spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +81 -28
- sparknlp/annotation.py +3 -2
- sparknlp/annotator/__init__.py +6 -0
- sparknlp/annotator/audio/__init__.py +2 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/{base → annotator}/chunk2_doc.py +4 -7
- sparknlp/annotator/chunker.py +1 -2
- sparknlp/annotator/classifier_dl/__init__.py +17 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/spanbert_coref.py +4 -18
- sparknlp/annotator/cv/__init__.py +15 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/dependency_parser.py +2 -3
- sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +37 -1
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +11 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
- sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
- sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
- sparknlp/annotator/embeddings/doc2vec.py +7 -1
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
- sparknlp/annotator/embeddings/word2vec.py +7 -1
- sparknlp/annotator/embeddings/word_embeddings.py +4 -5
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
- sparknlp/annotator/er/entity_ruler.py +37 -23
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
- sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
- sparknlp/annotator/lemmatizer.py +3 -4
- sparknlp/annotator/matcher/date_matcher.py +35 -3
- sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
- sparknlp/annotator/matcher/regex_matcher.py +3 -3
- sparknlp/annotator/matcher/text_matcher.py +2 -3
- sparknlp/annotator/n_gram_generator.py +1 -2
- sparknlp/annotator/ner/__init__.py +3 -1
- sparknlp/annotator/ner/ner_converter.py +18 -0
- sparknlp/annotator/ner/ner_crf.py +4 -5
- sparknlp/annotator/ner/ner_dl.py +10 -5
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +2 -2
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +2 -2
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/pos/perceptron.py +6 -7
- sparknlp/annotator/sentence/sentence_detector.py +2 -2
- sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
- sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
- sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
- sparknlp/annotator/seq2seq/__init__.py +17 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
- sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
- sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
- sparknlp/annotator/stemmer.py +2 -3
- sparknlp/annotator/stop_words_cleaner.py +3 -4
- sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
- sparknlp/annotator/token/__init__.py +0 -1
- sparknlp/annotator/token/recursive_tokenizer.py +2 -3
- sparknlp/annotator/token/tokenizer.py +2 -3
- sparknlp/annotator/ws/word_segmenter.py +35 -10
- sparknlp/base/__init__.py +2 -3
- sparknlp/base/doc2_chunk.py +0 -3
- sparknlp/base/document_assembler.py +5 -5
- sparknlp/base/embeddings_finisher.py +14 -2
- sparknlp/base/finisher.py +15 -4
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/image_assembler.py +69 -0
- sparknlp/base/light_pipeline.py +53 -21
- sparknlp/base/multi_document_assembler.py +9 -13
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/token_assembler.py +1 -2
- sparknlp/common/__init__.py +2 -0
- sparknlp/common/annotator_type.py +1 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +914 -9
- sparknlp/internal/__init__.py +841 -116
- sparknlp/internal/annotator_java_ml.py +1 -1
- sparknlp/internal/annotator_transformer.py +3 -0
- sparknlp/logging/comet.py +2 -2
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/pretrained_pipeline.py +1 -1
- sparknlp/pretrained/resource_downloader.py +126 -2
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +1 -0
- sparknlp/training/conll.py +8 -2
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/util.py +26 -0
- spark_nlp-4.2.6.dist-info/METADATA +0 -1256
- spark_nlp-4.2.6.dist-info/RECORD +0 -196
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
- /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
|
@@ -0,0 +1,539 @@
|
|
|
1
|
+
# Copyright 2017-2023 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for the AutoGGUFEmbeddings."""
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class AutoGGUFEmbeddings(AnnotatorModel, HasBatchedAnnotate):
|
|
19
|
+
"""
|
|
20
|
+
Annotator that uses the llama.cpp library to generate text embeddings with large language
|
|
21
|
+
models
|
|
22
|
+
|
|
23
|
+
The type of embedding pooling can be set with the `setPoolingType` method. The default is
|
|
24
|
+
`"MEAN"`. The available options are `"NONE"`, `"MEAN"`, `"CLS"`, and `"LAST"`.
|
|
25
|
+
|
|
26
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
27
|
+
object:
|
|
28
|
+
|
|
29
|
+
>>> auto_gguf_model = AutoGGUFEmbeddings.pretrained() \\
|
|
30
|
+
... .setInputCols(["document"]) \\
|
|
31
|
+
... .setOutputCol("embeddings")
|
|
32
|
+
|
|
33
|
+
The default model is ``"Qwen3_Embedding_0.6B_Q8_0_gguf"``, if no name is provided.
|
|
34
|
+
|
|
35
|
+
For extended examples of usage, see the
|
|
36
|
+
`AutoGGUFEmbeddingsTest <https://github.com/JohnSnowLabs/spark-nlp/tree/master/src/test/scala/com/johnsnowlabs/nlp/embeddings/AutoGGUFEmbeddingsTest.scala>`__
|
|
37
|
+
and the
|
|
38
|
+
`example notebook <https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples/python/llama.cpp/llama.cpp_in_Spark_NLP_AutoGGUFEmbeddings.ipynb>`__.
