+
# Copyright 2017-2023 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for DistilBertForZeroShotClassification."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class DistilBertForZeroShotClassification(AnnotatorModel,
|
|
20
|
+
HasCaseSensitiveProperties,
|
|
21
|
+
HasBatchedAnnotate,
|
|
22
|
+
HasClassifierActivationProperties,
|
|
23
|
+
HasCandidateLabelsProperties,
|
|
24
|
+
HasEngine,
|
|
25
|
+
HasMaxSentenceLengthLimit):
|
|
26
|
+
"""DistilBertForZeroShotClassification using a `ModelForSequenceClassification` trained on NLI (natural language
|
|
27
|
+
inference) tasks. Equivalent of `DistilBertForSequenceClassification` models, but these models don't require a hardcoded
|
|
28
|
+
number of potential classes, they can be chosen at runtime. It usually means it's slower but it is much more
|
|
29
|
+
flexible.
|
|
30
|
+
|
|
31
|
+
Note that the model will loop through all provided labels. So the more labels you have, the
|
|
32
|
+
longer this process will take.
|
|
33
|
+
|
|
34
|
+
Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis
|
|
35
|
+
pair and passed to the pretrained model.
|
|
36
|
+
|
|
37
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
38
|
+
object:
|
|
39
|
+
|
|
40
|
+
>>> sequenceClassifier = DistilBertForZeroShotClassification.pretrained() \\
|
|
41
|
+
... .setInputCols(["token", "document"]) \\
|
|
42
|
+
... .setOutputCol("label")
|
|
43
|
+
|
|
44
|
+
The default model is ``"distilbert_base_zero_shot_classifier_uncased_mnli"``, if no name is
|
|
45
|
+
provided.
|
|
46
|
+
|
|
47
|
+
For available pretrained models please see the `Models Hub
|
|
48
|
+
<https://sparknlp.orgtask=Text+Classification>`__.
|
|
49
|
+
|
|
50
|
+
To see which models are compatible and how to import them see
|
|
51
|
+
`Import Transformers into Spark NLP 🚀
|
|
52
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
53
|
+
|
|
54
|
+
====================== ======================
|
|
55
|
+
Input Annotation types Output Annotation type
|
|
56
|
+
====================== ======================
|
|
57
|
+
``DOCUMENT, TOKEN`` ``CATEGORY``
|
|
58
|
+
====================== ======================
|
|
59
|
+
|
|
60
|
+
Parameters
|
|
61
|
+
----------
|
|
62
|
+
batchSize
|
|
63
|
+
Batch size. Large values allows faster processing but requires more
|
|
64
|
+
memory, by default 8
|
|
65
|
+
caseSensitive
|
|
66
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
67
|
+
True
|
|
68
|
+
configProtoBytes
|
|
69
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
70
|
+
maxSentenceLength
|
|
71
|
+
Max sentence length to process, by default 128
|
|
72
|
+
coalesceSentences
|
|
73
|
+
Instead of 1 class per sentence (if inputCols is `sentence`) output 1
|
|
74
|
+
class per document by averaging probabilities in all sentences, by
|
|
75
|
+
default False
|
|
76
|
+
activation
|
|
77
|
+
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
78
|
+
`"softmax"`.
