spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (221) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  4. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  5. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  6. sparknlp/__init__.py +81 -28
  7. sparknlp/annotation.py +3 -2
  8. sparknlp/annotator/__init__.py +6 -0
  9. sparknlp/annotator/audio/__init__.py +2 -0
  10. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  11. sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
  12. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  13. sparknlp/{base → annotator}/chunk2_doc.py +4 -7
  14. sparknlp/annotator/chunker.py +1 -2
  15. sparknlp/annotator/classifier_dl/__init__.py +17 -0
  16. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  17. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
  18. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
  19. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
  20. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  21. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  22. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  23. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
  24. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
  25. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
  26. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  27. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  28. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
  29. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
  30. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  31. sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
  32. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
  33. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
  34. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
  35. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  36. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
  37. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
  38. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
  39. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  40. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  41. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
  42. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
  43. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
  44. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  45. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  46. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  47. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
  48. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  49. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
  50. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
  51. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
  52. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  53. sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
  54. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
  55. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  56. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
  57. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  60. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
  61. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
  62. sparknlp/annotator/cleaners/__init__.py +15 -0
  63. sparknlp/annotator/cleaners/cleaner.py +202 -0
  64. sparknlp/annotator/cleaners/extractor.py +191 -0
  65. sparknlp/annotator/coref/spanbert_coref.py +4 -18
  66. sparknlp/annotator/cv/__init__.py +15 -0
  67. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  68. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  69. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  70. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  71. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  72. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  73. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  74. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  75. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  76. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  77. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  78. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  79. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  80. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  81. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  82. sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
  83. sparknlp/annotator/dataframe_optimizer.py +216 -0
  84. sparknlp/annotator/date2_chunk.py +88 -0
  85. sparknlp/annotator/dependency/dependency_parser.py +2 -3
  86. sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
  87. sparknlp/annotator/document_character_text_splitter.py +228 -0
  88. sparknlp/annotator/document_normalizer.py +37 -1
  89. sparknlp/annotator/document_token_splitter.py +175 -0
  90. sparknlp/annotator/document_token_splitter_test.py +85 -0
  91. sparknlp/annotator/embeddings/__init__.py +11 -0
  92. sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
  93. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  94. sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
  95. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
  96. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  97. sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
  98. sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
  99. sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
  100. sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
  101. sparknlp/annotator/embeddings/doc2vec.py +7 -1
  102. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  103. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  104. sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
  105. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  106. sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
  107. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  108. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  109. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  110. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  111. sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
  112. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
  113. sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
  114. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  115. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  116. sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
  117. sparknlp/annotator/embeddings/word2vec.py +7 -1
  118. sparknlp/annotator/embeddings/word_embeddings.py +4 -5
