spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +81 -28
- sparknlp/annotation.py +3 -2
- sparknlp/annotator/__init__.py +6 -0
- sparknlp/annotator/audio/__init__.py +2 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/{base → annotator}/chunk2_doc.py +4 -7
- sparknlp/annotator/chunker.py +1 -2
- sparknlp/annotator/classifier_dl/__init__.py +17 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/spanbert_coref.py +4 -18
- sparknlp/annotator/cv/__init__.py +15 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/dependency_parser.py +2 -3
- sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +37 -1
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +11 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
- sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
- sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
- sparknlp/annotator/embeddings/doc2vec.py +7 -1
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
- sparknlp/annotator/embeddings/word2vec.py +7 -1
- sparknlp/annotator/embeddings/word_embeddings.py +4 -5
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
- sparknlp/annotator/er/entity_ruler.py +37 -23
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
- sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
- sparknlp/annotator/lemmatizer.py +3 -4
- sparknlp/annotator/matcher/date_matcher.py +35 -3
- sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
- sparknlp/annotator/matcher/regex_matcher.py +3 -3
- sparknlp/annotator/matcher/text_matcher.py +2 -3
- sparknlp/annotator/n_gram_generator.py +1 -2
- sparknlp/annotator/ner/__init__.py +3 -1
- sparknlp/annotator/ner/ner_converter.py +18 -0
- sparknlp/annotator/ner/ner_crf.py +4 -5
- sparknlp/annotator/ner/ner_dl.py +10 -5
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +2 -2
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +2 -2
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/pos/perceptron.py +6 -7
- sparknlp/annotator/sentence/sentence_detector.py +2 -2
- sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
- sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
- sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
- sparknlp/annotator/seq2seq/__init__.py +17 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
- sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
- sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
- sparknlp/annotator/stemmer.py +2 -3
- sparknlp/annotator/stop_words_cleaner.py +3 -4
- sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
- sparknlp/annotator/token/__init__.py +0 -1
- sparknlp/annotator/token/recursive_tokenizer.py +2 -3
- sparknlp/annotator/token/tokenizer.py +2 -3
- sparknlp/annotator/ws/word_segmenter.py +35 -10
- sparknlp/base/__init__.py +2 -3
- sparknlp/base/doc2_chunk.py +0 -3
- sparknlp/base/document_assembler.py +5 -5
- sparknlp/base/embeddings_finisher.py +14 -2
- sparknlp/base/finisher.py +15 -4
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/image_assembler.py +69 -0
- sparknlp/base/light_pipeline.py +53 -21
- sparknlp/base/multi_document_assembler.py +9 -13
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/token_assembler.py +1 -2
- sparknlp/common/__init__.py +2 -0
- sparknlp/common/annotator_type.py +1 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +914 -9
- sparknlp/internal/__init__.py +841 -116
- sparknlp/internal/annotator_java_ml.py +1 -1
- sparknlp/internal/annotator_transformer.py +3 -0
- sparknlp/logging/comet.py +2 -2
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/pretrained_pipeline.py +1 -1
- sparknlp/pretrained/resource_downloader.py +126 -2
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +1 -0
- sparknlp/training/conll.py +8 -2
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/util.py +26 -0
- spark_nlp-4.2.6.dist-info/METADATA +0 -1256
- spark_nlp-4.2.6.dist-info/RECORD +0 -196
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
- /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
|
@@ -0,0 +1,212 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for BertForSequenceClassification."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class BertForZeroShotClassification(AnnotatorModel,
|
|
20
|
+
HasCaseSensitiveProperties,
|
|
21
|
+
HasBatchedAnnotate,
|
|
22
|
+
HasClassifierActivationProperties,
|
|
23
|
+
HasCandidateLabelsProperties,
|
|
24
|
+
HasEngine,
|
|
25
|
+
HasMaxSentenceLengthLimit):
|
|
26
|
+
"""BertForZeroShotClassification using a `ModelForSequenceClassification` trained on NLI (natural language
|
|
27
|
+
inference) tasks. Equivalent of `BertForSequenceClassification` models, but these models don't require a hardcoded
|
|
28
|
+
number of potential classes, they can be chosen at runtime. It usually means it's slower but it is much more
|
|
29
|
+
flexible.
|
|
30
|
+
|
|
31
|
+
Note that the model will loop through all provided labels. So the more labels you have, the
|
|
32
|
+
longer this process will take.
|
|
33
|
+
|
|
34
|
+
Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis
|
|
35
|
+
pair and passed to the pretrained model.
