spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (221) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  4. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  5. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  6. sparknlp/__init__.py +81 -28
  7. sparknlp/annotation.py +3 -2
  8. sparknlp/annotator/__init__.py +6 -0
  9. sparknlp/annotator/audio/__init__.py +2 -0
  10. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  11. sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
  12. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  13. sparknlp/{base → annotator}/chunk2_doc.py +4 -7
  14. sparknlp/annotator/chunker.py +1 -2
  15. sparknlp/annotator/classifier_dl/__init__.py +17 -0
  16. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  17. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
  18. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
  19. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
  20. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  21. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  22. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  23. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
  24. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
  25. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
  26. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  27. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  28. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
  29. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
  30. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  31. sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
  32. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
  33. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
  34. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
  35. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  36. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
  37. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
  38. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
  39. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  40. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  41. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
  42. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
  43. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
  44. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  45. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  46. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  47. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
  48. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  49. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
  50. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
  51. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
  52. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  53. sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
  54. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
  55. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  56. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
  57. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  60. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
  61. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
  62. sparknlp/annotator/cleaners/__init__.py +15 -0
  63. sparknlp/annotator/cleaners/cleaner.py +202 -0
  64. sparknlp/annotator/cleaners/extractor.py +191 -0
  65. sparknlp/annotator/coref/spanbert_coref.py +4 -18
  66. sparknlp/annotator/cv/__init__.py +15 -0
  67. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  68. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  69. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  70. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  71. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  72. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  73. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  74. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  75. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  76. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  77. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  78. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  79. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  80. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  81. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  82. sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
  83. sparknlp/annotator/dataframe_optimizer.py +216 -0
  84. sparknlp/annotator/date2_chunk.py +88 -0
  85. sparknlp/annotator/dependency/dependency_parser.py +2 -3
  86. sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
  87. sparknlp/annotator/document_character_text_splitter.py +228 -0
  88. sparknlp/annotator/document_normalizer.py +37 -1
  89. sparknlp/annotator/document_token_splitter.py +175 -0
  90. sparknlp/annotator/document_token_splitter_test.py +85 -0
  91. sparknlp/annotator/embeddings/__init__.py +11 -0
  92. sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
  93. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  94. sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
  95. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
  96. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  97. sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
  98. sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
  99. sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
  100. sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
  101. sparknlp/annotator/embeddings/doc2vec.py +7 -1
  102. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  103. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  104. sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
  105. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  106. sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
  107. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  108. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  109. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  110. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  111. sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
  112. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
  113. sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
  114. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  115. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  116. sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
