spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (221) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  4. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  5. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  6. sparknlp/__init__.py +81 -28
  7. sparknlp/annotation.py +3 -2
  8. sparknlp/annotator/__init__.py +6 -0
  9. sparknlp/annotator/audio/__init__.py +2 -0
  10. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  11. sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
  12. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  13. sparknlp/{base → annotator}/chunk2_doc.py +4 -7
  14. sparknlp/annotator/chunker.py +1 -2
  15. sparknlp/annotator/classifier_dl/__init__.py +17 -0
  16. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  17. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
  18. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
  19. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
  20. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  21. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  22. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  23. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
  24. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
  25. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
  26. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  27. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  28. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
  29. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
  30. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  31. sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
  32. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
  33. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
  34. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
  35. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  36. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
  37. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
  38. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
  39. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  40. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  41. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
  42. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
  43. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
  44. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  45. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  46. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  47. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
  48. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  49. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
  50. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
  51. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
  52. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  53. sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
  54. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
  55. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  56. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
  57. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  60. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
  61. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
  62. sparknlp/annotator/cleaners/__init__.py +15 -0
  63. sparknlp/annotator/cleaners/cleaner.py +202 -0
  64. sparknlp/annotator/cleaners/extractor.py +191 -0
  65. sparknlp/annotator/coref/spanbert_coref.py +4 -18
  66. sparknlp/annotator/cv/__init__.py +15 -0
  67. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  68. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  69. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  70. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  71. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  72. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  73. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  74. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  75. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  76. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  77. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  78. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  79. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  80. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  81. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  82. sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
  83. sparknlp/annotator/dataframe_optimizer.py +216 -0
  84. sparknlp/annotator/date2_chunk.py +88 -0
  85. sparknlp/annotator/dependency/dependency_parser.py +2 -3
  86. sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
  87. sparknlp/annotator/document_character_text_splitter.py +228 -0
  88. sparknlp/annotator/document_normalizer.py +37 -1
  89. sparknlp/annotator/document_token_splitter.py +175 -0
  90. sparknlp/annotator/document_token_splitter_test.py +85 -0
  91. sparknlp/annotator/embeddings/__init__.py +11 -0
  92. sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
  93. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  94. sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
  95. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
  96. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  97. sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
  98. sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
  99. sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
  100. sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
  101. sparknlp/annotator/embeddings/doc2vec.py +7 -1
  102. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  103. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  104. sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
  105. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  106. sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
  107. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  108. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  109. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  110. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  111. sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
  112. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
  113. sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