  119. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
  120. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
  121. sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
  122. sparknlp/annotator/er/entity_ruler.py +37 -23
  123. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
  124. sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
  125. sparknlp/annotator/lemmatizer.py +3 -4
  126. sparknlp/annotator/matcher/date_matcher.py +35 -3
  127. sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
  128. sparknlp/annotator/matcher/regex_matcher.py +3 -3
  129. sparknlp/annotator/matcher/text_matcher.py +2 -3
  130. sparknlp/annotator/n_gram_generator.py +1 -2
  131. sparknlp/annotator/ner/__init__.py +3 -1
  132. sparknlp/annotator/ner/ner_converter.py +18 -0
  133. sparknlp/annotator/ner/ner_crf.py +4 -5
  134. sparknlp/annotator/ner/ner_dl.py +10 -5
  135. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  136. sparknlp/annotator/ner/ner_overwriter.py +2 -2
  137. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  138. sparknlp/annotator/normalizer.py +2 -2
  139. sparknlp/annotator/openai/__init__.py +16 -0
  140. sparknlp/annotator/openai/openai_completion.py +349 -0
  141. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  142. sparknlp/annotator/pos/perceptron.py +6 -7
  143. sparknlp/annotator/sentence/sentence_detector.py +2 -2
  144. sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
  145. sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
  146. sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
  147. sparknlp/annotator/seq2seq/__init__.py +17 -0
  148. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  149. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  150. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  151. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  152. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  153. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  154. sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
  155. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  156. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  157. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  158. sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
  159. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  160. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  161. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  162. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  163. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  164. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  165. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  166. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  167. sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
  168. sparknlp/annotator/similarity/__init__.py +0 -0
  169. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  170. sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
  171. sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
  172. sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
  173. sparknlp/annotator/stemmer.py +2 -3
  174. sparknlp/annotator/stop_words_cleaner.py +3 -4
  175. sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
  176. sparknlp/annotator/token/__init__.py +0 -1
  177. sparknlp/annotator/token/recursive_tokenizer.py +2 -3
  178. sparknlp/annotator/token/tokenizer.py +2 -3
  179. sparknlp/annotator/ws/word_segmenter.py +35 -10
  180. sparknlp/base/__init__.py +2 -3
  181. sparknlp/base/doc2_chunk.py +0 -3
  182. sparknlp/base/document_assembler.py +5 -5
  183. sparknlp/base/embeddings_finisher.py +14 -2
  184. sparknlp/base/finisher.py +15 -4
  185. sparknlp/base/gguf_ranking_finisher.py +234 -0
  186. sparknlp/base/image_assembler.py +69 -0
  187. sparknlp/base/light_pipeline.py +53 -21
  188. sparknlp/base/multi_document_assembler.py +9 -13
  189. sparknlp/base/prompt_assembler.py +207 -0
  190. sparknlp/base/token_assembler.py +1 -2
  191. sparknlp/common/__init__.py +2 -0
  192. sparknlp/common/annotator_type.py +1 -0
  193. sparknlp/common/completion_post_processing.py +37 -0
  194. sparknlp/common/match_strategy.py +33 -0
  195. sparknlp/common/properties.py +914 -9
  196. sparknlp/internal/__init__.py +841 -116
  197. sparknlp/internal/annotator_java_ml.py +1 -1
  198. sparknlp/internal/annotator_transformer.py +3 -0
  199. sparknlp/logging/comet.py +2 -2
  200. sparknlp/partition/__init__.py +16 -0
  201. sparknlp/partition/partition.py +244 -0
  202. sparknlp/partition/partition_properties.py +902 -0
  203. sparknlp/partition/partition_transformer.py +200 -0
  204. sparknlp/pretrained/pretrained_pipeline.py +1 -1
  205. sparknlp/pretrained/resource_downloader.py +126 -2
  206. sparknlp/reader/__init__.py +15 -0
  207. sparknlp/reader/enums.py +19 -0
  208. sparknlp/reader/pdf_to_text.py +190 -0
  209. sparknlp/reader/reader2doc.py +124 -0
  210. sparknlp/reader/reader2image.py +136 -0
  211. sparknlp/reader/reader2table.py +44 -0
  212. sparknlp/reader/reader_assembler.py +159 -0
  213. sparknlp/reader/sparknlp_reader.py +461 -0
  214. sparknlp/training/__init__.py +1 -0
  215. sparknlp/training/conll.py +8 -2
  216. sparknlp/training/spacy_to_annotation.py +57 -0
  217. sparknlp/util.py +26 -0
  218. spark_nlp-4.2.6.dist-info/METADATA +0 -1256
  219. spark_nlp-4.2.6.dist-info/RECORD +0 -196
  220. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
  221. /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
@@ -0,0 +1,328 @@
1
+ # Copyright 2017-2024 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from sparknlp.common import *
16
+
17
+ class Phi3Vision(AnnotatorModel,
18
+ HasBatchedAnnotateImage,
19
+ HasImageFeatureProperties,
20
+ HasEngine,
21
+ HasCandidateLabelsProperties,
22
+ HasRescaleFactor):
23
+ """Phi3Vision can load Phi3Vision models for visual question answering.
24
+ The model consists of a vision encoder, a text encoder as well as a text decoder.
25
+ The vision encoder will encode the input image, the text encoder will encode the input question together
26
+ with the encoding of the image, and the text decoder will output the answer to the question.
27
+
28
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
29
+ object:
30
+
31
+ >>> visualQAClassifier = Phi3Vision.pretrained() \\
32
+ ... .setInputCols(["image_assembler"]) \\
33
+ ... .setOutputCol("answer")
34
+
35
+ The default model is ``"phi_3_vision_128k_instruct"``, if no name is
36
+ provided.
37
+
38
+ For available pretrained models please see the `Models Hub
39
+ <https://sparknlp.org/models?task=Question+Answering>`__.