  117. sparknlp/annotator/embeddings/word2vec.py +7 -1
  118. sparknlp/annotator/embeddings/word_embeddings.py +4 -5
  119. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
  120. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
  121. sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
  122. sparknlp/annotator/er/entity_ruler.py +37 -23
  123. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
  124. sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
  125. sparknlp/annotator/lemmatizer.py +3 -4
  126. sparknlp/annotator/matcher/date_matcher.py +35 -3
  127. sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
  128. sparknlp/annotator/matcher/regex_matcher.py +3 -3
  129. sparknlp/annotator/matcher/text_matcher.py +2 -3
  130. sparknlp/annotator/n_gram_generator.py +1 -2
  131. sparknlp/annotator/ner/__init__.py +3 -1
  132. sparknlp/annotator/ner/ner_converter.py +18 -0
  133. sparknlp/annotator/ner/ner_crf.py +4 -5
  134. sparknlp/annotator/ner/ner_dl.py +10 -5
  135. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  136. sparknlp/annotator/ner/ner_overwriter.py +2 -2
  137. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  138. sparknlp/annotator/normalizer.py +2 -2
  139. sparknlp/annotator/openai/__init__.py +16 -0
  140. sparknlp/annotator/openai/openai_completion.py +349 -0
  141. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  142. sparknlp/annotator/pos/perceptron.py +6 -7
  143. sparknlp/annotator/sentence/sentence_detector.py +2 -2
  144. sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
  145. sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
  146. sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
  147. sparknlp/annotator/seq2seq/__init__.py +17 -0
  148. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  149. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  150. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  151. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  152. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  153. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  154. sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
  155. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  156. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  157. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  158. sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
  159. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  160. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  161. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  162. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  163. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  164. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  165. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  166. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  167. sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
  168. sparknlp/annotator/similarity/__init__.py +0 -0
  169. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  170. sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
  171. sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
  172. sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
  173. sparknlp/annotator/stemmer.py +2 -3
  174. sparknlp/annotator/stop_words_cleaner.py +3 -4
  175. sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
  176. sparknlp/annotator/token/__init__.py +0 -1
  177. sparknlp/annotator/token/recursive_tokenizer.py +2 -3
  178. sparknlp/annotator/token/tokenizer.py +2 -3
  179. sparknlp/annotator/ws/word_segmenter.py +35 -10
  180. sparknlp/base/__init__.py +2 -3
  181. sparknlp/base/doc2_chunk.py +0 -3
  182. sparknlp/base/document_assembler.py +5 -5
  183. sparknlp/base/embeddings_finisher.py +14 -2
  184. sparknlp/base/finisher.py +15 -4
  185. sparknlp/base/gguf_ranking_finisher.py +234 -0
  186. sparknlp/base/image_assembler.py +69 -0
  187. sparknlp/base/light_pipeline.py +53 -21
  188. sparknlp/base/multi_document_assembler.py +9 -13
  189. sparknlp/base/prompt_assembler.py +207 -0
  190. sparknlp/base/token_assembler.py +1 -2
  191. sparknlp/common/__init__.py +2 -0
  192. sparknlp/common/annotator_type.py +1 -0
  193. sparknlp/common/completion_post_processing.py +37 -0
  194. sparknlp/common/match_strategy.py +33 -0
  195. sparknlp/common/properties.py +914 -9
  196. sparknlp/internal/__init__.py +841 -116
  197. sparknlp/internal/annotator_java_ml.py +1 -1
  198. sparknlp/internal/annotator_transformer.py +3 -0
  199. sparknlp/logging/comet.py +2 -2
  200. sparknlp/partition/__init__.py +16 -0
  201. sparknlp/partition/partition.py +244 -0
  202. sparknlp/partition/partition_properties.py +902 -0
  203. sparknlp/partition/partition_transformer.py +200 -0
  204. sparknlp/pretrained/pretrained_pipeline.py +1 -1
  205. sparknlp/pretrained/resource_downloader.py +126 -2
  206. sparknlp/reader/__init__.py +15 -0
  207. sparknlp/reader/enums.py +19 -0
  208. sparknlp/reader/pdf_to_text.py +190 -0
  209. sparknlp/reader/reader2doc.py +124 -0
  210. sparknlp/reader/reader2image.py +136 -0
  211. sparknlp/reader/reader2table.py +44 -0
  212. sparknlp/reader/reader_assembler.py +159 -0
  213. sparknlp/reader/sparknlp_reader.py +461 -0
  214. sparknlp/training/__init__.py +1 -0
  215. sparknlp/training/conll.py +8 -2
  216. sparknlp/training/spacy_to_annotation.py +57 -0
  217. sparknlp/util.py +26 -0
  218. spark_nlp-4.2.6.dist-info/METADATA +0 -1256
  219. spark_nlp-4.2.6.dist-info/RECORD +0 -196
  220. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
  221. /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
@@ -0,0 +1,304 @@
1
+ # Copyright 2017-2023 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for the AutoGGUFModel."""
15
+ from sparknlp.common import *
16
+
17
+
18
+ class AutoGGUFModel(AnnotatorModel, HasBatchedAnnotate, HasLlamaCppProperties, CompletionPostProcessing):
19
+ """
20
+ Annotator that uses the llama.cpp library to generate text completions with large language
21
+ models.
22
+
23
+ For settable parameters, and their explanations, see the parameters of this class and refer to
24
+ the llama.cpp documentation of
25
+ `server.cpp <https://github.com/ggerganov/llama.cpp/tree/7d5e8777ae1d21af99d4f95be10db4870720da91/examples/server>`__
26
+ for more information.
27
+
28
+ If the parameters are not set, the annotator will default to use the parameters provided by
29
+ the model.
