spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (221) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  4. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  5. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  6. sparknlp/__init__.py +81 -28
  7. sparknlp/annotation.py +3 -2
  8. sparknlp/annotator/__init__.py +6 -0
  9. sparknlp/annotator/audio/__init__.py +2 -0
  10. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  11. sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
  12. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  13. sparknlp/{base → annotator}/chunk2_doc.py +4 -7
  14. sparknlp/annotator/chunker.py +1 -2
  15. sparknlp/annotator/classifier_dl/__init__.py +17 -0
  16. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  17. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
  18. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
  19. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
  20. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  21. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  22. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  23. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
  24. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
  25. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
  26. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  27. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  28. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
  29. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
  30. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  31. sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
  32. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
  33. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
  34. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
  35. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  36. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
  37. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
  38. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
  39. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  40. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  41. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
  42. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
  43. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
  44. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  45. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  46. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  47. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
  48. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  49. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
  50. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
  51. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
  52. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  53. sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
  54. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
  55. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  56. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
  57. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  60. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
  61. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
  62. sparknlp/annotator/cleaners/__init__.py +15 -0
  63. sparknlp/annotator/cleaners/cleaner.py +202 -0
  64. sparknlp/annotator/cleaners/extractor.py +191 -0
  65. sparknlp/annotator/coref/spanbert_coref.py +4 -18
  66. sparknlp/annotator/cv/__init__.py +15 -0
  67. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  68. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  69. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  70. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  71. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  72. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  73. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  74. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  75. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  76. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  77. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  78. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  79. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  80. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  81. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  82. sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
  83. sparknlp/annotator/dataframe_optimizer.py +216 -0
  84. sparknlp/annotator/date2_chunk.py +88 -0
  85. sparknlp/annotator/dependency/dependency_parser.py +2 -3
  86. sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
  87. sparknlp/annotator/document_character_text_splitter.py +228 -0
  88. sparknlp/annotator/document_normalizer.py +37 -1
  89. sparknlp/annotator/document_token_splitter.py +175 -0
  90. sparknlp/annotator/document_token_splitter_test.py +85 -0
  91. sparknlp/annotator/embeddings/__init__.py +11 -0
  92. sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
  93. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  94. sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
  95. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
  96. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  97. sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
  98. sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
  99. sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
  100. sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
  101. sparknlp/annotator/embeddings/doc2vec.py +7 -1
  102. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  103. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  104. sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
  105. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  106. sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
  107. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  108. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  109. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  110. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  111. sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
  112. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
  113. sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
  114. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  115. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  116. sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
