spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (221) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  4. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  5. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  6. sparknlp/__init__.py +81 -28
  7. sparknlp/annotation.py +3 -2
  8. sparknlp/annotator/__init__.py +6 -0
  9. sparknlp/annotator/audio/__init__.py +2 -0
  10. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  11. sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
  12. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  13. sparknlp/{base → annotator}/chunk2_doc.py +4 -7
  14. sparknlp/annotator/chunker.py +1 -2
  15. sparknlp/annotator/classifier_dl/__init__.py +17 -0
  16. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  17. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
  18. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
  19. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
  20. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  21. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  22. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  23. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
  24. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
  25. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
  26. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  27. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  28. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
  29. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
  30. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  31. sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
  32. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
  33. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
  34. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
  35. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  36. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
  37. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
  38. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
  39. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  40. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  41. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
  42. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
  43. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
  44. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  45. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  46. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  47. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
  48. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  49. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
  50. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
  51. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
  52. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  53. sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
  54. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
  55. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  56. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
  57. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  60. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
  61. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
  62. sparknlp/annotator/cleaners/__init__.py +15 -0
  63. sparknlp/annotator/cleaners/cleaner.py +202 -0
  64. sparknlp/annotator/cleaners/extractor.py +191 -0
  65. sparknlp/annotator/coref/spanbert_coref.py +4 -18
  66. sparknlp/annotator/cv/__init__.py +15 -0
  67. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  68. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  69. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  70. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  71. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  72. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  73. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  74. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  75. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  76. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  77. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  78. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  79. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  80. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  81. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  82. sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
  83. sparknlp/annotator/dataframe_optimizer.py +216 -0
  84. sparknlp/annotator/date2_chunk.py +88 -0
  85. sparknlp/annotator/dependency/dependency_parser.py +2 -3
  86. sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
  87. sparknlp/annotator/document_character_text_splitter.py +228 -0
  88. sparknlp/annotator/document_normalizer.py +37 -1
  89. sparknlp/annotator/document_token_splitter.py +175 -0
  90. sparknlp/annotator/document_token_splitter_test.py +85 -0
  91. sparknlp/annotator/embeddings/__init__.py +11 -0
  92. sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
  93. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  94. sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
  95. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
  96. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  97. sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
  98. sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
  99. sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
  100. sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
  101. sparknlp/annotator/embeddings/doc2vec.py +7 -1
  102. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  103. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  104. sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
  105. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  106. sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
  107. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  108. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  109. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  110. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  111. sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