  114. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  115. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  116. sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
  117. sparknlp/annotator/embeddings/word2vec.py +7 -1
  118. sparknlp/annotator/embeddings/word_embeddings.py +4 -5
  119. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
  120. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
  121. sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
  122. sparknlp/annotator/er/entity_ruler.py +37 -23
  123. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
  124. sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
  125. sparknlp/annotator/lemmatizer.py +3 -4
  126. sparknlp/annotator/matcher/date_matcher.py +35 -3
  127. sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
  128. sparknlp/annotator/matcher/regex_matcher.py +3 -3
  129. sparknlp/annotator/matcher/text_matcher.py +2 -3
  130. sparknlp/annotator/n_gram_generator.py +1 -2
  131. sparknlp/annotator/ner/__init__.py +3 -1
  132. sparknlp/annotator/ner/ner_converter.py +18 -0
  133. sparknlp/annotator/ner/ner_crf.py +4 -5
  134. sparknlp/annotator/ner/ner_dl.py +10 -5
  135. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  136. sparknlp/annotator/ner/ner_overwriter.py +2 -2
  137. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  138. sparknlp/annotator/normalizer.py +2 -2
  139. sparknlp/annotator/openai/__init__.py +16 -0
  140. sparknlp/annotator/openai/openai_completion.py +349 -0
  141. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  142. sparknlp/annotator/pos/perceptron.py +6 -7
  143. sparknlp/annotator/sentence/sentence_detector.py +2 -2
  144. sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
  145. sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
  146. sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
  147. sparknlp/annotator/seq2seq/__init__.py +17 -0
  148. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  149. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  150. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  151. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  152. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  153. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  154. sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
  155. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  156. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  157. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  158. sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
  159. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  160. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  161. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  162. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  163. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  164. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  165. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  166. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  167. sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
  168. sparknlp/annotator/similarity/__init__.py +0 -0
  169. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  170. sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
  171. sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
  172. sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
  173. sparknlp/annotator/stemmer.py +2 -3
  174. sparknlp/annotator/stop_words_cleaner.py +3 -4
  175. sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
  176. sparknlp/annotator/token/__init__.py +0 -1
  177. sparknlp/annotator/token/recursive_tokenizer.py +2 -3
  178. sparknlp/annotator/token/tokenizer.py +2 -3
  179. sparknlp/annotator/ws/word_segmenter.py +35 -10
  180. sparknlp/base/__init__.py +2 -3
  181. sparknlp/base/doc2_chunk.py +0 -3
  182. sparknlp/base/document_assembler.py +5 -5
  183. sparknlp/base/embeddings_finisher.py +14 -2
  184. sparknlp/base/finisher.py +15 -4
  185. sparknlp/base/gguf_ranking_finisher.py +234 -0
  186. sparknlp/base/image_assembler.py +69 -0
  187. sparknlp/base/light_pipeline.py +53 -21
  188. sparknlp/base/multi_document_assembler.py +9 -13
  189. sparknlp/base/prompt_assembler.py +207 -0
  190. sparknlp/base/token_assembler.py +1 -2
  191. sparknlp/common/__init__.py +2 -0
  192. sparknlp/common/annotator_type.py +1 -0
  193. sparknlp/common/completion_post_processing.py +37 -0
  194. sparknlp/common/match_strategy.py +33 -0
  195. sparknlp/common/properties.py +914 -9
  196. sparknlp/internal/__init__.py +841 -116
  197. sparknlp/internal/annotator_java_ml.py +1 -1
  198. sparknlp/internal/annotator_transformer.py +3 -0
  199. sparknlp/logging/comet.py +2 -2
  200. sparknlp/partition/__init__.py +16 -0
  201. sparknlp/partition/partition.py +244 -0
  202. sparknlp/partition/partition_properties.py +902 -0
  203. sparknlp/partition/partition_transformer.py +200 -0
  204. sparknlp/pretrained/pretrained_pipeline.py +1 -1
  205. sparknlp/pretrained/resource_downloader.py +126 -2
  206. sparknlp/reader/__init__.py +15 -0
  207. sparknlp/reader/enums.py +19 -0
  208. sparknlp/reader/pdf_to_text.py +190 -0
  209. sparknlp/reader/reader2doc.py +124 -0
  210. sparknlp/reader/reader2image.py +136 -0
  211. sparknlp/reader/reader2table.py +44 -0
  212. sparknlp/reader/reader_assembler.py +159 -0
  213. sparknlp/reader/sparknlp_reader.py +461 -0
  214. sparknlp/training/__init__.py +1 -0
  215. sparknlp/training/conll.py +8 -2
  216. sparknlp/training/spacy_to_annotation.py +57 -0
  217. sparknlp/util.py +26 -0
  218. spark_nlp-4.2.6.dist-info/METADATA +0 -1256
  219. spark_nlp-4.2.6.dist-info/RECORD +0 -196
  220. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
  221. /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
@@ -0,0 +1,348 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for the MistralTransformer."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class MistralTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
20
+ """Mistral 7B
21
+
22
+ Mistral 7B, a 7.3 billion-parameter model that stands out for its efficient and effective
23
+ performance in natural language processing. Surpassing Llama 2 13B across all benchmarks and
24
+ excelling over Llama 1 34B in various aspects, Mistral 7B strikes a balance between English
25
+ language tasks and code comprehension, rivaling the capabilities of CodeLlama 7B in the
26
+ latter.