40
+
41
+ To see which models are compatible and how to import them see
42
+ `Import Transformers into Spark NLP 🚀
43
+ <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
44
+
45
+ ====================== ======================
46
+ Input Annotation types Output Annotation type
47
+ ====================== ======================
48
+ ``IMAGE`` ``DOCUMENT``
49
+ ====================== ======================
50
+
51
+ Parameters
52
+ ----------
53
+ batchSize
54
+ Batch size. Large values allows faster processing but requires more
55
+ memory, by default 2
56
+ configProtoBytes
57
+ ConfigProto from tensorflow, serialized into byte array.
58
+ maxSentenceLength
59
+ Max sentence length to process, by default 50
60
+
61
+ Examples
62
+ --------
63
+ >>> import sparknlp
64
+ >>> from sparknlp.base import *
65
+ >>> from sparknlp.annotator import *
66
+ >>> from pyspark.ml import Pipeline
67
+ >>> image_df = SparkSessionForTest.spark.read.format("image").load(path=images_path)
68
+ >>> test_df = image_df.withColumn("text", lit("<|user|> \\n <|image_1|> \\nWhat is unusual on this picture? <|end|>\\n <|assistant|>\\n"))
69
+ >>> imageAssembler = ImageAssembler() \\
70
+ ... .setInputCol("image") \\
71
+ ... .setOutputCol("image_assembler")
72
+ >>> visualQAClassifier = Phi3Vision.pretrained("phi_3_vision_128k_instruct","en") \\
73
+ ... .setInputCols("image_assembler") \\
74
+ ... .setOutputCol("answer")
75
+ >>> pipeline = Pipeline().setStages([
76
+ ... imageAssembler,
77
+ ... visualQAClassifier
78
+ ... ])
79
+ >>> result = pipeline.fit(test_df).transform(test_df)
80
+ >>> result.select("image_assembler.origin", "answer.result").show(false)
81
+ +--------------------------------------+------+
82
+ |origin |result|
83
+ +--------------------------------------+------+
84
+ |[file:///content/images/cat_image.jpg]|[The unusual aspect of this picture is the presence of two cats lying on a pink couch]|
85
+ +--------------------------------------+------+
86
+ """
87
+
88
+ name = "Phi3Vision"
89
+
90
+ inputAnnotatorTypes = [AnnotatorType.IMAGE]
91
+
92
+ outputAnnotatorType = AnnotatorType.DOCUMENT
93
+
94
+ configProtoBytes = Param(Params._dummy(),
95
+ "configProtoBytes",
96
+ "ConfigProto from tensorflow, serialized into byte array. Get with "
97
+ "config_proto.SerializeToString()",
98
+ TypeConverters.toListInt)
99
+
100
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
101
+ typeConverter=TypeConverters.toInt)
102
+
103
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
104
+ typeConverter=TypeConverters.toInt)
105
+
106
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
107
+ typeConverter=TypeConverters.toBoolean)
108
+
109
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
110
+ typeConverter=TypeConverters.toFloat)
111
+
112
+ topK = Param(Params._dummy(), "topK",
113
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
114
+ typeConverter=TypeConverters.toInt)
115
+
116
+ topP = Param(Params._dummy(), "topP",
117
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
118
+ typeConverter=TypeConverters.toFloat)
119
+
120
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
121
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
122
+ typeConverter=TypeConverters.toFloat)
123
+
124
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
125
+ "If set to int > 0, all ngrams of that size can only occur once",
126
+ typeConverter=TypeConverters.toInt)
127
+
128
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
129
+ "A list of token ids which are ignored in the decoder's output",
130
+ typeConverter=TypeConverters.toListInt)
131
+ beamSize = Param(Params._dummy(), "beamSize",
132
+ "The Number of beams for beam search.",
133
+ typeConverter=TypeConverters.toInt)
134
+
135
+ def setMaxSentenceSize(self, value):
136
+ """Sets Maximum sentence length that the annotator will process, by
137
+ default 50.
138
+
139
+ Parameters
140
+ ----------
141
+ value : int
142
+ Maximum sentence length that the annotator will process
143
+ """
144
+ return self._set(maxSentenceLength=value)
145
+
146
+ def setIgnoreTokenIds(self, value):
147
+ """A list of token ids which are ignored in the decoder's output.