  112. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
  113. sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
  114. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  115. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  116. sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
  117. sparknlp/annotator/embeddings/word2vec.py +7 -1
  118. sparknlp/annotator/embeddings/word_embeddings.py +4 -5
  119. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
  120. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
  121. sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
  122. sparknlp/annotator/er/entity_ruler.py +37 -23
  123. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
  124. sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
  125. sparknlp/annotator/lemmatizer.py +3 -4
  126. sparknlp/annotator/matcher/date_matcher.py +35 -3
  127. sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
  128. sparknlp/annotator/matcher/regex_matcher.py +3 -3
  129. sparknlp/annotator/matcher/text_matcher.py +2 -3
  130. sparknlp/annotator/n_gram_generator.py +1 -2
  131. sparknlp/annotator/ner/__init__.py +3 -1
  132. sparknlp/annotator/ner/ner_converter.py +18 -0
  133. sparknlp/annotator/ner/ner_crf.py +4 -5
  134. sparknlp/annotator/ner/ner_dl.py +10 -5
  135. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  136. sparknlp/annotator/ner/ner_overwriter.py +2 -2
  137. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  138. sparknlp/annotator/normalizer.py +2 -2
  139. sparknlp/annotator/openai/__init__.py +16 -0
  140. sparknlp/annotator/openai/openai_completion.py +349 -0
  141. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  142. sparknlp/annotator/pos/perceptron.py +6 -7
  143. sparknlp/annotator/sentence/sentence_detector.py +2 -2
  144. sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
  145. sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
  146. sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
  147. sparknlp/annotator/seq2seq/__init__.py +17 -0
  148. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  149. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  150. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  151. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  152. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  153. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  154. sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
  155. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  156. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  157. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  158. sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
  159. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  160. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  161. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  162. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  163. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  164. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  165. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  166. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  167. sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
  168. sparknlp/annotator/similarity/__init__.py +0 -0
  169. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  170. sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
  171. sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
  172. sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
  173. sparknlp/annotator/stemmer.py +2 -3
  174. sparknlp/annotator/stop_words_cleaner.py +3 -4
  175. sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
  176. sparknlp/annotator/token/__init__.py +0 -1
  177. sparknlp/annotator/token/recursive_tokenizer.py +2 -3
  178. sparknlp/annotator/token/tokenizer.py +2 -3
  179. sparknlp/annotator/ws/word_segmenter.py +35 -10
  180. sparknlp/base/__init__.py +2 -3
  181. sparknlp/base/doc2_chunk.py +0 -3
  182. sparknlp/base/document_assembler.py +5 -5
  183. sparknlp/base/embeddings_finisher.py +14 -2
  184. sparknlp/base/finisher.py +15 -4
  185. sparknlp/base/gguf_ranking_finisher.py +234 -0
  186. sparknlp/base/image_assembler.py +69 -0
  187. sparknlp/base/light_pipeline.py +53 -21
  188. sparknlp/base/multi_document_assembler.py +9 -13
  189. sparknlp/base/prompt_assembler.py +207 -0
  190. sparknlp/base/token_assembler.py +1 -2
  191. sparknlp/common/__init__.py +2 -0
  192. sparknlp/common/annotator_type.py +1 -0
  193. sparknlp/common/completion_post_processing.py +37 -0
  194. sparknlp/common/match_strategy.py +33 -0
  195. sparknlp/common/properties.py +914 -9
  196. sparknlp/internal/__init__.py +841 -116
  197. sparknlp/internal/annotator_java_ml.py +1 -1
  198. sparknlp/internal/annotator_transformer.py +3 -0
  199. sparknlp/logging/comet.py +2 -2
  200. sparknlp/partition/__init__.py +16 -0
  201. sparknlp/partition/partition.py +244 -0
  202. sparknlp/partition/partition_properties.py +902 -0
  203. sparknlp/partition/partition_transformer.py +200 -0
  204. sparknlp/pretrained/pretrained_pipeline.py +1 -1
  205. sparknlp/pretrained/resource_downloader.py +126 -2
  206. sparknlp/reader/__init__.py +15 -0
  207. sparknlp/reader/enums.py +19 -0
  208. sparknlp/reader/pdf_to_text.py +190 -0
  209. sparknlp/reader/reader2doc.py +124 -0
  210. sparknlp/reader/reader2image.py +136 -0
  211. sparknlp/reader/reader2table.py +44 -0
  212. sparknlp/reader/reader_assembler.py +159 -0
  213. sparknlp/reader/sparknlp_reader.py +461 -0
  214. sparknlp/training/__init__.py +1 -0
  215. sparknlp/training/conll.py +8 -2
  216. sparknlp/training/spacy_to_annotation.py +57 -0
  217. sparknlp/util.py +26 -0
  218. spark_nlp-4.2.6.dist-info/METADATA +0 -1256
  219. spark_nlp-4.2.6.dist-info/RECORD +0 -196
  220. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
  221. /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
@@ -0,0 +1,293 @@
1
+ # Copyright 2017-2025 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for NerDL."""