|
|
39
|
+
|
|
40
|
+
For available pretrained models please see the `Models Hub <https://sparknlp.org/models>`__.
|
|
41
|
+
|
|
42
|
+
====================== ======================
|
|
43
|
+
Input Annotation types Output Annotation type
|
|
44
|
+
====================== ======================
|
|
45
|
+
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
|
|
46
|
+
====================== ======================
|
|
47
|
+
|
|
48
|
+
Parameters
|
|
49
|
+
----------
|
|
50
|
+
nThreads
|
|
51
|
+
Set the number of threads to use during generation
|
|
52
|
+
nThreadsBatch
|
|
53
|
+
Set the number of threads to use during batch and prompt processing
|
|
54
|
+
nCtx
|
|
55
|
+
Set the size of the prompt context
|
|
56
|
+
nBatch
|
|
57
|
+
Set the logical batch size for prompt processing (must be >=32 to use BLAS)
|
|
58
|
+
nUbatch
|
|
59
|
+
Set the physical batch size for prompt processing (must be >=32 to use BLAS)
|
|
60
|
+
nChunks
|
|
61
|
+
Set the maximal number of chunks to process
|
|
62
|
+
nSequences
|
|
63
|
+
Set the number of sequences to decode
|
|
64
|
+
nGpuLayers
|
|
65
|
+
Set the number of layers to store in VRAM (-1 - use default)
|
|
66
|
+
gpuSplitMode
|
|
67
|
+
Set how to split the model across GPUs
|
|
68
|
+
mainGpu
|
|
69
|
+
Set the main GPU that is used for scratch and small tensors.
|
|
70
|
+
tensorSplit
|
|
71
|
+
Set how split tensors should be distributed across GPUs
|
|
72
|
+
grpAttnN
|
|
73
|
+
Set the group-attention factor
|
|
74
|
+
grpAttnW
|
|
75
|
+
Set the group-attention width
|
|
76
|
+
ropeFreqBase
|
|
77
|
+
Set the RoPE base frequency, used by NTK-aware scaling
|
|
78
|
+
ropeFreqScale
|
|
79
|
+
Set the RoPE frequency scaling factor, expands context by a factor of 1/N
|
|
80
|
+
yarnExtFactor
|
|
81
|
+
Set the YaRN extrapolation mix factor
|
|
82
|
+
yarnAttnFactor
|
|
83
|
+
Set the YaRN scale sqrt(t) or attention magnitude
|
|
84
|
+
yarnBetaFast
|
|
85
|
+
Set the YaRN low correction dim or beta
|
|
86
|
+
yarnBetaSlow
|
|
87
|
+
Set the YaRN high correction dim or alpha
|
|
88
|
+
yarnOrigCtx
|
|
89
|
+
Set the YaRN original context size of model
|
|
90
|
+
defragmentationThreshold
|
|
91
|
+
Set the KV cache defragmentation threshold
|
|
92
|
+
numaStrategy
|
|
93
|
+
Set optimization strategies that help on some NUMA systems (if available)
|
|
94
|
+
ropeScalingType
|
|
95
|
+
Set the RoPE frequency scaling method, defaults to linear unless specified by the model
|
|
96
|
+
poolingType
|
|
97
|
+
Set the pooling type for embeddings, use model default if unspecified
|
|
98
|
+
flashAttention
|
|
99
|
+
Whether to enable Flash Attention
|
|
100
|
+
useMmap
|
|
101
|
+
Whether to use memory-map model (faster load but may increase pageouts if not using mlock)
|
|
102
|
+
useMlock
|
|
103
|
+
Whether to force the system to keep model in RAM rather than swapping or compressing
|
|
104
|
+
noKvOffload
|
|
105
|
+
Whether to disable KV offload
|
|
106
|
+
|
|
107
|
+
Notes
|
|
108
|
+
-----
|
|
109
|
+
To use GPU inference with this annotator, make sure to use the Spark NLP GPU package and set
|
|
110
|
+
the number of GPU layers with the `setNGpuLayers` method.
|
|
111
|
+
|
|
112
|
+
When using larger models, we recommend adjusting GPU usage with `setNCtx` and `setNGpuLayers`
|
|
113
|
+
according to your hardware to avoid out-of-memory errors.