  117. sparknlp/annotator/embeddings/word2vec.py +7 -1
  118. sparknlp/annotator/embeddings/word_embeddings.py +4 -5
  119. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
  120. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
  121. sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
  122. sparknlp/annotator/er/entity_ruler.py +37 -23
  123. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
  124. sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
  125. sparknlp/annotator/lemmatizer.py +3 -4
  126. sparknlp/annotator/matcher/date_matcher.py +35 -3
  127. sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
  128. sparknlp/annotator/matcher/regex_matcher.py +3 -3
  129. sparknlp/annotator/matcher/text_matcher.py +2 -3
  130. sparknlp/annotator/n_gram_generator.py +1 -2
  131. sparknlp/annotator/ner/__init__.py +3 -1
  132. sparknlp/annotator/ner/ner_converter.py +18 -0
  133. sparknlp/annotator/ner/ner_crf.py +4 -5
  134. sparknlp/annotator/ner/ner_dl.py +10 -5
  135. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  136. sparknlp/annotator/ner/ner_overwriter.py +2 -2
  137. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  138. sparknlp/annotator/normalizer.py +2 -2
  139. sparknlp/annotator/openai/__init__.py +16 -0
  140. sparknlp/annotator/openai/openai_completion.py +349 -0
  141. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  142. sparknlp/annotator/pos/perceptron.py +6 -7
  143. sparknlp/annotator/sentence/sentence_detector.py +2 -2
  144. sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
  145. sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
  146. sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
  147. sparknlp/annotator/seq2seq/__init__.py +17 -0
  148. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  149. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  150. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  151. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  152. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  153. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  154. sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
  155. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  156. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  157. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  158. sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
  159. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  160. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  161. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  162. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  163. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  164. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  165. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  166. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  167. sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
  168. sparknlp/annotator/similarity/__init__.py +0 -0
  169. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  170. sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
  171. sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
  172. sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
  173. sparknlp/annotator/stemmer.py +2 -3
  174. sparknlp/annotator/stop_words_cleaner.py +3 -4
  175. sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
  176. sparknlp/annotator/token/__init__.py +0 -1
  177. sparknlp/annotator/token/recursive_tokenizer.py +2 -3
  178. sparknlp/annotator/token/tokenizer.py +2 -3
  179. sparknlp/annotator/ws/word_segmenter.py +35 -10
  180. sparknlp/base/__init__.py +2 -3
  181. sparknlp/base/doc2_chunk.py +0 -3
  182. sparknlp/base/document_assembler.py +5 -5
  183. sparknlp/base/embeddings_finisher.py +14 -2
  184. sparknlp/base/finisher.py +15 -4
  185. sparknlp/base/gguf_ranking_finisher.py +234 -0
  186. sparknlp/base/image_assembler.py +69 -0
  187. sparknlp/base/light_pipeline.py +53 -21
  188. sparknlp/base/multi_document_assembler.py +9 -13
  189. sparknlp/base/prompt_assembler.py +207 -0
  190. sparknlp/base/token_assembler.py +1 -2
  191. sparknlp/common/__init__.py +2 -0
  192. sparknlp/common/annotator_type.py +1 -0
  193. sparknlp/common/completion_post_processing.py +37 -0
  194. sparknlp/common/match_strategy.py +33 -0
  195. sparknlp/common/properties.py +914 -9
  196. sparknlp/internal/__init__.py +841 -116
  197. sparknlp/internal/annotator_java_ml.py +1 -1
  198. sparknlp/internal/annotator_transformer.py +3 -0
  199. sparknlp/logging/comet.py +2 -2
  200. sparknlp/partition/__init__.py +16 -0
  201. sparknlp/partition/partition.py +244 -0
  202. sparknlp/partition/partition_properties.py +902 -0
  203. sparknlp/partition/partition_transformer.py +200 -0
  204. sparknlp/pretrained/pretrained_pipeline.py +1 -1
  205. sparknlp/pretrained/resource_downloader.py +126 -2
  206. sparknlp/reader/__init__.py +15 -0
  207. sparknlp/reader/enums.py +19 -0
  208. sparknlp/reader/pdf_to_text.py +190 -0
  209. sparknlp/reader/reader2doc.py +124 -0
  210. sparknlp/reader/reader2image.py +136 -0
  211. sparknlp/reader/reader2table.py +44 -0
  212. sparknlp/reader/reader_assembler.py +159 -0
  213. sparknlp/reader/sparknlp_reader.py +461 -0
  214. sparknlp/training/__init__.py +1 -0
  215. sparknlp/training/conll.py +8 -2
  216. sparknlp/training/spacy_to_annotation.py +57 -0
  217. sparknlp/util.py +26 -0
  218. spark_nlp-4.2.6.dist-info/METADATA +0 -1256
  219. spark_nlp-4.2.6.dist-info/RECORD +0 -196
  220. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
  221. /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
@@ -19,7 +19,8 @@ from sparknlp.common import *
19
19
  class XlmRoBertaForTokenClassification(AnnotatorModel,
20
20
  HasCaseSensitiveProperties,
21
21
  HasBatchedAnnotate,
22
- HasEngine):
22
+ HasEngine,
23
+ HasMaxSentenceLengthLimit):
23
24
  """XlmRoBertaForTokenClassification can load XLM-RoBERTa Models with a token
24
25
  classification head on top (a linear layer on top of the hidden-states
25
26
  output) e.g. for Named-Entity-Recognition (NER) tasks.
@@ -30,11 +31,11 @@ class XlmRoBertaForTokenClassification(AnnotatorModel,
30
31
  >>> token_classifier = XlmRoBertaForTokenClassification.pretrained() \\
31
32
  ... .setInputCols(["token", "document"]) \\
32
33
  ... .setOutputCol("label")
33
- The default model is ``"xlm_roberta_base_token_classifier_conll03"``, if no
34
+ The default model is ``"mpnet_base_token_classifier"``, if no
34
35
  name is provided.
35
36
 