|
|
79
|
+
|
|
80
|
+
Examples
|
|
81
|
+
--------
|
|
82
|
+
>>> import sparknlp
|
|
83
|
+
>>> from sparknlp.base import *
|
|
84
|
+
>>> from sparknlp.annotator import *
|
|
85
|
+
>>> from pyspark.ml import Pipeline
|
|
86
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
87
|
+
... .setInputCol("text") \\
|
|
88
|
+
... .setOutputCol("document")
|
|
89
|
+
>>> tokenizer = Tokenizer() \\
|
|
90
|
+
... .setInputCols(["document"]) \\
|
|
91
|
+
... .setOutputCol("token")
|
|
92
|
+
>>> sequenceClassifier = DistilBertForZeroShotClassification.pretrained() \\
|
|
93
|
+
... .setInputCols(["token", "document"]) \\
|
|
94
|
+
... .setOutputCol("label") \\
|
|
95
|
+
... .setCaseSensitive(True)
|
|
96
|
+
>>> pipeline = Pipeline().setStages([
|
|
97
|
+
... documentAssembler,
|
|
98
|
+
... tokenizer,
|
|
99
|
+
... sequenceClassifier
|
|
100
|
+
... ])
|
|
101
|
+
>>> data = spark.createDataFrame([["I loved this movie when I was a child.", "It was pretty boring."]]).toDF("text")
|
|
102
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
103
|
+
>>> result.select("label.result").show(truncate=False)
|
|
104
|
+
+------+
|
|
105
|
+
|result|
|
|
106
|
+
+------+
|
|
107
|
+
|[pos] |
|
|
108
|
+
|[neg] |
|
|
109
|
+
+------+
|
|
110
|
+
"""
|
|
111
|
+
name = "DistilBertForZeroShotClassification"
|
|
112
|
+
|
|
113
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
114
|
+
|
|
115
|
+
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
116
|
+
|
|
117
|
+
configProtoBytes = Param(Params._dummy(),
|
|
118
|
+
"configProtoBytes",
|
|
119
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
120
|
+
TypeConverters.toListInt)
|
|
121
|
+
|
|
122
|
+
coalesceSentences = Param(Params._dummy(), "coalesceSentences",
|
|
123
|
+
"Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.",
|
|
124
|
+
TypeConverters.toBoolean)
|
|
125
|
+
|
|
126
|
+
def getClasses(self):
|
|
127
|
+
"""
|
|
128
|
+
Returns labels used to train this model
|
|
129
|
+
"""
|
|
130
|
+
return self._call_java("getClasses")
|
|
131
|
+
|
|
132
|
+
def setConfigProtoBytes(self, b):
|
|
133
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
134
|
+
|
|
135
|
+
Parameters
|
|
136
|
+
----------
|
|
137
|
+
b : List[int]
|
|
138
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
139
|
+
"""
|
|
140
|
+
return self._set(configProtoBytes=b)
|
|
141
|
+
|
|
142
|
+
def setCoalesceSentences(self, value):
|
|
143
|
+
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging
|
|
144
|
+
probabilities in all sentences. Due to max sequence length limit in almost all transformer models such as DistilBERT
|
|
145
|
+
(512 tokens), this parameter helps to feed all the sentences into the model and averaging all the probabilities
|
|
146
|
+
for the entire document instead of probabilities per sentence. (Default: true)
|
|
147
|
+
|
|
148
|
+
Parameters
|
|
149
|
+
----------
|
|
150
|
+
value : bool
|
|
151
|
+
If the output of all sentences will be averaged to one output
|
|
152
|
+
"""
|
|
153
|
+
return self._set(coalesceSentences=value)
|
|
154
|
+
|
|
155
|
+
@keyword_only
|
|
156
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.DistilBertForZeroShotClassification",
|
|
157
|
+
java_model=None):
|
|
158
|
+
super(DistilBertForZeroShotClassification, self).__init__(
|
|
159
|
+
classname=classname,
|
|
160
|
+
java_model=java_model
|
|
161
|
+
)
|
|
162
|
+
self._setDefault(
|
|
163
|
+
batchSize=8,
|
|
164
|
+
maxSentenceLength=128,
|
|
165
|
+
caseSensitive=True,
|
|
166
|
+
coalesceSentences=False,
|
|
167
|
+
activation="softmax"
|
|
168
|
+
)
|
|
169
|
+
|
|
170
|
+
@staticmethod
|
|
171
|
+
def loadSavedModel(folder, spark_session):
|
|
172
|
+
"""Loads a locally saved model.
|
|
173
|
+
|
|
174
|
+
Parameters
|
|
175
|
+
----------
|
|
176
|
+
folder : str
|
|
177
|
+
Folder of the saved model
|
|
178
|
+
spark_session : pyspark.sql.SparkSession
|
|
179
|
+
The current SparkSession
|
|
180
|
+
|
|
181
|
+
Returns
|
|
182
|
+
-------
|
|
183
|
+
DistilBertForZeroShotClassification
|
|
184
|
+
The restored model
|
|
185
|
+
"""
|
|
186
|
+
from sparknlp.internal import _DistilBertForZeroShotClassification
|
|
187
|
+
jModel = _DistilBertForZeroShotClassification(folder, spark_session._jsparkSession)._java_obj
|
|
188
|
+
return DistilBertForZeroShotClassification(java_model=jModel)
|
|
189
|
+
|
|
190
|
+
@staticmethod
|
|
191
|
+
def pretrained(name="distilbert_base_zero_shot_classifier_uncased_mnli", lang="en", remote_loc=None):
|
|
192
|
+
"""Downloads and loads a pretrained model.