148
+
149
+ Parameters
150
+ ----------
151
+ value : List[int]
152
+ The words to be filtered out
153
+ """
154
+ return self._set(ignoreTokenIds=value)
155
+
156
+ def setConfigProtoBytes(self, b):
157
+ """Sets configProto from tensorflow, serialized into byte array.
158
+
159
+ Parameters
160
+ ----------
161
+ b : List[int]
162
+ ConfigProto from tensorflow, serialized into byte array
163
+ """
164
+ return self._set(configProtoBytes=b)
165
+
166
+ def setMinOutputLength(self, value):
167
+ """Sets minimum length of the sequence to be generated.
168
+
169
+ Parameters
170
+ ----------
171
+ value : int
172
+ Minimum length of the sequence to be generated
173
+ """
174
+ return self._set(minOutputLength=value)
175
+
176
+ def setMaxOutputLength(self, value):
177
+ """Sets maximum length of output text.
178
+
179
+ Parameters
180
+ ----------
181
+ value : int
182
+ Maximum length of output text
183
+ """
184
+ return self._set(maxOutputLength=value)
185
+
186
+ def setDoSample(self, value):
187
+ """Sets whether or not to use sampling, use greedy decoding otherwise.
188
+
189
+ Parameters
190
+ ----------
191
+ value : bool
192
+ Whether or not to use sampling; use greedy decoding otherwise
193
+ """
194
+ return self._set(doSample=value)
195
+
196
+ def setTemperature(self, value):
197
+ """Sets the value used to module the next token probabilities.
198
+
199
+ Parameters
200
+ ----------
201
+ value : float
202
+ The value used to module the next token probabilities
203
+ """
204
+ return self._set(temperature=value)
205
+
206
+ def setTopK(self, value):
207
+ """Sets the number of highest probability vocabulary tokens to keep for
208
+ top-k-filtering.
209
+
210
+ Parameters
211
+ ----------
212
+ value : int
213
+ Number of highest probability vocabulary tokens to keep
214
+ """
215
+ return self._set(topK=value)
216
+
217
+ def setTopP(self, value):
218
+ """Sets the top cumulative probability for vocabulary tokens.
219
+
220
+ If set to float < 1, only the most probable tokens with probabilities
221
+ that add up to ``topP`` or higher are kept for generation.
222
+
223
+ Parameters
224
+ ----------
225
+ value : float
226
+ Cumulative probability for vocabulary tokens
227
+ """
228
+ return self._set(topP=value)
229
+
230
+ def setRepetitionPenalty(self, value):
231
+ """Sets the parameter for repetition penalty. 1.0 means no penalty.
232
+
233
+ Parameters
234
+ ----------
235
+ value : float
236
+ The repetition penalty
237
+
238
+ References
239
+ ----------
240
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
241
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
242
+ """
243
+ return self._set(repetitionPenalty=value)
244
+
245
+ def setNoRepeatNgramSize(self, value):
246
+ """Sets size of n-grams that can only occur once.
247
+
248
+ If set to int > 0, all ngrams of that size can only occur once.
249
+
250
+ Parameters
251
+ ----------
252
+ value : int
253
+ N-gram size can only occur once
254
+ """
255
+ return self._set(noRepeatNgramSize=value)
256
+
257
+ def setBeamSize(self, value):
258
+ """Sets the number of beam size for beam search, by default `4`.
259
+
260
+ Parameters
261
+ ----------
262
+ value : int
263
+ Number of beam size for beam search
264
+ """
265
+ return self._set(beamSize=value)
266
+ @keyword_only
267
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.Phi3Vision",
268
+ java_model=None):
269
+ super(Phi3Vision, self).__init__(
270
+ classname=classname,
271
+ java_model=java_model
272
+ )
273
+ self._setDefault(
274
+ batchSize=2,
275
+ minOutputLength=0,
276
+ maxOutputLength=200,
277
+ doSample=False,
278
+ temperature=1,
279
+ topK=50,
280
+ topP=1,
281
+ repetitionPenalty=1.0,
282
+ noRepeatNgramSize=0,
283
+ ignoreTokenIds=[],
284
+ beamSize=1,
285
+ )
286
+
287
+ @staticmethod
288
+ def loadSavedModel(folder, spark_session, use_openvino=False):
289
+ """Loads a locally saved model.