15
+
16
+ from pyspark.ml.util import JavaMLReadable
17
+
18
+ import sparknlp.internal as _internal
19
+ from sparknlp.common import *
20
+
21
+
22
+ class NerDLGraphChecker(
23
+ JavaEstimator,
24
+ JavaMLWritable,
25
+ _internal.ParamsGettersSetters,
26
+ ):
27
+ """Checks whether a suitable NerDL graph is available for the given training dataset, before any
28
+ computations/training is done. This annotator is useful for custom training cases, where
29
+ specialized graphs are needed.
30
+
31
+ This annotator will fill graph hyperparameters as metadata in the label column, which will be
32
+ available for NerDLApproach, saving computations.
33
+
34
+ Important: This annotator should be used or positioned before any embedding or NerDLApproach
35
+ annotators in the pipeline and will process the whole dataset to extract the required graph parameters.
36
+
37
+ This annotator requires a dataset with at least two columns: one with tokens and one with the
38
+ labels. In addition, it requires the used embedding annotator in the pipeline to extract the
39
+ suitable embedding dimension.
40
+
41
+ For extended examples of usage, see the`Examples
42
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master//home/ducha/Workspace/scala/spark-nlp-feature/examples/python/training/english/dl-ner/ner_dl_graph_checker.ipynb>`__
43
+ and the `NerDLGraphCheckerTestSpec
44
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/ner/dl/NerDLGraphCheckerTestSpec.scala>`__.
45
+
46
+ ==================================== ======================
47
+ Input Annotation types Output Annotation type
48
+ ==================================== ======================
49
+ ``DOCUMENT, TOKEN`` `NONE`
50
+ ==================================== ======================
51
+
52
+ Parameters
53
+ ----------
54
+ inputCols
55
+ Column names of input annotations
56
+ labelColumn
57
+ Column name for data labels
58
+ embeddingsDim
59
+ Dimensionality of embeddings
60
+
61
+ Examples
62
+ --------
63
+ >>> import sparknlp
64
+ >>> from sparknlp.base import *
65
+ >>> from sparknlp.annotator import *
66
+ >>> from pyspark.ml import Pipeline
67
+
68
+ This CoNLL dataset already includes a sentence, token and label
69
+ column with their respective annotator types. If a custom dataset is used,
70
+ these need to be defined with for example:
71
+
72
+ >>> conll = CoNLL()
73
+ >>> trainingData = conll.readDataset(spark, "src/test/resources/conll2003/eng.train")
74
+ >>> embeddings = BertEmbeddings \\
75
+ ... .pretrained() \\
76
+ ... .setInputCols(["sentence", "token"]) \\
77
+ ... .setOutputCol("embeddings")
78
+
79
+ This annotatorr requires the data for NerDLApproach graphs: text, tokens, labels and the embedding model
80
+
81
+ >>> nerDLGraphChecker = NerDLGraphChecker() \\
82
+ ... .setInputCols(["sentence", "token"]) \\
83
+ ... .setLabelColumn("label") \\
84
+ ... .setEmbeddingsModel(embeddings)
85
+ >>> nerTagger = NerDLApproach() \\
86
+ ... .setInputCols(["sentence", "token", "embeddings"]) \\
87
+ ... .setLabelColumn("label") \\
88
+ ... .setOutputCol("ner") \\
89
+ ... .setMaxEpochs(1) \\
90
+ ... .setRandomSeed(0) \\
91
+ ... .setVerbose(0)
92
+ >>> pipeline = Pipeline().setStages([nerDLGraphChecker, embeddings, nerTagger])
93
+
94
+ If we now fit the model with a graph missing, then an exception is raised.
95
+
96
+ >>> pipelineModel = pipeline.fit(trainingData)
97
+ """
98
+
99
+ inputCols = Param(
100
+ Params._dummy(),
101
+ "inputCols",
102
+ "Input columns",
103
+ typeConverter=TypeConverters.toListString,
104
+ )
105
+
106
+ def setInputCols(self, *value):
107
+ """Sets column names of input annotations.
