spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- com/johnsnowlabs/ml/__init__.py +0 -0
- com/johnsnowlabs/ml/ai/__init__.py +10 -0
- spark_nlp-6.2.1.dist-info/METADATA +362 -0
- spark_nlp-6.2.1.dist-info/RECORD +292 -0
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +81 -28
- sparknlp/annotation.py +3 -2
- sparknlp/annotator/__init__.py +6 -0
- sparknlp/annotator/audio/__init__.py +2 -0
- sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
- sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
- sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
- sparknlp/{base → annotator}/chunk2_doc.py +4 -7
- sparknlp/annotator/chunker.py +1 -2
- sparknlp/annotator/classifier_dl/__init__.py +17 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
- sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
- sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
- sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
- sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
- sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
- sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
- sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
- sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
- sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
- sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
- sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
- sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
- sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
- sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/coref/spanbert_coref.py +4 -18
- sparknlp/annotator/cv/__init__.py +15 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
- sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
- sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
- sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
- sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
- sparknlp/annotator/dataframe_optimizer.py +216 -0
- sparknlp/annotator/date2_chunk.py +88 -0
- sparknlp/annotator/dependency/dependency_parser.py +2 -3
- sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
- sparknlp/annotator/document_character_text_splitter.py +228 -0
- sparknlp/annotator/document_normalizer.py +37 -1
- sparknlp/annotator/document_token_splitter.py +175 -0
- sparknlp/annotator/document_token_splitter_test.py +85 -0
- sparknlp/annotator/embeddings/__init__.py +11 -0
- sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
- sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
- sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
- sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
- sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
- sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
- sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
- sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
- sparknlp/annotator/embeddings/doc2vec.py +7 -1
- sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
- sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
- sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
- sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
- sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
- sparknlp/annotator/embeddings/word2vec.py +7 -1
- sparknlp/annotator/embeddings/word_embeddings.py +4 -5
- sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
- sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
- sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
- sparknlp/annotator/er/entity_ruler.py +37 -23
- sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
- sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
- sparknlp/annotator/lemmatizer.py +3 -4
- sparknlp/annotator/matcher/date_matcher.py +35 -3
- sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
- sparknlp/annotator/matcher/regex_matcher.py +3 -3
- sparknlp/annotator/matcher/text_matcher.py +2 -3
- sparknlp/annotator/n_gram_generator.py +1 -2
- sparknlp/annotator/ner/__init__.py +3 -1
- sparknlp/annotator/ner/ner_converter.py +18 -0
- sparknlp/annotator/ner/ner_crf.py +4 -5
- sparknlp/annotator/ner/ner_dl.py +10 -5
- sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
- sparknlp/annotator/ner/ner_overwriter.py +2 -2
- sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
- sparknlp/annotator/normalizer.py +2 -2
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +349 -0
- sparknlp/annotator/openai/openai_embeddings.py +106 -0
- sparknlp/annotator/pos/perceptron.py +6 -7
- sparknlp/annotator/sentence/sentence_detector.py +2 -2
- sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
- sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
- sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