|
|
114
|
+
|
|
115
|
+
Examples
|
|
116
|
+
--------
|
|
117
|
+
>>> import sparknlp
|
|
118
|
+
>>> from sparknlp.base import *
|
|
119
|
+
>>> from sparknlp.annotator import *
|
|
120
|
+
>>> from pyspark.ml import Pipeline
|
|
121
|
+
>>> document = DocumentAssembler() \\
|
|
122
|
+
... .setInputCol("text") \\
|
|
123
|
+
... .setOutputCol("document")
|
|
124
|
+
>>> autoGGUFEmbeddings = AutoGGUFEmbeddings.pretrained() \\
|
|
125
|
+
... .setInputCols(["document"]) \\
|
|
126
|
+
... .setOutputCol("embeddings") \\
|
|
127
|
+
... .setBatchSize(4) \\
|
|
128
|
+
... .setNGpuLayers(99) \\
|
|
129
|
+
... .setPoolingType("MEAN")
|
|
130
|
+
>>> pipeline = Pipeline().setStages([document, autoGGUFEmbeddings])
|
|
131
|
+
>>> data = spark.createDataFrame([["The moons of Jupiter are 77 in total, with 79 confirmed natural satellites and 2 man-made ones."]]).toDF("text")
|
|
132
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
133
|
+
>>> result.select("embeddings.embeddings").show(truncate = False)
|
|
134
|
+
+--------------------------------------------------------------------------------+
|
|
135
|
+
| embeddings|
|
|
136
|
+
+--------------------------------------------------------------------------------+
|
|
137
|
+
|[[-0.034486726, 0.07770534, -0.15982522, -0.017873349, 0.013914132, 0.0365736...|
|
|
138
|
+
+--------------------------------------------------------------------------------+
|
|
139
|
+
"""
|
|
140
|
+
|
|
141
|
+
name = "AutoGGUFEmbeddings"
|
|
142
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
143
|
+
outputAnnotatorType = AnnotatorType.DOCUMENT
|
|
144
|
+
|
|
145
|
+
# -------- MODEl PARAMETERS --------
|
|
146
|
+
nThreads = Param(
|
|
147
|
+
Params._dummy(),
|
|
148
|
+
"nThreads",
|
|
149
|
+
"Set the number of threads to use during generation",
|
|
150
|
+
typeConverter=TypeConverters.toInt,
|
|
151
|
+
)
|
|
152
|
+
nThreadsBatch = Param(
|
|
153
|
+
Params._dummy(),
|
|
154
|
+
"nThreadsBatch",
|
|
155
|
+
"Set the number of threads to use during batch and prompt processing",
|
|
156
|
+
typeConverter=TypeConverters.toInt,
|
|
157
|
+
)
|
|
158
|
+
nCtx = Param(
|
|
159
|
+
Params._dummy(),
|
|
160
|
+
"nCtx",
|
|
161
|
+
"Set the size of the prompt context",
|
|
162
|
+
typeConverter=TypeConverters.toInt,
|
|
163
|
+
)
|
|
164
|
+
nBatch = Param(
|
|
165
|
+
Params._dummy(),
|
|
166
|
+
"nBatch",
|
|
167
|
+
"Set the logical batch size for prompt processing (must be >=32 to use BLAS)",
|
|
168
|
+
typeConverter=TypeConverters.toInt,
|
|
169
|
+
)
|
|
170
|
+
nUbatch = Param(
|
|
171
|
+
Params._dummy(),
|
|
172
|
+
"nUbatch",
|
|
173
|
+
"Set the physical batch size for prompt processing (must be >=32 to use BLAS)",
|
|
174
|
+
typeConverter=TypeConverters.toInt,
|
|
175
|
+
)
|
|
176
|
+
nChunks = Param(
|
|
177
|
+
Params._dummy(),
|
|
178
|
+
"nChunks",
|
|
179
|
+
"Set the maximal number of chunks to process",
|
|
180
|
+
typeConverter=TypeConverters.toInt,
|
|
181
|
+
)
|
|
182
|
+
nSequences = Param(
|
|
183
|
+
Params._dummy(),
|
|
184
|
+
"nSequences",
|
|
185
|
+
"Set the number of sequences to decode",
|
|
186
|
+
typeConverter=TypeConverters.toInt,
|
|
187
|
+
)
|
|
188
|
+
nGpuLayers = Param(
|
|
189
|
+
Params._dummy(),
|
|
190
|
+
"nGpuLayers",
|
|
191
|
+
"Set the number of layers to store in VRAM (-1 - use default)",
|
|
192
|
+
typeConverter=TypeConverters.toInt,
|
|
193
|
+
)
|
|
194
|
+
# Set how to split the model across GPUs
|
|
195
|
+
#
|
|
196
|
+
# - NONE: No GPU split
|
|
197
|
+
# - LAYER: Split the model across GPUs by layer
|
|
198
|
+