108
+
109
+ Parameters
110
+ ----------
111
+ *value : List[str]
112
+ Input columns for the annotator
113
+ """
114
+ if type(value[0]) == str or type(value[0]) == list:
115
+ # self.inputColsValidation(value)
116
+ if len(value) == 1 and type(value[0]) == list:
117
+ return self._set(inputCols=value[0])
118
+ else:
119
+ return self._set(inputCols=list(value))
120
+ else:
121
+ raise TypeError(
122
+ "InputCols datatype not supported. It must be either str or list"
123
+ )
124
+
125
+ labelColumn = Param(
126
+ Params._dummy(),
127
+ "labelColumn",
128
+ "Column with label per each token",
129
+ typeConverter=TypeConverters.toString,
130
+ )
131
+
132
+ def setLabelColumn(self, value):
133
+ """Sets name of column for data labels.
134
+
135
+ Parameters
136
+ ----------
137
+ value : str
138
+ Column for data labels
139
+ """
140
+ return self._set(labelColumn=value)
141
+
142
+ embeddingsDim = Param(
143
+ Params._dummy(),
144
+ "embeddingsDim",
145
+ "Dimensionality of embeddings",
146
+ typeConverter=TypeConverters.toInt,
147
+ )
148
+
149
+ def setEmbeddingsDim(self, value: int):
150
+ """Sets Dimensionality of embeddings
151
+
152
+ Parameters
153
+ ----------
154
+ value : int
155
+ Dimensionality of embeddings
156
+ """
157
+ return self._set(embeddingsDim=value)
158
+
159
+ def setEmbeddingsModel(self, model: HasEmbeddingsProperties):
160
+ """
161
+ Get embeddingsDim from a given embeddings model, if possible.
162
+ Falls back to setEmbeddingsDim if dimension cannot be obtained automatically.
163
+ """
164
+ # Try Python API first
165
+ if hasattr(model, "getDimension"):
166
+ dim = model.getDimension()
167
+ return self.setEmbeddingsDim(int(dim))
168
+ # Try JVM side if available
169
+ if hasattr(model, "_java_obj") and hasattr(model._java_obj, "getDimension"):
170
+ dim = int(model._java_obj.getDimension())
171
+ return self.setEmbeddingsDim(dim)
172
+ raise ValueError(
173
+ "Could not infer embeddings dimension from provided model. "
174
+ "Use setEmbeddingsDim(dim) explicitly."
175
+ )
176
+
177
+ inputAnnotatorTypes = [
178
+ AnnotatorType.DOCUMENT,
179
+ AnnotatorType.TOKEN,
180
+ ]
181
+
182
+ graphFolder = Param(
183
+ Params._dummy(),
184
+ "graphFolder",
185
+ "Folder path that contain external graph files",
186
+ TypeConverters.toString,
187
+ )
188
+
189
+ def setGraphFolder(self, p):
190
+ """Sets folder path that contain external graph files.
191
+
192
+ Parameters
193
+ ----------
194
+ p : str
195
+ Folder path that contain external graph files
196
+ """
197
+ return self._set(graphFolder=p)
198
+
199
+ @keyword_only
200
+ def __init__(self):
201
+ _internal.ParamsGettersSetters.__init__(self)
202
+ classname = "com.johnsnowlabs.nlp.annotators.ner.dl.NerDLGraphChecker"
203
+ self.__class__._java_class_name = classname
204
+ self._java_obj = self._new_java_obj(classname, self.uid)
205
+ # self._setDefault()
206
+
207
+ def _create_model(self, java_model):
208
+ return NerDLGraphCheckerModel(java_model=java_model)
209
+
210
+
211
+ class NerDLGraphCheckerModel(
212
+ JavaModel,
213
+ JavaMLWritable,
214
+ JavaMLReadable,
215
+ _internal.ParamsGettersSetters,
216
+ ):
217
+ """Resulting model from `NerDLGraphChecker`, that updates dataframe metadata (label column)
218
+ with NerDLGraph parameters. It does not perform any actual data transformations, as the
219
+ checks/computations are done during the `fit` phase.