290
+
291
+ Parameters
292
+ ----------
293
+ folder : str
294
+ Folder of the saved model
295
+ spark_session : pyspark.sql.SparkSession
296
+ The current SparkSession
297
+
298
+ Returns
299
+ -------
300
+ CLIPForZeroShotClassification
301
+ The restored model
302
+ """
303
+ from sparknlp.internal import _Phi3VisionLoader
304
+ jModel = _Phi3VisionLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
305
+ return Phi3Vision(java_model=jModel)
306
+
307
+ @staticmethod
308
+ def pretrained(name="phi_3_vision_128k_instruct", lang="en", remote_loc=None):
309
+ """Downloads and loads a pretrained model.
310
+
311
+ Parameters
312
+ ----------
313
+ name : str, optional
314
+ Name of the pretrained model, by default
315
+ "phi3v"
316
+ lang : str, optional
317
+ Language of the pretrained model, by default "en"
318
+ remote_loc : str, optional
319
+ Optional remote address of the resource, by default None. Will use
320
+ Spark NLPs repositories otherwise.
321
+
322
+ Returns
323
+ -------
324
+ CLIPForZeroShotClassification
325
+ The restored model
326
+ """
327
+ from sparknlp.pretrained import ResourceDownloader
328
+ return ResourceDownloader.downloadModel(Phi3Vision, name, lang, remote_loc)
@@ -0,0 +1,332 @@
1
+ # Copyright 2017-2024 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from sparknlp.common import *
16
+
17
+ class Qwen2VLTransformer(AnnotatorModel,
18
+ HasBatchedAnnotateImage,
19
+ HasImageFeatureProperties,
20
+ HasEngine,
21
+ HasCandidateLabelsProperties,
22
+ HasRescaleFactor):
23
+ """
24
+ Qwen2VLTransformer can load Qwen2 Vision-Language models for visual question answering
25
+ and multimodal instruction following. The model consists of a vision encoder, a text encoder,
26
+ and a text decoder. The vision encoder processes the input image, the text encoder integrates
27
+ the encoding of the image with the input text, and the text decoder outputs the response to
28
+ the query or instruction.
29
+
30
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion object:
31
+
32
+ >>> visualQAClassifier = Qwen2VLTransformer.pretrained() \\
33
+ ... .setInputCols(["image_assembler"]) \\
34
+ ... .setOutputCol("answer")
35
+
36
+ The default model is ``"qwen2_vl_2b_instruct_int4"``, if no name is provided.
37
+
38
+ For available pretrained models, please see the `Models Hub
39
+ <https://sparknlp.org/models?task=Question+Answering>`__.
40
+
41
+ Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. To
42
+ see which models are compatible and how to import them, see
43
+ `Import Transformers into Spark NLP 🚀
44
+ <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`__. For more extended examples, see
45
+ `Spark NLP Test Suite for Qwen2VLTransformer
46
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/python/test_Qwen2VLTransformer.py>`__.
47
+
48
+ ====================== ======================
49
+ Input Annotation types Output Annotation type
50
+ ====================== ======================
51
+ ``IMAGE`` ``DOCUMENT``
52
+ ====================== ======================
53
+
54
+ Parameters
55
+ ----------
56
+ batchSize
57
+ Batch size. Large values allow faster processing but require more memory,
58
+ by default 2
59
+ configProtoBytes
60
+ ConfigProto from TensorFlow, serialized into byte array.
