spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +81 -28
- sparknlp/annotation.py +3 -2
- sparknlp/annotator/__init__.py +6 -0
- sparknlp/annotator/audio/__init__.py +2 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/{base → annotator}/chunk2_doc.py +4 -7
- sparknlp/annotator/chunker.py +1 -2
- sparknlp/annotator/classifier_dl/__init__.py +17 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/spanbert_coref.py +4 -18
- sparknlp/annotator/cv/__init__.py +15 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/dependency_parser.py +2 -3
- sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +37 -1
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +11 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
- sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
- sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
- sparknlp/annotator/embeddings/doc2vec.py +7 -1
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
- sparknlp/annotator/embeddings/word2vec.py +7 -1
- sparknlp/annotator/embeddings/word_embeddings.py +4 -5
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
- sparknlp/annotator/er/entity_ruler.py +37 -23
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
- sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
- sparknlp/annotator/lemmatizer.py +3 -4
- sparknlp/annotator/matcher/date_matcher.py +35 -3
- sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
- sparknlp/annotator/matcher/regex_matcher.py +3 -3
- sparknlp/annotator/matcher/text_matcher.py +2 -3
- sparknlp/annotator/n_gram_generator.py +1 -2
- sparknlp/annotator/ner/__init__.py +3 -1
- sparknlp/annotator/ner/ner_converter.py +18 -0
- sparknlp/annotator/ner/ner_crf.py +4 -5
- sparknlp/annotator/ner/ner_dl.py +10 -5
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +2 -2
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +2 -2
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/pos/perceptron.py +6 -7
- sparknlp/annotator/sentence/sentence_detector.py +2 -2
- sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
- sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
- sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
- sparknlp/annotator/seq2seq/__init__.py +17 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
- sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
- sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
- sparknlp/annotator/stemmer.py +2 -3
- sparknlp/annotator/stop_words_cleaner.py +3 -4
- sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
- sparknlp/annotator/token/__init__.py +0 -1
- sparknlp/annotator/token/recursive_tokenizer.py +2 -3
- sparknlp/annotator/token/tokenizer.py +2 -3
- sparknlp/annotator/ws/word_segmenter.py +35 -10
- sparknlp/base/__init__.py +2 -3
- sparknlp/base/doc2_chunk.py +0 -3
- sparknlp/base/document_assembler.py +5 -5
- sparknlp/base/embeddings_finisher.py +14 -2
- sparknlp/base/finisher.py +15 -4
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/image_assembler.py +69 -0
- sparknlp/base/light_pipeline.py +53 -21
- sparknlp/base/multi_document_assembler.py +9 -13
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/token_assembler.py +1 -2
- sparknlp/common/__init__.py +2 -0
- sparknlp/common/annotator_type.py +1 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +914 -9
- sparknlp/internal/__init__.py +841 -116
- sparknlp/internal/annotator_java_ml.py +1 -1
- sparknlp/internal/annotator_transformer.py +3 -0
- sparknlp/logging/comet.py +2 -2
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/pretrained_pipeline.py +1 -1
- sparknlp/pretrained/resource_downloader.py +126 -2
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +1 -0
- sparknlp/training/conll.py +8 -2
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/util.py +26 -0
- spark_nlp-4.2.6.dist-info/METADATA +0 -1256
- spark_nlp-4.2.6.dist-info/RECORD +0 -196
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
- /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
|
@@ -0,0 +1,138 @@
|
|
|
1
|
+
# Copyright 2017-2024 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
class E5VEmbeddings(AnnotatorModel,
|
|
18
|
+
HasBatchedAnnotateImage,
|
|
19
|
+
HasImageFeatureProperties,
|
|
20
|
+
HasEngine,
|
|
21
|
+
HasRescaleFactor):
|
|
22
|
+
"""Universal multimodal embeddings using the E5-V model (see https://huggingface.co/royokong/e5-v).
|
|
23
|
+
|
|
24
|
+
E5-V bridges the modality gap between different input types (text, image) and demonstrates strong performance in multimodal embeddings, even without fine-tuning. It also supports a single-modality training approach, where the model is trained exclusively on text pairs, often yielding better performance than multimodal training.