# - ROW: Split the model across GPUs by rows
|
|
199
|
+
gpuSplitMode = Param(
|
|
200
|
+
Params._dummy(),
|
|
201
|
+
"gpuSplitMode",
|
|
202
|
+
"Set how to split the model across GPUs",
|
|
203
|
+
typeConverter=TypeConverters.toString,
|
|
204
|
+
)
|
|
205
|
+
mainGpu = Param(
|
|
206
|
+
Params._dummy(),
|
|
207
|
+
"mainGpu",
|
|
208
|
+
"Set the main GPU that is used for scratch and small tensors.",
|
|
209
|
+
typeConverter=TypeConverters.toInt,
|
|
210
|
+
)
|
|
211
|
+
tensorSplit = Param(
|
|
212
|
+
Params._dummy(),
|
|
213
|
+
"tensorSplit",
|
|
214
|
+
"Set how split tensors should be distributed across GPUs",
|
|
215
|
+
typeConverter=TypeConverters.toListFloat,
|
|
216
|
+
)
|
|
217
|
+
grpAttnN = Param(
|
|
218
|
+
Params._dummy(),
|
|
219
|
+
"grpAttnN",
|
|
220
|
+
"Set the group-attention factor",
|
|
221
|
+
typeConverter=TypeConverters.toInt,
|
|
222
|
+
)
|
|
223
|
+
grpAttnW = Param(
|
|
224
|
+
Params._dummy(),
|
|
225
|
+
"grpAttnW",
|
|
226
|
+
"Set the group-attention width",
|
|
227
|
+
typeConverter=TypeConverters.toInt,
|
|
228
|
+
)
|
|
229
|
+
ropeFreqBase = Param(
|
|
230
|
+
Params._dummy(),
|
|
231
|
+
"ropeFreqBase",
|
|
232
|
+
"Set the RoPE base frequency, used by NTK-aware scaling",
|
|
233
|
+
typeConverter=TypeConverters.toFloat,
|
|
234
|
+
)
|
|
235
|
+
ropeFreqScale = Param(
|
|
236
|
+
Params._dummy(),
|
|
237
|
+
"ropeFreqScale",
|
|
238
|
+
"Set the RoPE frequency scaling factor, expands context by a factor of 1/N",
|
|
239
|
+
typeConverter=TypeConverters.toFloat,
|
|
240
|
+
)
|
|
241
|
+
yarnExtFactor = Param(
|
|
242
|
+
Params._dummy(),
|
|
243
|
+
"yarnExtFactor",
|
|
244
|
+
"Set the YaRN extrapolation mix factor",
|
|
245
|
+
typeConverter=TypeConverters.toFloat,
|
|
246
|
+
)
|
|
247
|
+
yarnAttnFactor = Param(
|
|
248
|
+
Params._dummy(),
|
|
249
|
+
"yarnAttnFactor",
|
|
250
|
+
"Set the YaRN scale sqrt(t) or attention magnitude",
|
|
251
|
+
typeConverter=TypeConverters.toFloat,
|
|
252
|
+
)
|
|
253
|
+
yarnBetaFast = Param(
|
|
254
|
+
Params._dummy(),
|
|
255
|
+
"yarnBetaFast",
|
|
256
|
+
"Set the YaRN low correction dim or beta",
|
|
257
|
+
typeConverter=TypeConverters.toFloat,
|
|
258
|
+
)
|
|
259
|
+
yarnBetaSlow = Param(
|
|
260
|
+
Params._dummy(),
|
|
261
|
+
"yarnBetaSlow",
|
|
262
|
+
"Set the YaRN high correction dim or alpha",
|
|
263
|
+
typeConverter=TypeConverters.toFloat,
|
|
264
|
+
)
|
|
265
|
+
yarnOrigCtx = Param(
|
|
266
|
+
Params._dummy(),
|
|
267
|
+
"yarnOrigCtx",
|
|
268
|
+
"Set the YaRN original context size of model",
|
|
269
|
+
typeConverter=TypeConverters.toInt,
|
|
270
|
+
)
|
|
271
|
+
defragmentationThreshold = Param(
|
|
272
|
+
Params._dummy(),
|
|
273
|
+
"defragmentationThreshold",
|
|
274
|
+
"Set the KV cache defragmentation threshold",
|
|
275
|
+
typeConverter=TypeConverters.toFloat,
|
|
276
|
+
)
|
|
277
|
+
# Set optimization strategies that help on some NUMA systems (if available)
|
|
278
|
+
#
|
|
279
|
+
# Available Strategies:
|
|
280
|
+
#
|
|
281
|
+
# - DISABLED: No NUMA optimizations
|
|
282
|
+
# - DISTRIBUTE: Spread execution evenly over all
|
|
283
|
+
# - ISOLATE: Only spawn threads on CPUs on the node that execution started on
|
|
284
|
+
# - NUMA_CTL: Use the CPU map provided by numactl
|
|
285
|
+
# - MIRROR: Mirrors the model across NUMA nodes
|
|
286
|
+
numaStrategy = Param(
|
|
287
|
+
Params._dummy(),
|
|
288
|
+
"numaStrategy",
|
|
289
|
+
"Set optimization strategies that help on some NUMA systems (if available)",
|
|
290
|
+
typeConverter=TypeConverters.toString,
|
|
291
|
+
)