220
+
221
+ This annotator should never be used directly.
222
+ """
223
+
224
+ inputAnnotatorTypes = [
225
+ AnnotatorType.DOCUMENT,
226
+ AnnotatorType.TOKEN,
227
+ ]
228
+
229
+ @keyword_only
230
+ def __init__(
231
+ self,
232
+ classname="com.johnsnowlabs.nlp.annotators.ner.dl.NerDLGraphCheckerModel",
233
+ java_model=None,
234
+ ):
235
+ # Custom init, different from AnnotatorModel
236
+ # We don't have a output annotation column, so we inherit directly from JavaModel
237
+ if java_model is not None:
238
+ super(NerDLGraphCheckerModel, self).__init__(java_model=java_model)
239
+ self._java_obj = java_model
240
+ self._transfer_params_from_java()
241
+ elif classname:
242
+ super(NerDLGraphCheckerModel, self).__init__()
243
+ self.__class__._java_class_name = classname
244
+ self._java_obj = self._new_java_obj(classname)
245
+
246
+ # Metadata keys for graph parameters
247
+ graphParamsMetadataKey = "NerDLGraphCheckerParams"
248
+ embeddingsDimKey = "embeddingsDim"
249
+ labelsKey = "labels"
250
+ charsKey = "chars"
251
+ dsLenKey = "dsLen"
252
+
253
+ labelColumn = Param(
254
+ Params._dummy(),
255
+ "labelColumn",
256
+ "Column with label per each token",
257
+ typeConverter=TypeConverters.toString,
258
+ )
259
+
260
+ embeddingsDim = Param(
261
+ Params._dummy(),
262
+ "embeddingsDim",
263
+ "Dimensionality of embeddings",
264
+ typeConverter=TypeConverters.toInt,
265
+ )
266
+
267
+ labels = Param(
268
+ Params._dummy(),
269
+ "labels",
270
+ "Labels in the dataset",
271
+ typeConverter=TypeConverters.toListString,
272
+ )
273
+
274
+ chars = Param(
275
+ Params._dummy(),
276
+ "chars",
277
+ "Set of characters in the dataset",
278
+ typeConverter=TypeConverters.toListString,
279
+ )
280
+
281
+ graphFolder = Param(
282
+ Params._dummy(),
283
+ "graphFolder",
284
+ "Folder path that contain external graph files",
285
+ typeConverter=TypeConverters.toString,
286
+ )
287
+
288
+ dsLen = Param(
289
+ Params._dummy(),
290
+ "dsLen",
291
+ "Length of the training dataset.",
292
+ typeConverter=TypeConverters.toInt,
293
+ )
@@ -21,8 +21,8 @@ class NerOverwriter(AnnotatorModel):
21
21
 
22
22
  The input for this Annotator have to be entities that are already extracted,
23
23
  Annotator type ``NAMED_ENTITY``. The strings specified with
24
- :meth:`.setStopWords` will have new entities assigned to, specified with
25
- :meth:`.setNewResult`.
24
+ :meth:`.NerOverwriter.setStopWords` will have new entities assigned to, specified
25
+ with :meth:`.NerOverwriter.setNewResult`.
26
26
 
27
27
  ====================== ======================
28
28
  Input Annotation types Output Annotation type
@@ -0,0 +1,173 @@
1
+ # Copyright 2017-2023 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from sparknlp.common import *
16
+ from sparknlp.annotator.classifier_dl import RoBertaForQuestionAnswering
17
+
18
+
19
+ class ZeroShotNerModel(RoBertaForQuestionAnswering, HasEngine):
20
+ """ZeroShotNerModel implements zero shot named entity recognition by utilizing RoBERTa
21
+ transformer models fine tuned on a question answering task.