|
|
25
|
+
|
|
26
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion object:
|
|
27
|
+
|
|
28
|
+
>>> e5vEmbeddings = E5VEmbeddings.pretrained() \
|
|
29
|
+
... .setInputCols(["image_assembler"]) \
|
|
30
|
+
... .setOutputCol("e5v")
|
|
31
|
+
|
|
32
|
+
The default model is ``"e5v_int4"``, if no name is provided.
|
|
33
|
+
|
|
34
|
+
For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Question+Answering>`__.
|
|
35
|
+
|
|
36
|
+
====================== ======================
|
|
37
|
+
Input Annotation types Output Annotation type
|
|
38
|
+
====================== ======================
|
|
39
|
+
``IMAGE`` ``SENTENCE_EMBEDDINGS``
|
|
40
|
+
====================== ======================
|
|
41
|
+
|
|
42
|
+
Examples
|
|
43
|
+
--------
|
|
44
|
+
Image + Text Embedding:
|
|
45
|
+
>>> import sparknlp
|
|
46
|
+
>>> from sparknlp.base import *
|
|
47
|
+
>>> from sparknlp.annotator import *
|
|
48
|
+
>>> from pyspark.ml import Pipeline
|
|
49
|
+
>>> image_df = spark.read.format("image").option("dropInvalid", value = True).load(imageFolder)
|
|
50
|
+
>>> imagePrompt = "<|start_header_id|>user<|end_header_id|>\n\n<image>\\nSummary above image in one word: <|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n \n"
|
|
51
|
+
>>> test_df = image_df.withColumn("text", lit(imagePrompt))
|
|
52
|
+
>>> imageAssembler = ImageAssembler() \
|
|
53
|
+
... .setInputCol("image") \
|
|
54
|
+
... .setOutputCol("image_assembler")
|
|
55
|
+
>>> e5vEmbeddings = E5VEmbeddings.pretrained() \
|
|
56
|
+
... .setInputCols(["image_assembler"]) \
|
|
57
|
+
... .setOutputCol("e5v")
|
|
58
|
+
>>> pipeline = Pipeline().setStages([
|
|
59
|
+
... imageAssembler,
|
|
60
|
+
... e5vEmbeddings
|
|
61
|
+
... ])
|
|
62
|
+
>>> result = pipeline.fit(test_df).transform(test_df)
|
|
63
|
+
>>> result.select("e5v.embeddings").show(truncate = False)
|
|
64
|
+
|
|
65
|
+
Text-Only Embedding:
|
|
66
|
+
>>> from sparknlp.util import EmbeddingsDataFrameUtils
|
|
67
|
+
>>> textPrompt = "<|start_header_id|>user<|end_header_id|>\n\n<sent>\\nSummary above sentence in one word: <|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n \n"
|
|
68
|
+
>>> textDesc = "A cat sitting in a box."
|
|
69
|
+
>>> nullImageDF = spark.createDataFrame(spark.sparkContext.parallelize([EmbeddingsDataFrameUtils.emptyImageRow]), EmbeddingsDataFrameUtils.imageSchema)
|
|
70
|
+
>>> textDF = nullImageDF.withColumn("text", lit(textPrompt.replace("<sent>", textDesc)))
|
|
71
|
+
>>> e5vEmbeddings = E5VEmbeddings.pretrained() \
|
|
72
|
+
... .setInputCols(["image"]) \
|
|
73
|
+
... .setOutputCol("e5v")
|
|
74
|
+
>>> result = e5vEmbeddings.transform(textDF)
|
|
75
|
+
>>> result.select("e5v.embeddings").show(truncate = False)
|
|
76
|
+
"""
|
|
77
|
+
|
|
78
|
+
name = "E5VEmbeddings"
|
|
79
|
+
|
|
80
|
+
inputAnnotatorTypes = [AnnotatorType.IMAGE]
|
|
81
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
82
|
+
|
|
83
|
+
@keyword_only
|
|
84
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.E5VEmbeddings", java_model=None):
|
|
85
|
+
"""Initializes the E5VEmbeddings annotator.