- sparknlp/annotator/seq2seq/__init__.py +17 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
- sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
- sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
- sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
- sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
- sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
- sparknlp/annotator/similarity/__init__.py +0 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
- sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
- sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
- sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
- sparknlp/annotator/stemmer.py +2 -3
- sparknlp/annotator/stop_words_cleaner.py +3 -4
- sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
- sparknlp/annotator/token/__init__.py +0 -1
- sparknlp/annotator/token/recursive_tokenizer.py +2 -3
- sparknlp/annotator/token/tokenizer.py +2 -3
- sparknlp/annotator/ws/word_segmenter.py +35 -10
- sparknlp/base/__init__.py +2 -3
- sparknlp/base/doc2_chunk.py +0 -3
- sparknlp/base/document_assembler.py +5 -5
- sparknlp/base/embeddings_finisher.py +14 -2
- sparknlp/base/finisher.py +15 -4
- sparknlp/base/gguf_ranking_finisher.py +234 -0
- sparknlp/base/image_assembler.py +69 -0
- sparknlp/base/light_pipeline.py +53 -21
- sparknlp/base/multi_document_assembler.py +9 -13
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/base/token_assembler.py +1 -2
- sparknlp/common/__init__.py +2 -0
- sparknlp/common/annotator_type.py +1 -0
- sparknlp/common/completion_post_processing.py +37 -0
- sparknlp/common/match_strategy.py +33 -0
- sparknlp/common/properties.py +914 -9
- sparknlp/internal/__init__.py +841 -116
- sparknlp/internal/annotator_java_ml.py +1 -1
- sparknlp/internal/annotator_transformer.py +3 -0
- sparknlp/logging/comet.py +2 -2
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +902 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/pretrained/pretrained_pipeline.py +1 -1
- sparknlp/pretrained/resource_downloader.py +126 -2
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +190 -0
- sparknlp/reader/reader2doc.py +124 -0
- sparknlp/reader/reader2image.py +136 -0
- sparknlp/reader/reader2table.py +44 -0
- sparknlp/reader/reader_assembler.py +159 -0
- sparknlp/reader/sparknlp_reader.py +461 -0
- sparknlp/training/__init__.py +1 -0
- sparknlp/training/conll.py +8 -2
- sparknlp/training/spacy_to_annotation.py +57 -0
- sparknlp/util.py +26 -0
- spark_nlp-4.2.6.dist-info/METADATA +0 -1256
- spark_nlp-4.2.6.dist-info/RECORD +0 -196
- {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
- /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
|
@@ -25,8 +25,8 @@ class SentenceEmbeddings(AnnotatorModel, HasEmbeddingsProperties, HasStorageRef)
|
|
|
25
25
|
This can be configured with :meth:`.setPoolingStrategy`, which either be
|
|
26
26
|
``"AVERAGE"`` or ``"SUM"``.
|
|
27
27
|
|
|
28
|
-
For more extended examples see the `
|
|
29
|
-
<https://github.com/JohnSnowLabs/spark-nlp
|
|
28
|
+
For more extended examples see the `Examples
|
|
29
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/text-similarity/Spark_NLP_Spark_ML_Text_Similarity.ipynb>`__..
|
|
30
30
|
|
|
31
31
|
============================= =======================
|
|
32
32
|
Input Annotation types Output Annotation type
|
|
@@ -132,4 +132,3 @@ class SentenceEmbeddings(AnnotatorModel, HasEmbeddingsProperties, HasStorageRef)
|
|
|
132
132
|
return self._set(poolingStrategy=strategy)
|
|
133
133
|
else:
|
|
134
134
|
return self._set(poolingStrategy="AVERAGE")
|
|
135
|
-
|
|
@@ -0,0 +1,202 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for SnowFlakeEmbeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class SnowFlakeEmbeddings(AnnotatorModel,
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasCaseSensitiveProperties,
|
|
22
|
+
HasStorageRef,
|
|
23
|
+
HasBatchedAnnotate,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
25
|
+
"""Sentence embeddings using SnowFlake.
|
|
26
|
+
|
|
27
|
+
snowflake-arctic-embed is a suite of text embedding models that focuses on creating
|
|
28
|
+
high-quality retrieval models optimized for performance.
|
|
29
|
+
|
|
30
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
31
|
+
object:
|
|
32
|
+
|
|
33
|
+
>>> embeddings = SnowFlakeEmbeddings.pretrained() \\
|
|
34
|
+
... .setInputCols(["document"]) \\
|
|
35
|
+
... .setOutputCol("SnowFlake_embeddings")
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
The default model is ``"snowflake_artic_m"``, if no name is provided.
|
|
39
|
+
|
|
40
|
+
For available pretrained models please see the
|
|
41
|
+
`Models Hub <https://sparknlp.org/models?q=SnowFlake>`__.