|
|
292
|
+
# Set the RoPE frequency scaling method, defaults to linear unless specified by the model.
|
|
293
|
+
#
|
|
294
|
+
# - UNSPECIFIED: Don't use any scaling
|
|
295
|
+
# - LINEAR: Linear scaling
|
|
296
|
+
# - YARN: YaRN RoPE scaling
|
|
297
|
+
ropeScalingType = Param(
|
|
298
|
+
Params._dummy(),
|
|
299
|
+
"ropeScalingType",
|
|
300
|
+
"Set the RoPE frequency scaling method, defaults to linear unless specified by the model",
|
|
301
|
+
typeConverter=TypeConverters.toString,
|
|
302
|
+
)
|
|
303
|
+
# Set the pooling type for embeddings, use model default if unspecified
|
|
304
|
+
#
|
|
305
|
+
# - 0 UNSPECIFIED: Don't use any pooling
|
|
306
|
+
# - 1 MEAN: Mean Pooling
|
|
307
|
+
# - 2 CLS: CLS Pooling
|
|
308
|
+
poolingType = Param(
|
|
309
|
+
Params._dummy(),
|
|
310
|
+
"poolingType",
|
|
311
|
+
"Set the pooling type for embeddings, use model default if unspecified",
|
|
312
|
+
typeConverter=TypeConverters.toString,
|
|
313
|
+
)
|
|
314
|
+
flashAttention = Param(
|
|
315
|
+
Params._dummy(),
|
|
316
|
+
"flashAttention",
|
|
317
|
+
"Whether to enable Flash Attention",
|
|
318
|
+
typeConverter=TypeConverters.toBoolean,
|
|
319
|
+
)
|
|
320
|
+
useMmap = Param(
|
|
321
|
+
Params._dummy(),
|
|
322
|
+
"useMmap",
|
|
323
|
+
"Whether to use memory-map model (faster load but may increase pageouts if not using mlock)",
|
|
324
|
+
typeConverter=TypeConverters.toBoolean,
|
|
325
|
+
)
|
|
326
|
+
useMlock = Param(
|
|
327
|
+
Params._dummy(),
|
|
328
|
+
"useMlock",
|
|
329
|
+
"Whether to force the system to keep model in RAM rather than swapping or compressing",
|
|
330
|
+
typeConverter=TypeConverters.toBoolean,
|
|
331
|
+
)
|
|
332
|
+
noKvOffload = Param(
|
|
333
|
+
Params._dummy(),
|
|
334
|
+
"noKvOffload",
|
|
335
|
+
"Whether to disable KV offload",
|
|
336
|
+
typeConverter=TypeConverters.toBoolean,
|
|
337
|
+
)
|
|
338
|
+
|
|
339
|
+
# -------- MODEL SETTERS --------
|
|
340
|
+
def setNThreads(self, nThreads: int):
|
|
341
|
+
"""Set the number of threads to use during generation"""
|
|
342
|
+
return self._set(nThreads=nThreads)
|
|
343
|
+
|
|
344
|
+
def setNThreadsBatch(self, nThreadsBatch: int):
|
|
345
|
+
"""Set the number of threads to use during batch and prompt processing"""
|
|
346
|
+
return self._set(nThreadsBatch=nThreadsBatch)
|
|
347
|
+
|
|
348
|
+
def setNCtx(self, nCtx: int):
|
|
349
|
+
"""Set the size of the prompt context"""
|
|
350
|
+
return self._set(nCtx=nCtx)
|
|
351
|
+
|
|
352
|
+
def setNBatch(self, nBatch: int):
|
|
353
|
+
"""Set the logical batch size for prompt processing (must be >=32 to use BLAS)"""
|
|
354
|
+
return self._set(nBatch=nBatch)
|
|
355
|
+
|
|
356
|
+
def setNUbatch(self, nUbatch: int):
|
|
357
|
+
"""Set the physical batch size for prompt processing (must be >=32 to use BLAS)"""
|
|
358
|
+
return self._set(nUbatch=nUbatch)
|
|
359
|
+
|
|
360
|
+
def setNChunks(self, nChunks: int):
|
|
361
|
+
"""Set the maximal number of chunks to process"""
|
|
362
|
+
return self._set(nChunks=nChunks)
|
|
363
|
+
|
|
364
|
+
def setNSequences(self, nSequences: int):
|
|
365
|
+
"""Set the number of sequences to decode"""
|
|
366
|
+
return self._set(nSequences=nSequences)
|
|
367
|
+
|
|
368
|
+
def setNGpuLayers(self, nGpuLayers: int):
|
|
369
|
+
"""Set the number of layers to store in VRAM (-1 - use default)"""
|
|
370
|
+
return self._set(nGpuLayers=nGpuLayers)
|
|
371
|
+
|
|
372
|
+
def setGpuSplitMode(self, gpuSplitMode: str):
|
|
373
|
+
"""Set how to split the model across GPUs"""
|
|
374
|
+
return self._set(gpuSplitMode=gpuSplitMode)
|
|
375
|
+
|
|
376
|
+
def setMainGpu(self, mainGpu: int):
|
|
377
|
+
"""Set the main GPU that is used for scratch and small tensors."""
