spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +81 -28
- sparknlp/annotation.py +3 -2
- sparknlp/annotator/__init__.py +6 -0
- sparknlp/annotator/audio/__init__.py +2 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/{base → annotator}/chunk2_doc.py +4 -7
- sparknlp/annotator/chunker.py +1 -2
- sparknlp/annotator/classifier_dl/__init__.py +17 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/spanbert_coref.py +4 -18
- sparknlp/annotator/cv/__init__.py +15 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/dependency_parser.py +2 -3
- sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +37 -1
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +11 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
- sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
- sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
- sparknlp/annotator/embeddings/doc2vec.py +7 -1
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
- sparknlp/annotator/embeddings/word2vec.py +7 -1
- sparknlp/annotator/embeddings/word_embeddings.py +4 -5
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
- sparknlp/annotator/er/entity_ruler.py +37 -23
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
- sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
- sparknlp/annotator/lemmatizer.py +3 -4
- sparknlp/annotator/matcher/date_matcher.py +35 -3
- sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
- sparknlp/annotator/matcher/regex_matcher.py +3 -3
- sparknlp/annotator/matcher/text_matcher.py +2 -3
- sparknlp/annotator/n_gram_generator.py +1 -2
- sparknlp/annotator/ner/__init__.py +3 -1
- sparknlp/annotator/ner/ner_converter.py +18 -0
- sparknlp/annotator/ner/ner_crf.py +4 -5
- sparknlp/annotator/ner/ner_dl.py +10 -5
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +2 -2
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +2 -2
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/pos/perceptron.py +6 -7
- sparknlp/annotator/sentence/sentence_detector.py +2 -2
- sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
- sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
- sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
- sparknlp/annotator/seq2seq/__init__.py +17 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
- sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
- sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
- sparknlp/annotator/stemmer.py +2 -3
- sparknlp/annotator/stop_words_cleaner.py +3 -4
- sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
- sparknlp/annotator/token/__init__.py +0 -1
- sparknlp/annotator/token/recursive_tokenizer.py +2 -3
- sparknlp/annotator/token/tokenizer.py +2 -3
- sparknlp/annotator/ws/word_segmenter.py +35 -10
- sparknlp/base/__init__.py +2 -3
- sparknlp/base/doc2_chunk.py +0 -3
- sparknlp/base/document_assembler.py +5 -5
- sparknlp/base/embeddings_finisher.py +14 -2
- sparknlp/base/finisher.py +15 -4
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/image_assembler.py +69 -0
- sparknlp/base/light_pipeline.py +53 -21
- sparknlp/base/multi_document_assembler.py +9 -13
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/token_assembler.py +1 -2
- sparknlp/common/__init__.py +2 -0
- sparknlp/common/annotator_type.py +1 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +914 -9
- sparknlp/internal/__init__.py +841 -116
- sparknlp/internal/annotator_java_ml.py +1 -1
- sparknlp/internal/annotator_transformer.py +3 -0
- sparknlp/logging/comet.py +2 -2
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/pretrained_pipeline.py +1 -1
- sparknlp/pretrained/resource_downloader.py +126 -2
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +1 -0
- sparknlp/training/conll.py +8 -2
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/util.py +26 -0
- spark_nlp-4.2.6.dist-info/METADATA +0 -1256
- spark_nlp-4.2.6.dist-info/RECORD +0 -196
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
- /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
|
@@ -18,7 +18,8 @@ from sparknlp.common import *
|
|
|
18
18
|
class RoBertaForQuestionAnswering(AnnotatorModel,
|
|
19
19
|
HasCaseSensitiveProperties,
|
|
20
20
|
HasBatchedAnnotate,
|
|
21
|
-
HasEngine
|
|
21
|
+
HasEngine,
|
|
22
|
+
HasMaxSentenceLengthLimit):
|
|
22
23
|
"""RoBertaForQuestionAnswering can load RoBERTa Models with a span classification head on top for extractive
|
|
23
24
|
question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start
|
|
24
25
|
logits and span end logits).
|
|
@@ -34,7 +35,7 @@ class RoBertaForQuestionAnswering(AnnotatorModel,
|
|
|
34
35
|
provided.
|
|
35
36
|
|
|
36
37
|
For available pretrained models please see the `Models Hub
|
|
37
|
-
<https://
|
|
38
|
+
<https://sparknlp.org/models?task=Question+Answering>`__.
