spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +81 -28
- sparknlp/annotation.py +3 -2
- sparknlp/annotator/__init__.py +6 -0
- sparknlp/annotator/audio/__init__.py +2 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/{base → annotator}/chunk2_doc.py +4 -7
- sparknlp/annotator/chunker.py +1 -2
- sparknlp/annotator/classifier_dl/__init__.py +17 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/spanbert_coref.py +4 -18
- sparknlp/annotator/cv/__init__.py +15 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/dependency_parser.py +2 -3
- sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +37 -1
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +11 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
- sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
- sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
- sparknlp/annotator/embeddings/doc2vec.py +7 -1
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
- sparknlp/annotator/embeddings/word2vec.py +7 -1
- sparknlp/annotator/embeddings/word_embeddings.py +4 -5
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
- sparknlp/annotator/er/entity_ruler.py +37 -23
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
- sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
- sparknlp/annotator/lemmatizer.py +3 -4
- sparknlp/annotator/matcher/date_matcher.py +35 -3
- sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
- sparknlp/annotator/matcher/regex_matcher.py +3 -3
- sparknlp/annotator/matcher/text_matcher.py +2 -3
- sparknlp/annotator/n_gram_generator.py +1 -2
- sparknlp/annotator/ner/__init__.py +3 -1
- sparknlp/annotator/ner/ner_converter.py +18 -0
- sparknlp/annotator/ner/ner_crf.py +4 -5
- sparknlp/annotator/ner/ner_dl.py +10 -5
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +2 -2
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +2 -2
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/pos/perceptron.py +6 -7
- sparknlp/annotator/sentence/sentence_detector.py +2 -2
- sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
- sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
- sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
- sparknlp/annotator/seq2seq/__init__.py +17 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
- sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
- sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
- sparknlp/annotator/stemmer.py +2 -3
- sparknlp/annotator/stop_words_cleaner.py +3 -4
- sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
- sparknlp/annotator/token/__init__.py +0 -1
- sparknlp/annotator/token/recursive_tokenizer.py +2 -3
- sparknlp/annotator/token/tokenizer.py +2 -3
- sparknlp/annotator/ws/word_segmenter.py +35 -10
- sparknlp/base/__init__.py +2 -3
- sparknlp/base/doc2_chunk.py +0 -3
- sparknlp/base/document_assembler.py +5 -5
- sparknlp/base/embeddings_finisher.py +14 -2
- sparknlp/base/finisher.py +15 -4
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/image_assembler.py +69 -0
- sparknlp/base/light_pipeline.py +53 -21
- sparknlp/base/multi_document_assembler.py +9 -13
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/token_assembler.py +1 -2
- sparknlp/common/__init__.py +2 -0
- sparknlp/common/annotator_type.py +1 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +914 -9
- sparknlp/internal/__init__.py +841 -116
- sparknlp/internal/annotator_java_ml.py +1 -1
- sparknlp/internal/annotator_transformer.py +3 -0
- sparknlp/logging/comet.py +2 -2
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/pretrained_pipeline.py +1 -1
- sparknlp/pretrained/resource_downloader.py +126 -2
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +1 -0
- sparknlp/training/conll.py +8 -2
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/util.py +26 -0
- spark_nlp-4.2.6.dist-info/METADATA +0 -1256
- spark_nlp-4.2.6.dist-info/RECORD +0 -196
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
- /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
|
@@ -0,0 +1,202 @@
|
|
|
1
|
+
# Copyright 2017-2024 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for CamemBertForSequenceClassification."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class CamemBertForZeroShotClassification(AnnotatorModel,
|
|
20
|
+
HasCaseSensitiveProperties,
|
|
21
|
+
HasBatchedAnnotate,
|
|
22
|
+
HasClassifierActivationProperties,
|
|
23
|
+
HasCandidateLabelsProperties,
|
|
24
|
+
HasEngine,
|
|
25
|
+
HasMaxSentenceLengthLimit):
|
|
26
|
+
"""CamemBertForZeroShotClassification using a `ModelForSequenceClassification` trained on NLI (natural language
|
|
27
|
+
inference) tasks. Equivalent of `DeBertaForSequenceClassification` models, but these models don't require a hardcoded
|
|
28
|
+
number of potential classes, they can be chosen at runtime. It usually means it's slower but it is much more
|
|
29
|
+
flexible.
|
|
30
|
+
Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis
|
|
31
|
+
pair and passed to the pretrained model.