|
|
36
|
+
|
|
37
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
38
|
+
object:
|
|
39
|
+
|
|
40
|
+
>>> sequenceClassifier = BertForZeroShotClassification.pretrained() \\
|
|
41
|
+
... .setInputCols(["token", "document"]) \\
|
|
42
|
+
... .setOutputCol("label")
|
|
43
|
+
|
|
44
|
+
The default model is ``"bert_zero_shot_classifier_mnli"``, if no name is
|
|
45
|
+
provided.
|
|
46
|
+
|
|
47
|
+
For available pretrained models please see the `Models Hub
|
|
48
|
+
<https://sparknlp.orgtask=Text+Classification>`__.
|
|
49
|
+
|
|
50
|
+
To see which models are compatible and how to import them see
|
|
51
|
+
`Import Transformers into Spark NLP 🚀
|
|
52
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
53
|
+
|
|
54
|
+
====================== ======================
|
|
55
|
+
Input Annotation types Output Annotation type
|
|
56
|
+
====================== ======================
|
|
57
|
+
``DOCUMENT, TOKEN`` ``CATEGORY``
|
|
58
|
+
====================== ======================
|
|
59
|
+
|
|
60
|
+
Parameters
|
|
61
|
+
----------
|
|
62
|
+
batchSize
|
|
63
|
+
Batch size. Large values allows faster processing but requires more
|
|
64
|
+
memory, by default 8
|
|
65
|
+
caseSensitive
|
|
66
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
67
|
+
True
|
|
68
|
+
configProtoBytes
|
|
69
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
70
|
+
maxSentenceLength
|
|
71
|
+
Max sentence length to process, by default 128
|
|
72
|
+
coalesceSentences
|
|
73
|
+
Instead of 1 class per sentence (if inputCols is `sentence`) output 1
|
|
74
|
+
class per document by averaging probabilities in all sentences, by
|
|
75
|
+
default False
|
|
76
|
+
activation
|
|
77
|
+
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
78
|
+
`"softmax"`.
|
|
79
|
+
|
|
80
|
+
Examples
|
|
81
|
+
--------
|
|
82
|
+
>>> import sparknlp
|
|
83
|
+
>>> from sparknlp.base import *
|
|
84
|
+
>>> from sparknlp.annotator import *
|
|
85
|
+
>>> from pyspark.ml import Pipeline
|
|
86
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
87
|
+
... .setInputCol("text") \\
|
|
88
|
+
... .setOutputCol("document")
|
|
89
|
+
>>> tokenizer = Tokenizer() \\
|
|
90
|
+
... .setInputCols(["document"]) \\
|
|
91
|
+
... .setOutputCol("token")
|
|
92
|
+
>>> sequenceClassifier = BertForZeroShotClassification.pretrained() \\
|
|
93
|
+
... .setInputCols(["token", "document"]) \\
|
|
94
|
+
... .setOutputCol("label") \\
|
|
95
|
+
... .setCaseSensitive(True)
|
|
96
|
+
>>> pipeline = Pipeline().setStages([
|
|
97
|
+
... documentAssembler,
|
|
98
|
+
... tokenizer,
|
|
99
|
+
... sequenceClassifier
|
|
100
|
+
... ])
|
|
101
|
+
>>> data = spark.createDataFrame([["I loved this movie when I was a child."], ["It was pretty boring."]]).toDF("text")
|
|
102
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
103
|
+
>>> result.select("label.result").show(truncate=False)
|
|
104
|
+
+------+
|
|
105
|
+
|result|
|
|
106
|
+
+------+
|
|
107
|
+
|[pos] |
|
|
108
|
+
|[neg] |
|
|
109
|
+
+------+
|
|
110
|
+
"""
|
|
111
|
+
name = "BertForZeroShotClassification"
|
|
112
|
+
|
|
113
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
114
|
+
|
|
115
|
+
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
116
|
+
|
|
117
|
+
configProtoBytes = Param(Params._dummy(),
|
|
118
|
+
"configProtoBytes",
|
|
119
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
120
|
+
TypeConverters.toListInt)
|
|
121
|
+
|
|
122
|
+
coalesceSentences = Param(Params._dummy(), "coalesceSentences",
|
|
123
|
+
"Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.",
|
|
124
|
+
TypeConverters.toBoolean)
|
|
125
|
+
|
|
126
|
+
def getClasses(self):
|
|
127
|
+
"""
|
|
128
|
+
Returns labels used to train this model
|
|
129
|
+
"""
|
|
130
|
+