27
+
28
+ Mistral 7B introduces Grouped-query attention (GQA) for quicker inference, enhancing
29
+ processing speed without compromising accuracy. This streamlined approach ensures a smoother
30
+ user experience, making Mistral 7B a practical choice for real-world applications.
31
+
32
+ Additionally, Mistral 7B adopts Sliding Window Attention (SWA) to efficiently handle longer
33
+ sequences at a reduced computational cost. This feature enhances the model's ability to
34
+ process extensive textual input, expanding its utility in handling more complex tasks.
35
+
36
+ In summary, Mistral 7B represents a notable advancement in language models, offering a
37
+ reliable and versatile solution for various natural language processing challenges.
38
+
39
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
40
+ object:
41
+
42
+ >>> mistral = MistralTransformer.pretrained() \\
43
+ ... .setInputCols(["document"]) \\
44
+ ... .setOutputCol("generation")
45
+
46
+
47
+ The default model is ``"mistral_7b"``, if no name is provided. For available
48
+ pretrained models please see the `Models Hub
49
+ <https://sparknlp.org/models?q=mistral>`__.
50
+
51
+ ====================== ======================
52
+ Input Annotation types Output Annotation type
53
+ ====================== ======================
54
+ ``DOCUMENT`` ``DOCUMENT``
55
+ ====================== ======================
56
+
57
+ Parameters
58
+ ----------
59
+ configProtoBytes
60
+ ConfigProto from tensorflow, serialized into byte array.
61
+ minOutputLength
62
+ Minimum length of the sequence to be generated, by default 0
63
+ maxOutputLength
64
+ Maximum length of output text, by default 20
65
+ doSample
66
+ Whether or not to use sampling; use greedy decoding otherwise, by default False
67
+ temperature
68
+ The value used to module the next token probabilities, by default 1.0
69
+ topK
70
+ The number of highest probability vocabulary tokens to keep for
71
+ top-k-filtering, by default 50
72
+ topP
73
+ Top cumulative probability for vocabulary tokens, by default 1.0
74
+
75
+ If set to float < 1, only the most probable tokens with probabilities
76
+ that add up to ``topP`` or higher are kept for generation.
77
+ repetitionPenalty
78
+ The parameter for repetition penalty, 1.0 means no penalty. , by default
79
+ 1.0
80
+ noRepeatNgramSize
81
+ If set to int > 0, all ngrams of that size can only occur once, by
82
+ default 0
83
+ ignoreTokenIds
84
+ A list of token ids which are ignored in the decoder's output, by
85
+ default []
86
+
87
+ Notes
88
+ -----
89
+ This is a very computationally expensive module especially on larger
90
+ sequence. The use of an accelerator such as GPU is recommended.