|
|
86
|
+
|
|
87
|
+
Parameters
|
|
88
|
+
----------
|
|
89
|
+
classname : str, optional
|
|
90
|
+
The Java class name of the annotator, by default "com.johnsnowlabs.nlp.annotators.embeddings.E5VEmbeddings"
|
|
91
|
+
java_model : Optional[java.lang.Object], optional
|
|
92
|
+
A pre-initialized Java model, by default None
|
|
93
|
+
"""
|
|
94
|
+
super(E5VEmbeddings, self).__init__(classname=classname, java_model=java_model)
|
|
95
|
+
self._setDefault()
|
|
96
|
+
|
|
97
|
+
@staticmethod
|
|
98
|
+
def loadSavedModel(folder, spark_session, use_openvino=False):
|
|
99
|
+
"""Loads a locally saved model.
|
|
100
|
+
|
|
101
|
+
Parameters
|
|
102
|
+
----------
|
|
103
|
+
folder : str
|
|
104
|
+
Folder of the saved model
|
|
105
|
+
spark_session : pyspark.sql.SparkSession
|
|
106
|
+
The current SparkSession
|
|
107
|
+
use_openvino : bool, optional
|
|
108
|
+
Whether to use OpenVINO engine, by default False
|
|
109
|
+
|
|
110
|
+
Returns
|
|
111
|
+
-------
|
|
112
|
+
E5VEmbeddings
|
|
113
|
+
The restored model
|
|
114
|
+
"""
|
|
115
|
+
from sparknlp.internal import _E5VEmbeddingsLoader
|
|
116
|
+
jModel = _E5VEmbeddingsLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
|
|
117
|
+
return E5VEmbeddings(java_model=jModel)
|
|
118
|
+
|
|
119
|
+
@staticmethod
|
|
120
|
+
def pretrained(name="e5v_int4", lang="en", remote_loc=None):
|
|
121
|
+
"""Downloads and loads a pretrained model.
|
|
122
|
+
|
|
123
|
+
Parameters
|
|
124
|
+
----------
|
|
125
|
+
name : str, optional
|
|
126
|
+
Name of the pretrained model, by default "e5v_int4"
|
|
127
|
+
lang : str, optional
|
|
128
|
+
Language of the pretrained model, by default "en"
|
|
129
|
+
remote_loc : str, optional
|
|
130
|
+
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
|
|
131
|
+
|
|
132
|
+
Returns
|
|
133
|
+
-------
|
|
134
|
+
E5VEmbeddings
|
|
135
|
+
The restored model
|
|
136
|
+
"""
|
|
137
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
138
|
+
return ResourceDownloader.downloadModel(E5VEmbeddings, name, lang, remote_loc)
|
|
@@ -38,7 +38,7 @@ class ElmoEmbeddings(AnnotatorModel,
|
|
|
38
38
|
|
|
39
39
|
The default model is ``"elmo"``, if no name is provided.
|
|
40
40
|
|
|
41
|
-
For available pretrained models please see the `Models Hub <https://
|
|
41
|
+
For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Embeddings>`__.
|
|
42
42
|
|
|
43
43
|
The pooling layer can be set with :meth:`.setPoolingLayer` to the following
|
|
44
44
|
values:
|
|
@@ -53,7 +53,7 @@ class ElmoEmbeddings(AnnotatorModel,
|
|
|
53
53
|
trainable. This tensor has shape ``[batch_size, max_length, 1024]``.
|
|
54
54
|
|
|
55
55
|
For extended examples of usage, see the
|
|
56
|
-
`
|
|
56
|
+
`Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/dl-ner/ner_elmo.ipynb>`__.
|
|
57
57
|
|
|
58
58
|
====================== ======================
|
|
59
59
|
Input Annotation types Output Annotation type
|
|
@@ -0,0 +1,204 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for BertEmbeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class InstructorEmbeddings(AnnotatorModel,
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasCaseSensitiveProperties,
|
|
22
|
+
HasStorageRef,
|
|
23
|
+
HasBatchedAnnotate,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
25
|
+
"""Sentence embeddings using INSTRUCTOR.