return self._call_java("getClasses")
|
|
131
|
+
|
|
132
|
+
def setConfigProtoBytes(self, b):
|
|
133
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
134
|
+
|
|
135
|
+
Parameters
|
|
136
|
+
----------
|
|
137
|
+
b : List[int]
|
|
138
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
139
|
+
"""
|
|
140
|
+
return self._set(configProtoBytes=b)
|
|
141
|
+
|
|
142
|
+
def setCoalesceSentences(self, value):
|
|
143
|
+
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging
|
|
144
|
+
probabilities in all sentences. Due to max sequence length limit in almost all transformer models such as BERT
|
|
145
|
+
(512 tokens), this parameter helps to feed all the sentences into the model and averaging all the probabilities
|
|
146
|
+
for the entire document instead of probabilities per sentence. (Default: true)
|
|
147
|
+
|
|
148
|
+
Parameters
|
|
149
|
+
----------
|
|
150
|
+
value : bool
|
|
151
|
+
If the output of all sentences will be averaged to one output
|
|
152
|
+
"""
|
|
153
|
+
return self._set(coalesceSentences=value)
|
|
154
|
+
|
|
155
|
+
@keyword_only
|
|
156
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.BertForZeroShotClassification",
|
|
157
|
+
java_model=None):
|
|
158
|
+
super(BertForZeroShotClassification, self).__init__(
|
|
159
|
+
classname=classname,
|
|
160
|
+
java_model=java_model
|
|
161
|
+
)
|
|
162
|
+
self._setDefault(
|
|
163
|
+
batchSize=8,
|
|
164
|
+
maxSentenceLength=128,
|
|
165
|
+
caseSensitive=True,
|
|
166
|
+
coalesceSentences=False,
|
|
167
|
+
activation="softmax",
|
|
168
|
+
multilabel=False
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
@staticmethod
|
|
172
|
+
def loadSavedModel(folder, spark_session):
|
|
173
|
+
"""Loads a locally saved model.
|
|
174
|
+
|
|
175
|
+
Parameters
|
|
176
|
+
----------
|
|
177
|
+
folder : str
|
|
178
|
+
Folder of the saved model
|
|
179
|
+
spark_session : pyspark.sql.SparkSession
|
|
180
|
+
The current SparkSession
|
|
181
|
+
|
|
182
|
+
Returns
|
|
183
|
+
-------
|
|
184
|
+
BertForZeroShotClassification
|
|
185
|
+
The restored model
|
|
186
|
+
"""
|
|
187
|
+
from sparknlp.internal import _BertZeroShotClassifierLoader
|
|
188
|
+
jModel = _BertZeroShotClassifierLoader(folder, spark_session._jsparkSession)._java_obj
|
|
189
|
+
return BertForZeroShotClassification(java_model=jModel)
|
|
190
|
+
|
|
191
|
+
@staticmethod
|
|
192
|
+
def pretrained(name="bert_zero_shot_classifier_mnli", lang="xx", remote_loc=None):
|
|
193
|
+
"""Downloads and loads a pretrained model.
|
|
194
|
+
|
|
195
|
+
Parameters
|
|
196
|
+
----------
|
|
197
|
+
name : str, optional
|
|
198
|
+
Name of the pretrained model, by default
|
|
199
|
+
"bert_zero_shot_classifier_mnli"
|
|
200
|
+
lang : str, optional
|
|
201
|
+
Language of the pretrained model, by default "en"
|
|
202
|
+
remote_loc : str, optional
|
|
203
|
+
Optional remote address of the resource, by default None. Will use
|
|
204
|
+
Spark NLPs repositories otherwise.
|
|
205
|
+
|
|
206
|
+
Returns
|
|
207
|
+
-------
|
|
208
|
+
BertForZeroShotClassification
|
|
209
|
+
The restored model
|
|
210
|
+
"""
|
|
211
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
212
|
+
return ResourceDownloader.downloadModel(BertForZeroShotClassification, name, lang, remote_loc)
|
|
@@ -0,0 +1,168 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class CamemBertForQuestionAnswering(AnnotatorModel,
|
|
19
|
+
HasCaseSensitiveProperties,
|
|
20
|
+
HasBatchedAnnotate,
|
|
21
|
+
HasEngine,
|
|
22
|
+
HasMaxSentenceLengthLimit):
|
|
23
|
+
"""CamemBertForQuestionAnswering can load CamemBERT Models with a span classification head on top for extractive
|
|
24
|
+
question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start
|
|
25
|
+
logits and span end logits).