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
|
|
48
|
+
====================== ======================
|
|
49
|
+
|
|
50
|
+
**References**
|
|
51
|
+
|
|
52
|
+
`Arctic-Embed: Scalable, Efficient, and Accurate Text Embedding Models <https://arxiv.org/abs/2405.05374>`__
|
|
53
|
+
`Snowflake Arctic-Embed Models <https://github.com/Snowflake-Labs/arctic-embed>`__
|
|
54
|
+
|
|
55
|
+
**Paper abstract**
|
|
56
|
+
|
|
57
|
+
*The models are trained by leveraging existing open-source text representation models, such
|
|
58
|
+
as bert-base-uncased, and are trained in a multi-stage pipeline to optimize their retrieval
|
|
59
|
+
performance. First, the models are trained with large batches of query-document pairs where
|
|
60
|
+
negatives are derived in-batch—pretraining leverages about 400m samples of a mix of public
|
|
61
|
+
datasets and proprietary web search data. Following pretraining models are further optimized
|
|
62
|
+
with long training on a smaller dataset (about 1m samples) of triplets of query, positive
|
|
63
|
+
document, and negative document derived from hard harmful mining. Mining of the negatives and
|
|
64
|
+
data curation is crucial to retrieval accuracy. A detailed technical report will be available
|
|
65
|
+
shortly. *
|
|
66
|
+
|
|
67
|
+
Parameters
|
|
68
|
+
----------
|
|
69
|
+
batchSize
|
|
70
|
+
Size of every batch , by default 8
|
|
71
|
+
dimension
|
|
72
|
+
Number of embedding dimensions, by default 768
|
|
73
|
+
caseSensitive
|
|
74
|
+
Whether to ignore case in tokens for embeddings matching, by default False
|
|
75
|
+
maxSentenceLength
|
|
76
|
+
Max sentence length to process, by default 512
|
|
77
|
+
configProtoBytes
|
|
78
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
Examples
|
|
82
|
+
--------
|
|
83
|
+
>>> import sparknlp
|
|
84
|
+
>>> from sparknlp.base import *
|
|
85
|
+
>>> from sparknlp.annotator import *
|
|
86
|
+
>>> from pyspark.ml import Pipeline
|
|
87
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
88
|
+
... .setInputCol("text") \\
|
|
89
|
+
... .setOutputCol("document")
|
|
90
|
+
>>> embeddings = SnowFlakeEmbeddings.pretrained() \\
|
|
91
|
+
... .setInputCols(["document"]) \\
|
|
92
|
+
... .setOutputCol("embeddings")
|
|
93
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
94
|
+
... .setInputCols("embeddings") \\
|
|
95
|
+
... .setOutputCols("finished_embeddings") \\
|
|
96
|
+
... .setOutputAsVector(True)
|
|
97
|
+
>>> pipeline = Pipeline().setStages([
|
|
98
|
+
... documentAssembler,
|
|
99
|
+
... embeddings,
|
|
100
|
+
... embeddingsFinisher
|
|
101
|
+
... ])
|
|
102
|
+
>>> data = spark.createDataFrame([["hello world", "hello moon"]]).toDF("text")
|
|
103
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
104
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
105
|
+
+--------------------------------------------------------------------------------+
|
|
106
|
+
| result|
|
|
107
|
+
+--------------------------------------------------------------------------------+
|
|
108
|
+
|[0.50387806, 0.5861606, 0.35129607, -0.76046336, -0.32446072, -0.117674336, 0...|
|
|
109
|
+
|[0.6660665, 0.961762, 0.24854276, -0.1018044, -0.6569202, 0.027635604, 0.1915...|
|
|
110
|
+
+--------------------------------------------------------------------------------+
|
|
111
|
+
"""
|
|
112
|
+
|
|
113
|
+
name = "SnowFlakeEmbeddings"
|
|
114
|
+
|
|
115
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
116
|
+
|
|
117
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
118
|
+
poolingStrategy = Param(Params._dummy(),
|
|
119
|
+
"poolingStrategy",
|
|
120
|
+
"Pooling strategy to use for sentence embeddings",
|
|
121
|
+
TypeConverters.toString)
|
|
122
|
+
|
|
123
|
+
def setPoolingStrategy(self, value):
|
|
124
|
+
"""Pooling strategy to use for sentence embeddings.
|
|
125
|
+
|
|
126
|
+
Available pooling strategies for sentence embeddings are:
|
|
127
|
+
- `"cls"`: leading `[CLS]` token
|
|
128
|
+
- `"cls_avg"`: leading `[CLS]` token + mean of all other tokens
|
|
129
|
+
- `"last"`: embeddings of the last token in the sequence
|
|
130
|
+
- `"avg"`: mean of all tokens
|
|
131
|
+
- `"max"`: max of all embedding features of the entire token sequence
|
|
132
|
+
- `"int"`: An integer number, which represents the index of the token to use as the
|
|
133
|
+
embedding
|
|
134
|
+
|
|
135
|
+
Parameters
|
|
136
|
+
----------
|
|
137
|
+
value : str
|
|
138
|
+
Pooling strategy to use for sentence embeddings
|
|
139
|
+
"""
|
|
140
|
+
|
|
141
|
+
valid_strategies = {"cls", "cls_avg", "last", "avg", "max"}
|
|
142
|
+
if value in valid_strategies or value.isdigit():
|
|
143
|
+
return self._set(poolingStrategy=value)
|
|
144
|
+
else:
|
|
145
|
+
raise ValueError(f"Invalid pooling strategy: {value}. "
|
|
146
|
+
f"Valid strategies are: {', '.join(self.valid_strategies)} or an integer.")