|
|
193
|
+
|
|
194
|
+
Parameters
|
|
195
|
+
----------
|
|
196
|
+
name : str, optional
|
|
197
|
+
Name of the pretrained model, by default
|
|
198
|
+
"distilbert_base_zero_shot_classifier_uncased_mnli"
|
|
199
|
+
lang : str, optional
|
|
200
|
+
Language of the pretrained model, by default "en"
|
|
201
|
+
remote_loc : str, optional
|
|
202
|
+
Optional remote address of the resource, by default None. Will use
|
|
203
|
+
Spark NLPs repositories otherwise.
|
|
204
|
+
|
|
205
|
+
Returns
|
|
206
|
+
-------
|
|
207
|
+
DistilBertForZeroShotClassification
|
|
208
|
+
The restored model
|
|
209
|
+
"""
|
|
210
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
211
|
+
return ResourceDownloader.downloadModel(DistilBertForZeroShotClassification, name, lang, remote_loc)
|
|
@@ -0,0 +1,161 @@
|
|
|
1
|
+
# Copyright 2017-2024 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
class DistilBertForMultipleChoice(AnnotatorModel,
|
|
18
|
+
HasCaseSensitiveProperties,
|
|
19
|
+
HasBatchedAnnotate,
|
|
20
|
+
HasEngine,
|
|
21
|
+
HasMaxSentenceLengthLimit):
|
|
22
|
+
"""DistilBertForMultipleChoice can load DistilBert Models with a multiple choice classification head on top
|
|
23
|
+
(a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
|
|
24
|
+
|
|
25
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
26
|
+
object:
|
|
27
|
+
|
|
28
|
+
>>> spanClassifier = DistilBertForMultipleChoice.pretrained() \\
|
|
29
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
30
|
+
... .setOutputCol("answer")
|
|
31
|
+
|
|
32
|
+
The default model is ``"bert_base_uncased_multiple_choice"``, if no name is
|
|
33
|
+
provided.
|
|
34
|
+
|
|
35
|
+
For available pretrained models please see the `Models Hub
|
|
36
|
+
<https://sparknlp.org/models?task=Multiple+Choice>`__.
|
|
37
|
+
|
|
38
|
+
To see which models are compatible and how to import them see
|
|
39
|
+
`Import Transformers into Spark NLP 🚀
|
|
40
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
41
|
+
|
|
42
|
+
====================== ======================
|
|
43
|
+
Input Annotation types Output Annotation type
|
|
44
|
+
====================== ======================
|
|
45
|
+
``DOCUMENT, DOCUMENT`` ``CHUNK``
|
|
46
|
+
====================== ======================
|
|
47
|
+
|
|
48
|
+
Parameters
|
|
49
|
+
----------
|
|
50
|
+
batchSize
|
|
51
|
+
Batch size. Large values allows faster processing but requires more
|
|
52
|
+
memory, by default 8
|
|
53
|
+
caseSensitive
|
|
54
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
55
|
+
False
|
|
56
|
+
maxSentenceLength
|
|
57
|
+
Max sentence length to process, by default 512
|
|
58
|
+
|
|
59
|
+
Examples
|
|
60
|
+
--------
|
|
61
|
+
>>> import sparknlp
|
|
62
|
+
>>> from sparknlp.base import *
|
|
63
|
+
>>> from sparknlp.annotator import *
|
|
64
|
+
>>> from pyspark.ml import Pipeline
|
|
65
|
+
>>> documentAssembler = MultiDocumentAssembler() \\
|
|
66
|
+
... .setInputCols(["question", "context"]) \\
|
|
67
|
+
... .setOutputCols(["document_question", "document_context"])
|
|
68
|
+
>>> questionAnswering = DistilBertForMultipleChoice.pretrained() \\
|
|
69
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
70
|
+