22
+
23
+ Its input is a list of document annotations and it automatically generates questions which are
24
+ used to recognize entities. The definitions of entities is given by a dictionary structures,
25
+ specifying a set of questions for each entity. The model is based on
26
+ RoBertaForQuestionAnswering.
27
+
28
+ For more extended examples see the
29
+ `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/named-entity-recognition/ZeroShot_NER.ipynb>`__.
30
+
31
+ Pretrained models can be loaded with ``pretrained`` of the companion object:
32
+
33
+ .. code-block:: python
34
+
35
+ zeroShotNer = ZeroShotNerModel.pretrained() \\
36
+ .setInputCols(["document"]) \\
37
+ .setOutputCol("zer_shot_ner")
38
+
39
+ ====================== ======================
40
+ Input Annotation types Output Annotation type
41
+ ====================== ======================
42
+ ``DOCUMENT, TOKEN`` ``NAMED_ENTITY``
43
+ ====================== ======================
44
+
45
+ Parameters
46
+ ----------
47
+ entityDefinitions
48
+ A dictionary with definitions of named entities. The keys of dictionary are the entity labels and the
49
+ values are lists of questions. For example:
50
+ {
51
+ "CITY": ["Which city?", "Which town?"],
52
+ "NAME": ["What is her name?", "What is his name?"]}
53
+
54
+ predictionThreshold
55
+ Minimal confidence score to encode an entity (Default: 0.01f)
56
+ ignoreEntities
57
+ A list of entity labels which are discarded from the output.
58
+
59
+ References
60
+ ----------
61
+ `RoBERTa: A Robustly Optimized BERT Pretraining Approach <https://arxiv.org/abs/1907.11692>`__ : for details about the RoBERTa transformer
62
+ :class:`.RoBertaForQuestionAnswering` : for the SparkNLP implementation of RoBERTa question answering
63
+
64
+ Examples
65
+ --------
66
+ >>> document_assembler = DocumentAssembler() \\
67
+ ... .setInputCol("text") \\
68
+ ... .setOutputCol("document")
69
+ >>> sentence_detector = SentenceDetector() \\
70
+ ... .setInputCols(["document"]) \\
71
+ ... .setOutputCol("sentence")
72
+ >>> tokenizer = Tokenizer() \\
73
+ ... .setInputCols(["sentence"]) \\
74
+ ... .setOutputCol("token")
75
+ >>> zero_shot_ner = ZeroShotNerModel() \\
76
+ ... .pretrained() \\
77
+ ... .setEntityDefinitions(
78
+ ... {
79
+ ... "NAME": ["What is his name?", "What is my name?", "What is her name?"],
80
+ ... "CITY": ["Which city?", "Which is the city?"]
81
+ ... }) \\
82
+ ... .setInputCols(["sentence", "token"]) \\
83
+ ... .setOutputCol("zero_shot_ner") \\
84
+ >>> data = spark.createDataFrame(
85
+ ... [["My name is Clara, I live in New York and Hellen lives in Paris."]]