|
|
38
39
|
|
|
39
40
|
To see which models are compatible and how to import them see
|
|
40
41
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -91,11 +92,6 @@ class RoBertaForQuestionAnswering(AnnotatorModel,
|
|
|
91
92
|
|
|
92
93
|
outputAnnotatorType = AnnotatorType.CHUNK
|
|
93
94
|
|
|
94
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
95
|
-
"maxSentenceLength",
|
|
96
|
-
"Max sentence length to process",
|
|
97
|
-
typeConverter=TypeConverters.toInt)
|
|
98
|
-
|
|
99
95
|
configProtoBytes = Param(Params._dummy(),
|
|
100
96
|
"configProtoBytes",
|
|
101
97
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -115,16 +111,6 @@ class RoBertaForQuestionAnswering(AnnotatorModel,
|
|
|
115
111
|
"""
|
|
116
112
|
return self._set(configProtoBytes=b)
|
|
117
113
|
|
|
118
|
-
def setMaxSentenceLength(self, value):
|
|
119
|
-
"""Sets max sentence length to process, by default 128.
|
|
120
|
-
|
|
121
|
-
Parameters
|
|
122
|
-
----------
|
|
123
|
-
value : int
|
|
124
|
-
Max sentence length to process
|
|
125
|
-
"""
|
|
126
|
-
return self._set(maxSentenceLength=value)
|
|
127
|
-
|
|
128
114
|
@keyword_only
|
|
129
115
|
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.RoBertaForQuestionAnswering",
|
|
130
116
|
java_model=None):
|
|
@@ -20,7 +20,8 @@ class RoBertaForSequenceClassification(AnnotatorModel,
|
|
|
20
20
|
HasCaseSensitiveProperties,
|
|
21
21
|
HasBatchedAnnotate,
|
|
22
22
|
HasClassifierActivationProperties,
|
|
23
|
-
HasEngine
|
|
23
|
+
HasEngine,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
24
25
|
"""RoBertaForSequenceClassification can load RoBERTa Models with sequence classification/regression head on
|
|
25
26
|
top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.
|
|
26
27
|
|
|
@@ -35,7 +36,7 @@ class RoBertaForSequenceClassification(AnnotatorModel,
|
|
|
35
36
|
provided.
|
|
36
37
|
|
|
37
38
|
For available pretrained models please see the `Models Hub
|
|
38
|
-
<https://
|
|
39
|
+
<https://sparknlp.org/models?task=Text+Classification>`__.
|
|
39
40
|
|
|
40
41
|
To see which models are compatible and how to import them see
|
|
41
42
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -61,7 +62,7 @@ class RoBertaForSequenceClassification(AnnotatorModel,
|
|
|
61
62
|
Max sentence length to process, by default 128
|
|
62
63
|
coalesceSentences
|
|
63
64
|
Instead of 1 class per sentence (if inputCols is `sentence`) output
|
|
64
|
-
1 class per document by averaging probabilities in all sentences, by
|
|
65
|
+
1 class per document by averaging probabilities in all sentences, by
|
|
65
66
|
default False.
|
|
66
67
|
activation
|
|
67
68
|
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
@@ -104,11 +105,6 @@ class RoBertaForSequenceClassification(AnnotatorModel,
|
|
|
104
105
|
|
|
105
106
|
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
106
107
|
|
|
107
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
108
|
-
"maxSentenceLength",
|
|
109
|
-
"Max sentence length to process",
|
|
110
|
-
typeConverter=TypeConverters.toInt)
|
|
111
|
-
|
|
112
108
|
configProtoBytes = Param(Params._dummy(),
|
|
113
109
|
"configProtoBytes",
|
|
114
110
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -134,16 +130,6 @@ class RoBertaForSequenceClassification(AnnotatorModel,
|
|
|
134
130
|
"""
|
|
135
131
|
return self._set(configProtoBytes=b)
|
|
136
132
|
|
|
137
|
-
def setMaxSentenceLength(self, value):
|
|
138
|
-
"""Sets max sentence length to process, by default 128.
|
|
139
|
-
|
|
140
|
-
Parameters
|
|
141
|
-
----------
|
|
142
|
-
value : int
|
|
143
|
-
Max sentence length to process
|
|
144
|
-
"""
|
|
145
|
-
return self._set(maxSentenceLength=value)
|
|
146
|
-
|
|
147
133
|
def setCoalesceSentences(self, value):
|
|
148
134
|
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.