30
+
31
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
32
+ object:
33
+
34
+ >>> auto_gguf_model = AutoGGUFModel.pretrained() \\
35
+ ... .setInputCols(["document"]) \\
36
+ ... .setOutputCol("completions")
37
+
38
+ The default model is ``"Phi_4_mini_instruct_Q4_K_M_gguf"``, if no name is provided.
39
+
40
+ AutoGGUFModel is also able to load pretrained models from AutoGGUFVisionModel. Just
41
+ specify the same name for the pretrained method, and it will load the text-part of the
42
+ multimodal model automatically.
43
+
44
+ For extended examples of usage, see the
45
+ `AutoGGUFModelTest <https://github.com/JohnSnowLabs/spark-nlp/tree/master/src/test/scala/com/johnsnowlabs/nlp/annotators/seq2seq/AutoGGUFModelTest.scala>`__
46
+ and the
47
+ `example notebook <https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples/python/llama.cpp/llama.cpp_in_Spark_NLP_AutoGGUFModel.ipynb>`__.
48
+
49
+ For available pretrained models please see the `Models Hub <https://sparknlp.org/models>`__.
50
+
51
+ ====================== ======================
52
+ Input Annotation types Output Annotation type
53
+ ====================== ======================
54
+ ``DOCUMENT`` ``DOCUMENT``
55
+ ====================== ======================
56
+
57
+ Parameters
58
+ ----------
59
+ nThreads
60
+ Set the number of threads to use during generation
61
+ nThreadsDraft
62
+ Set the number of threads to use during draft generation
63
+ nThreadsBatch
64
+ Set the number of threads to use during batch and prompt processing
65
+ nThreadsBatchDraft
66
+ Set the number of threads to use during batch and prompt processing
67
+ nCtx
68
+ Set the size of the prompt context
69
+ nBatch
70
+ Set the logical batch size for prompt processing (must be >=32 to use BLAS)
71
+ nUbatch
72
+ Set the physical batch size for prompt processing (must be >=32 to use BLAS)
73
+ nDraft
74
+ Set the number of tokens to draft for speculative decoding
75
+ nChunks
76
+ Set the maximal number of chunks to process
77
+ nSequences
78
+ Set the number of sequences to decode
79
+ pSplit
80
+ Set the speculative decoding split probability
81
+ nGpuLayers
82
+ Set the number of layers to store in VRAM (-1 - use default)
83
+ nGpuLayersDraft
84
+ Set the number of layers to store in VRAM for the draft model (-1 - use default)
85
+ gpuSplitMode
86
+ Set how to split the model across GPUs
87
+ mainGpu
88
+ Set the main GPU that is used for scratch and small tensors.
89
+ tensorSplit
90
+ Set how split tensors should be distributed across GPUs
91
+ grpAttnN
92
+ Set the group-attention factor
93
+ grpAttnW
94
+ Set the group-attention width
95
+ ropeFreqBase
96
+ Set the RoPE base frequency, used by NTK-aware scaling
97
+ ropeFreqScale
98
+ Set the RoPE frequency scaling factor, expands context by a factor of 1/N
99
+ yarnExtFactor
100
+ Set the YaRN extrapolation mix factor
101
+ yarnAttnFactor
102
+ Set the YaRN scale sqrt(t) or attention magnitude
103
+ yarnBetaFast
104
+ Set the YaRN low correction dim or beta
105
+ yarnBetaSlow
106
+ Set the YaRN high correction dim or alpha
107
+ yarnOrigCtx
108
+ Set the YaRN original context size of model
109
+ defragmentationThreshold
110
+ Set the KV cache defragmentation threshold
111
+ numaStrategy
112
+ Set optimization strategies that help on some NUMA systems (if available)
113
+ ropeScalingType
114
+ Set the RoPE frequency scaling method, defaults to linear unless specified by the model