|
|
147
|
+
|
|
148
|
+
@keyword_only
|
|
149
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.SnowFlakeEmbeddings", java_model=None):
|
|
150
|
+
super(SnowFlakeEmbeddings, self).__init__(
|
|
151
|
+
classname=classname,
|
|
152
|
+
java_model=java_model
|
|
153
|
+
)
|
|
154
|
+
self._setDefault(
|
|
155
|
+
dimension=1024,
|
|
156
|
+
batchSize=8,
|
|
157
|
+
maxSentenceLength=512,
|
|
158
|
+
caseSensitive=False,
|
|
159
|
+
poolingStrategy="cls"
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
@staticmethod
|
|
163
|
+
def loadSavedModel(folder, spark_session):
|
|
164
|
+
"""Loads a locally saved model.
|
|
165
|
+
|
|
166
|
+
Parameters
|
|
167
|
+
----------
|
|
168
|
+
folder : str
|
|
169
|
+
Folder of the saved model
|
|
170
|
+
spark_session : pyspark.sql.SparkSession
|
|
171
|
+
The current SparkSession
|
|
172
|
+
|
|
173
|
+
Returns
|
|
174
|
+
-------
|
|
175
|
+
SnowFlakeEmbeddings
|
|
176
|
+
The restored model
|
|
177
|
+
"""
|
|
178
|
+
from sparknlp.internal import _SnowFlakeEmbeddingsLoader
|
|
179
|
+
jModel = _SnowFlakeEmbeddingsLoader(folder, spark_session._jsparkSession)._java_obj
|
|
180
|
+
return SnowFlakeEmbeddings(java_model=jModel)
|
|
181
|
+
|
|
182
|
+
@staticmethod
|
|
183
|
+
def pretrained(name="snowflake_artic_m", lang="en", remote_loc=None):
|
|
184
|
+
"""Downloads and loads a pretrained model.
|
|
185
|
+
|
|
186
|
+
Parameters
|
|
187
|
+
----------
|
|
188
|
+
name : str, optional
|
|
189
|
+
Name of the pretrained model, by default "snowflake_artic_m"
|
|
190
|
+
lang : str, optional
|
|
191
|
+
Language of the pretrained model, by default "en"
|
|
192
|
+
remote_loc : str, optional
|
|
193
|
+
Optional remote address of the resource, by default None. Will use
|
|
194
|
+
Spark NLPs repositories otherwise.
|
|
195
|
+
|
|
196
|
+
Returns
|
|
197
|
+
-------
|
|
198
|
+
SnowFlakeEmbeddings
|
|
199
|
+
The restored model
|
|
200
|
+
"""
|
|
201
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
202
|
+
return ResourceDownloader.downloadModel(SnowFlakeEmbeddings, name, lang, remote_loc)
|
|
@@ -0,0 +1,211 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for UAEEmbeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class UAEEmbeddings(AnnotatorModel,
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasCaseSensitiveProperties,
|
|
22
|
+
HasStorageRef,
|
|
23
|
+
HasBatchedAnnotate,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
25
|
+
"""Sentence embeddings using Universal AnglE Embedding (UAE).
|
|
26
|
+
|
|
27
|
+
UAE is a novel angle-optimized text embedding model, designed to improve semantic textual
|
|
28
|
+
similarity tasks, which are crucial for Large Language Model (LLM) applications. By
|
|
29
|
+
introducing angle optimization in a complex space, AnglE effectively mitigates saturation of
|
|
30
|
+
the cosine similarity function.
|
|
31
|
+
|
|
32
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
33
|
+
object:
|
|
34
|
+
|
|
35
|
+
>>> embeddings = UAEEmbeddings.pretrained() \\
|
|
36
|
+
... .setInputCols(["document"]) \\
|
|
37
|
+
... .setOutputCol("UAE_embeddings")
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
The default model is ``"uae_large_v1"``, if no name is provided.
|
|
41
|
+
|
|
42
|
+
For available pretrained models please see the
|
|
43
|
+
`Models Hub <https://sparknlp.org/models?q=UAE>`__.