|
|
149
135
|
Due to max sequence length limit in almost all transformer models such as BERT (512 tokens), this parameter helps feeding all the sentences
|
|
@@ -35,7 +35,7 @@ class RoBertaForTokenClassification(AnnotatorModel,
|
|
|
35
35
|
is provided.
|
|
36
36
|
|
|
37
37
|
For available pretrained models please see the `Models Hub
|
|
38
|
-
<https://
|
|
38
|
+
<https://sparknlp.org/models?task=Named+Entity+Recognition>`__.
|
|
39
39
|
|
|
40
40
|
To see which models are compatible and how to import them see
|
|
41
41
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -0,0 +1,225 @@
|
|
|
1
|
+
# Copyright 2017-2023 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for RoBertaForZeroShotClassification."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class RoBertaForZeroShotClassification(AnnotatorModel,
|
|
20
|
+
HasCaseSensitiveProperties,
|
|
21
|
+
HasBatchedAnnotate,
|
|
22
|
+
HasClassifierActivationProperties,
|
|
23
|
+
HasCandidateLabelsProperties,
|
|
24
|
+
HasEngine):
|
|
25
|
+
"""RoBertaForZeroShotClassification using a `ModelForSequenceClassification` trained on NLI (natural language
|
|
26
|
+
inference) tasks. Equivalent of `RoBertaForSequenceClassification` models, but these models don't require a hardcoded
|
|
27
|
+
number of potential classes, they can be chosen at runtime. It usually means it's slower but it is much more
|
|
28
|
+
flexible.
|
|
29
|
+
|
|
30
|
+
Note that the model will loop through all provided labels. So the more labels you have, the
|
|
31
|
+
longer this process will take.
|
|
32
|
+
|
|
33
|
+
Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis
|
|
34
|
+
pair and passed to the pretrained model.
|
|
35
|
+
|
|
36
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
37
|
+
object:
|
|
38
|
+
|
|
39
|
+
>>> sequenceClassifier = RoBertaForZeroShotClassification.pretrained() \\
|
|
40
|
+
... .setInputCols(["token", "document"]) \\
|
|
41
|
+
... .setOutputCol("label")
|
|
42
|
+
|
|
43
|
+
The default model is ``"roberta_base_zero_shot_classifier_nli"``, if no name is
|
|
44
|
+
provided.
|
|
45
|
+
|
|
46
|
+
For available pretrained models please see the `Models Hub
|
|
47
|
+
<https://sparknlp.orgtask=Text+Classification>`__.
|
|
48
|
+
|
|
49
|
+
To see which models are compatible and how to import them see
|
|
50
|
+
`Import Transformers into Spark NLP 🚀
|
|
51
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
52
|
+
|
|
53
|
+
====================== ======================
|
|
54
|
+
Input Annotation types Output Annotation type
|
|
55
|
+
====================== ======================
|
|
56
|
+
``DOCUMENT, TOKEN`` ``CATEGORY``
|
|
57
|
+
====================== ======================
|
|
58
|
+
|
|
59
|
+
Parameters
|
|
60
|
+
----------
|
|
61
|
+
batchSize
|
|
62
|
+
Batch size. Large values allows faster processing but requires more
|
|
63
|
+
memory, by default 8
|
|
64
|
+
caseSensitive
|
|
65
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
66
|
+
True
|
|
67
|
+
configProtoBytes
|
|
68
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
69
|
+
maxSentenceLength
|
|
70
|
+
Max sentence length to process, by default 128
|
|
71
|
+
coalesceSentences
|
|
72
|
+
Instead of 1 class per sentence (if inputCols is `sentence`) output 1
|
|
73
|
+
class per document by averaging probabilities in all sentences, by
|
|
74
|
+
default False
|
|
75
|
+
activation
|
|
76
|
+
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
77
|
+
`"softmax"`.