36
37
  For available pretrained models please see the `Models Hub
37
- <https://nlp.johnsnowlabs.com/models?task=Named+Entity+Recognition>`__.
38
+ <https://sparknlp.org/models?task=Named+Entity+Recognition>`__.
38
39
  To see which models are compatible and how to import them see
39
40
  `Import Transformers into Spark NLP 🚀
40
41
  <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
@@ -94,11 +95,6 @@ class XlmRoBertaForTokenClassification(AnnotatorModel,
94
95
 
95
96
  outputAnnotatorType = AnnotatorType.NAMED_ENTITY
96
97
 
97
- maxSentenceLength = Param(Params._dummy(),
98
- "maxSentenceLength",
99
- "Max sentence length to process",
100
- typeConverter=TypeConverters.toInt)
101
-
102
98
  configProtoBytes = Param(Params._dummy(),
103
99
  "configProtoBytes",
104
100
  "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
@@ -120,16 +116,6 @@ class XlmRoBertaForTokenClassification(AnnotatorModel,
120
116
  """
121
117
  return self._set(configProtoBytes=b)
122
118
 
123
- def setMaxSentenceLength(self, value):
124
- """Sets max sentence length to process, by default 128.
125
-
126
- Parameters
127
- ----------
128
- value : int
129
- Max sentence length to process
130
- """
131
- return self._set(maxSentenceLength=value)
132
-
133
119
  @keyword_only
134
120
  def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.XlmRoBertaForTokenClassification",
135
121
  java_model=None):
@@ -164,14 +150,14 @@ class XlmRoBertaForTokenClassification(AnnotatorModel,
164
150
  return XlmRoBertaForTokenClassification(java_model=jModel)
165
151
 
166
152
  @staticmethod
167
- def pretrained(name="xlm_roberta_base_token_classifier_conll03", lang="en", remote_loc=None):
153
+ def pretrained(name="mpnet_base_token_classifier", lang="en", remote_loc=None):
168
154
  """Downloads and loads a pretrained model.
169
155
 