91
+
92
+ References
93
+ ----------
94
+ - `Mistral 7B <https://mistral.ai/news/announcing-mistral_7b/>`__
95
+ - https://github.com/mistralai/mistral-src
96
+
97
+ **Paper Abstract:**
98
+
99
+ *We introduce Mistral 7B v0.1, a 7-billion-parameter language model engineered for superior
100
+ performance and efficiency. Mistral 7B outperforms Llama 2 13B across all evaluated
101
+ benchmarks, and Llama 1 34B in reasoning, mathematics, and code generation. Our model
102
+ leverages grouped-query attention (GQA) for faster inference, coupled with sliding window
103
+ attention (SWA) to effectively handle sequences of arbitrary length with a reduced inference
104
+ cost. We also provide a model fine-tuned to follow instructions, Mistral 7B -- Instruct, that
105
+ surpasses the Llama 2 13B -- Chat model both on human and automated benchmarks. Our models are
106
+ released under the Apache 2.0 license.*
107
+
108
+ Examples
109
+ --------
110
+ >>> import sparknlp
111
+ >>> from sparknlp.base import *
112
+ >>> from sparknlp.annotator import *
113
+ >>> from pyspark.ml import Pipeline
114
+ >>> documentAssembler = DocumentAssembler() \\
115
+ ... .setInputCol("text") \\
116
+ ... .setOutputCol("documents")
117
+ >>> mistral = MistralTransformer.pretrained("mistral_7b") \\
118
+ ... .setInputCols(["documents"]) \\
119
+ ... .setMaxOutputLength(50) \\
120
+ ... .setOutputCol("generation")
121
+ >>> pipeline = Pipeline().setStages([documentAssembler, mistral])
122
+ >>> data = spark.createDataFrame([["My name is Leonardo."]]).toDF("text")
123
+ >>> result = pipeline.fit(data).transform(data)
124
+ >>> result.select("summaries.generation").show(truncate=False)
125
+ +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
126
+ |result |
127
+ +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
128
+ |[Leonardo Da Vinci invented the microscope?\\n Question: Leonardo Da Vinci invented the microscope?\\n Answer: No, Leonardo Da Vinci did not invent the microscope. The first microscope was invented |
129
+ | in the late 16th century, long after Leonardo'] |
130
+ -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
131
+ """
132
+
133
+ name = "MistralTransformer"
134
+
135
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
136
+
137
+ outputAnnotatorType = AnnotatorType.DOCUMENT
138
+
139
+
140
+ configProtoBytes = Param(Params._dummy(),
141
+ "configProtoBytes",
142
+ "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
143
+ TypeConverters.toListInt)
144
+
145
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
146
+ typeConverter=TypeConverters.toInt)
147
+
148
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
149
+ typeConverter=TypeConverters.toInt)
150
+
151
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
152
+ typeConverter=TypeConverters.toBoolean)
153
+
154
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
155
+ typeConverter=TypeConverters.toFloat)
156
+
157
+ topK = Param(Params._dummy(), "topK",
158
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
159
+ typeConverter=TypeConverters.toInt)
160
+
161
+ topP = Param(Params._dummy(), "topP",
162
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
163
+ typeConverter=TypeConverters.toFloat)
164
+
165
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
166
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
167
+ typeConverter=TypeConverters.toFloat)
168
+
169
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
170
+ "If set to int > 0, all ngrams of that size can only occur once",
171
+ typeConverter=TypeConverters.toInt)
172
+
173
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
174
+ "A list of token ids which are ignored in the decoder's output",
175
+ typeConverter=TypeConverters.toListInt)
176
+
177
+
178
+ def setIgnoreTokenIds(self, value):
179
+ """A list of token ids which are ignored in the decoder's output.
180
+
181
+ Parameters
182
+ ----------
183
+ value : List[int]
184
+ The words to be filtered out
185
+ """
186
+ return self._set(ignoreTokenIds=value)
187
+
188
+ def setConfigProtoBytes(self, b):
189
+ """Sets configProto from tensorflow, serialized into byte array.
190
+
191
+ Parameters
192
+ ----------
193
+ b : List[int]
194
+ ConfigProto from tensorflow, serialized into byte array
195
+ """
196
+ return self._set(configProtoBytes=b)
197
+
198
+ def setMinOutputLength(self, value):
199
+ """Sets minimum length of the sequence to be generated.
200
+
201
+ Parameters
202
+ ----------
203
+ value : int
204
+ Minimum length of the sequence to be generated
205
+ """
206
+ return self._set(minOutputLength=value)
207
+
208
+ def setMaxOutputLength(self, value):
209
+ """Sets maximum length of output text.
210
+
211
+ Parameters
212
+ ----------
213
+ value : int
214
+ Maximum length of output text
215
+ """
216
+ return self._set(maxOutputLength=value)
217
+
218
+ def setDoSample(self, value):
219
+ """Sets whether or not to use sampling, use greedy decoding otherwise.