... .setOutputCol("answer") \\
|
|
71
|
+
... .setCaseSensitive(False)
|
|
72
|
+
>>> pipeline = Pipeline().setStages([
|
|
73
|
+
... documentAssembler,
|
|
74
|
+
... questionAnswering
|
|
75
|
+
... ])
|
|
76
|
+
>>> data = spark.createDataFrame([["The Eiffel Tower is located in which country??", "Germany, France, Italy"]]).toDF("question", "context")
|
|
77
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
78
|
+
>>> result.select("answer.result").show(truncate=False)
|
|
79
|
+
+--------------------+
|
|
80
|
+
|result |
|
|
81
|
+
+--------------------+
|
|
82
|
+
|[France] |
|
|
83
|
+
+--------------------+
|
|
84
|
+
"""
|
|
85
|
+
name = "DistilBertForMultipleChoice"
|
|
86
|
+
|
|
87
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.DOCUMENT]
|
|
88
|
+
|
|
89
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
90
|
+
|
|
91
|
+
choicesDelimiter = Param(Params._dummy(),
|
|
92
|
+
"choicesDelimiter",
|
|
93
|
+
"Delimiter character use to split the choices",
|
|
94
|
+
TypeConverters.toString)
|
|
95
|
+
|
|
96
|
+
def setChoicesDelimiter(self, value):
|
|
97
|
+
"""Sets delimiter character use to split the choices
|
|
98
|
+
|
|
99
|
+
Parameters
|
|
100
|
+
----------
|
|
101
|
+
value : string
|
|
102
|
+
Delimiter character use to split the choices
|
|
103
|
+
"""
|
|
104
|
+
return self._set(caseSensitive=value)
|
|
105
|
+
|
|
106
|
+
@keyword_only
|
|
107
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.DistilBertForMultipleChoice",
|
|
108
|
+
java_model=None):
|
|
109
|
+
super(DistilBertForMultipleChoice, self).__init__(
|
|
110
|
+
classname=classname,
|
|
111
|
+
java_model=java_model
|
|
112
|
+
)
|
|
113
|
+
self._setDefault(
|
|
114
|
+
batchSize=4,
|
|
115
|
+
maxSentenceLength=512,
|
|
116
|
+
caseSensitive=False,
|
|
117
|
+
choicesDelimiter = ","
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
@staticmethod
|
|
121
|
+
def loadSavedModel(folder, spark_session):
|
|
122
|
+
"""Loads a locally saved model.
|
|
123
|
+
|
|
124
|
+
Parameters
|
|
125
|
+
----------
|
|
126
|
+
folder : str
|
|
127
|
+
Folder of the saved model
|
|
128
|
+
spark_session : pyspark.sql.SparkSession
|
|
129
|
+
The current SparkSession
|
|
130
|
+
|
|
131
|
+
Returns
|
|
132
|
+
-------
|
|
133
|
+
DistilBertForMultipleChoice
|
|
134
|
+
The restored model
|
|
135
|
+
"""
|
|
136
|
+
from sparknlp.internal import _DistilBertMultipleChoiceLoader
|
|
137
|
+
jModel = _DistilBertMultipleChoiceLoader(folder, spark_session._jsparkSession)._java_obj
|
|
138
|
+
return DistilBertForMultipleChoice(java_model=jModel)
|
|
139
|
+
|
|
140
|
+
@staticmethod
|
|
141
|
+
def pretrained(name="distilbert_base_uncased_multiple_choice", lang="en", remote_loc=None):
|
|
142
|
+
"""Downloads and loads a pretrained model.
|
|
143
|
+
|
|
144
|
+
Parameters
|
|
145
|
+
----------
|
|
146
|
+
name : str, optional
|
|
147
|
+
Name of the pretrained model, by default
|
|
148
|
+
"bert_base_uncased_multiple_choice"
|
|
149
|
+
lang : str, optional
|
|
150
|
+
Language of the pretrained model, by default "en"
|
|
151
|
+
remote_loc : str, optional
|
|
152
|
+
Optional remote address of the resource, by default None. Will use
|
|
153
|
+
Spark NLPs repositories otherwise.