|
|
26
|
+
|
|
27
|
+
Instructor👨🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) by simply providing the task instruction, without any finetuning. Instructor👨 achieves sota on 70 diverse embedding tasks!
|
|
28
|
+
|
|
29
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
30
|
+
object:
|
|
31
|
+
|
|
32
|
+
>>> embeddings = InstructorEmbeddings.pretrained() \\
|
|
33
|
+
... .setInputCols(["document"]) \\
|
|
34
|
+
... .setInstruction("Represent the Medicine sentence for clustering: ") \\
|
|
35
|
+
... .setOutputCol("instructor_embeddings")
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
The default model is ``"instructor_base"``, if no name is provided.
|
|
39
|
+
|
|
40
|
+
For available pretrained models please see the
|
|
41
|
+
`Models Hub <https://sparknlp.org/models?q=Instructor>`__.
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
|
|
48
|
+
====================== ======================
|
|
49
|
+
|
|
50
|
+
Parameters
|
|
51
|
+
----------
|
|
52
|
+
batchSize
|
|
53
|
+
Size of every batch , by default 8
|
|
54
|
+
dimension
|
|
55
|
+
Number of embedding dimensions, by default 768
|
|
56
|
+
caseSensitive
|
|
57
|
+
Whether to ignore case in tokens for embeddings matching, by default False
|
|
58
|
+
instruction
|
|
59
|
+
Set transformer instruction, e.g. 'summarize:'
|
|
60
|
+
maxSentenceLength
|
|
61
|
+
Max sentence length to process, by default 128
|
|
62
|
+
configProtoBytes
|
|
63
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
64
|
+
|
|
65
|
+
References
|
|
66
|
+
----------
|
|
67
|
+
`One Embedder, Any Task: Instruction-Finetuned Text Embeddings <https://arxiv.org/abs/2212.09741>`__
|
|
68
|
+
|
|
69
|
+
https://github.com/HKUNLP/instructor-embedding/
|
|
70
|
+
|
|
71
|
+
**Paper abstract**
|
|
72
|
+
|
|
73
|
+
*We introduce INSTRUCTOR, a new method for computing text embeddings given task instructions:
|
|
74
|
+
every text input is embedded together with instructions explaining the use case (e.g., task and
|
|
75
|
+
domain descriptions). Unlike encoders from prior work that are more specialized, INSTRUCTOR is a
|
|
76
|
+
single embedder that can generate text embeddings tailored to different downstream tasks and domains,
|
|
77
|
+
without any further training. We first annotate instructions for 330 diverse tasks and train INSTRUCTOR
|
|
78
|
+
on this multitask mixture with a contrastive loss. We evaluate INSTRUCTOR on 70 embedding evaluation tasks
|
|
79
|
+
(66 of which are unseen during training), ranging from classification and information retrieval to semantic
|
|
80
|
+
textual similarity and text generation evaluation. INSTRUCTOR, while having an order of magnitude fewer
|
|
81
|
+
parameters than the previous best model, achieves state-of-the-art performance, with an average improvement
|
|
82
|
+
of 3.4% compared to the previous best results on the 70 diverse datasets. Our analysis suggests that
|
|
83
|
+
INSTRUCTOR is robust to changes in instructions, and that instruction finetuning mitigates the challenge of
|
|
84
|
+
training a single model on diverse datasets. Our model, code, and data are available at this https
|
|
85
|
+
URL <https://instructor-embedding.github.io/>.*
|
|
86
|
+
|
|
87
|
+
Examples
|
|
88
|
+
--------
|
|
89
|
+
>>> import sparknlp
|
|
90
|
+
>>> from sparknlp.base import *
|
|
91
|
+
>>> from sparknlp.annotator import *
|
|
92
|
+
>>> from pyspark.ml import Pipeline
|
|
93
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
94
|
+
... .setInputCol("text") \\
|
|
95
|
+
... .setOutputCol("document")
|
|
96
|
+
>>> embeddings = InstructorEmbeddings.pretrained() \\
|
|
97
|
+
... .setInputCols(["document"]) \\