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
====================== ======================
|
|
47
|
+
Input Annotation types Output Annotation type
|
|
48
|
+
====================== ======================
|
|
49
|
+
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
|
|
50
|
+
====================== ======================
|
|
51
|
+
|
|
52
|
+
Parameters
|
|
53
|
+
----------
|
|
54
|
+
batchSize
|
|
55
|
+
Size of every batch , by default 8
|
|
56
|
+
dimension
|
|
57
|
+
Number of embedding dimensions, by default 768
|
|
58
|
+
caseSensitive
|
|
59
|
+
Whether to ignore case in tokens for embeddings matching, by default False
|
|
60
|
+
maxSentenceLength
|
|
61
|
+
Max sentence length to process, by default 512
|
|
62
|
+
configProtoBytes
|
|
63
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
64
|
+
|
|
65
|
+
References
|
|
66
|
+
----------
|
|
67
|
+
|
|
68
|
+
`AnglE-optimized Text Embeddings <https://arxiv.org/abs/2309.12871>`__
|
|
69
|
+
`UAE Github Repository <https://github.com/baochi0212/uae-embedding>`__
|
|
70
|
+
|
|
71
|
+
**Paper abstract**
|
|
72
|
+
|
|
73
|
+
*High-quality text embedding is pivotal in improving semantic textual similarity (STS) tasks,
|
|
74
|
+
which are crucial components in Large Language Model (LLM) applications. However, a common
|
|
75
|
+
challenge existing text embedding models face is the problem of vanishing gradients, primarily
|
|
76
|
+
due to their reliance on the cosine function in the optimization objective, which has
|
|
77
|
+
saturation zones. To address this issue, this paper proposes a novel angle-optimized text
|
|
78
|
+
embedding model called AnglE. The core idea of AnglE is to introduce angle optimization in a
|
|
79
|
+
complex space. This novel approach effectively mitigates the adverse effects of the saturation
|
|
80
|
+
zone in the cosine function, which can impede gradient and hinder optimization processes. To
|
|
81
|
+
set up a comprehensive STS evaluation, we experimented on existing short-text STS datasets and
|
|
82
|
+
a newly collected long-text STS dataset from GitHub Issues. Furthermore, we examine
|
|
83
|
+
domain-specific STS scenarios with limited labeled data and explore how AnglE works with
|
|
84
|
+
LLM-annotated data. Extensive experiments were conducted on various tasks including short-text
|
|
85
|
+
STS, long-text STS, and domain-specific STS tasks. The results show that AnglE outperforms the
|
|
86
|
+
state-of-the-art (SOTA) STS models that ignore the cosine saturation zone. These findings
|
|
87
|
+
demonstrate the ability of AnglE to generate high-quality text embeddings and the usefulness
|
|
88
|
+
of angle optimization in STS.*
|
|
89
|
+
|
|
90
|
+
Examples
|
|
91
|
+
--------
|
|
92
|
+
>>> import sparknlp
|
|
93
|
+
>>> from sparknlp.base import *
|
|
94
|
+
>>> from sparknlp.annotator import *
|
|
95
|
+
>>> from pyspark.ml import Pipeline
|
|
96
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
97
|
+
... .setInputCol("text") \\
|
|
98
|
+
... .setOutputCol("document")
|
|
99
|
+
>>> embeddings = UAEEmbeddings.pretrained() \\
|
|
100
|
+
... .setInputCols(["document"]) \\
|
|
101
|
+
... .setOutputCol("embeddings")
|
|
102
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
103
|
+
... .setInputCols("embeddings") \\
|
|
104
|
+
... .setOutputCols("finished_embeddings") \\
|
|
105
|
+
... .setOutputAsVector(True)
|
|
106
|
+
>>> pipeline = Pipeline().setStages([
|
|
107
|
+
... documentAssembler,
|
|
108
|
+
... embeddings,
|
|
109
|
+
... embeddingsFinisher
|
|
110
|
+
... ])
|
|
111
|
+
>>> data = spark.createDataFrame([["hello world", "hello moon"]]).toDF("text")
|
|
112
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
113
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
114
|
+
+--------------------------------------------------------------------------------+
|
|
115
|
+
| result|
|
|
116
|
+
+--------------------------------------------------------------------------------+
|
|
117
|
+
|[0.50387806, 0.5861606, 0.35129607, -0.76046336, -0.32446072, -0.117674336, 0...|
|
|
118
|
+
|[0.6660665, 0.961762, 0.24854276, -0.1018044, -0.6569202, 0.027635604, 0.1915...|
|
|
119
|
+
+--------------------------------------------------------------------------------+
|
|
120
|
+
"""
|
|
121
|
+
|
|
122
|
+
name = "UAEEmbeddings"
|
|
123
|
+
|
|
124
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
125
|
+
|
|
126
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
127
|
+
poolingStrategy = Param(Params._dummy(),
|
|
128
|
+
"poolingStrategy",
|
|
129
|
+
"Pooling strategy to use for sentence embeddings",
|
|
130
|
+
TypeConverters.toString)
|
|
131
|
+
|
|
132
|
+
def setPoolingStrategy(self, value):
|
|
133
|
+
"""Pooling strategy to use for sentence embeddings.