170
156
  Parameters
171
157
  ----------
172
158
  name : str, optional
173
159
  Name of the pretrained model, by default
174
- "xlm_roberta_base_token_classifier_conll03"
160
+ "mpnet_base_token_classifier"
175
161
  lang : str, optional
176
162
  Language of the pretrained model, by default "en"
177
163
  remote_loc : str, optional
@@ -0,0 +1,225 @@
1
+ # Copyright 2017-2023 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for XlmRoBertaForZeroShotClassification."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class XlmRoBertaForZeroShotClassification(AnnotatorModel,
20
+ HasCaseSensitiveProperties,
21
+ HasBatchedAnnotate,
22
+ HasClassifierActivationProperties,
23
+ HasCandidateLabelsProperties,
24
+ HasEngine):
25
+ """XlmRoBertaForZeroShotClassification using a `ModelForSequenceClassification` trained on NLI (natural language
26
+ inference) tasks. Equivalent of `XlmRoBertaForSequenceClassification` models, but these models don't require a hardcoded
27
+ number of potential classes, they can be chosen at runtime. It usually means it's slower but it is much more
28
+ flexible.
29
+
30
+ Note that the model will loop through all provided labels. So the more labels you have, the
31
+ longer this process will take.
32
+
33
+ Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis
34
+ pair and passed to the pretrained model.
35
+
36
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
37
+ object:
38
+
39
+ >>> sequenceClassifier = XlmRoBertaForZeroShotClassification.pretrained() \\
40
+ ... .setInputCols(["token", "document"]) \\
41
+ ... .setOutputCol("label")
42
+
43
+ The default model is ``"xlm_roberta_large_zero_shot_classifier_xnli_anli"``, if no name is
44
+ provided.
45
+
46
+ For available pretrained models please see the `Models Hub
47
+ <https://sparknlp.orgtask=Text+Classification>`__.
48
+
49
+ To see which models are compatible and how to import them see
50
+ `Import Transformers into Spark NLP 🚀
51
+ <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
52
+
53
+ ====================== ======================
54
+ Input Annotation types Output Annotation type
55
+ ====================== ======================
56
+ ``DOCUMENT, TOKEN`` ``CATEGORY``
57
+ ====================== ======================
58
+
59
+ Parameters
60
+ ----------
61
+ batchSize
62
+ Batch size. Large values allows faster processing but requires more
63
+ memory, by default 8
64
+ caseSensitive
65
+ Whether to ignore case in tokens for embeddings matching, by default
66
+ True
67
+ configProtoBytes
68
+ ConfigProto from tensorflow, serialized into byte array.
69
+ maxSentenceLength
70
+ Max sentence length to process, by default 128
71
+ coalesceSentences
72
+ Instead of 1 class per sentence (if inputCols is `sentence`) output 1
73
+ class per document by averaging probabilities in all sentences, by
74
+ default False
75
+ activation
76
+ Whether to calculate logits via Softmax or Sigmoid, by default
77
+ `"softmax"`.
78
+
79
+ Examples
80
+ --------
81
+ >>> import sparknlp
82
+ >>> from sparknlp.base import *
83
+ >>> from sparknlp.annotator import *
84
+ >>> from pyspark.ml import Pipeline
85
+ >>> documentAssembler = DocumentAssembler() \\
86
+ ... .setInputCol("text") \\
87
+ ... .setOutputCol("document")
88
+ >>> tokenizer = Tokenizer() \\
89
+ ... .setInputCols(["document"]) \\
90
+ ... .setOutputCol("token")
91
+ >>> sequenceClassifier = XlmRoBertaForZeroShotClassification.pretrained() \\
92
+ ... .setInputCols(["token", "document"]) \\
93
+ ... .setOutputCol("label") \\
94
+ ... .setCaseSensitive(True)
95
+ >>> pipeline = Pipeline().setStages([
96
+ ... documentAssembler,
97
+ ... tokenizer,
98
+ ... sequenceClassifier
99
+ ... ])
100
+ >>> data = spark.createDataFrame([["I loved this movie when I was a child.", "It was pretty boring."]]).toDF("text")
101
+ >>> result = pipeline.fit(data).transform(data)
102
+ >>> result.select("label.result").show(truncate=False)
103
+ +------+
104
+ |result|
105
+ +------+
106
+ |[pos] |
107
+ |[neg] |
108
+ +------+
109
+ """
110
+ name = "XlmRoBertaForZeroShotClassification"
111
+
112
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
113
+
114
+ outputAnnotatorType = AnnotatorType.CATEGORY