|
|
32
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
33
|
+
object:
|
|
34
|
+
>>> sequenceClassifier = CamemBertForZeroShotClassification.pretrained() \\
|
|
35
|
+
... .setInputCols(["token", "document"]) \\
|
|
36
|
+
... .setOutputCol("label")
|
|
37
|
+
The default model is ``"camembert_zero_shot_classifier_xnli_onnx"``, if no name is
|
|
38
|
+
provided.
|
|
39
|
+
For available pretrained models please see the `Models Hub
|
|
40
|
+
<https://sparknlp.orgtask=Text+Classification>`__.
|
|
41
|
+
To see which models are compatible and how to import them see
|
|
42
|
+
`Import Transformers into Spark NLP 🚀
|
|
43
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT, TOKEN`` ``CATEGORY``
|
|
48
|
+
====================== ======================
|
|
49
|
+
Parameters
|
|
50
|
+
----------
|
|
51
|
+
batchSize
|
|
52
|
+
Batch size. Large values allows faster processing but requires more
|
|
53
|
+
memory, by default 8
|
|
54
|
+
caseSensitive
|
|
55
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
56
|
+
True
|
|
57
|
+
configProtoBytes
|
|
58
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
59
|
+
maxSentenceLength
|
|
60
|
+
Max sentence length to process, by default 128
|
|
61
|
+
coalesceSentences
|
|
62
|
+
Instead of 1 class per sentence (if inputCols is `sentence`) output 1
|
|
63
|
+
class per document by averaging probabilities in all sentences, by
|
|
64
|
+
default False
|
|
65
|
+
activation
|
|
66
|
+
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
67
|
+
`"softmax"`.
|
|
68
|
+
Examples
|
|
69
|
+
--------
|
|
70
|
+
>>> import sparknlp
|
|
71
|
+
>>> from sparknlp.base import *
|
|
72
|
+
>>> from sparknlp.annotator import *
|
|
73
|
+
>>> from pyspark.ml import Pipeline
|
|
74
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
75
|
+
... .setInputCol("text") \\
|
|
76
|
+
... .setOutputCol("document")
|
|
77
|
+
>>> tokenizer = Tokenizer() \\
|
|
78
|
+
... .setInputCols(["document"]) \\
|
|
79
|
+
... .setOutputCol("token")
|
|
80
|
+
>>> sequenceClassifier = CamemBertForZeroShotClassification.pretrained() \\
|
|
81
|
+
... .setInputCols(["token", "document"]) \\
|
|
82
|
+
... .setOutputCol("multi_class") \\
|
|
83
|
+
... .setCaseSensitive(True)
|
|
84
|
+
... .setCandidateLabels(["sport", "politique", "science"])
|
|
85
|
+
>>> pipeline = Pipeline().setStages([
|
|
86
|
+
... documentAssembler,
|
|
87
|
+
... tokenizer,
|
|
88
|
+
... sequenceClassifier
|
|
89
|
+
... ])
|
|
90
|
+
>>> data = spark.createDataFrame([["L'équipe de France joue aujourd'hui au Parc des Princes"]]).toDF("text")
|
|
91
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
92
|
+
>>> result.select("class.result").show(truncate=False)
|
|
93
|
+
+------+
|
|
94
|
+
|result|
|
|
95
|
+
+------+
|
|
96
|
+
|[sport]|
|
|
97
|
+
+------+
|
|
98
|
+
"""
|
|
99
|
+
name = "CamemBertForZeroShotClassification"
|
|
100
|
+
|
|
101
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
102
|
+
|
|
103
|
+
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
104
|
+
|
|
105
|
+
configProtoBytes = Param(Params._dummy(),
|
|
106
|
+
"configProtoBytes",
|
|
107
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
108
|
+
TypeConverters.toListInt)
|
|
109
|
+
|
|
110
|
+
coalesceSentences = Param(Params._dummy(), "coalesceSentences",
|
|
111
|
+
"Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.",
|
|
112
|
+
TypeConverters.toBoolean)
|
|
113
|
+
|
|
114
|
+
def getClasses(self):
|
|
115
|
+
"""
|
|
116
|
+
Returns labels used to train this model
|
|
117
|
+
"""
|
|
118
|
+
return self._call_java("getClasses")
|
|
119
|
+
|
|
120
|
+
def setConfigProtoBytes(self, b):
|
|
121
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
122
|
+
|
|
123
|
+
Parameters
|
|
124
|
+
----------
|
|
125
|
+
b : List[int]
|
|
126
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
127
|
+
"""
|
|
128
|
+
return self._set(configProtoBytes=b)
|
|
129
|
+
|
|
130
|
+
def setCoalesceSentences(self, value):
|
|
131
|
+
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1
|
|
132
|
+
class per document by averaging probabilities in all sentences, by default True.