115
+ poolingType
116
+ Set the pooling type for embeddings, use model default if unspecified
117
+ modelDraft
118
+ Set the draft model for speculative decoding
119
+ modelAlias
120
+ Set a model alias
121
+ lookupCacheStaticFilePath
122
+ Set path to static lookup cache to use for lookup decoding (not updated by generation)
123
+ lookupCacheDynamicFilePath
124
+ Set path to dynamic lookup cache to use for lookup decoding (updated by generation)
125
+ flashAttention
126
+ Whether to enable Flash Attention
127
+ inputPrefixBos
128
+ Whether to add prefix BOS to user inputs, preceding the `--in-prefix` string
129
+ useMmap
130
+ Whether to use memory-map model (faster load but may increase pageouts if not using mlock)
131
+ useMlock
132
+ Whether to force the system to keep model in RAM rather than swapping or compressing
133
+ noKvOffload
134
+ Whether to disable KV offload
135
+ systemPrompt
136
+ Set a system prompt to use
137
+ chatTemplate
138
+ The chat template to use
139
+ inputPrefix
140
+ Set the prompt to start generation with
141
+ inputSuffix
142
+ Set a suffix for infilling
143
+ cachePrompt
144
+ Whether to remember the prompt to avoid reprocessing it
145
+ nPredict
146
+ Set the number of tokens to predict
147
+ topK
148
+ Set top-k sampling
149
+ topP
150
+ Set top-p sampling
151
+ minP
152
+ Set min-p sampling
153
+ tfsZ
154
+ Set tail free sampling, parameter z
155
+ typicalP
156
+ Set locally typical sampling, parameter p
157
+ temperature
158
+ Set the temperature
159
+ dynatempRange
160
+ Set the dynamic temperature range
161
+ dynatempExponent
162
+ Set the dynamic temperature exponent
163
+ repeatLastN
164
+ Set the last n tokens to consider for penalties
165
+ repeatPenalty
166
+ Set the penalty of repeated sequences of tokens
167
+ frequencyPenalty
168
+ Set the repetition alpha frequency penalty
169
+ presencePenalty
170
+ Set the repetition alpha presence penalty
171
+ miroStat
172
+ Set MiroStat sampling strategies.
173
+ mirostatTau
174
+ Set the MiroStat target entropy, parameter tau
175
+ mirostatEta
176
+ Set the MiroStat learning rate, parameter eta
177
+ penalizeNl
178
+ Whether to penalize newline tokens
179
+ nKeep
180
+ Set the number of tokens to keep from the initial prompt
181
+ seed
182
+ Set the RNG seed
183
+ nProbs
184
+ Set the amount top tokens probabilities to output if greater than 0.
185
+ minKeep
186
+ Set the amount of tokens the samplers should return at least (0 = disabled)
187
+ grammar
188
+ Set BNF-like grammar to constrain generations
189
+ penaltyPrompt
190
+ Override which part of the prompt is penalized for repetition.
191
+ ignoreEos
192
+ Set whether to ignore end of stream token and continue generating (implies --logit-bias 2-inf)
193
+ disableTokenIds
194
+ Set the token ids to disable in the completion
195
+ stopStrings
196
+ Set strings upon seeing which token generation is stopped
197
+ samplers
198
+ Set which samplers to use for token generation in the given order
199
+ useChatTemplate
200
+ Set whether or not generate should apply a chat template
201
+
202
+ Notes
203
+ -----
204
+ To use GPU inference with this annotator, make sure to use the Spark NLP GPU package and set
205
+ the number of GPU layers with the `setNGpuLayers` method.
206
+
207
+ When using larger models, we recommend adjusting GPU usage with `setNCtx` and `setNGpuLayers`
208
+ according to your hardware to avoid out-of-memory errors.