220
+
221
+ Parameters
222
+ ----------
223
+ value : bool
224
+ Whether or not to use sampling; use greedy decoding otherwise
225
+ """
226
+ return self._set(doSample=value)
227
+
228
+ def setTemperature(self, value):
229
+ """Sets the value used to module the next token probabilities.
230
+
231
+ Parameters
232
+ ----------
233
+ value : float
234
+ The value used to module the next token probabilities
235
+ """
236
+ return self._set(temperature=value)
237
+
238
+ def setTopK(self, value):
239
+ """Sets the number of highest probability vocabulary tokens to keep for
240
+ top-k-filtering.
241
+
242
+ Parameters
243
+ ----------
244
+ value : int
245
+ Number of highest probability vocabulary tokens to keep
246
+ """
247
+ return self._set(topK=value)
248
+
249
+ def setTopP(self, value):
250
+ """Sets the top cumulative probability for vocabulary tokens.
251
+
252
+ If set to float < 1, only the most probable tokens with probabilities
253
+ that add up to ``topP`` or higher are kept for generation.
254
+
255
+ Parameters
256
+ ----------
257
+ value : float
258
+ Cumulative probability for vocabulary tokens
259
+ """
260
+ return self._set(topP=value)
261
+
262
+ def setRepetitionPenalty(self, value):
263
+ """Sets the parameter for repetition penalty. 1.0 means no penalty.
264
+
265
+ Parameters
266
+ ----------
267
+ value : float
268
+ The repetition penalty
269
+
270
+ References
271
+ ----------
272
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
273
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
274
+ """
275
+ return self._set(repetitionPenalty=value)
276
+
277
+ def setNoRepeatNgramSize(self, value):
278
+ """Sets size of n-grams that can only occur once.
279
+
280
+ If set to int > 0, all ngrams of that size can only occur once.
281
+
282
+ Parameters
283
+ ----------
284
+ value : int
285
+ N-gram size can only occur once
286
+ """
287
+ return self._set(noRepeatNgramSize=value)
288
+
289
+ @keyword_only
290
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.MistralTransformer", java_model=None):
291
+ super(MistralTransformer, self).__init__(
292
+ classname=classname,
293
+ java_model=java_model
294
+ )
295
+ self._setDefault(
296
+ minOutputLength=0,
297
+ maxOutputLength=20,
298
+ doSample=False,
299
+ temperature=1,
300
+ topK=50,
301
+ topP=1,
302
+ repetitionPenalty=1.0,
303
+ noRepeatNgramSize=0,
304
+ ignoreTokenIds=[],
305
+ batchSize=1
306
+ )
307
+
308
+ @staticmethod
309
+ def loadSavedModel(folder, spark_session, use_openvino=False):
310
+ """Loads a locally saved model.
311
+
312
+ Parameters
313
+ ----------
314
+ folder : str
315
+ Folder of the saved model
316
+ spark_session : pyspark.sql.SparkSession
317
+ The current SparkSession
318
+
319
+ Returns
320
+ -------
321
+ MistralTransformer
322
+ The restored model
323
+ """
324
+ from sparknlp.internal import _MistralLoader
325
+ jModel = _MistralLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
326
+ return MistralTransformer(java_model=jModel)
327
+
328
+ @staticmethod
329
+ def pretrained(name="mistral_7b", lang="en", remote_loc=None):
330
+ """Downloads and loads a pretrained model.
331
+
332
+ Parameters
333
+ ----------
334
+ name : str, optional
335
+ Name of the pretrained model, by default "mistral_7b"
336
+ lang : str, optional
337
+ Language of the pretrained model, by default "en"
338
+ remote_loc : str, optional
339
+ Optional remote address of the resource, by default None. Will use
340
+ Spark NLPs repositories otherwise.
341
+
342
+ Returns
343
+ -------
344
+ MistralTransformer
345
+ The restored model
346
+ """
347
+ from sparknlp.pretrained import ResourceDownloader
348
+ return ResourceDownloader.downloadModel(MistralTransformer, name, lang, remote_loc)