|
|
26
|
+
|
|
27
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
28
|
+
object:
|
|
29
|
+
|
|
30
|
+
>>> spanClassifier = CamemBertForQuestionAnswering.pretrained() \\
|
|
31
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
32
|
+
... .setOutputCol("answer")
|
|
33
|
+
|
|
34
|
+
The default model is ``"camembert_base_qa_fquad"``, if no name is
|
|
35
|
+
provided.
|
|
36
|
+
|
|
37
|
+
For available pretrained models please see the `Models Hub
|
|
38
|
+
<https://sparknlp.org/models?task=Question+Answering>`__.
|
|
39
|
+
|
|
40
|
+
To see which models are compatible and how to import them see
|
|
41
|
+
`Import Transformers into Spark NLP 🚀
|
|
42
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
43
|
+
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT, DOCUMENT`` ``CHUNK``
|
|
48
|
+
====================== ======================
|
|
49
|
+
|
|
50
|
+
Parameters
|
|
51
|
+
----------
|
|
52
|
+
batchSize
|
|
53
|
+
Batch size. Large values allows faster processing but requires more
|
|
54
|
+
memory, by default 8
|
|
55
|
+
caseSensitive
|
|
56
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
57
|
+
False
|
|
58
|
+
configProtoBytes
|
|
59
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
60
|
+
maxSentenceLength
|
|
61
|
+
Max sentence length to process, by default 128
|
|
62
|
+
|
|
63
|
+
Examples
|
|
64
|
+
--------
|
|
65
|
+
>>> import sparknlp
|
|
66
|
+
>>> from sparknlp.base import *
|
|
67
|
+
>>> from sparknlp.annotator import *
|
|
68
|
+
>>> from pyspark.ml import Pipeline
|
|
69
|
+
>>> documentAssembler = MultiDocumentAssembler() \\
|
|
70
|
+
... .setInputCols(["question", "context"]) \\
|
|
71
|
+
... .setOutputCol(["document_question", "document_context"])
|
|
72
|
+
>>> spanClassifier = CamemBertForQuestionAnswering.pretrained() \\
|
|
73
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
74
|
+
... .setOutputCol("answer") \\
|
|
75
|
+
... .setCaseSensitive(False)
|
|
76
|
+
>>> pipeline = Pipeline().setStages([
|
|
77
|
+
... documentAssembler,
|
|
78
|
+
... spanClassifier
|
|
79
|
+
... ])
|
|
80
|
+
>>> data = spark.createDataFrame([["What's my name?", "My name is Clara and I live in Berkeley."]]).toDF("question", "context")
|
|
81
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
82
|
+
>>> result.select("answer.result").show(truncate=False)
|
|
83
|
+
+--------------------+
|
|
84
|
+
|result |
|
|
85
|
+
+--------------------+
|
|
86
|
+
|[Clara] |
|
|
87
|
+
+--------------------+
|
|
88
|
+
"""
|
|
89
|
+
name = "CamemBertForQuestionAnswering"
|
|
90
|
+
|
|
91
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.DOCUMENT]
|
|
92
|
+
|
|
93
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
94
|
+
|
|
95
|
+
configProtoBytes = Param(Params._dummy(),
|
|
96
|
+
"configProtoBytes",
|
|
97
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
98
|
+
TypeConverters.toListInt)
|
|
99
|
+
|
|
100
|
+
coalesceSentences = Param(Params._dummy(), "coalesceSentences",
|
|
101
|
+
"Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.",
|
|
102
|
+
TypeConverters.toBoolean)
|
|
103
|
+
|
|
104
|
+
def setConfigProtoBytes(self, b):
|
|
105
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
106
|
+
|
|
107
|
+
Parameters
|
|
108
|
+
----------
|
|
109
|
+
b : List[int]
|
|
110
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
111
|
+
"""
|
|
112
|
+
return self._set(configProtoBytes=b)
|
|
113
|
+
|
|
114
|
+
@keyword_only
|
|
115
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.CamemBertForQuestionAnswering",
|
|
116
|
+
java_model=None):
|
|
117
|
+
super(CamemBertForQuestionAnswering, self).__init__(
|
|
118
|
+
classname=classname,
|
|
119
|
+
java_model=java_model
|
|
120
|
+
)
|
|
121
|
+
self._setDefault(
|
|
122
|
+
batchSize=8,
|
|
123
|
+
maxSentenceLength=128,
|
|
124
|
+
caseSensitive=False
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
@staticmethod
|
|
128
|
+
def loadSavedModel(folder, spark_session):
|
|
129
|
+
"""Loads a locally saved model.