|
|
98
|
+
... .setInstruction("Represent the Medicine sentence for clustering: ") \\
|
|
99
|
+
... .setOutputCol("instructor_embeddings")
|
|
100
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
101
|
+
... .setInputCols(["instructor_embeddings"]) \\
|
|
102
|
+
... .setOutputCols("finished_embeddings") \\
|
|
103
|
+
... .setOutputAsVector(True)
|
|
104
|
+
>>> pipeline = Pipeline().setStages([
|
|
105
|
+
... documentAssembler,
|
|
106
|
+
... embeddings,
|
|
107
|
+
... embeddingsFinisher
|
|
108
|
+
... ])
|
|
109
|
+
>>> data = spark.createDataFrame([["Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity"]]).toDF("text")
|
|
110
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
111
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
112
|
+
+--------------------------------------------------------------------------------+
|
|
113
|
+
| result|
|
|
114
|
+
+--------------------------------------------------------------------------------+
|
|
115
|
+
|[-2.3497989177703857,0.480538547039032,-0.3238905668258667,-1.612930893898010...|
|
|
116
|
+
+--------------------------------------------------------------------------------+
|
|
117
|
+
"""
|
|
118
|
+
|
|
119
|
+
name = "InstructorEmbeddings"
|
|
120
|
+
|
|
121
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
122
|
+
|
|
123
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
124
|
+
instruction = Param(Params._dummy(), "instruction", "Set transformer instruction, e.g. 'summarize:'",
|
|
125
|
+
typeConverter=TypeConverters.toString)
|
|
126
|
+
configProtoBytes = Param(Params._dummy(),
|
|
127
|
+
"configProtoBytes",
|
|
128
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
129
|
+
TypeConverters.toListInt)
|
|
130
|
+
|
|
131
|
+
def setInstruction(self, value):
|
|
132
|
+
""" Sets transformer instruction, e.g. 'summarize:'.
|
|
133
|
+
|
|
134
|
+
Parameters
|
|
135
|
+
----------
|
|
136
|
+
value : str
|
|
137
|
+
"""
|
|
138
|
+
return self._set(instruction=value)
|
|
139
|
+
|
|
140
|
+
def setConfigProtoBytes(self, b):
|
|
141
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
142
|
+
|
|
143
|
+
Parameters
|
|
144
|
+
----------
|
|
145
|
+
b : List[int]
|
|
146
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
147
|
+
"""
|
|
148
|
+
return self._set(configProtoBytes=b)
|
|
149
|
+
|
|
150
|
+
@keyword_only
|
|
151
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.InstructorEmbeddings", java_model=None):
|
|
152
|
+
super(InstructorEmbeddings, self).__init__(
|
|
153
|
+
classname=classname,
|
|
154
|
+
java_model=java_model
|
|
155
|
+
)
|
|
156
|
+
self._setDefault(
|
|
157
|
+
dimension=768,
|
|
158
|
+
batchSize=8,
|
|
159
|
+
maxSentenceLength=128,
|
|
160
|
+
caseSensitive=False,
|
|
161
|
+
instruction="",
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
@staticmethod
|
|
165
|
+
def loadSavedModel(folder, spark_session):
|
|
166
|
+
"""Loads a locally saved model.
|
|
167
|
+
|
|
168
|
+
Parameters
|
|
169
|
+
----------
|
|
170
|
+
folder : str
|
|
171
|
+
Folder of the saved model
|
|
172
|
+
spark_session : pyspark.sql.SparkSession
|
|
173
|
+
The current SparkSession
|
|
174
|
+
|
|
175
|
+
Returns
|
|
176
|
+
-------
|
|
177
|
+
InstructorEmbeddings
|
|
178
|
+
The restored model
|
|
179
|
+
"""
|
|
180
|
+
from sparknlp.internal import _InstructorLoader
|
|
181
|
+
jModel = _InstructorLoader(folder, spark_session._jsparkSession)._java_obj
|
|
182
|
+
return InstructorEmbeddings(java_model=jModel)
|
|
183
|
+
|
|
184
|
+
@staticmethod
|
|
185
|
+
def pretrained(name="instructor_base", lang="en", remote_loc=None):
|
|
186
|
+
"""Downloads and loads a pretrained model.