209
+
210
+ Examples
211
+ --------
212
+ >>> import sparknlp
213
+ >>> from sparknlp.base import *
214
+ >>> from sparknlp.annotator import *
215
+ >>> from pyspark.ml import Pipeline
216
+ >>> document = DocumentAssembler() \\
217
+ ... .setInputCol("text") \\
218
+ ... .setOutputCol("document")
219
+ >>> autoGGUFModel = AutoGGUFModel.pretrained() \\
220
+ ... .setInputCols(["document"]) \\
221
+ ... .setOutputCol("completions") \\
222
+ ... .setBatchSize(4) \\
223
+ ... .setNPredict(20) \\
224
+ ... .setNGpuLayers(99) \\
225
+ ... .setTemperature(0.4) \\
226
+ ... .setTopK(40) \\
227
+ ... .setTopP(0.9) \\
228
+ ... .setPenalizeNl(True)
229
+ >>> pipeline = Pipeline().setStages([document, autoGGUFModel])
230
+ >>> data = spark.createDataFrame([["Hello, I am a"]]).toDF("text")
231
+ >>> result = pipeline.fit(data).transform(data)
232
+ >>> result.select("completions").show(truncate = False)
233
+ +-----------------------------------------------------------------------------------------------------------------------------------+
234
+ |completions |
235
+ +-----------------------------------------------------------------------------------------------------------------------------------+
236
+ |[{document, 0, 78, new user. I am currently working on a project and I need to create a list of , {prompt -> Hello, I am a}, []}]|
237
+ +-----------------------------------------------------------------------------------------------------------------------------------+
238
+ """
239
+
240
+ name = "AutoGGUFModel"
241
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
242
+ outputAnnotatorType = AnnotatorType.DOCUMENT
243
+
244
+ @keyword_only
245
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.AutoGGUFModel", java_model=None):
246
+ super(AutoGGUFModel, self).__init__(
247
+ classname=classname,
248
+ java_model=java_model
249
+ )
250
+ self._setDefault(
251
+ useChatTemplate=True,
252
+ nCtx=4096,
253
+ nBatch=512,
254
+ nPredict=100,
255
+ nGpuLayers=99,
256
+ systemPrompt="You are a helpful assistant."
257
+ )
258
+
259
+ @staticmethod
260
+ def loadSavedModel(path, spark_session):
261
+ """Loads a locally saved model.
262
+
263
+ Parameters
264
+ ----------
265
+ path : str
266
+ Path to the gguf model
267
+ spark_session : pyspark.sql.SparkSession
268
+ The current SparkSession
269
+
270
+ Returns
271
+ -------
272
+ AutoGGUFModel
273
+ The restored model
274
+ """
275
+ from sparknlp.internal import _AutoGGUFLoader
276
+ jModel = _AutoGGUFLoader(path, spark_session._jsparkSession)._java_obj
277
+ return AutoGGUFModel(java_model=jModel)
278
+
279
+ @staticmethod
280
+ def pretrained(name="Phi_4_mini_instruct_Q4_K_M_gguf", lang="en", remote_loc=None):
281
+ """Downloads and loads a pretrained model.
282
+
283
+ Parameters
284
+ ----------
285
+ name : str, optional
286
+ Name of the pretrained model, by default "Phi_4_mini_instruct_Q4_K_M_gguf"
287
+ lang : str, optional
288
+ Language of the pretrained model, by default "en"
289
+ remote_loc : str, optional
290
+ Optional remote address of the resource, by default None. Will use
291
+ Spark NLPs repositories otherwise.
292
+
293
+ Returns
294
+ -------
295
+ AutoGGUFModel
296
+ The restored model
297
+ """
298
+ from sparknlp.pretrained import ResourceDownloader
299
+ return ResourceDownloader.downloadModel(AutoGGUFModel, name, lang, remote_loc)
300
+
301
+ def close(self):
302
+ """Closes the llama.cpp model backend freeing resources. The model is reloaded when used again.
303
+ """
304
+ self._java_obj.close()
@@ -0,0 +1,334 @@
1
+ # Copyright 2017-2023 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for the AutoGGUFReranker."""
15
+ from typing import List, Dict
16
+
17
+ from sparknlp.common import *
18
+
19
+
20
+ class AutoGGUFReranker(AnnotatorModel, HasBatchedAnnotate, HasLlamaCppProperties):
21
+ """
22
+ Annotator that uses the llama.cpp library to rerank text documents based on their relevance
23
+ to a given query using GGUF-format reranking models.
24
+
25
+ This annotator is specifically designed for text reranking tasks, where multiple documents
26
+ or text passages are ranked according to their relevance to a query. It uses specialized
27
+ reranking models in GGUF format that output relevance scores for each input document.
28
+
29
+ The reranker takes a query (set via :meth:`.setQuery`) and a list of documents, then returns the
30
+ same documents with added metadata containing relevance scores. The documents are processed
31
+ in batches and each receives a ``relevance_score`` in its metadata indicating how relevant
32
+ it is to the provided query.