61
+ maxSentenceLength
62
+ Max sentence length to process, by default 50
63
+
64
+ Examples
65
+ --------
66
+ >>> import sparknlp
67
+ >>> from sparknlp.base import *
68
+ >>> from sparknlp.annotator import *
69
+ >>> from pyspark.ml import Pipeline
70
+ >>> image_df = SparkSessionForTest.spark.read.format("image").load(path=images_path)
71
+ >>> test_df = image_df.withColumn("text", lit("<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n<|im_start|>user\\n<|vision_start|><|image_pad|><|vision_end|>Describe this image.<|im_end|>\\n<|im_start|>assistant\\n"))
72
+ >>> imageAssembler = ImageAssembler() \\
73
+ ... .setInputCol("image") \\
74
+ ... .setOutputCol("image_assembler")
75
+ >>> visualQAClassifier = Qwen2VLTransformer.pretrained() \\
76
+ ... .setInputCols("image_assembler") \\
77
+ ... .setOutputCol("answer")
78
+ >>> pipeline = Pipeline().setStages([
79
+ ... imageAssembler,
80
+ ... visualQAClassifier
81
+ ... ])
82
+ >>> result = pipeline.fit(test_df).transform(test_df)
83
+ >>> result.select("image_assembler.origin", "answer.result").show(false)
84
+ +--------------------------------------+------+
85
+ |origin |result|
86
+ +--------------------------------------+------+
87
+ |[file:///content/images/cat_image.jpg]|[This image is unusual because it features two cats lying on a pink couch.]|
88
+ +--------------------------------------+------+
89
+ """
90
+
91
+
92
+ name = "Qwen2VLTransformer"
93
+
94
+ inputAnnotatorTypes = [AnnotatorType.IMAGE]
95
+
96
+ outputAnnotatorType = AnnotatorType.DOCUMENT
97
+
98
+ configProtoBytes = Param(Params._dummy(),
99
+ "configProtoBytes",
100
+ "ConfigProto from tensorflow, serialized into byte array. Get with "
101
+ "config_proto.SerializeToString()",
102
+ TypeConverters.toListInt)
103
+
104
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
105
+ typeConverter=TypeConverters.toInt)
106
+
107
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
108
+ typeConverter=TypeConverters.toInt)
109
+
110
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
111
+ typeConverter=TypeConverters.toBoolean)
112
+
113
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
114
+ typeConverter=TypeConverters.toFloat)
115
+
116
+ topK = Param(Params._dummy(), "topK",
117
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
118
+ typeConverter=TypeConverters.toInt)
119
+
120
+ topP = Param(Params._dummy(), "topP",
121
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
122
+ typeConverter=TypeConverters.toFloat)
123
+
124
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
125
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
126
+ typeConverter=TypeConverters.toFloat)
127
+
128
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
129
+ "If set to int > 0, all ngrams of that size can only occur once",
130
+ typeConverter=TypeConverters.toInt)
131
+
132
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
133
+ "A list of token ids which are ignored in the decoder's output",
134
+ typeConverter=TypeConverters.toListInt)
135
+ beamSize = Param(Params._dummy(), "beamSize",
136
+ "The Number of beams for beam search.",
137
+ typeConverter=TypeConverters.toInt)
138
+
139
+ def setMaxSentenceSize(self, value):
140
+ """Sets Maximum sentence length that the annotator will process, by
141
+ default 50.
142
+
143
+ Parameters
144
+ ----------
145
+ value : int
146
+ Maximum sentence length that the annotator will process
147
+ """
148
+ return self._set(maxSentenceLength=value)
149
+
150
+ def setIgnoreTokenIds(self, value):
151
+ """A list of token ids which are ignored in the decoder's output.
152
+
153
+ Parameters
154
+ ----------
155
+ value : List[int]
156
+ The words to be filtered out
157
+ """
158
+ return self._set(ignoreTokenIds=value)
159
+
160
+ def setConfigProtoBytes(self, b):
161
+ """Sets configProto from tensorflow, serialized into byte array.
162
+
163
+ Parameters
164
+ ----------
165
+ b : List[int]
166
+ ConfigProto from tensorflow, serialized into byte array
167
+ """
168
+ return self._set(configProtoBytes=b)
169
+
170
+ def setMinOutputLength(self, value):
171
+ """Sets minimum length of the sequence to be generated.
172
+
173
+ Parameters
174
+ ----------
175
+ value : int
176
+ Minimum length of the sequence to be generated
177
+ """
178
+ return self._set(minOutputLength=value)
179
+
180
+ def setMaxOutputLength(self, value):
181
+ """Sets maximum length of output text.
182
+
183
+ Parameters
184
+ ----------
185
+ value : int
186
+ Maximum length of output text
187
+ """
188
+ return self._set(maxOutputLength=value)
189
+
190
+ def setDoSample(self, value):
191
+ """Sets whether or not to use sampling, use greedy decoding otherwise.
192
+
193
+ Parameters
194
+ ----------
195
+ value : bool
196
+ Whether or not to use sampling; use greedy decoding otherwise
197
+ """
198
+ return self._set(doSample=value)
199
+
200
+ def setTemperature(self, value):
201
+ """Sets the value used to module the next token probabilities.