|
|
187
|
+
|
|
188
|
+
Parameters
|
|
189
|
+
----------
|
|
190
|
+
name : str, optional
|
|
191
|
+
Name of the pretrained model, by default "instructor_base"
|
|
192
|
+
lang : str, optional
|
|
193
|
+
Language of the pretrained model, by default "en"
|
|
194
|
+
remote_loc : str, optional
|
|
195
|
+
Optional remote address of the resource, by default None. Will use
|
|
196
|
+
Spark NLPs repositories otherwise.
|
|
197
|
+
|
|
198
|
+
Returns
|
|
199
|
+
-------
|
|
200
|
+
InstructorEmbeddings
|
|
201
|
+
The restored model
|
|
202
|
+
"""
|
|
203
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
204
|
+
return ResourceDownloader.downloadModel(InstructorEmbeddings, name, lang, remote_loc)
|
|
@@ -21,7 +21,8 @@ class LongformerEmbeddings(AnnotatorModel,
|
|
|
21
21
|
HasCaseSensitiveProperties,
|
|
22
22
|
HasStorageRef,
|
|
23
23
|
HasBatchedAnnotate,
|
|
24
|
-
HasEngine
|
|
24
|
+
HasEngine,
|
|
25
|
+
HasLongMaxSentenceLengthLimit):
|
|
25
26
|
"""Longformer is a transformer model for long documents. The Longformer
|
|
26
27
|
model was presented in `Longformer: The Long-Document Transformer` by Iz
|
|
27
28
|
Beltagy, Matthew E. Peters, Arman Cohan. longformer-base-4096 is a BERT-like
|
|
@@ -38,7 +39,7 @@ class LongformerEmbeddings(AnnotatorModel,
|
|
|
38
39
|
|
|
39
40
|
The default model is ``"longformer_base_4096"``, if no name is provided. For
|
|
40
41
|
available pretrained models please see the `Models Hub
|
|
41
|
-
<https://
|
|
42
|
+
<https://sparknlp.org/models?task=Embeddings>`__.
|
|
42
43
|
|
|
43
44
|
To see which models are compatible and how to import them see
|
|
44
45
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -139,11 +140,6 @@ class LongformerEmbeddings(AnnotatorModel,
|
|
|
139
140
|
|
|
140
141
|
outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS
|
|
141
142
|
|
|
142
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
143
|
-
"maxSentenceLength",
|
|
144
|
-
"Max sentence length to process",
|
|
145
|
-
typeConverter=TypeConverters.toInt)
|
|
146
|
-
|
|
147
143
|
configProtoBytes = Param(Params._dummy(),
|
|
148
144
|
"configProtoBytes",
|
|
149
145
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -159,16 +155,6 @@ class LongformerEmbeddings(AnnotatorModel,
|
|
|
159
155
|
"""
|
|
160
156
|
return self._set(configProtoBytes=b)
|
|
161
157
|
|
|
162
|
-
def setMaxSentenceLength(self, value):
|
|
163
|
-
"""Sets max sentence length to process, by default 1024.
|
|
164
|
-
|
|
165
|
-
Parameters
|
|
166
|
-
----------
|
|
167
|
-
value : int
|
|
168
|
-
Max sentence length to process
|
|
169
|
-
"""
|
|
170
|
-
return self._set(maxSentenceLength=value)
|
|
171
|
-
|
|
172
158
|
@keyword_only
|
|
173
159
|
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.LongformerEmbeddings", java_model=None):
|
|
174
160
|
super(LongformerEmbeddings, self).__init__(
|
|
@@ -0,0 +1,189 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for MiniLMEmbeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class MiniLMEmbeddings(AnnotatorModel,
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasCaseSensitiveProperties,
|
|
22
|
+
HasStorageRef,
|
|
23
|
+
HasBatchedAnnotate,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
25
|
+
"""Sentence embeddings using MiniLM.