|
|
133
|
+
|
|
134
|
+
Due to max sequence length limit in almost all transformer models such as BERT
|
|
135
|
+
(512 tokens), this parameter helps feeding all the sentences into the model and
|
|
136
|
+
averaging all the probabilities for the entire document instead of probabilities
|
|
137
|
+
per sentence.
|
|
138
|
+
|
|
139
|
+
Parameters
|
|
140
|
+
----------
|
|
141
|
+
value : bool
|
|
142
|
+
If the output of all sentences will be averaged to one output
|
|
143
|
+
"""
|
|
144
|
+
return self._set(coalesceSentences=value)
|
|
145
|
+
|
|
146
|
+
@keyword_only
|
|
147
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.CamemBertForZeroShotClassification",
|
|
148
|
+
java_model=None):
|
|
149
|
+
super(CamemBertForZeroShotClassification, self).__init__(
|
|
150
|
+
classname=classname,
|
|
151
|
+
java_model=java_model
|
|
152
|
+
)
|
|
153
|
+
self._setDefault(
|
|
154
|
+
batchSize=8,
|
|
155
|
+
maxSentenceLength=128,
|
|
156
|
+
caseSensitive=True,
|
|
157
|
+
coalesceSentences=False,
|
|
158
|
+
activation="softmax"
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
@staticmethod
|
|
162
|
+
def loadSavedModel(folder, spark_session):
|
|
163
|
+
"""Loads a locally saved model.
|
|
164
|
+
|
|
165
|
+
Parameters
|
|
166
|
+
----------
|
|
167
|
+
folder : str
|
|
168
|
+
Folder of the saved model
|
|
169
|
+
spark_session : pyspark.sql.SparkSession
|
|
170
|
+
The current SparkSession
|
|
171
|
+
|
|
172
|
+
Returns
|
|
173
|
+
-------
|
|
174
|
+
CamemBertForZeroShotClassification
|
|
175
|
+
The restored model
|
|
176
|
+
"""
|
|
177
|
+
from sparknlp.internal import _CamemBertForZeroShotClassificationLoader
|
|
178
|
+
jModel = _CamemBertForZeroShotClassificationLoader(folder, spark_session._jsparkSession)._java_obj
|
|
179
|
+
return CamemBertForZeroShotClassification(java_model=jModel)
|
|
180
|
+
|
|
181
|
+
@staticmethod
|
|
182
|
+
def pretrained(name="camembert_zero_shot_classifier_xnli_onnx", lang="fr", remote_loc=None):
|
|
183
|
+
"""Downloads and loads a pretrained model.
|
|
184
|
+
|
|
185
|
+
Parameters
|
|
186
|
+
----------
|
|
187
|
+
name : str, optional
|
|
188
|
+
Name of the pretrained model, by default
|
|
189
|
+
"camembert_zero_shot_classifier_xnli_onnx"
|
|
190
|
+
lang : str, optional
|
|
191
|
+
Language of the pretrained model, by default "fr"
|
|
192
|
+
remote_loc : str, optional
|
|
193
|
+
Optional remote address of the resource, by default None. Will use
|
|
194
|
+
Spark NLPs repositories otherwise.
|
|
195
|
+
|
|
196
|
+
Returns
|
|
197
|
+
-------
|
|
198
|
+
CamemBertForSequenceClassification
|
|
199
|
+
The restored model
|
|
200
|
+
"""
|
|
201
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
202
|
+
return ResourceDownloader.downloadModel(CamemBertForZeroShotClassification, name, lang, remote_loc)
|
|
@@ -54,8 +54,8 @@ class ClassifierDLApproach(AnnotatorApproach, EvaluationDLParams, ClassifierEnco
|
|
|
54
54
|
... .setLabelColumn("label") \\
|
|
55
55
|
... .setTestDataset("test_data")
|
|
56
56
|
|
|
57
|
-
For extended examples of usage, see the
|
|
58
|
-
`
|
|
57
|
+
For extended examples of usage, see the Examples
|
|
58
|
+
`Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/ClassifierDL_Train_multi_class_news_category_classifier.ipynb>`__.