115
+
116
+ maxSentenceLength = Param(Params._dummy(),
117
+ "maxSentenceLength",
118
+ "Max sentence length to process",
119
+ typeConverter=TypeConverters.toInt)
120
+
121
+ configProtoBytes = Param(Params._dummy(),
122
+ "configProtoBytes",
123
+ "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
124
+ TypeConverters.toListInt)
125
+
126
+ coalesceSentences = Param(Params._dummy(), "coalesceSentences",
127
+ "Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.",
128
+ TypeConverters.toBoolean)
129
+
130
+ def getClasses(self):
131
+ """
132
+ Returns labels used to train this model
133
+ """
134
+ return self._call_java("getClasses")
135
+
136
+ def setConfigProtoBytes(self, b):
137
+ """Sets configProto from tensorflow, serialized into byte array.
138
+
139
+ Parameters
140
+ ----------
141
+ b : List[int]
142
+ ConfigProto from tensorflow, serialized into byte array
143
+ """
144
+ return self._set(configProtoBytes=b)
145
+
146
+ def setMaxSentenceLength(self, value):
147
+ """Sets max sentence length to process, by default 128.
148
+
149
+ Parameters
150
+ ----------
151
+ value : int
152
+ Max sentence length to process
153
+ """
154
+ return self._set(maxSentenceLength=value)
155
+
156
+ def setCoalesceSentences(self, value):
157
+ """Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging
158
+ probabilities in all sentences. Due to max sequence length limit in almost all transformer models such as XlmRoBerta
159
+ (512 tokens), this parameter helps to feed all the sentences into the model and averaging all the probabilities
160
+ for the entire document instead of probabilities per sentence. (Default: true)
161
+
162
+ Parameters
163
+ ----------
164
+ value : bool
165
+ If the output of all sentences will be averaged to one output
166
+ """
167
+ return self._set(coalesceSentences=value)
168
+
169
+ @keyword_only
170
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.XlmRoBertaForZeroShotClassification",
171
+ java_model=None):
172
+ super(XlmRoBertaForZeroShotClassification, self).__init__(
173
+ classname=classname,
174
+ java_model=java_model
175
+ )
176
+ self._setDefault(
177
+ batchSize=8,
178
+ maxSentenceLength=128,
179
+ caseSensitive=True,
180
+ coalesceSentences=False,
181
+ activation="softmax"
182
+ )
183
+
184
+ @staticmethod
185
+ def loadSavedModel(folder, spark_session):
186
+ """Loads a locally saved model.
187
+
188
+ Parameters
189
+ ----------
190
+ folder : str
191
+ Folder of the saved model
192
+ spark_session : pyspark.sql.SparkSession
193
+ The current SparkSession
194
+
195
+ Returns
196
+ -------
197
+ XlmRoBertaForZeroShotClassification
198
+ The restored model
199
+ """
200
+ from sparknlp.internal import _XlmRoBertaForZeroShotClassification
201
+ jModel = _XlmRoBertaForZeroShotClassification(folder, spark_session._jsparkSession)._java_obj
202
+ return XlmRoBertaForZeroShotClassification(java_model=jModel)
203
+
204
+ @staticmethod
205
+ def pretrained(name="xlm_roberta_large_zero_shot_classifier_xnli_anli", lang="xx", remote_loc=None):
206
+ """Downloads and loads a pretrained model.
207
+
208
+ Parameters
209
+ ----------
210
+ name : str, optional
211
+ Name of the pretrained model, by default
212
+ "xlm_roberta_large_zero_shot_classifier_xnli_anli"
213
+ lang : str, optional
214
+ Language of the pretrained model, by default "en"
215
+ remote_loc : str, optional
216
+ Optional remote address of the resource, by default None. Will use
217
+ Spark NLPs repositories otherwise.
218
+
219
+ Returns
220
+ -------
221
+ XlmRoBertaForZeroShotClassification
222
+ The restored model
223
+ """
224
+ from sparknlp.pretrained import ResourceDownloader
225
+ return ResourceDownloader.downloadModel(XlmRoBertaForZeroShotClassification, name, lang, remote_loc)
@@ -20,7 +20,8 @@ class XlnetForSequenceClassification(AnnotatorModel,
20
20
  HasCaseSensitiveProperties,
21
21
  HasBatchedAnnotate,
22
22
  HasClassifierActivationProperties,
23
- HasEngine):
23
+ HasEngine,
24
+ HasMaxSentenceLengthLimit):
24
25
  """XlnetForSequenceClassification can load XLNet Models with sequence classification/regression head on
25
26
  top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.
26
27
 