|
|
26
|
+
|
|
27
|
+
MiniLM, a lightweight and efficient sentence embedding model that can generate text embeddings for various NLP tasks (e.g., classification, retrieval, clustering, text evaluation, etc.)
|
|
28
|
+
Note that this annotator is only supported for Spark Versions 3.4 and up.
|
|
29
|
+
|
|
30
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
31
|
+
object:
|
|
32
|
+
|
|
33
|
+
>>> embeddings = MiniLMEmbeddings.pretrained() \\
|
|
34
|
+
... .setInputCols(["document"]) \\
|
|
35
|
+
... .setOutputCol("minilm_embeddings")
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
The default model is ``"minilm_l6_v2"``, if no name is provided.
|
|
39
|
+
|
|
40
|
+
For available pretrained models please see the
|
|
41
|
+
`Models Hub <https://sparknlp.org/models?q=MiniLM>`__.
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
|
|
48
|
+
====================== ======================
|
|
49
|
+
|
|
50
|
+
Parameters
|
|
51
|
+
----------
|
|
52
|
+
batchSize
|
|
53
|
+
Size of every batch , by default 8
|
|
54
|
+
dimension
|
|
55
|
+
Number of embedding dimensions, by default 384
|
|
56
|
+
caseSensitive
|
|
57
|
+
Whether to ignore case in tokens for embeddings matching, by default False
|
|
58
|
+
maxSentenceLength
|
|
59
|
+
Max sentence length to process, by default 512
|
|
60
|
+
configProtoBytes
|
|
61
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
62
|
+
|
|
63
|
+
References
|
|
64
|
+
----------
|
|
65
|
+
`MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers <https://arxiv.org/abs/2002.10957>`__
|
|
66
|
+
|
|
67
|
+
`MiniLM Github Repository <https://github.com/microsoft/unilm/tree/master/minilm>`__
|
|
68
|
+
|
|
69
|
+
**Paper abstract**
|
|
70
|
+
|
|
71
|
+
*We present a simple and effective approach to compress large pre-trained Transformer models
|
|
72
|
+
by distilling the self-attention module of the last Transformer layer. The compressed model
|
|
73
|
+
(called MiniLM) can be trained with task-agnostic distillation and then fine-tuned on various
|
|
74
|
+
downstream tasks. We evaluate MiniLM on the GLUE benchmark and show that it achieves comparable
|
|
75
|
+
results with BERT-base while being 4.3x smaller and 5.5x faster. We also show that MiniLM can
|
|
76
|
+
be further compressed to 22x smaller and 12x faster than BERT-base while maintaining comparable
|
|
77
|
+
performance.*
|
|
78
|
+
|
|
79
|
+
Examples
|
|
80
|
+
--------
|
|
81
|
+
>>> import sparknlp
|
|
82
|
+
>>> from sparknlp.base import *
|
|
83
|
+
>>> from sparknlp.annotator import *
|
|
84
|
+
>>> from pyspark.ml import Pipeline
|
|
85
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
86
|
+
... .setInputCol("text") \\
|
|
87
|
+
... .setOutputCol("document")
|
|
88
|
+
>>> embeddings = MiniLMEmbeddings.pretrained() \\
|
|
89
|
+
... .setInputCols(["document"]) \\
|
|
90
|
+
... .setOutputCol("minilm_embeddings")
|
|
91
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
92
|
+
... .setInputCols(["minilm_embeddings"]) \\
|
|
93
|
+
... .setOutputCols("finished_embeddings") \\
|
|
94
|
+
... .setOutputAsVector(True)
|
|
95
|
+
>>> pipeline = Pipeline().setStages([
|
|
96
|
+
... documentAssembler,
|
|
97
|
+
... embeddings,
|
|
98
|
+
... embeddingsFinisher
|
|
99
|
+
... ])
|
|
100
|
+
>>> data = spark.createDataFrame([["This is a sample sentence for embedding generation.",
|
|
101
|
+
... "Another example sentence to demonstrate MiniLM embeddings.",
|
|