|
|
59
59
|
|
|
60
60
|
======================= ======================
|
|
61
61
|
Input Annotation types Output Annotation type
|
|
@@ -203,10 +203,10 @@ class ClassifierDLModel(AnnotatorModel, HasStorageRef, HasEngine):
|
|
|
203
203
|
dataset.
|
|
204
204
|
|
|
205
205
|
For available pretrained models please see the
|
|
206
|
-
`Models Hub <https://
|
|
206
|
+
`Models Hub <https://sparknlp.org/models?task=Text+Classification>`__.
|
|
207
207
|
|
|
208
208
|
For extended examples of usage, see the
|
|
209
|
-
`
|
|
209
|
+
`Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/ClassifierDL_Train_multi_class_news_category_classifier.ipynb>`__.
|
|
210
210
|
|
|
211
211
|
======================= ======================
|
|
212
212
|
Input Annotation types Output Annotation type
|
|
@@ -18,7 +18,8 @@ from sparknlp.common import *
|
|
|
18
18
|
class DeBertaForQuestionAnswering(AnnotatorModel,
|
|
19
19
|
HasCaseSensitiveProperties,
|
|
20
20
|
HasBatchedAnnotate,
|
|
21
|
-
HasEngine
|
|
21
|
+
HasEngine,
|
|
22
|
+
HasMaxSentenceLengthLimit):
|
|
22
23
|
"""DeBertaForQuestionAnswering can load DeBERTa Models with a span classification head on top for extractive
|
|
23
24
|
question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start
|
|
24
25
|
logits and span end logits).
|
|
@@ -34,7 +35,7 @@ class DeBertaForQuestionAnswering(AnnotatorModel,
|
|
|
34
35
|
provided.
|
|
35
36
|
|
|
36
37
|
For available pretrained models please see the `Models Hub
|
|
37
|
-
<https://
|
|
38
|
+
<https://sparknlp.org/models?task=Question+Answering>`__.
|
|
38
39
|
|
|
39
40
|
To see which models are compatible and how to import them see
|
|
40
41
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -91,11 +92,6 @@ class DeBertaForQuestionAnswering(AnnotatorModel,
|
|
|
91
92
|
|
|
92
93
|
outputAnnotatorType = AnnotatorType.CHUNK
|
|
93
94
|
|
|
94
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
95
|
-
"maxSentenceLength",
|
|
96
|
-
"Max sentence length to process",
|
|
97
|
-
typeConverter=TypeConverters.toInt)
|
|
98
|
-
|
|
99
95
|
configProtoBytes = Param(Params._dummy(),
|
|
100
96
|
"configProtoBytes",
|
|
101
97
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -115,16 +111,6 @@ class DeBertaForQuestionAnswering(AnnotatorModel,
|
|
|
115
111
|
"""
|
|
116
112
|
return self._set(configProtoBytes=b)
|
|
117
113
|
|
|
118
|
-
def setMaxSentenceLength(self, value):
|
|
119
|
-
"""Sets max sentence length to process, by default 128.
|
|
120
|
-
|
|
121
|
-
Parameters
|
|
122
|
-
----------
|
|
123
|
-
value : int
|
|
124
|
-
Max sentence length to process
|
|
125
|
-
"""
|
|
126
|
-
return self._set(maxSentenceLength=value)
|
|
127
|
-
|
|
128
114
|
@keyword_only
|
|
129
115
|
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.DeBertaForQuestionAnswering",
|
|
130
116
|
java_model=None):
|
|
@@ -19,7 +19,8 @@ class DeBertaForSequenceClassification(AnnotatorModel,
|
|
|
19
19
|
HasCaseSensitiveProperties,
|
|
20
20
|
HasBatchedAnnotate,
|
|
21
21
|
HasClassifierActivationProperties,
|
|
22
|
-
HasEngine
|
|
22
|
+
HasEngine,
|
|
23
|
+
HasMaxSentenceLengthLimit):
|
|
23
24
|
"""DeBertaForSequenceClassification can load DeBERTa v2 & v3 Models with sequence classification/regression head on
|
|
24
25
|
top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.
|
|
25
26
|
|
|
@@ -34,7 +35,7 @@ class DeBertaForSequenceClassification(AnnotatorModel,
|
|
|
34
35
|
provided.
|
|
35
36
|
|
|
36
37
|
For available pretrained models please see the `Models Hub
|
|
37
|
-
<https://
|
|
38
|
+
<https://sparknlp.org/models?task=Text+Classification>`__.