|
|
154
|
+
|
|
155
|
+
Returns
|
|
156
|
+
-------
|
|
157
|
+
DistilBertForMultipleChoice
|
|
158
|
+
The restored model
|
|
159
|
+
"""
|
|
160
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
161
|
+
return ResourceDownloader.downloadModel(DistilBertForMultipleChoice, name, lang, remote_loc)
|
|
@@ -18,7 +18,8 @@ from sparknlp.common import *
|
|
|
18
18
|
class LongformerForQuestionAnswering(AnnotatorModel,
|
|
19
19
|
HasCaseSensitiveProperties,
|
|
20
20
|
HasBatchedAnnotate,
|
|
21
|
-
HasEngine
|
|
21
|
+
HasEngine,
|
|
22
|
+
HasLongMaxSentenceLengthLimit):
|
|
22
23
|
"""LongformerForQuestionAnswering can load Longformer Models with a span classification head on top for extractive
|
|
23
24
|
question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start
|
|
24
25
|
logits and span end logits).
|
|
@@ -34,7 +35,7 @@ class LongformerForQuestionAnswering(AnnotatorModel,
|
|
|
34
35
|
provided.
|
|
35
36
|
|
|
36
37
|
For available pretrained models please see the `Models Hub
|
|
37
|
-
<https://
|
|
38
|
+
<https://sparknlp.org/models?task=Question+Answering>`__.
|
|
38
39
|
|
|
39
40
|
To see which models are compatible and how to import them see
|
|
40
41
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -91,11 +92,6 @@ class LongformerForQuestionAnswering(AnnotatorModel,
|
|
|
91
92
|
|
|
92
93
|
outputAnnotatorType = AnnotatorType.CHUNK
|
|
93
94
|
|
|
94
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
95
|
-
"maxSentenceLength",
|
|
96
|
-
"Max sentence length to process",
|
|
97
|
-
typeConverter=TypeConverters.toInt)
|
|
98
|
-
|
|
99
95
|
configProtoBytes = Param(Params._dummy(),
|
|
100
96
|
"configProtoBytes",
|
|
101
97
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -115,16 +111,6 @@ class LongformerForQuestionAnswering(AnnotatorModel,
|
|
|
115
111
|
"""
|
|
116
112
|
return self._set(configProtoBytes=b)
|
|
117
113
|
|
|
118
|
-
def setMaxSentenceLength(self, value):
|
|
119
|
-
"""Sets max sentence length to process, by default 128.
|
|
120
|
-
|
|
121
|
-
Parameters
|
|
122
|
-
----------
|
|
123
|
-
value : int
|
|
124
|
-
Max sentence length to process
|
|
125
|
-
"""
|
|
126
|
-
return self._set(maxSentenceLength=value)
|
|
127
|
-
|
|
128
114
|
@keyword_only
|
|
129
115
|
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.LongformerForQuestionAnswering",
|
|
130
116
|
java_model=None):
|
|
@@ -20,7 +20,8 @@ class LongformerForSequenceClassification(AnnotatorModel,
|
|
|
20
20
|
HasCaseSensitiveProperties,
|
|
21
21
|
HasBatchedAnnotate,
|
|
22
22
|
HasClassifierActivationProperties,
|
|
23
|
-
HasEngine
|
|
23
|
+
HasEngine,
|
|
24
|
+
HasLongMaxSentenceLengthLimit):
|
|
24
25
|
"""LongformerForSequenceClassification can load Longformer Models with sequence classification/regression head on
|
|
25
26
|
top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.
|
|
26
27
|
|
|
@@ -35,7 +36,7 @@ class LongformerForSequenceClassification(AnnotatorModel,
|
|
|
35
36
|
provided.
|
|
36
37
|
|
|
37
38
|
For available pretrained models please see the `Models Hub
|
|
38
|
-
<https://
|
|
39
|
+
<https://sparknlp.org/models?task=Text+Classification>`__.
|
|
39
40
|
|
|
40
41
|
To see which models are compatible and how to import them see
|
|
41
42
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -61,7 +62,7 @@ class LongformerForSequenceClassification(AnnotatorModel,
|
|
|
61
62
|
Max sentence length to process, by default 4096
|
|
62
63
|
coalesceSentences
|
|
63
64
|
Instead of 1 class per sentence (if inputCols is `sentence`) output
|
|
64
|
-
1 class per document by averaging probabilities in all sentences, by
|
|
65
|
+
1 class per document by averaging probabilities in all sentences, by
|
|
65
66
|
default False.