|
|
78
|
+
|
|
79
|
+
Examples
|
|
80
|
+
--------
|
|
81
|
+
>>> import sparknlp
|
|
82
|
+
>>> from sparknlp.base import *
|
|
83
|
+
>>> from sparknlp.annotator import *
|
|
84
|
+
>>> from pyspark.ml import Pipeline
|
|
85
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
86
|
+
... .setInputCol("text") \\
|
|
87
|
+
... .setOutputCol("document")
|
|
88
|
+
>>> tokenizer = Tokenizer() \\
|
|
89
|
+
... .setInputCols(["document"]) \\
|
|
90
|
+
... .setOutputCol("token")
|
|
91
|
+
>>> sequenceClassifier = RoBertaForZeroShotClassification.pretrained() \\
|
|
92
|
+
... .setInputCols(["token", "document"]) \\
|
|
93
|
+
... .setOutputCol("label") \\
|
|
94
|
+
... .setCaseSensitive(True)
|
|
95
|
+
>>> pipeline = Pipeline().setStages([
|
|
96
|
+
... documentAssembler,
|
|
97
|
+
... tokenizer,
|
|
98
|
+
... sequenceClassifier
|
|
99
|
+
... ])
|
|
100
|
+
>>> data = spark.createDataFrame([["I loved this movie when I was a child.", "It was pretty boring."]]).toDF("text")
|
|
101
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
102
|
+
>>> result.select("label.result").show(truncate=False)
|
|
103
|
+
+------+
|
|
104
|
+
|result|
|
|
105
|
+
+------+
|
|
106
|
+
|[pos] |
|
|
107
|
+
|[neg] |
|
|
108
|
+
+------+
|
|
109
|
+
"""
|
|
110
|
+
name = "RoBertaForZeroShotClassification"
|
|
111
|
+
|
|
112
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
113
|
+
|
|
114
|
+
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
115
|
+
|
|
116
|
+
maxSentenceLength = Param(Params._dummy(),
|
|
117
|
+
"maxSentenceLength",
|
|
118
|
+
"Max sentence length to process",
|
|
119
|
+
typeConverter=TypeConverters.toInt)
|
|
120
|
+
|
|
121
|
+
configProtoBytes = Param(Params._dummy(),
|
|
122
|
+
"configProtoBytes",
|
|
123
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
124
|
+
TypeConverters.toListInt)
|
|
125
|
+
|
|
126
|
+
coalesceSentences = Param(Params._dummy(), "coalesceSentences",
|
|
127
|
+
"Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.",
|
|
128
|
+
TypeConverters.toBoolean)
|
|
129
|
+
|
|
130
|
+
def getClasses(self):
|
|
131
|
+
"""
|
|
132
|
+
Returns labels used to train this model
|
|
133
|
+
"""
|
|
134
|
+
return self._call_java("getClasses")
|
|
135
|
+
|
|
136
|
+
def setConfigProtoBytes(self, b):
|
|
137
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
138
|
+
|
|
139
|
+
Parameters
|
|
140
|
+
----------
|
|
141
|
+
b : List[int]
|
|
142
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
143
|
+
"""
|
|
144
|
+
return self._set(configProtoBytes=b)
|
|
145
|
+
|
|
146
|
+
def setMaxSentenceLength(self, value):
|
|
147
|
+
"""Sets max sentence length to process, by default 128.
|
|
148
|
+
|
|
149
|
+
Parameters
|
|
150
|
+
----------
|
|
151
|
+
value : int
|
|
152
|
+
Max sentence length to process
|
|
153
|
+
"""
|
|
154
|
+
return self._set(maxSentenceLength=value)
|
|
155
|
+
|
|
156
|
+
def setCoalesceSentences(self, value):
|
|
157
|
+
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging
|
|
158
|
+
probabilities in all sentences. Due to max sequence length limit in almost all transformer models such as RoBerta
|
|
159
|
+
(512 tokens), this parameter helps to feed all the sentences into the model and averaging all the probabilities
|
|
160
|
+
for the entire document instead of probabilities per sentence. (Default: true)
|
|
161
|
+
|
|
162
|
+
Parameters
|
|
163
|
+
----------
|
|
164
|
+
value : bool
|
|
165
|
+
If the output of all sentences will be averaged to one output
|
|
166
|
+
"""
|
|
167
|
+
return self._set(coalesceSentences=value)
|
|
168
|
+
|
|
169
|
+
@keyword_only
|
|
170
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.RoBertaForZeroShotClassification",
|
|
171
|
+
java_model=None):
|
|
172
|
+
super(RoBertaForZeroShotClassification, self).__init__(
|
|
173
|
+
classname=classname,
|
|
174
|
+
java_model=java_model
|
|
175
|
+
)
|
|
176
|
+
self._setDefault(
|
|
177
|
+
batchSize=8,
|
|
178
|
+
maxSentenceLength=128,
|
|
179
|
+
caseSensitive=True,
|
|
180
|
+
coalesceSentences=False,
|
|
181
|
+
activation="softmax"
|
|
182
|
+
)
|
|
183
|
+
|
|
184
|
+
@staticmethod
|
|
185
|
+
def loadSavedModel(folder, spark_session):
|
|
186
|
+
"""Loads a locally saved model.