|
|
38
39
|
|
|
39
40
|
To see which models are compatible and how to import them see
|
|
40
41
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -60,7 +61,7 @@ class DeBertaForSequenceClassification(AnnotatorModel,
|
|
|
60
61
|
Max sentence length to process, by default 128
|
|
61
62
|
coalesceSentences
|
|
62
63
|
Instead of 1 class per sentence (if inputCols is `sentence`) output
|
|
63
|
-
1 class per document by averaging probabilities in all sentences, by
|
|
64
|
+
1 class per document by averaging probabilities in all sentences, by
|
|
64
65
|
default False.
|
|
65
66
|
|
|
66
67
|
Examples
|
|
@@ -100,11 +101,6 @@ class DeBertaForSequenceClassification(AnnotatorModel,
|
|
|
100
101
|
|
|
101
102
|
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
102
103
|
|
|
103
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
104
|
-
"maxSentenceLength",
|
|
105
|
-
"Max sentence length to process",
|
|
106
|
-
typeConverter=TypeConverters.toInt)
|
|
107
|
-
|
|
108
104
|
configProtoBytes = Param(Params._dummy(),
|
|
109
105
|
"configProtoBytes",
|
|
110
106
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -130,16 +126,6 @@ class DeBertaForSequenceClassification(AnnotatorModel,
|
|
|
130
126
|
"""
|
|
131
127
|
return self._set(configProtoBytes=b)
|
|
132
128
|
|
|
133
|
-
def setMaxSentenceLength(self, value):
|
|
134
|
-
"""Sets max sentence length to process, by default 128.
|
|
135
|
-
|
|
136
|
-
Parameters
|
|
137
|
-
----------
|
|
138
|
-
value : int
|
|
139
|
-
Max sentence length to process
|
|
140
|
-
"""
|
|
141
|
-
return self._set(maxSentenceLength=value)
|
|
142
|
-
|
|
143
129
|
def setCoalesceSentences(self, value):
|
|
144
130
|
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging
|
|
145
131
|
probabilities in all sentences. Due to max sequence length limit in almost all transformer models such as
|
|
@@ -210,4 +196,3 @@ class DeBertaForSequenceClassification(AnnotatorModel,
|
|
|
210
196
|
"""
|
|
211
197
|
from sparknlp.pretrained import ResourceDownloader
|
|
212
198
|
return ResourceDownloader.downloadModel(DeBertaForSequenceClassification, name, lang, remote_loc)
|
|
213
|
-
|
|
@@ -19,7 +19,8 @@ from sparknlp.common import *
|
|
|
19
19
|
class DeBertaForTokenClassification(AnnotatorModel,
|
|
20
20
|
HasCaseSensitiveProperties,
|
|
21
21
|
HasBatchedAnnotate,
|
|
22
|
-
HasEngine
|
|
22
|
+
HasEngine,
|
|
23
|
+
HasMaxSentenceLengthLimit):
|
|
23
24
|
"""DeBertaForTokenClassification can load DeBERTa v2&v3 Models with a token
|
|
24
25
|
classification head on top (a linear layer on top of the hidden-states
|
|
25
26
|
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
|
@@ -35,7 +36,7 @@ class DeBertaForTokenClassification(AnnotatorModel,
|
|
|
35
36
|
provided.
|
|
36
37
|
|
|
37
38
|
For available pretrained models please see the `Models Hub
|
|
38
|
-
<https://
|
|
39
|
+
<https://sparknlp.org/models?task=Named+Entity+Recognition>`__.