33
+
34
+ For settable parameters, and their explanations, see the parameters of this class and refer to
35
+ the llama.cpp documentation of
36
+ `server.cpp <https://github.com/ggerganov/llama.cpp/tree/7d5e8777ae1d21af99d4f95be10db4870720da91/examples/server>`__
37
+ for more information.
38
+
39
+ If the parameters are not set, the annotator will default to use the parameters provided by
40
+ the model.
41
+
42
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
43
+ object:
44
+
45
+ >>> reranker = AutoGGUFReranker.pretrained() \\
46
+ ... .setInputCols(["document"]) \\
47
+ ... .setOutputCol("reranked_documents") \\
48
+ ... .setQuery("A man is eating pasta.")
49
+
50
+ The default model is ``"bge_reranker_v2_m3_Q4_K_M"``, if no name is provided.
51
+
52
+ For extended examples of usage, see the
53
+ `AutoGGUFRerankerTest <https://github.com/JohnSnowLabs/spark-nlp/tree/master/src/test/scala/com/johnsnowlabs/nlp/annotators/seq2seq/AutoGGUFRerankerTest.scala>`__
54
+ and the
55
+ `example notebook <https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples/python/llama.cpp/llama.cpp_in_Spark_NLP_AutoGGUFReranker.ipynb>`__.
56
+
57
+ For available pretrained models please see the `Models Hub <https://sparknlp.org/models>`__.
58
+
59
+ ====================== ======================
60
+ Input Annotation types Output Annotation type
61
+ ====================== ======================
62
+ ``DOCUMENT`` ``DOCUMENT``
63
+ ====================== ======================
64
+
65
+ Parameters
66
+ ----------
67
+ query
68
+ The query to be used for reranking. If not set, the input text will be used as the query.
69
+ nThreads
70
+ Set the number of threads to use during generation
71
+ nThreadsDraft
72
+ Set the number of threads to use during draft generation
73
+ nThreadsBatch
74
+ Set the number of threads to use during batch and prompt processing
75
+ nThreadsBatchDraft
76
+ Set the number of threads to use during batch and prompt processing
77
+ nCtx
78
+ Set the size of the prompt context
79
+ nBatch
80
+ Set the logical batch size for prompt processing (must be >=32 to use BLAS)
81
+ nUbatch
82
+ Set the physical batch size for prompt processing (must be >=32 to use BLAS)
83
+ nGpuLayers
84
+ Set the number of layers to store in VRAM (-1 - use default)
85
+ nGpuLayersDraft
86
+ Set the number of layers to store in VRAM for the draft model (-1 - use default)
87
+ gpuSplitMode
88
+ Set how to split the model across GPUs
89
+ mainGpu
90
+ Set the main GPU that is used for scratch and small tensors.
91
+ tensorSplit
92
+ Set how split tensors should be distributed across GPUs
93
+ grpAttnN
94
+ Set the group-attention factor
95
+ grpAttnW
96
+ Set the group-attention width
97
+ ropeFreqBase
98
+ Set the RoPE base frequency, used by NTK-aware scaling
99
+ ropeFreqScale
100
+ Set the RoPE frequency scaling factor, expands context by a factor of 1/N
101
+ yarnExtFactor
102
+ Set the YaRN extrapolation mix factor
103
+ yarnAttnFactor
104
+ Set the YaRN scale sqrt(t) or attention magnitude
105
+ yarnBetaFast
106
+ Set the YaRN low correction dim or beta
107
+ yarnBetaSlow
108
+ Set the YaRN high correction dim or alpha
109
+ yarnOrigCtx
110
+ Set the YaRN original context size of model
111
+ defragmentationThreshold
112
+ Set the KV cache defragmentation threshold
113
+ numaStrategy
114
+ Set optimization strategies that help on some NUMA systems (if available)
115
+ ropeScalingType
116
+ Set the RoPE frequency scaling method, defaults to linear unless specified by the model
117
+ poolingType
118
+ Set the pooling type for embeddings, use model default if unspecified