|
|
187
|
+
|
|
188
|
+
Parameters
|
|
189
|
+
----------
|
|
190
|
+
folder : str
|
|
191
|
+
Folder of the saved model
|
|
192
|
+
spark_session : pyspark.sql.SparkSession
|
|
193
|
+
The current SparkSession
|
|
194
|
+
|
|
195
|
+
Returns
|
|
196
|
+
-------
|
|
197
|
+
RoBertaForZeroShotClassification
|
|
198
|
+
The restored model
|
|
199
|
+
"""
|
|
200
|
+
from sparknlp.internal import _RoBertaForZeroShotClassification
|
|
201
|
+
jModel = _RoBertaForZeroShotClassification(folder, spark_session._jsparkSession)._java_obj
|
|
202
|
+
return RoBertaForZeroShotClassification(java_model=jModel)
|
|
203
|
+
|
|
204
|
+
@staticmethod
|
|
205
|
+
def pretrained(name="roberta_base_zero_shot_classifier_nli", lang="en", remote_loc=None):
|
|
206
|
+
"""Downloads and loads a pretrained model.
|
|
207
|
+
|
|
208
|
+
Parameters
|
|
209
|
+
----------
|
|
210
|
+
name : str, optional
|
|
211
|
+
Name of the pretrained model, by default
|
|
212
|
+
"roberta_base_zero_shot_classifier_nli"
|
|
213
|
+
lang : str, optional
|
|
214
|
+
Language of the pretrained model, by default "en"
|
|
215
|
+
remote_loc : str, optional
|
|
216
|
+
Optional remote address of the resource, by default None. Will use
|
|
217
|
+
Spark NLPs repositories otherwise.
|
|
218
|
+
|
|
219
|
+
Returns
|
|
220
|
+
-------
|
|
221
|
+
RoBertaForZeroShotClassification
|
|
222
|
+
The restored model
|
|
223
|
+
"""
|
|
224
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
225
|
+
return ResourceDownloader.downloadModel(RoBertaForZeroShotClassification, name, lang, remote_loc)
|
|
@@ -53,7 +53,7 @@ class SentimentDLApproach(AnnotatorApproach, EvaluationDLParams, ClassifierEncod
|
|
|
53
53
|
... .setLabelColumn("label") \\
|
|
54
54
|
... .setTestDataset("test_data")
|
|
55
55
|
|
|
56
|
-
For extended examples of usage, see the `
|
|
56
|
+
For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/SentimentDL_train_multiclass_sentiment_classifier.ipynb>`__.
|
|
57
57
|
|
|
58
58
|
======================= ======================
|
|
59
59
|
Input Annotation types Output Annotation type
|
|
@@ -233,10 +233,10 @@ class SentimentDLModel(AnnotatorModel, HasStorageRef, HasEngine):
|
|
|
233
233
|
The default model is ``"sentimentdl_use_imdb"``, if no name is provided. It
|
|
234
234
|
is english sentiment analysis trained on the IMDB dataset. For available
|
|
235
235
|
pretrained models please see the `Models Hub
|
|
236
|
-
<https://
|
|
236
|
+
<https://sparknlp.org/models?task=Sentiment+Analysis>`__.
|
|
237
237
|
|
|
238
|
-
For extended examples of usage, see the `
|
|
239
|
-
<https://github.com/JohnSnowLabs/spark-nlp
|
|
238
|
+
For extended examples of usage, see the `Examples
|
|
239
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/SentimentDL_train_multiclass_sentiment_classifier.ipynb>`__.
|
|
240
240
|
|
|
241
241
|
======================= ======================
|
|
242
242
|
Input Annotation types Output Annotation type
|
|
@@ -33,12 +33,12 @@ class TapasForQuestionAnswering(BertForQuestionAnswering):
|
|
|
33
33
|
is provided.