|
|
130
|
+
|
|
131
|
+
Parameters
|
|
132
|
+
----------
|
|
133
|
+
folder : str
|
|
134
|
+
Folder of the saved model
|
|
135
|
+
spark_session : pyspark.sql.SparkSession
|
|
136
|
+
The current SparkSession
|
|
137
|
+
|
|
138
|
+
Returns
|
|
139
|
+
-------
|
|
140
|
+
CamemBertForQuestionAnswering
|
|
141
|
+
The restored model
|
|
142
|
+
"""
|
|
143
|
+
from sparknlp.internal import _CamemBertQuestionAnsweringLoader
|
|
144
|
+
jModel = _CamemBertQuestionAnsweringLoader(folder, spark_session._jsparkSession)._java_obj
|
|
145
|
+
return CamemBertForQuestionAnswering(java_model=jModel)
|
|
146
|
+
|
|
147
|
+
@staticmethod
|
|
148
|
+
def pretrained(name="camembert_base_qa_fquad", lang="fr", remote_loc=None):
|
|
149
|
+
"""Downloads and loads a pretrained model.
|
|
150
|
+
|
|
151
|
+
Parameters
|
|
152
|
+
----------
|
|
153
|
+
name : str, optional
|
|
154
|
+
Name of the pretrained model, by default
|
|
155
|
+
"camembert_base_qa_fquad"
|
|
156
|
+
lang : str, optional
|
|
157
|
+
Language of the pretrained model, by default "en"
|
|
158
|
+
remote_loc : str, optional
|
|
159
|
+
Optional remote address of the resource, by default None. Will use
|
|
160
|
+
Spark NLPs repositories otherwise.
|
|
161
|
+
|
|
162
|
+
Returns
|
|
163
|
+
-------
|
|
164
|
+
CamemBertForQuestionAnswering
|
|
165
|
+
The restored model
|
|
166
|
+
"""
|
|
167
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
168
|
+
return ResourceDownloader.downloadModel(CamemBertForQuestionAnswering, name, lang, remote_loc)
|
|
@@ -20,7 +20,8 @@ class CamemBertForSequenceClassification(AnnotatorModel,
|
|
|
20
20
|
HasCaseSensitiveProperties,
|
|
21
21
|
HasBatchedAnnotate,
|
|
22
22
|
HasClassifierActivationProperties,
|
|
23
|
-
HasEngine
|
|
23
|
+
HasEngine,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
24
25
|
"""CamemBertForSequenceClassification can load CamemBERT Models with a sequence
|
|
25
26
|
classification/regression head on top (a linear layer on top of the pooled output)
|
|
26
27
|
e.g. for multi-class document classification tasks.
|
|
@@ -36,7 +37,7 @@ class CamemBertForSequenceClassification(AnnotatorModel,
|
|
|
36
37
|
name is provided.
|
|
37
38
|
|
|
38
39
|
For available pretrained models please see the `Models Hub
|
|
39
|
-
<https://
|
|
40
|
+
<https://sparknlp.org/models?task=Text+Classification>`__.
|
|
40
41
|
To see which models are compatible and how to import them see
|
|
41
42
|
`Import Transformers into Spark NLP 🚀
|
|
42
43
|
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
@@ -104,11 +105,6 @@ class CamemBertForSequenceClassification(AnnotatorModel,
|
|
|
104
105
|
|
|
105
106
|
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
106
107
|
|
|
107
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
108
|
-
"maxSentenceLength",
|
|
109
|
-
"Max sentence length to process",
|
|
110
|
-
typeConverter=TypeConverters.toInt)
|
|
111
|
-
|
|
112
108
|
configProtoBytes = Param(Params._dummy(),
|
|
113
109
|
"configProtoBytes",
|
|
114
110
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -134,16 +130,6 @@ class CamemBertForSequenceClassification(AnnotatorModel,
|
|
|
134
130
|
"""
|
|
135
131
|
return self._set(configProtoBytes=b)
|
|
136
132
|
|
|
137
|
-
def setMaxSentenceLength(self, value):
|
|
138
|
-
"""Sets max sentence length to process, by default 128.