|
|
39
40
|
|
|
40
41
|
To see which models are compatible and how to import them see
|
|
41
42
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -85,11 +86,9 @@ class DeBertaForTokenClassification(AnnotatorModel,
|
|
|
85
86
|
>>> result = pipeline.fit(data).transform(data)
|
|
86
87
|
>>> result.select("label.result").show(truncate=False)
|
|
87
88
|
+------------------------------------------------------------------------------------+
|
|
88
|
-
|result
|
|
89
|
-
|
|
|
89
|
+
|result |
|
|
90
90
|
+------------------------------------------------------------------------------------+
|
|
91
|
-
|[B-PER, I-PER, O, O, O, B-LOC, O, O, O, B-LOC, O, O, O, O, B-PER, O, O, O,
|
|
92
|
-
O, B-LOC]|
|
|
91
|
+
|[B-PER, I-PER, O, O, O, B-LOC, O, O, O, B-LOC, O, O, O, O, B-PER, O, O, O, O, B-LOC]|
|
|
93
92
|
+------------------------------------------------------------------------------------+
|
|
94
93
|
"""
|
|
95
94
|
name = "DeBertaForTokenClassification"
|
|
@@ -98,11 +97,6 @@ class DeBertaForTokenClassification(AnnotatorModel,
|
|
|
98
97
|
|
|
99
98
|
outputAnnotatorType = AnnotatorType.NAMED_ENTITY
|
|
100
99
|
|
|
101
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
102
|
-
"maxSentenceLength",
|
|
103
|
-
"Max sentence length to process",
|
|
104
|
-
typeConverter=TypeConverters.toInt)
|
|
105
|
-
|
|
106
100
|
configProtoBytes = Param(Params._dummy(),
|
|
107
101
|
"configProtoBytes",
|
|
108
102
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -124,16 +118,6 @@ class DeBertaForTokenClassification(AnnotatorModel,
|
|
|
124
118
|
"""
|
|
125
119
|
return self._set(configProtoBytes=b)
|
|
126
120
|
|
|
127
|
-
def setMaxSentenceLength(self, value):
|
|
128
|
-
"""Sets max sentence length to process, by default 128.
|
|
129
|
-
|
|
130
|
-
Parameters
|
|
131
|
-
----------
|
|
132
|
-
value : int
|
|
133
|
-
Max sentence length to process
|
|
134
|
-
"""
|
|
135
|
-
return self._set(maxSentenceLength=value)
|
|
136
|
-
|
|
137
121
|
@keyword_only
|
|
138
122
|
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.DeBertaForTokenClassification",
|
|
139
123
|
java_model=None):
|
|
@@ -0,0 +1,193 @@
|
|
|
1
|
+
# Copyright 2017-2023 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for DeBertaForZeroShotClassification."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class DeBertaForZeroShotClassification(AnnotatorModel,
|
|
20
|
+
HasCaseSensitiveProperties,
|
|
21
|
+
HasBatchedAnnotate,
|
|
22
|
+
HasClassifierActivationProperties,
|
|
23
|
+
HasCandidateLabelsProperties,
|
|
24
|
+
HasEngine,
|
|
25
|
+
HasMaxSentenceLengthLimit):
|
|
26
|
+
"""DeBertaForZeroShotClassification using a `ModelForSequenceClassification` trained on NLI (natural language
|
|
27
|
+
inference) tasks. Equivalent of `DeBertaForSequenceClassification` models, but these models don't require a hardcoded
|
|
28
|
+
number of potential classes, they can be chosen at runtime. It usually means it's slower but it is much more
|
|
29
|
+
flexible.
|
|
30
|
+
Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis
|
|
31
|
+
pair and passed to the pretrained model.
|
|
32
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
33
|
+
object:
|
|
34
|
+
>>> sequenceClassifier = DeBertaForZeroShotClassification.pretrained() \\
|
|
35
|
+
... .setInputCols(["token", "document"]) \\
|
|
36
|
+
... .setOutputCol("label")
|
|
37
|
+
The default model is ``"deberta_base_zero_shot_classifier_mnli_anli_v3"``, if no name is
|
|
38
|
+
provided.
|
|
39
|
+
For available pretrained models please see the `Models Hub
|
|
40
|
+
<https://sparknlp.orgtask=Text+Classification>`__.
|
|
41
|
+
To see which models are compatible and how to import them see
|
|
42
|
+
`Import Transformers into Spark NLP 🚀
|
|
43
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT, TOKEN`` ``CATEGORY``
|
|
48
|
+
====================== ======================
|
|
49
|
+
Parameters
|
|
50
|
+
----------
|
|
51
|
+
batchSize
|
|
52
|
+
Batch size. Large values allows faster processing but requires more
|
|
53
|
+
memory, by default 8
|
|
54
|
+
caseSensitive
|
|
55
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
56
|
+
True
|
|
57
|
+
configProtoBytes
|
|
58
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
59
|
+
maxSentenceLength
|
|
60
|
+
Max sentence length to process, by default 128
|
|
61
|
+
coalesceSentences
|
|
62
|
+
Instead of 1 class per sentence (if inputCols is `sentence`) output 1
|
|
63
|
+
class per document by averaging probabilities in all sentences, by
|
|
64
|
+
default False
|
|
65
|
+
activation
|
|
66
|
+
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
67
|
+
`"softmax"`.