@@ -35,7 +36,7 @@ class XlnetForSequenceClassification(AnnotatorModel,
35
36
  provided.
36
37
 
37
38
  For available pretrained models please see the `Models Hub
38
- <https://nlp.johnsnowlabs.com/models?task=Text+Classification>`__.
39
+ <https://sparknlp.org/models?task=Text+Classification>`__.
39
40
 
40
41
  To see which models are compatible and how to import them see
41
42
  `Import Transformers into Spark NLP 🚀
@@ -61,7 +62,7 @@ class XlnetForSequenceClassification(AnnotatorModel,
61
62
  Max sentence length to process, by default 128
62
63
  coalesceSentences
63
64
  Instead of 1 class per sentence (if inputCols is `sentence`) output
64
- 1 class per document by averaging probabilities in all sentences, by
65
+ 1 class per document by averaging probabilities in all sentences, by
65
66
  default False.
66
67
  activation
67
68
  Whether to calculate logits via Softmax or Sigmoid, by default
@@ -104,11 +105,6 @@ class XlnetForSequenceClassification(AnnotatorModel,
104
105
 
105
106
  outputAnnotatorType = AnnotatorType.CATEGORY
106
107
 
107
- maxSentenceLength = Param(Params._dummy(),
108
- "maxSentenceLength",
109
- "Max sentence length to process",
110
- typeConverter=TypeConverters.toInt)
111
-
112
108
  configProtoBytes = Param(Params._dummy(),
113
109
  "configProtoBytes",
114
110
  "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
@@ -134,16 +130,6 @@ class XlnetForSequenceClassification(AnnotatorModel,
134
130
  """
135
131
  return self._set(configProtoBytes=b)
136
132
 
137
- def setMaxSentenceLength(self, value):
138
- """Sets max sentence length to process, by default 128.
139
-
140
- Parameters
141
- ----------
142
- value : int
143
- Max sentence length to process
144
- """
145
- return self._set(maxSentenceLength=value)
146
-
147
133
  def setCoalesceSentences(self, value):
148
134
  """Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.
149
135
  Due to max sequence length limit in almost all transformer models such as BERT (512 tokens), this parameter helps feeding all the sentences
@@ -19,7 +19,8 @@ from sparknlp.common import *
19
19
  class XlnetForTokenClassification(AnnotatorModel,
20
20
  HasCaseSensitiveProperties,
21
21
  HasBatchedAnnotate,
22
- HasEngine):
22
+ HasEngine,
23
+ HasMaxSentenceLengthLimit):
23
24
  """XlnetForTokenClassification can load XLNet Models with a token
24
25
  classification head on top (a linear layer on top of the hidden-states
25
26
  output) e.g. for Named-Entity-Recognition (NER) tasks.
@@ -35,7 +36,7 @@ class XlnetForTokenClassification(AnnotatorModel,
35
36
  provided.
36
37
 
37
38
  For available pretrained models please see the `Models Hub
38
- <https://nlp.johnsnowlabs.com/models?task=Named+Entity+Recognition>`__.
39
+ <https://sparknlp.org/models?task=Named+Entity+Recognition>`__.
39
40
 
40
41
  To see which models are compatible and how to import them see
41
42
  `Import Transformers into Spark NLP 🚀
@@ -97,11 +98,6 @@ class XlnetForTokenClassification(AnnotatorModel,
97
98
 
98
99
  outputAnnotatorType = AnnotatorType.NAMED_ENTITY
99
100
 
100
- maxSentenceLength = Param(Params._dummy(),
101
- "maxSentenceLength",
102
- "Max sentence length to process",
103
- typeConverter=TypeConverters.toInt)
104
-
105
101
  configProtoBytes = Param(Params._dummy(),
106
102
  "configProtoBytes",
107
103
  "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
@@ -123,16 +119,6 @@ class XlnetForTokenClassification(AnnotatorModel,
123
119
  """
124
120
  return self._set(configProtoBytes=b)
125
121
 