|
|
34
34
|
|
|
35
35
|
For available pretrained models please see the `Models Hub
|
|
36
|
-
<https://
|
|
36
|
+
<https://sparknlp.org/models?task=Question+Answering+Tapas>`__.
|
|
37
37
|
|
|
38
38
|
====================== ======================
|
|
39
39
|
Input Annotation types Output Annotation type
|
|
40
40
|
====================== ======================
|
|
41
|
-
``DOCUMENT, TABLE``
|
|
41
|
+
``DOCUMENT, TABLE`` ``CHUNK``
|
|
42
42
|
====================== ======================
|
|
43
43
|
|
|
44
44
|
Parameters
|
|
@@ -0,0 +1,149 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class XlmRoBertaForMultipleChoice(AnnotatorModel,
|
|
19
|
+
HasCaseSensitiveProperties,
|
|
20
|
+
HasBatchedAnnotate,
|
|
21
|
+
HasEngine,
|
|
22
|
+
HasMaxSentenceLengthLimit):
|
|
23
|
+
"""XlmRoBertaForMultipleChoice can load XLM-RoBERTa Models with a span classification head on top for extractive
|
|
24
|
+
question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start
|
|
25
|
+
logits and span end logits).
|
|
26
|
+
|
|
27
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
28
|
+
object:
|
|
29
|
+
|
|
30
|
+
>>> spanClassifier = XlmRoBertaForMultipleChoice.pretrained() \\
|
|
31
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
32
|
+
... .setOutputCol("answer")
|
|
33
|
+
|
|
34
|
+
The default model is ``"xlm_roberta_base_qa_squad2"``, if no name is
|
|
35
|
+
provided.
|
|
36
|
+
|
|
37
|
+
For available pretrained models please see the `Models Hub
|
|
38
|
+
<https://sparknlp.org/models?task=Question+Answering>`__.
|
|
39
|
+
|
|
40
|
+
To see which models are compatible and how to import them see
|
|
41
|
+
`Import Transformers into Spark NLP 🚀
|
|
42
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
43
|
+
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT, DOCUMENT`` ``CHUNK``
|
|
48
|
+
====================== ======================
|
|
49
|
+
|
|
50
|
+
Parameters
|
|
51
|
+
----------
|
|
52
|
+
batchSize
|
|
53
|
+
Batch size. Large values allows faster processing but requires more
|
|
54
|
+
memory, by default 8
|
|
55
|
+
caseSensitive
|
|
56
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
57
|
+
False
|
|
58
|
+
configProtoBytes
|
|
59
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
60
|
+
maxSentenceLength
|
|
61
|
+
Max sentence length to process, by default 128
|
|
62
|
+
|
|
63
|
+
Examples
|
|
64
|
+
--------
|
|
65
|
+
>>> import sparknlp
|
|
66
|
+
>>> from sparknlp.base import *
|
|
67
|
+
>>> from sparknlp.annotator import *
|
|
68
|
+
>>> from pyspark.ml import Pipeline
|
|
69
|
+
>>> documentAssembler = MultiDocumentAssembler() \\
|
|
70
|
+
... .setInputCols(["question", "context"]) \\
|
|
71
|
+
... .setOutputCol(["document_question", "document_context"])
|
|
72
|
+
>>> spanClassifier = XlmRoBertaForMultipleChoice.pretrained() \\
|
|
73
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
74
|
+
... .setOutputCol("answer") \\
|
|
75
|
+
... .setCaseSensitive(False)
|
|
76
|
+
>>> pipeline = Pipeline().setStages([
|
|
77
|
+
... documentAssembler,
|
|
78
|
+
... spanClassifier
|
|
79
|
+
... ])
|
|
80
|
+
>>> data = spark.createDataFrame([["What's my name?", "My name is Clara and I live in Berkeley."]]).toDF("question", "context")
|
|
81
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
82
|
+
>>> result.select("answer.result").show(truncate=False)
|
|
83
|
+
+--------------------+
|
|
84
|
+
|result |
|
|
85
|
+
+--------------------+
|
|
86
|
+
|[Clara] |
|
|
87
|
+
+--------------------+
|
|
88
|
+
"""
|
|
89
|
+
name = "XlmRoBertaForMultipleChoice"
|
|
90
|
+
|
|
91
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.DOCUMENT]
|
|
92
|
+
|
|
93
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
94
|
+
|
|
95
|
+
@keyword_only
|
|
96
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.XlmRoBertaForMultipleChoice",
|
|
97
|
+
java_model=None):
|
|
98
|
+
super(XlmRoBertaForMultipleChoice, self).__init__(
|
|
99
|
+
classname=classname,
|
|
100
|
+
java_model=java_model
|
|
101
|
+
)
|
|
102
|
+
self._setDefault(
|
|
103
|
+
batchSize=8,
|
|
104
|
+
maxSentenceLength=128,
|
|
105
|
+
caseSensitive=False
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
@staticmethod
|
|
109
|
+
def loadSavedModel(folder, spark_session):
|
|
110
|
+
"""Loads a locally saved model.