|
|
378
|
+
return self._set(mainGpu=mainGpu)
|
|
379
|
+
|
|
380
|
+
def setTensorSplit(self, tensorSplit: List[float]):
|
|
381
|
+
"""Set how split tensors should be distributed across GPUs"""
|
|
382
|
+
return self._set(tensorSplit=tensorSplit)
|
|
383
|
+
|
|
384
|
+
def setGrpAttnN(self, grpAttnN: int):
|
|
385
|
+
"""Set the group-attention factor"""
|
|
386
|
+
return self._set(grpAttnN=grpAttnN)
|
|
387
|
+
|
|
388
|
+
def setGrpAttnW(self, grpAttnW: int):
|
|
389
|
+
"""Set the group-attention width"""
|
|
390
|
+
return self._set(grpAttnW=grpAttnW)
|
|
391
|
+
|
|
392
|
+
def setRopeFreqBase(self, ropeFreqBase: float):
|
|
393
|
+
"""Set the RoPE base frequency, used by NTK-aware scaling"""
|
|
394
|
+
return self._set(ropeFreqBase=ropeFreqBase)
|
|
395
|
+
|
|
396
|
+
def setRopeFreqScale(self, ropeFreqScale: float):
|
|
397
|
+
"""Set the RoPE frequency scaling factor, expands context by a factor of 1/N"""
|
|
398
|
+
return self._set(ropeFreqScale=ropeFreqScale)
|
|
399
|
+
|
|
400
|
+
def setYarnExtFactor(self, yarnExtFactor: float):
|
|
401
|
+
"""Set the YaRN extrapolation mix factor"""
|
|
402
|
+
return self._set(yarnExtFactor=yarnExtFactor)
|
|
403
|
+
|
|
404
|
+
def setYarnAttnFactor(self, yarnAttnFactor: float):
|
|
405
|
+
"""Set the YaRN scale sqrt(t) or attention magnitude"""
|
|
406
|
+
return self._set(yarnAttnFactor=yarnAttnFactor)
|
|
407
|
+
|
|
408
|
+
def setYarnBetaFast(self, yarnBetaFast: float):
|
|
409
|
+
"""Set the YaRN low correction dim or beta"""
|
|
410
|
+
return self._set(yarnBetaFast=yarnBetaFast)
|
|
411
|
+
|
|
412
|
+
def setYarnBetaSlow(self, yarnBetaSlow: float):
|
|
413
|
+
"""Set the YaRN high correction dim or alpha"""
|
|
414
|
+
return self._set(yarnBetaSlow=yarnBetaSlow)
|
|
415
|
+
|
|
416
|
+
def setYarnOrigCtx(self, yarnOrigCtx: int):
|
|
417
|
+
"""Set the YaRN original context size of model"""
|
|
418
|
+
return self._set(yarnOrigCtx=yarnOrigCtx)
|
|
419
|
+
|
|
420
|
+
def setDefragmentationThreshold(self, defragmentationThreshold: float):
|
|
421
|
+
"""Set the KV cache defragmentation threshold"""
|
|
422
|
+
return self._set(defragmentationThreshold=defragmentationThreshold)
|
|
423
|
+
|
|
424
|
+
def setNumaStrategy(self, numaStrategy: str):
|
|
425
|
+
"""Set optimization strategies that help on some NUMA systems (if available)"""
|
|
426
|
+
numaUpper = numaStrategy.upper()
|
|
427
|
+
numaStrategies = ["DISABLED", "DISTRIBUTE", "ISOLATE", "NUMA_CTL", "MIRROR"]
|
|
428
|
+
if numaUpper not in numaStrategies:
|
|
429
|
+
raise ValueError(
|
|
430
|
+
f"Invalid NUMA strategy: {numaUpper}. "
|
|
431
|
+
+ f"Valid values are: {numaStrategies}"
|
|
432
|
+
)
|
|
433
|
+
return self._set(numaStrategy=numaStrategy)
|
|
434
|
+
|
|
435
|
+
def setRopeScalingType(self, ropeScalingType: str):
|
|
436
|
+
"""Set the RoPE frequency scaling method, defaults to linear unless specified by the model"""
|
|
437
|
+
return self._set(ropeScalingType=ropeScalingType)
|
|
438
|
+
|
|
439
|
+
def setPoolingType(self, poolingType: str):
|
|
440
|
+
"""Set the pooling type for embeddings, use model default if unspecified"""
|
|
441
|
+
poolingTypeUpper = poolingType.upper()
|
|
442
|
+
poolingTypes = ["NONE", "MEAN", "CLS", "LAST"]
|
|
443
|
+
if poolingTypeUpper not in poolingTypes:
|
|
444
|
+
raise ValueError(
|
|
445
|
+
f"Invalid pooling type: {poolingType}. "
|
|
446
|
+
+ f"Valid values are: {poolingTypes}"
|
|
447
|
+
)
|
|
448
|
+
return self._set(poolingType=poolingType)
|
|
449
|
+
|
|
450
|
+
def setFlashAttention(self, flashAttention: bool):
|
|
451
|
+
"""Whether to enable Flash Attention"""
|
|
452
|
+
return self._set(flashAttention=flashAttention)
|
|
453
|
+
|
|
454
|
+
def setUseMmap(self, useMmap: bool):
|
|
455
|
+
"""Whether to use memory-map model (faster load but may increase pageouts if not using mlock)"""
|
|
456
|
+
return self._set(useMmap=useMmap)
|
|
457
|
+
|
|
458
|
+
def setUseMlock(self, useMlock: bool):
|
|
459
|
+
"""Whether to force the system to keep model in RAM rather than swapping or compressing"""
|
|
460
|
+
return self._set(useMlock=useMlock)
|
|
461
|
+
|
|
462
|
+
def setNoKvOffload(self, noKvOffload: bool):
|
|
463
|
+
"""Whether to disable KV offload"""
|
|
464
|
+
return self._set(noKvOffload=noKvOffload)
|
|
465
|
+
|
|
466
|
+
def setNParallel(self, nParallel: int):
|
|
467
|
+
"""Sets the number of parallel processes for decoding. This is an alias for `setBatchSize`."""