126
- def setMaxSentenceLength(self, value):
127
- """Sets max sentence length to process, by default 128.
128
-
129
- Parameters
130
- ----------
131
- value : int
132
- Max sentence length to process
133
- """
134
- return self._set(maxSentenceLength=value)
135
-
136
122
  @keyword_only
137
123
  def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.XlnetForTokenClassification",
138
124
  java_model=None):
@@ -0,0 +1,15 @@
1
+ # Copyright 2017-2025 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from sparknlp.annotator.cleaners.extractor import *
15
+ from sparknlp.annotator.cleaners.cleaner import *
@@ -0,0 +1,202 @@
1
+ # Copyright 2017-2025 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for Cleaner."""
15
+ from sparknlp.annotator import MarianTransformer
16
+ from sparknlp.common import *
17
+
18
+ class Cleaner(MarianTransformer):
19
+ name = "Cleaner"
20
+
21
+ inputAnnotatorTypes = [AnnotatorType.TOKEN]
22
+
23
+ outputAnnotatorType = AnnotatorType.CHUNK
24
+
25
+ encoding = Param(Params._dummy(),
26
+ "encoding",
27
+ "The encoding to be used for decoding the byte string (default is utf-8)",
28
+ typeConverter=TypeConverters.toString)
29
+
30
+ cleanPrefixPattern = Param(Params._dummy(),
31
+ "cleanPrefixPattern",
32
+ "The pattern for the prefix. Can be a simple string or a regex pattern.",
33
+ typeConverter=TypeConverters.toString)
34
+
35
+ cleanPostfixPattern = Param(Params._dummy(),
36
+ "cleanPostfixPattern",
37
+ "The pattern for the postfix. Can be a simple string or a regex pattern.",
38
+ typeConverter=TypeConverters.toString)
39
+
40
+ cleanerMode = Param(
41
+ Params._dummy(),
42
+ "cleanerMode",
43
+ "possible values: " +
44
+ "clean, bytes_string_to_string, clean_non_ascii_chars, clean_ordered_bullets, clean_postfix, clean_prefix, remove_punctuation, replace_unicode_quotes",
45
+ typeConverter=TypeConverters.toString
46
+ )
47
+
48
+ extraWhitespace = Param(Params._dummy(),
49
+ "extraWhitespace",
50
+ "Whether to remove extra whitespace.",
51
+ typeConverter=TypeConverters.toBoolean)
52
+
53
+ dashes = Param(Params._dummy(),
54
+ "dashes",
55
+ "Whether to handle dashes in text.",
56
+ typeConverter=TypeConverters.toBoolean)
57
+
58
+ bullets = Param(Params._dummy(),
59
+ "bullets",
60
+ "Whether to handle bullets in text.",
61
+ typeConverter=TypeConverters.toBoolean)
62
+
63
+ trailingPunctuation = Param(Params._dummy(),
64
+ "trailingPunctuation",
65
+ "Whether to remove trailing punctuation from text.",
66
+ typeConverter=TypeConverters.toBoolean)
67
+
68
+ lowercase = Param(Params._dummy(),
69
+ "lowercase",
70
+ "Whether to convert text to lowercase.",
71
+ typeConverter=TypeConverters.toBoolean)
72
+
73
+ ignoreCase = Param(Params._dummy(),
74
+ "ignoreCase",
75
+ "If true, ignores case in the pattern.",
76
+ typeConverter=TypeConverters.toBoolean)
77
+
78
+ strip = Param(Params._dummy(),
79
+ "strip",
80
+ "If true, removes leading or trailing whitespace from the cleaned string.",
81
+ typeConverter=TypeConverters.toBoolean)
82
+
83
+ def setEncoding(self, value):
84
+ """Sets the encoding to be used for decoding the byte string (default is utf-8).
85
+
86
+ Parameters
87
+ ----------
88
+ value : str
89