202
+
203
+ Parameters
204
+ ----------
205
+ value : float
206
+ The value used to module the next token probabilities
207
+ """
208
+ return self._set(temperature=value)
209
+
210
+ def setTopK(self, value):
211
+ """Sets the number of highest probability vocabulary tokens to keep for
212
+ top-k-filtering.
213
+
214
+ Parameters
215
+ ----------
216
+ value : int
217
+ Number of highest probability vocabulary tokens to keep
218
+ """
219
+ return self._set(topK=value)
220
+
221
+ def setTopP(self, value):
222
+ """Sets the top cumulative probability for vocabulary tokens.
223
+
224
+ If set to float < 1, only the most probable tokens with probabilities
225
+ that add up to ``topP`` or higher are kept for generation.
226
+
227
+ Parameters
228
+ ----------
229
+ value : float
230
+ Cumulative probability for vocabulary tokens
231
+ """
232
+ return self._set(topP=value)
233
+
234
+ def setRepetitionPenalty(self, value):
235
+ """Sets the parameter for repetition penalty. 1.0 means no penalty.
236
+
237
+ Parameters
238
+ ----------
239
+ value : float
240
+ The repetition penalty
241
+
242
+ References
243
+ ----------
244
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
245
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
246
+ """
247
+ return self._set(repetitionPenalty=value)
248
+
249
+ def setNoRepeatNgramSize(self, value):
250
+ """Sets size of n-grams that can only occur once.
251
+
252
+ If set to int > 0, all ngrams of that size can only occur once.
253
+
254
+ Parameters
255
+ ----------
256
+ value : int
257
+ N-gram size can only occur once
258
+ """
259
+ return self._set(noRepeatNgramSize=value)
260
+
261
+ def setBeamSize(self, value):
262
+ """Sets the number of beam size for beam search, by default `4`.
263
+
264
+ Parameters
265
+ ----------
266
+ value : int
267
+ Number of beam size for beam search
268
+ """
269
+ return self._set(beamSize=value)
270
+ @keyword_only
271
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.Qwen2VLTransformer",
272
+ java_model=None):
273
+ super(Qwen2VLTransformer, self).__init__(
274
+ classname=classname,
275
+ java_model=java_model
276
+ )
277
+ self._setDefault(
278
+ batchSize=2,
279
+ minOutputLength=0,
280
+ maxOutputLength=200,
281
+ doSample=False,
282
+ temperature=1,
283
+ topK=50,
284
+ topP=1,
285
+ repetitionPenalty=1.0,
286
+ noRepeatNgramSize=0,
287
+ ignoreTokenIds=[],
288
+ beamSize=1,
289
+ )
290
+
291
+ @staticmethod
292
+ def loadSavedModel(folder, spark_session, use_openvino=False):
293
+ """Loads a locally saved model.
294
+
295
+ Parameters
296
+ ----------
297
+ folder : str
298
+ Folder of the saved model
299
+ spark_session : pyspark.sql.SparkSession
300
+ The current SparkSession
301
+
302
+ Returns
303
+ -------
304
+ CLIPForZeroShotClassification
305
+ The restored model
306
+ """
307
+ from sparknlp.internal import _Qwen2VLTransformerLoader
308
+ jModel = _Qwen2VLTransformerLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
309
+ return Qwen2VLTransformer(java_model=jModel)
310
+
311
+ @staticmethod
312
+ def pretrained(name="qwen2_vl_2b_instruct_int4", lang="en", remote_loc=None):
313
+ """Downloads and loads a pretrained model.
314
+
315
+ Parameters
316
+ ----------
317
+ name : str, optional
318
+ Name of the pretrained model, by default
319
+ "qwen2_vl_2b_instruct_int4"
320
+ lang : str, optional
321
+ Language of the pretrained model, by default "en"
322
+ remote_loc : str, optional
323
+ Optional remote address of the resource, by default None. Will use
324
+ Spark NLPs repositories otherwise.
325
+
326
+ Returns
327
+ -------
328
+ Qwen2VLTransformer
329
+ The restored model
330
+ """
331
+ from sparknlp.pretrained import ResourceDownloader
332
+ return ResourceDownloader.downloadModel(Qwen2VLTransformer, name, lang, remote_loc)