|
|
468
|
+
return self.setBatchSize(nParallel)
|
|
469
|
+
|
|
470
|
+
def getMetadata(self):
|
|
471
|
+
"""Gets the metadata of the model"""
|
|
472
|
+
return self._call_java("getMetadata")
|
|
473
|
+
|
|
474
|
+
@keyword_only
|
|
475
|
+
def __init__(
|
|
476
|
+
self,
|
|
477
|
+
classname="com.johnsnowlabs.nlp.embeddings.AutoGGUFEmbeddings",
|
|
478
|
+
java_model=None,
|
|
479
|
+
):
|
|
480
|
+
super(AutoGGUFEmbeddings, self).__init__(
|
|
481
|
+
classname=classname, java_model=java_model
|
|
482
|
+
)
|
|
483
|
+
self._setDefault(
|
|
484
|
+
nCtx=4096,
|
|
485
|
+
nBatch=512,
|
|
486
|
+
poolingType="MEAN",
|
|
487
|
+
nGpuLayers=99,
|
|
488
|
+
)
|
|
489
|
+
|
|
490
|
+
@staticmethod
|
|
491
|
+
def loadSavedModel(folder, spark_session):
|
|
492
|
+
"""Loads a locally saved model.
|
|
493
|
+
|
|
494
|
+
Parameters
|
|
495
|
+
----------
|
|
496
|
+
folder : str
|
|
497
|
+
Folder of the saved model
|
|
498
|
+
spark_session : pyspark.sql.SparkSession
|
|
499
|
+
The current SparkSession
|
|
500
|
+
|
|
501
|
+
Returns
|
|
502
|
+
-------
|
|
503
|
+
AutoGGUFEmbeddings
|
|
504
|
+
The restored model
|
|
505
|
+
"""
|
|
506
|
+
from sparknlp.internal import _AutoGGUFEmbeddingsLoader
|
|
507
|
+
|
|
508
|
+
jModel = _AutoGGUFEmbeddingsLoader(folder, spark_session._jsparkSession)._java_obj
|
|
509
|
+
return AutoGGUFEmbeddings(java_model=jModel)
|
|
510
|
+
|
|
511
|
+
@staticmethod
|
|
512
|
+
def pretrained(name="Qwen3_Embedding_0.6B_Q8_0_gguf", lang="en", remote_loc=None):
|
|
513
|
+
"""Downloads and loads a pretrained model.
|
|
514
|
+
|
|
515
|
+
Parameters
|
|
516
|
+
----------
|
|
517
|
+
name : str, optional
|
|
518
|
+
Name of the pretrained model, by default "Qwen3_Embedding_0.6B_Q8_0_gguf"
|
|
519
|
+
lang : str, optional
|
|
520
|
+
Language of the pretrained model, by default "en"
|
|
521
|
+
remote_loc : str, optional
|
|
522
|
+
Optional remote address of the resource, by default None. Will use
|
|
523
|
+
Spark NLPs repositories otherwise.
|
|
524
|
+
|
|
525
|
+
Returns
|
|
526
|
+
-------
|
|
527
|
+
AutoGGUFEmbeddings
|
|
528
|
+
The restored model
|
|
529
|
+
"""
|
|
530
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
531
|
+
|
|
532
|
+
return ResourceDownloader.downloadModel(
|
|
533
|
+
AutoGGUFEmbeddings, name, lang, remote_loc
|
|
534
|
+
)
|
|
535
|
+
|
|
536
|
+
def close(self):
|
|
537
|
+
"""Closes the llama.cpp model backend freeing resources. The model is reloaded when used again.