86
+ ... ).toDF("text")
87
+ >>> Pipeline() \\
88
+ ... .setStages([document_assembler, sentence_detector, tokenizer, zero_shot_ner]) \\
89
+ ... .fit(data) \\
90
+ ... .transform(data) \\
91
+ ... .selectExpr("document", "explode(zero_shot_ner) AS entity") \\
92
+ ... .select(
93
+ ... "document.result",
94
+ ... "entity.result",
95
+ ... "entity.metadata.word",
96
+ ... "entity.metadata.confidence",
97
+ ... "entity.metadata.question") \\
98
+ ... .show(truncate=False)
99
+ +-----------------------------------------------------------------+------+------+----------+------------------+
100
+ |result |result|word |confidence|question |
101
+ +-----------------------------------------------------------------+------+------+----------+------------------+
102
+ |[My name is Clara, I live in New York and Hellen lives in Paris.]|B-CITY|Paris |0.5328949 |Which is the city?|
103
+ |[My name is Clara, I live in New York and Hellen lives in Paris.]|B-NAME|Clara |0.9360068 |What is my name? |
104
+ |[My name is Clara, I live in New York and Hellen lives in Paris.]|B-CITY|New |0.83294415|Which city? |
105
+ |[My name is Clara, I live in New York and Hellen lives in Paris.]|I-CITY|York |0.83294415|Which city? |
106
+ |[My name is Clara, I live in New York and Hellen lives in Paris.]|B-NAME|Hellen|0.45366877|What is her name? |
107
+ +-----------------------------------------------------------------+------+------+----------+------------------+
108
+ """
109
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
110
+ outputAnnotatorType = AnnotatorType.NAMED_ENTITY
111
+
112
+ name = "ZeroShotNerModel"
113
+
114
+ predictionThreshold = Param(Params._dummy(),
115
+ "predictionThreshold",
116
+ "Minimal confidence score to encode an entity (default is 0.1)",
117
+ TypeConverters.toFloat)
118
+
119
+ ignoreEntities = Param(Params._dummy(),
120
+ "ignoreEntities",
121
+ "List of entities to ignore",
122
+ TypeConverters.toListString)
123
+
124
+ def setPredictionThreshold(self, threshold):
125
+ """Sets the minimal confidence score to encode an entity
126
+
127
+ Parameters
128
+ ----------
129
+ threshold : float
130
+ minimal confidence score to encode an entity (default is 0.1)
131
+ """
132
+ return self._set(predictionThreshold=threshold)
133
+
134
+ def setEntityDefinitions(self, definitions):
135
+ """Set entity definitions
136
+
137
+ Parameters
138
+ ----------
139
+ definitions : dict[str, list[str]]
140
+
141
+ """
142
+ self._call_java("setEntityDefinitions", definitions)
143
+
144
+ return self
145
+
146
+ def getClasses(self):
147
+ """
148
+ Returns the list of entities which are recognized
149
+ """
150
+ return self._call_java("getEntities")
151
+
152
+ @keyword_only
153
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.ner.dl.ZeroShotNerModel", java_model=None):
154
+ super(ZeroShotNerModel, self).__init__(
155
+ classname=classname,
156
+ java_model=java_model
157
+ )
158
+ self._setDefault(
159
+ predictionThreshold=0.01,
160
+ ignoreEntities=[]
161
+ )
162
+
163
+ @staticmethod
164
+ def pretrained(name="zero_shot_ner_roberta", lang="en", remote_loc=None):
165
+ from sparknlp.pretrained import ResourceDownloader
166
+ return ResourceDownloader.downloadModel(ZeroShotNerModel, name, lang, remote_loc,
167
+ j_dwn='PythonResourceDownloader')
168
+
169
+ @staticmethod
170
+ def load(path):
171
+ from sparknlp.internal import _RobertaQAToZeroShotNerLoader
172
+ jModel = _RobertaQAToZeroShotNerLoader(path)._java_obj
173
+ return ZeroShotNerModel(java_model=jModel)
@@ -20,8 +20,8 @@ class Normalizer(AnnotatorApproach):
20
20
  all dirty characters from text following a regex pattern and transforms
21
21
  words based on a provided dictionary
22
22
 
23
- For extended examples of usage, see the `Spark NLP Workshop
24
- <https://github.com/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Public/2.Text_Preprocessing_with_SparkNLP_Annotators_Transformers.ipynb>`__.
23
+ For extended examples of usage, see the `Examples
24
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/document-normalizer/document_normalizer_notebook.ipynb>`__.
25
25
 
26
26
  ====================== ======================
27
27
  Input Annotation types Output Annotation type
@@ -0,0 +1,16 @@
1
+ # Copyright 2017-2023 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Module of annotators for openai integration."""
15
+ from sparknlp.annotator.openai.openai_completion import *
16
+ from sparknlp.annotator.openai.openai_embeddings import *