|
|
66
67
|
activation
|
|
67
68
|
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
@@ -104,11 +105,6 @@ class LongformerForSequenceClassification(AnnotatorModel,
|
|
|
104
105
|
|
|
105
106
|
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
106
107
|
|
|
107
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
108
|
-
"maxSentenceLength",
|
|
109
|
-
"Max sentence length to process",
|
|
110
|
-
typeConverter=TypeConverters.toInt)
|
|
111
|
-
|
|
112
108
|
configProtoBytes = Param(Params._dummy(),
|
|
113
109
|
"configProtoBytes",
|
|
114
110
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -134,16 +130,6 @@ class LongformerForSequenceClassification(AnnotatorModel,
|
|
|
134
130
|
"""
|
|
135
131
|
return self._set(configProtoBytes=b)
|
|
136
132
|
|
|
137
|
-
def setMaxSentenceLength(self, value):
|
|
138
|
-
"""Sets max sentence length to process, by default 128.
|
|
139
|
-
|
|
140
|
-
Parameters
|
|
141
|
-
----------
|
|
142
|
-
value : int
|
|
143
|
-
Max sentence length to process
|
|
144
|
-
"""
|
|
145
|
-
return self._set(maxSentenceLength=value)
|
|
146
|
-
|
|
147
133
|
def setCoalesceSentences(self, value):
|
|
148
134
|
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.
|
|
149
135
|
Due to max sequence length limit in almost all transformer models such as BERT (512 tokens), this parameter helps feeding all the sentences
|
|
@@ -19,7 +19,8 @@ from sparknlp.common import *
|
|
|
19
19
|
class LongformerForTokenClassification(AnnotatorModel,
|
|
20
20
|
HasCaseSensitiveProperties,
|
|
21
21
|
HasBatchedAnnotate,
|
|
22
|
-
HasEngine
|
|
22
|
+
HasEngine,
|
|
23
|
+
HasLongMaxSentenceLengthLimit):
|
|
23
24
|
"""LongformerForTokenClassification can load Longformer Models with a token
|
|
24
25
|
classification head on top (a linear layer on top of the hidden-states
|
|
25
26
|
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
|
@@ -35,7 +36,7 @@ class LongformerForTokenClassification(AnnotatorModel,
|
|
|
35
36
|
provided.
|
|
36
37
|
|
|
37
38
|
For available pretrained models please see the `Models Hub
|
|
38
|
-
<https://
|
|
39
|
+
<https://sparknlp.org/models?task=Named+Entity+Recognition>`__.
|
|
39
40
|
|
|
40
41
|
To see which models are compatible and how to import them see
|
|
41
42
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -97,11 +98,6 @@ class LongformerForTokenClassification(AnnotatorModel,
|
|
|
97
98
|
|
|
98
99
|
outputAnnotatorType = AnnotatorType.NAMED_ENTITY
|
|
99
100
|
|
|
100
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
101
|
-
"maxSentenceLength",
|
|
102
|
-
"Max sentence length to process",
|
|
103
|
-
typeConverter=TypeConverters.toInt)
|
|
104
|
-
|
|
105
101
|
configProtoBytes = Param(Params._dummy(),
|
|
106
102
|
"configProtoBytes",
|
|
107
103
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -123,16 +119,6 @@ class LongformerForTokenClassification(AnnotatorModel,
|
|
|
123
119
|
"""
|
|
124
120
|
return self._set(configProtoBytes=b)
|
|
125
121
|
|
|
126
|
-
def setMaxSentenceLength(self, value):
|
|
127
|
-
"""Sets max sentence length to process, by default 128.
|
|
128
|
-
|
|
129
|
-
Parameters
|
|
130
|
-
----------
|
|
131
|
-
value : int
|
|
132
|
-
Max sentence length to process
|
|
133
|
-
"""
|
|
134
|
-
return self._set(maxSentenceLength=value)
|
|
135
|
-
|
|
136
122
|
@keyword_only
|
|
137
123
|
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.LongformerForTokenClassification",
|
|
138
124
|
java_model=None):
|