+ The encoding to be used for decoding the byte string (default is utf-8)
90
+ """
91
+ return self._set(encoding=value)
92
+
93
+ def setCleanPrefixPattern(self, value):
94
+ """Sets the pattern for the prefix. Can be a simple string or a regex pattern.
95
+
96
+ Parameters
97
+ ----------
98
+ value : str
99
+ The pattern for the prefix. Can be a simple string or a regex pattern.
100
+ """
101
+ return self._set(cleanPrefixPattern=value)
102
+
103
+ def setCleanPostfixPattern(self, value):
104
+ """Sets the pattern for the postfix. Can be a simple string or a regex pattern.
105
+
106
+ Parameters
107
+ ----------
108
+ value : str
109
+ The pattern for the postfix. Can be a simple string or a regex pattern.
110
+ """
111
+ return self._set(cleanPostfixPattern=value)
112
+
113
+ def setCleanerMode(self, value):
114
+ """Sets the cleaner mode.
115
+
116
+ Possible values:
117
+ clean, bytes_string_to_string, clean_non_ascii_chars, clean_ordered_bullets,
118
+ clean_postfix, clean_prefix, remove_punctuation, replace_unicode_quotes
119
+
120
+ Parameters
121
+ ----------
122
+ value : str
123
+ The mode for cleaning operations.
124
+ """
125
+ return self._set(cleanerMode=value)
126
+
127
+ def setExtraWhitespace(self, value):
128
+ """Sets whether to remove extra whitespace.
129
+
130
+ Parameters
131
+ ----------
132
+ value : bool
133
+ Whether to remove extra whitespace.
134
+ """
135
+ return self._set(extraWhitespace=value)
136
+
137
+ def setDashes(self, value):
138
+ """Sets whether to handle dashes in text.
139
+
140
+ Parameters
141
+ ----------
142
+ value : bool
143
+ Whether to handle dashes in text.
144
+ """
145
+ return self._set(dashes=value)
146
+
147
+ def setBullets(self, value):
148
+ """Sets whether to handle bullets in text.
149
+
150
+ Parameters
151
+ ----------
152
+ value : bool
153
+ Whether to handle bullets in text.
154
+ """
155
+ return self._set(bullets=value)
156
+
157
+ def setTrailingPunctuation(self, value):
158
+ """Sets whether to remove trailing punctuation from text.
159
+
160
+ Parameters
161
+ ----------
162
+ value : bool
163
+ Whether to remove trailing punctuation from text.
164
+ """
165
+ return self._set(trailingPunctuation=value)
166
+
167
+ def setLowercase(self, value):
168
+ """Sets whether to convert text to lowercase.
169
+
170
+ Parameters
171
+ ----------
172
+ value : bool
173
+ Whether to convert text to lowercase.
174
+ """
175
+ return self._set(lowercase=value)
176
+
177
+ def setIgnoreCase(self, value):
178
+ """Sets whether to ignore case in the pattern.
179
+
180
+ Parameters
181
+ ----------
182
+ value : bool
183
+ If true, ignores case in the pattern.
184
+ """
185
+ return self._set(ignoreCase=value)
186
+
187
+ def setStrip(self, value):
188
+ """Sets whether to remove leading or trailing whitespace from the cleaned string.
189
+
190
+ Parameters
191
+ ----------
192
+ value : bool
193
+ If true, removes leading or trailing whitespace from the cleaned string.
194
+ """
195
+ return self._set(strip=value)
196
+
197
+ @keyword_only
198
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cleaners.Cleaner", java_model=None):
199
+ super(Cleaner, self).__init__(
200
+ classname=classname,
201
+ java_model=java_model
202
+ )