|
|
111
|
+
|
|
112
|
+
Parameters
|
|
113
|
+
----------
|
|
114
|
+
folder : str
|
|
115
|
+
Folder of the saved model
|
|
116
|
+
spark_session : pyspark.sql.SparkSession
|
|
117
|
+
The current SparkSession
|
|
118
|
+
|
|
119
|
+
Returns
|
|
120
|
+
-------
|
|
121
|
+
XlmRoBertaForMultipleChoice
|
|
122
|
+
The restored model
|
|
123
|
+
"""
|
|
124
|
+
from sparknlp.internal import _XlmRoBertaMultipleChoiceLoader
|
|
125
|
+
jModel = _XlmRoBertaMultipleChoiceLoader(folder, spark_session._jsparkSession)._java_obj
|
|
126
|
+
return XlmRoBertaForMultipleChoice(java_model=jModel)
|
|
127
|
+
|
|
128
|
+
@staticmethod
|
|
129
|
+
def pretrained(name="xlm_roberta_base_mc", lang="en", remote_loc=None):
|
|
130
|
+
"""Downloads and loads a pretrained model.
|
|
131
|
+
|
|
132
|
+
Parameters
|
|
133
|
+
----------
|
|
134
|
+
name : str, optional
|
|
135
|
+
Name of the pretrained model, by default
|
|
136
|
+
"xlm_roberta_base_qa_squad2"
|
|
137
|
+
lang : str, optional
|
|
138
|
+
Language of the pretrained model, by default "en"
|
|
139
|
+
remote_loc : str, optional
|
|
140
|
+
Optional remote address of the resource, by default None. Will use
|
|
141
|
+
Spark NLPs repositories otherwise.
|
|
142
|
+
|
|
143
|
+
Returns
|
|
144
|
+
-------
|
|
145
|
+
XlmRoBertaForMultipleChoice
|
|
146
|
+
The restored model
|
|
147
|
+
"""
|
|
148
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
149
|
+
return ResourceDownloader.downloadModel(XlmRoBertaForMultipleChoice, name, lang, remote_loc)
|
|
@@ -18,7 +18,8 @@ from sparknlp.common import *
|
|
|
18
18
|
class XlmRoBertaForQuestionAnswering(AnnotatorModel,
|
|
19
19
|
HasCaseSensitiveProperties,
|
|
20
20
|
HasBatchedAnnotate,
|
|
21
|
-
HasEngine
|
|
21
|
+
HasEngine,
|
|
22
|
+
HasMaxSentenceLengthLimit):
|
|
22
23
|
"""XlmRoBertaForQuestionAnswering can load XLM-RoBERTa Models with a span classification head on top for extractive
|
|
23
24
|
question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start
|
|
24
25
|
logits and span end logits).
|
|
@@ -34,7 +35,7 @@ class XlmRoBertaForQuestionAnswering(AnnotatorModel,
|
|
|
34
35
|
provided.
|
|
35
36
|
|
|
36
37
|
For available pretrained models please see the `Models Hub
|
|
37
|
-
<https://
|
|
38
|
+
<https://sparknlp.org/models?task=Question+Answering>`__.