|
|
139
|
-
|
|
140
|
-
Parameters
|
|
141
|
-
----------
|
|
142
|
-
value : int
|
|
143
|
-
Max sentence length to process
|
|
144
|
-
"""
|
|
145
|
-
return self._set(maxSentenceLength=value)
|
|
146
|
-
|
|
147
133
|
def setCoalesceSentences(self, value):
|
|
148
134
|
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1
|
|
149
135
|
class per document by averaging probabilities in all sentences, by default True.
|
|
@@ -191,8 +177,8 @@ class CamemBertForSequenceClassification(AnnotatorModel,
|
|
|
191
177
|
CamemBertForSequenceClassification
|
|
192
178
|
The restored model
|
|
193
179
|
"""
|
|
194
|
-
from sparknlp.internal import
|
|
195
|
-
jModel =
|
|
180
|
+
from sparknlp.internal import _CamemBertForSequenceClassificationLoader
|
|
181
|
+
jModel = _CamemBertForSequenceClassificationLoader(folder, spark_session._jsparkSession)._java_obj
|
|
196
182
|
return CamemBertForSequenceClassification(java_model=jModel)
|
|
197
183
|
|
|
198
184
|
@staticmethod
|
|
@@ -18,7 +18,8 @@ from sparknlp.common import *
|
|
|
18
18
|
class CamemBertForTokenClassification(AnnotatorModel,
|
|
19
19
|
HasCaseSensitiveProperties,
|
|
20
20
|
HasBatchedAnnotate,
|
|
21
|
-
HasEngine
|
|
21
|
+
HasEngine,
|
|
22
|
+
HasMaxSentenceLengthLimit):
|
|
22
23
|
"""CamemBertForTokenClassification can load CamemBERT Models with a token
|
|
23
24
|
classification head on top (a linear layer on top of the hidden-states
|
|
24
25
|
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
|
@@ -34,7 +35,7 @@ class CamemBertForTokenClassification(AnnotatorModel,
|
|
|
34
35
|
name is provided.
|
|
35
36
|
|
|
36
37
|
For available pretrained models please see the `Models Hub
|
|
37
|
-
<https://
|
|
38
|
+
<https://sparknlp.org/models?task=Named+Entity+Recognition>`__.
|
|
38
39
|
To see which models are compatible and how to import them see
|
|
39
40
|
`Import Transformers into Spark NLP 🚀
|
|
40
41
|
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
@@ -94,11 +95,6 @@ class CamemBertForTokenClassification(AnnotatorModel,
|
|
|
94
95
|
|
|
95
96
|
outputAnnotatorType = AnnotatorType.NAMED_ENTITY
|
|
96
97
|
|
|
97
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
98
|
-
"maxSentenceLength",
|
|
99
|
-
"Max sentence length to process",
|
|
100
|
-
typeConverter=TypeConverters.toInt)
|
|
101
|
-
|
|
102
98
|
configProtoBytes = Param(Params._dummy(),
|
|
103
99
|
"configProtoBytes",
|
|
104
100
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -120,16 +116,6 @@ class CamemBertForTokenClassification(AnnotatorModel,
|
|
|
120
116
|
"""
|
|
121
117
|
return self._set(configProtoBytes=b)
|
|
122
118
|
|
|
123
|
-
def setMaxSentenceLength(self, value):
|
|
124
|
-
"""Sets max sentence length to process, by default 128.
|
|
125
|
-
|
|
126
|
-
Parameters
|
|
127
|
-
----------
|
|
128
|
-
value : int
|
|
129
|
-
Max sentence length to process
|
|
130
|
-
"""
|
|
131
|
-
return self._set(maxSentenceLength=value)
|
|
132
|
-
|
|
133
119
|
@keyword_only
|
|
134
120
|
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.CamemBertForTokenClassification",
|
|
135
121
|
java_model=None):
|
|
@@ -159,8 +145,8 @@ class CamemBertForTokenClassification(AnnotatorModel,
|
|
|
159
145
|
CamemBertForTokenClassification
|
|
160
146
|
The restored model
|
|
161
147
|
"""
|
|
162
|
-
from sparknlp.internal import
|
|
163
|
-
jModel =
|
|
148
|
+
from sparknlp.internal import _CamemBertForTokenClassificationLoader
|
|
149
|
+
jModel = _CamemBertForTokenClassificationLoader(folder, spark_session._jsparkSession)._java_obj
|
|
164
150
|
return CamemBertForTokenClassification(java_model=jModel)
|
|
165
151
|
|
|
166
152
|
@staticmethod
|