|
|
68
|
+
Examples
|
|
69
|
+
--------
|
|
70
|
+
>>> import sparknlp
|
|
71
|
+
>>> from sparknlp.base import *
|
|
72
|
+
>>> from sparknlp.annotator import *
|
|
73
|
+
>>> from pyspark.ml import Pipeline
|
|
74
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
75
|
+
... .setInputCol("text") \\
|
|
76
|
+
... .setOutputCol("document")
|
|
77
|
+
>>> tokenizer = Tokenizer() \\
|
|
78
|
+
... .setInputCols(["document"]) \\
|
|
79
|
+
... .setOutputCol("token")
|
|
80
|
+
>>> sequenceClassifier = DeBertaForZeroShotClassification.pretrained() \\
|
|
81
|
+
... .setInputCols(["token", "document"]) \\
|
|
82
|
+
... .setOutputCol("label") \\
|
|
83
|
+
... .setCaseSensitive(True)
|
|
84
|
+
>>> pipeline = Pipeline().setStages([
|
|
85
|
+
... documentAssembler,
|
|
86
|
+
... tokenizer,
|
|
87
|
+
... sequenceClassifier
|
|
88
|
+
... ])
|
|
89
|
+
>>> data = spark.createDataFrame([["I loved this movie when I was a child.", "It was pretty boring."]]).toDF("text")
|
|
90
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
91
|
+
>>> result.select("label.result").show(truncate=False)
|
|
92
|
+
+------+
|
|
93
|
+
|result|
|
|
94
|
+
+------+
|
|
95
|
+
|[pos] |
|
|
96
|
+
|[neg] |
|
|
97
|
+
+------+
|
|
98
|
+
"""
|
|
99
|
+
name = "DeBertaForZeroShotClassification"
|
|
100
|
+
|
|
101
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
102
|
+
|
|
103
|
+
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
104
|
+
|
|
105
|
+
configProtoBytes = Param(Params._dummy(),
|
|
106
|
+
"configProtoBytes",
|
|
107
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
108
|
+
TypeConverters.toListInt)
|
|
109
|
+
|
|
110
|
+
coalesceSentences = Param(Params._dummy(), "coalesceSentences",
|
|
111
|
+
"Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.",
|
|
112
|
+
TypeConverters.toBoolean)
|
|
113
|
+
|
|
114
|
+
def getClasses(self):
|
|
115
|
+
"""
|
|
116
|
+
Returns labels used to train this model
|
|
117
|
+
"""
|
|
118
|
+
return self._call_java("getClasses")
|
|
119
|
+
|
|
120
|
+
def setConfigProtoBytes(self, b):
|
|
121
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
122
|
+
Parameters
|
|
123
|
+
----------
|
|
124
|
+
b : List[int]
|
|
125
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
126
|
+
"""
|
|
127
|
+
return self._set(configProtoBytes=b)
|
|
128
|
+
|
|
129
|
+
def setCoalesceSentences(self, value):
|
|
130
|
+
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging
|
|
131
|
+
probabilities in all sentences. Due to max sequence length limit in almost all transformer models such as DeBerta
|
|
132
|
+
(512 tokens), this parameter helps to feed all the sentences into the model and averaging all the probabilities
|
|
133
|
+
for the entire document instead of probabilities per sentence. (Default: true)
|
|
134
|
+
Parameters
|
|
135
|
+
----------
|
|
136
|
+
value : bool
|
|
137
|
+
If the output of all sentences will be averaged to one output
|
|
138
|
+
"""
|
|
139
|
+
return self._set(coalesceSentences=value)
|
|
140
|
+
|
|
141
|
+
@keyword_only
|
|
142
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.DeBertaForZeroShotClassification",
|
|
143
|
+
java_model=None):
|
|
144
|
+
super(DeBertaForZeroShotClassification, self).__init__(
|
|
145
|
+
classname=classname,
|
|
146
|
+
java_model=java_model
|
|
147
|
+
)
|
|
148
|
+
self._setDefault(
|
|
149
|
+
batchSize=8,
|
|
150
|
+
maxSentenceLength=128,
|
|
151
|
+
caseSensitive=True,
|
|
152
|
+
coalesceSentences=False,
|
|
153
|
+
activation="softmax"
|
|
154
|
+
)
|
|
155
|
+
|
|
156
|
+
@staticmethod
|
|
157
|
+
def loadSavedModel(folder, spark_session):
|
|
158
|
+
"""Loads a locally saved model.