|
|
538
|
+
"""
|
|
539
|
+
self._java_obj.close()
|
|
@@ -20,7 +20,8 @@ class BertEmbeddings(AnnotatorModel,
|
|
|
20
20
|
HasEmbeddingsProperties,
|
|
21
21
|
HasCaseSensitiveProperties,
|
|
22
22
|
HasStorageRef,
|
|
23
|
-
HasBatchedAnnotate
|
|
23
|
+
HasBatchedAnnotate,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
24
25
|
"""Token-level embeddings using BERT.
|
|
25
26
|
|
|
26
27
|
BERT (Bidirectional Encoder Representations from Transformers) provides
|
|
@@ -38,10 +39,10 @@ class BertEmbeddings(AnnotatorModel,
|
|
|
38
39
|
The default model is ``"small_bert_L2_768"``, if no name is provided.
|
|
39
40
|
|
|
40
41
|
For available pretrained models please see the
|
|
41
|
-
`Models Hub <https://
|
|
42
|
+
`Models Hub <https://sparknlp.org/models?task=Embeddings>`__.
|
|
42
43
|
|
|
43
|
-
For extended examples of usage, see the `
|
|
44
|
-
<https://github.com/JohnSnowLabs/spark-nlp
|
|
44
|
+
For extended examples of usage, see the `Examples
|
|
45
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/dl-ner/ner_bert.ipynb>`__.
|
|
45
46
|
To see which models are compatible and how to import them see
|
|
46
47
|
`Import Transformers into Spark NLP 🚀
|
|
47
48
|
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
@@ -134,11 +135,6 @@ class BertEmbeddings(AnnotatorModel,
|
|
|
134
135
|
|
|
135
136
|
outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS
|
|
136
137
|
|
|
137
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
138
|
-
"maxSentenceLength",
|
|
139
|
-
"Max sentence length to process",
|
|
140
|
-
typeConverter=TypeConverters.toInt)
|
|
141
|
-
|
|
142
138
|
configProtoBytes = Param(Params._dummy(),
|
|
143
139
|
"configProtoBytes",
|
|
144
140
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -154,16 +150,6 @@ class BertEmbeddings(AnnotatorModel,
|
|
|
154
150
|
"""
|
|
155
151
|
return self._set(configProtoBytes=b)
|
|
156
152
|
|
|
157
|
-
def setMaxSentenceLength(self, value):
|
|
158
|
-
"""Sets max sentence length to process.
|
|
159
|
-
|
|
160
|
-
Parameters
|
|
161
|
-
----------
|
|
162
|
-
value : int
|
|
163
|
-
Max sentence length to process
|
|
164
|
-
"""
|
|
165
|
-
return self._set(maxSentenceLength=value)
|
|
166
|
-
|
|
167
153
|
@keyword_only
|
|
168
154
|
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.BertEmbeddings", java_model=None):
|
|
169
155
|
super(BertEmbeddings, self).__init__(
|
|
@@ -178,7 +164,7 @@ class BertEmbeddings(AnnotatorModel,
|
|
|
178
164
|
)
|
|
179
165
|
|
|
180
166
|
@staticmethod
|
|
181
|
-
def loadSavedModel(folder, spark_session):
|
|
167
|
+
def loadSavedModel(folder, spark_session, use_openvino=False):
|
|
182
168
|
"""Loads a locally saved model.
|
|
183
169
|
|
|
184
170
|
Parameters
|
|
@@ -187,6 +173,8 @@ class BertEmbeddings(AnnotatorModel,
|
|
|
187
173
|
Folder of the saved model
|
|
188
174
|
spark_session : pyspark.sql.SparkSession
|
|
189
175
|
The current SparkSession
|
|
176
|
+
use_openvino: bool
|
|
177
|
+
Use OpenVINO backend
|
|
190
178
|
|
|
191
179
|
Returns
|
|
192
180
|
-------
|
|
@@ -194,7 +182,7 @@ class BertEmbeddings(AnnotatorModel,
|
|
|
194
182
|
The restored model
|
|
195
183
|
"""
|
|
196
184
|
from sparknlp.internal import _BertLoader
|
|
197
|
-
jModel = _BertLoader(folder, spark_session._jsparkSession)._java_obj
|
|
185
|
+
jModel = _BertLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
|
|
198
186
|
return BertEmbeddings(java_model=jModel)
|
|
199
187
|
|
|
200
188
|
@staticmethod
|
|
@@ -218,4 +206,3 @@ class BertEmbeddings(AnnotatorModel,
|
|
|
218
206
|
"""
|
|
219
207
|
from sparknlp.pretrained import ResourceDownloader
|
|
220
208
|
return ResourceDownloader.downloadModel(BertEmbeddings, name, lang, remote_loc)
|
|
221
|
-
|