|
|
38
39
|
|
|
39
40
|
To see which models are compatible and how to import them see
|
|
40
41
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -91,11 +92,6 @@ class XlmRoBertaForQuestionAnswering(AnnotatorModel,
|
|
|
91
92
|
|
|
92
93
|
outputAnnotatorType = AnnotatorType.CHUNK
|
|
93
94
|
|
|
94
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
95
|
-
"maxSentenceLength",
|
|
96
|
-
"Max sentence length to process",
|
|
97
|
-
typeConverter=TypeConverters.toInt)
|
|
98
|
-
|
|
99
95
|
configProtoBytes = Param(Params._dummy(),
|
|
100
96
|
"configProtoBytes",
|
|
101
97
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -115,16 +111,6 @@ class XlmRoBertaForQuestionAnswering(AnnotatorModel,
|
|
|
115
111
|
"""
|
|
116
112
|
return self._set(configProtoBytes=b)
|
|
117
113
|
|
|
118
|
-
def setMaxSentenceLength(self, value):
|
|
119
|
-
"""Sets max sentence length to process, by default 128.
|
|
120
|
-
|
|
121
|
-
Parameters
|
|
122
|
-
----------
|
|
123
|
-
value : int
|
|
124
|
-
Max sentence length to process
|
|
125
|
-
"""
|
|
126
|
-
return self._set(maxSentenceLength=value)
|
|
127
|
-
|
|
128
114
|
@keyword_only
|
|
129
115
|
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.XlmRoBertaForQuestionAnswering",
|
|
130
116
|
java_model=None):
|
|
@@ -20,7 +20,8 @@ class XlmRoBertaForSequenceClassification(AnnotatorModel,
|
|
|
20
20
|
HasCaseSensitiveProperties,
|
|
21
21
|
HasBatchedAnnotate,
|
|
22
22
|
HasClassifierActivationProperties,
|
|
23
|
-
HasEngine
|
|
23
|
+
HasEngine,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
24
25
|
"""XlmRoBertaForSequenceClassification can load XLM-RoBERTa Models with sequence classification/regression head on
|
|
25
26
|
top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.
|
|
26
27
|
|
|
@@ -35,7 +36,7 @@ class XlmRoBertaForSequenceClassification(AnnotatorModel,
|
|
|
35
36
|
provided.
|
|
36
37
|
|
|
37
38
|
For available pretrained models please see the `Models Hub
|
|
38
|
-
<https://
|
|
39
|
+
<https://sparknlp.org/models?task=Text+Classification>`__.
|
|
39
40
|
|
|
40
41
|
To see which models are compatible and how to import them see
|
|
41
42
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -61,7 +62,7 @@ class XlmRoBertaForSequenceClassification(AnnotatorModel,
|
|
|
61
62
|
Max sentence length to process, by default 128
|
|
62
63
|
coalesceSentences
|
|
63
64
|
Instead of 1 class per sentence (if inputCols is `sentence`) output
|
|
64
|
-
1 class per document by averaging probabilities in all sentences, by
|
|
65
|
+
1 class per document by averaging probabilities in all sentences, by
|
|
65
66
|
default False.
|
|
66
67
|
activation
|
|
67
68
|
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
@@ -104,11 +105,6 @@ class XlmRoBertaForSequenceClassification(AnnotatorModel,
|
|
|
104
105
|
|
|
105
106
|
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
106
107
|
|
|
107
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
108
|
-
"maxSentenceLength",
|
|
109
|
-
"Max sentence length to process",
|
|
110
|
-
typeConverter=TypeConverters.toInt)
|
|
111
|
-
|
|
112
108
|
configProtoBytes = Param(Params._dummy(),
|
|
113
109
|
"configProtoBytes",
|
|
114
110
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -134,16 +130,6 @@ class XlmRoBertaForSequenceClassification(AnnotatorModel,
|
|
|
134
130
|
"""
|
|
135
131
|
return self._set(configProtoBytes=b)
|
|
136
132
|
|
|
137
|
-
def setMaxSentenceLength(self, value):
|
|
138
|
-
"""Sets max sentence length to process, by default 128.
|
|
139
|
-
|
|
140
|
-
Parameters
|
|
141
|
-
----------
|
|
142
|
-
value : int
|
|
143
|
-
Max sentence length to process
|
|
144
|
-
"""
|
|
145
|
-
return self._set(maxSentenceLength=value)
|
|
146
|
-
|
|
147
133
|
def setCoalesceSentences(self, value):
|
|
148
134
|
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.
|
|
149
135
|
Due to max sequence length limit in almost all transformer models such as BERT (512 tokens), this parameter helps feeding all the sentences
|