|
|
159
|
+
Parameters
|
|
160
|
+
----------
|
|
161
|
+
folder : str
|
|
162
|
+
Folder of the saved model
|
|
163
|
+
spark_session : pyspark.sql.SparkSession
|
|
164
|
+
The current SparkSession
|
|
165
|
+
Returns
|
|
166
|
+
-------
|
|
167
|
+
DeBertaForZeroShotClassification
|
|
168
|
+
The restored model
|
|
169
|
+
"""
|
|
170
|
+
from sparknlp.internal import _DeBertaForZeroShotClassification
|
|
171
|
+
jModel = _DeBertaForZeroShotClassification(folder, spark_session._jsparkSession)._java_obj
|
|
172
|
+
return DeBertaForZeroShotClassification(java_model=jModel)
|
|
173
|
+
|
|
174
|
+
@staticmethod
|
|
175
|
+
def pretrained(name="deberta_base_zero_shot_classifier_mnli_anli_v3", lang="en", remote_loc=None):
|
|
176
|
+
"""Downloads and loads a pretrained model.
|
|
177
|
+
Parameters
|
|
178
|
+
----------
|
|
179
|
+
name : str, optional
|
|
180
|
+
Name of the pretrained model, by default
|
|
181
|
+
"deberta_base_zero_shot_classifier_mnli_anli_v3"
|
|
182
|
+
lang : str, optional
|
|
183
|
+
Language of the pretrained model, by default "en"
|
|
184
|
+
remote_loc : str, optional
|
|
185
|
+
Optional remote address of the resource, by default None. Will use
|
|
186
|
+
Spark NLPs repositories otherwise.
|
|
187
|
+
Returns
|
|
188
|
+
-------
|
|
189
|
+
DeBertaForZeroShotClassification
|
|
190
|
+
The restored model
|
|
191
|
+
"""
|
|
192
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
193
|
+
return ResourceDownloader.downloadModel(DeBertaForZeroShotClassification, name, lang, remote_loc)
|
|
@@ -18,7 +18,8 @@ from sparknlp.common import *
|
|
|
18
18
|
class DistilBertForQuestionAnswering(AnnotatorModel,
|
|
19
19
|
HasCaseSensitiveProperties,
|
|
20
20
|
HasBatchedAnnotate,
|
|
21
|
-
HasEngine
|
|
21
|
+
HasEngine,
|
|
22
|
+
HasMaxSentenceLengthLimit):
|
|
22
23
|
"""DistilBertForQuestionAnswering can load DistilBERT Models with a span classification head on top for extractive
|
|
23
24
|
question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start
|
|
24
25
|
logits and span end logits).
|
|
@@ -34,7 +35,7 @@ class DistilBertForQuestionAnswering(AnnotatorModel,
|
|
|
34
35
|
provided.
|
|
35
36
|
|
|
36
37
|
For available pretrained models please see the `Models Hub
|
|
37
|
-
<https://
|
|
38
|
+
<https://sparknlp.org/models?task=Question+Answering>`__.
|
|
38
39
|
|
|
39
40
|
To see which models are compatible and how to import them see
|
|
40
41
|
`Import Transformers into Spark NLP 🚀
|
|
@@ -91,11 +92,6 @@ class DistilBertForQuestionAnswering(AnnotatorModel,
|
|
|
91
92
|
|
|
92
93
|
outputAnnotatorType = AnnotatorType.CHUNK
|
|
93
94
|
|
|
94
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
95
|
-
"maxSentenceLength",
|
|
96
|
-
"Max sentence length to process",
|
|
97
|
-
typeConverter=TypeConverters.toInt)
|
|
98
|
-
|
|
99
95
|
configProtoBytes = Param(Params._dummy(),
|
|
100
96
|
"configProtoBytes",
|
|
101
97
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -115,16 +111,6 @@ class DistilBertForQuestionAnswering(AnnotatorModel,
|
|
|
115
111
|
"""
|
|
116
112
|
return self._set(configProtoBytes=b)
|
|
117
113
|
|
|
118
|
-
def setMaxSentenceLength(self, value):
|
|
119
|
-
"""Sets max sentence length to process, by default 128.
|
|
120
|
-
|
|
121
|
-
Parameters
|
|
122
|
-
----------
|
|
123
|
-
value : int
|
|
124
|
-
Max sentence length to process
|
|
125
|
-
"""
|
|
126
|
-
return self._set(maxSentenceLength=value)
|
|
127
|
-
|
|
128
114
|
@keyword_only
|
|
129
115
|
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.DistilBertForQuestionAnswering",
|
|
130
116
|
java_model=None):
|