119
+ modelDraft
120
+ Set the draft model for speculative decoding
121
+ modelAlias
122
+ Set a model alias
123
+ lookupCacheStaticFilePath
124
+ Set path to static lookup cache to use for lookup decoding (not updated by generation)
125
+ lookupCacheDynamicFilePath
126
+ Set path to dynamic lookup cache to use for lookup decoding (updated by generation)
127
+ flashAttention
128
+ Whether to enable Flash Attention
129
+ inputPrefixBos
130
+ Whether to add prefix BOS to user inputs, preceding the `--in-prefix` string
131
+ useMmap
132
+ Whether to use memory-map model (faster load but may increase pageouts if not using mlock)
133
+ useMlock
134
+ Whether to force the system to keep model in RAM rather than swapping or compressing
135
+ noKvOffload
136
+ Whether to disable KV offload
137
+ systemPrompt
138
+ Set a system prompt to use
139
+ chatTemplate
140
+ The chat template to use
141
+ inputPrefix
142
+ Set the prompt to start generation with
143
+ inputSuffix
144
+ Set a suffix for infilling
145
+ cachePrompt
146
+ Whether to remember the prompt to avoid reprocessing it
147
+ nPredict
148
+ Set the number of tokens to predict
149
+ topK
150
+ Set top-k sampling
151
+ topP
152
+ Set top-p sampling
153
+ minP
154
+ Set min-p sampling
155
+ tfsZ
156
+ Set tail free sampling, parameter z
157
+ typicalP
158
+ Set locally typical sampling, parameter p
159
+ temperature
160
+ Set the temperature
161
+ dynatempRange
162
+ Set the dynamic temperature range
163
+ dynatempExponent
164
+ Set the dynamic temperature exponent
165
+ repeatLastN
166
+ Set the last n tokens to consider for penalties
167
+ repeatPenalty
168
+ Set the penalty of repeated sequences of tokens
169
+ frequencyPenalty
170
+ Set the repetition alpha frequency penalty
171
+ presencePenalty
172
+ Set the repetition alpha presence penalty
173
+ miroStat
174
+ Set MiroStat sampling strategies.
175
+ mirostatTau
176
+ Set the MiroStat target entropy, parameter tau
177
+ mirostatEta
178
+ Set the MiroStat learning rate, parameter eta
179
+ penalizeNl
180
+ Whether to penalize newline tokens
181
+ nKeep
182
+ Set the number of tokens to keep from the initial prompt
183
+ seed
184
+ Set the RNG seed
185
+ nProbs
186
+ Set the amount top tokens probabilities to output if greater than 0.
187
+ minKeep
188
+ Set the amount of tokens the samplers should return at least (0 = disabled)
189
+ grammar
190
+ Set BNF-like grammar to constrain generations
191
+ penaltyPrompt
192
+ Override which part of the prompt is penalized for repetition.
193
+ ignoreEos
194
+ Set whether to ignore end of stream token and continue generating (implies --logit-bias 2-inf)
195
+ disableTokenIds
196
+ Set the token ids to disable in the completion
197
+ stopStrings
198
+ Set strings upon seeing which token generation is stopped
199
+ samplers
200
+ Set which samplers to use for token generation in the given order
201
+ useChatTemplate
202
+ Set whether or not generate should apply a chat template
203
+
204
+ Notes
205
+ -----
206
+ This annotator is designed for reranking tasks and requires setting a query using ``setQuery``.
207
+ The query represents the search intent against which documents will be ranked. Each input
208
+ document receives a relevance score in the output metadata.
209
+
210
+ To use GPU inference with this annotator, make sure to use the Spark NLP GPU package and set
211
+ the number of GPU layers with the `setNGpuLayers` method.
212
+
213
+ When using larger models, we recommend adjusting GPU usage with `setNCtx` and `setNGpuLayers`
214
+ according to your hardware to avoid out-of-memory errors.