102
|
+
... ]]).toDF("text")
|
|
103
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
104
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
105
|
+
+--------------------------------------------------------------------------------+
|
|
106
|
+
| result|
|
|
107
|
+
+--------------------------------------------------------------------------------+
|
|
108
|
+
|[[0.1234567, -0.2345678, 0.3456789, -0.4567890, 0.5678901, -0.6789012...|
|
|
109
|
+
|[[0.2345678, -0.3456789, 0.4567890, -0.5678901, 0.6789012, -0.7890123...|
|
|
110
|
+
+--------------------------------------------------------------------------------+
|
|
111
|
+
"""
|
|
112
|
+
|
|
113
|
+
name = "MiniLMEmbeddings"
|
|
114
|
+
|
|
115
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
116
|
+
|
|
117
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
118
|
+
configProtoBytes = Param(Params._dummy(),
|
|
119
|
+
"configProtoBytes",
|
|
120
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
121
|
+
TypeConverters.toListInt)
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
def setConfigProtoBytes(self, b):
|
|
125
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
126
|
+
|
|
127
|
+
Parameters
|
|
128
|
+
----------
|
|
129
|
+
b : List[int]
|
|
130
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
131
|
+
"""
|
|
132
|
+
return self._set(configProtoBytes=b)
|
|
133
|
+
|
|
134
|
+
@keyword_only
|
|
135
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.MiniLMEmbeddings", java_model=None):
|
|
136
|
+
super(MiniLMEmbeddings, self).__init__(
|
|
137
|
+
classname=classname,
|
|
138
|
+
java_model=java_model
|
|
139
|
+
)
|
|
140
|
+
self._setDefault(
|
|
141
|
+
dimension=384,
|
|
142
|
+
batchSize=8,
|
|
143
|
+
maxSentenceLength=512,
|
|
144
|
+
caseSensitive=False,
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
@staticmethod
|
|
148
|
+
def loadSavedModel(folder, spark_session, use_openvino=False):
|
|
149
|
+
"""Loads a locally saved model.
|
|
150
|
+
|
|
151
|
+
Parameters
|
|
152
|
+
----------
|
|
153
|
+
folder : str
|
|
154
|
+
Folder of the saved model
|
|
155
|
+
spark_session : pyspark.sql.SparkSession
|
|
156
|
+
The current SparkSession
|
|
157
|
+
use_openvino : bool
|
|
158
|
+
Use OpenVINO backend
|
|
159
|
+
|
|
160
|
+
Returns
|
|
161
|
+
-------
|
|
162
|
+
MiniLMEmbeddings
|
|
163
|
+
The restored model
|
|
164
|
+
"""
|
|
165
|
+
from sparknlp.internal import _MiniLMLoader
|
|
166
|
+
jModel = _MiniLMLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
|
|
167
|
+
return MiniLMEmbeddings(java_model=jModel)
|
|
168
|
+
|
|
169
|
+
@staticmethod
|
|
170
|
+
def pretrained(name="minilm_l6_v2", lang="en", remote_loc=None):
|
|
171
|
+
"""Downloads and loads a pretrained model.
|
|
172
|
+
|
|
173
|
+
Parameters
|
|
174
|
+
----------
|
|
175
|
+
name : str, optional
|
|
176
|
+
Name of the pretrained model, by default "minilm_l6_v2"
|
|
177
|
+
lang : str, optional
|
|
178
|
+
Language of the pretrained model, by default "en"
|
|
179
|
+
remote_loc : str, optional
|
|
180
|
+
Optional remote address of the resource, by default None. Will use
|
|
181
|
+
Spark NLPs repositories otherwise.
|
|
182
|
+
|
|
183
|
+
Returns
|
|
184
|
+
-------
|
|
185
|
+
MiniLMEmbeddings
|
|
186
|
+
The restored model
|
|
187
|
+
"""
|
|
188
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
189
|
+
return ResourceDownloader.downloadModel(MiniLMEmbeddings, name, lang, remote_loc)
|