215
+
216
+ Examples
217
+ --------
218
+ >>> import sparknlp
219
+ >>> from sparknlp.base import *
220
+ >>> from sparknlp.annotator import *
221
+ >>> from pyspark.ml import Pipeline
222
+ >>> document = DocumentAssembler() \\
223
+ ... .setInputCol("text") \\
224
+ ... .setOutputCol("document")
225
+ >>> reranker = AutoGGUFReranker.pretrained() \\
226
+ ... .setInputCols(["document"]) \\
227
+ ... .setOutputCol("reranked_documents") \\
228
+ ... .setBatchSize(4) \\
229
+ ... .setQuery("A man is eating pasta.")
230
+ >>> pipeline = Pipeline().setStages([document, reranker])
231
+ >>> data = spark.createDataFrame([
232
+ ... ["A man is eating food."],
233
+ ... ["A man is eating a piece of bread."],
234
+ ... ["The girl is carrying a baby."],
235
+ ... ["A man is riding a horse."]
236
+ ... ]).toDF("text")
237
+ >>> result = pipeline.fit(data).transform(data)
238
+ >>> result.select("reranked_documents").show(truncate = False)
239
+ # Each document will have a relevance_score in metadata showing how relevant it is to the query
240
+ """
241
+
242
+ name = "AutoGGUFReranker"
243
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
244
+ outputAnnotatorType = AnnotatorType.DOCUMENT
245
+
246
+ query = Param(Params._dummy(), "query",
247
+ "The query to be used for reranking. If not set, the input text will be used as the query.",
248
+ typeConverter=TypeConverters.toString)
249
+ @keyword_only
250
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.AutoGGUFReranker", java_model=None):
251
+ super(AutoGGUFReranker, self).__init__(
252
+ classname=classname,
253
+ java_model=java_model
254
+ )
255
+ self._setDefault(
256
+ useChatTemplate=True,
257
+ nCtx=4096,
258
+ nBatch=512,
259
+ nGpuLayers=99,
260
+ systemPrompt="You are a helpful assistant.",
261
+ query=""
262
+ )
263
+
264
+ def setQuery(self, value: str):
265
+ """Set the query to be used for reranking.
266
+
267
+ Parameters
268
+ ----------
269
+ value : str
270
+ The query text that documents will be ranked against.
271
+
272
+ Returns
273
+ -------
274
+ AutoGGUFReranker
275
+ This instance for method chaining.
276
+ """
277
+ return self._set(query=value)
278
+
279
+ def getQuery(self):
280
+ """Get the current query used for reranking.
281
+
282
+ Returns
283
+ -------
284
+ str
285
+ The current query string.
286
+ """
287
+ return self._call_java("getQuery")
288
+
289
+ @staticmethod
290
+ def loadSavedModel(folder, spark_session):
291
+ """Loads a locally saved model.
292
+
293
+ Parameters
294
+ ----------
295
+ folder : str
296
+ Folder of the saved model
297
+ spark_session : pyspark.sql.SparkSession
298
+ The current SparkSession
299
+
300
+ Returns
301
+ -------
302
+ AutoGGUFReranker
303
+ The restored model
304
+ """
305
+ from sparknlp.internal import _AutoGGUFRerankerLoader
306
+ jModel = _AutoGGUFRerankerLoader(folder, spark_session._jsparkSession)._java_obj
307
+ return AutoGGUFReranker(java_model=jModel)
308
+
309
+ @staticmethod
310
+ def pretrained(name="bge_reranker_v2_m3_Q4_K_M", lang="en", remote_loc=None):
311
+ """Downloads and loads a pretrained model.
312
+
313
+ Parameters
314
+ ----------
315
+ name : str, optional
316
+ Name of the pretrained model, by default "bge_reranker_v2_m3_Q4_K_M"
317
+ lang : str, optional
318
+ Language of the pretrained model, by default "en"
319
+ remote_loc : str, optional
320
+ Optional remote address of the resource, by default None. Will use
321
+ Spark NLPs repositories otherwise.
322
+
323
+ Returns
324
+ -------
325
+ AutoGGUFReranker
326
+ The restored model
327
+ """
328
+ from sparknlp.pretrained import ResourceDownloader
329
+ return ResourceDownloader.downloadModel(AutoGGUFReranker, name, lang, remote_loc)
330
+
331
+ def close(self):
332
+ """Closes the llama.cpp model backend freeing resources. The model is reloaded when used again.
333
+ """
334
+ self._java_obj.close()