|
|
134
|
+
|
|
135
|
+
Available pooling strategies for sentence embeddings are:
|
|
136
|
+
- `"cls"`: leading `[CLS]` token
|
|
137
|
+
- `"cls_avg"`: leading `[CLS]` token + mean of all other tokens
|
|
138
|
+
- `"last"`: embeddings of the last token in the sequence
|
|
139
|
+
- `"avg"`: mean of all tokens
|
|
140
|
+
- `"max"`: max of all embedding features of the entire token sequence
|
|
141
|
+
- `"int"`: An integer number, which represents the index of the token to use as the
|
|
142
|
+
embedding
|
|
143
|
+
|
|
144
|
+
Parameters
|
|
145
|
+
----------
|
|
146
|
+
value : str
|
|
147
|
+
Pooling strategy to use for sentence embeddings
|
|
148
|
+
"""
|
|
149
|
+
|
|
150
|
+
valid_strategies = {"cls", "cls_avg", "last", "avg", "max"}
|
|
151
|
+
if value in valid_strategies or value.isdigit():
|
|
152
|
+
return self._set(poolingStrategy=value)
|
|
153
|
+
else:
|
|
154
|
+
raise ValueError(f"Invalid pooling strategy: {value}. "
|
|
155
|
+
f"Valid strategies are: {', '.join(self.valid_strategies)} or an integer.")
|
|
156
|
+
|
|
157
|
+
@keyword_only
|
|
158
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.UAEEmbeddings", java_model=None):
|
|
159
|
+
super(UAEEmbeddings, self).__init__(
|
|
160
|
+
classname=classname,
|
|
161
|
+
java_model=java_model
|
|
162
|
+
)
|
|
163
|
+
self._setDefault(
|
|
164
|
+
dimension=1024,
|
|
165
|
+
batchSize=8,
|
|
166
|
+
maxSentenceLength=512,
|
|
167
|
+
caseSensitive=False,
|
|
168
|
+
poolingStrategy="cls"
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
@staticmethod
|
|
172
|
+
def loadSavedModel(folder, spark_session):
|
|
173
|
+
"""Loads a locally saved model.
|
|
174
|
+
|
|
175
|
+
Parameters
|
|
176
|
+
----------
|
|
177
|
+
folder : str
|
|
178
|
+
Folder of the saved model
|
|
179
|
+
spark_session : pyspark.sql.SparkSession
|
|
180
|
+
The current SparkSession
|
|
181
|
+
|
|
182
|
+
Returns
|
|
183
|
+
-------
|
|
184
|
+
UAEEmbeddings
|
|
185
|
+
The restored model
|
|
186
|
+
"""
|
|
187
|
+
from sparknlp.internal import _UAEEmbeddingsLoader
|
|
188
|
+
jModel = _UAEEmbeddingsLoader(folder, spark_session._jsparkSession)._java_obj
|
|
189
|
+
return UAEEmbeddings(java_model=jModel)
|
|
190
|
+
|
|
191
|
+
@staticmethod
|
|
192
|
+
def pretrained(name="uae_large_v1", lang="en", remote_loc=None):
|
|
193
|
+
"""Downloads and loads a pretrained model.
|
|
194
|
+
|
|
195
|
+
Parameters
|
|
196
|
+
----------
|
|
197
|
+
name : str, optional
|
|
198
|
+
Name of the pretrained model, by default "UAE_small"
|
|
199
|
+
lang : str, optional
|
|
200
|
+
Language of the pretrained model, by default "en"
|
|
201
|
+
remote_loc : str, optional
|
|
202
|
+
Optional remote address of the resource, by default None. Will use
|
|
203
|
+
Spark NLPs repositories otherwise.
|
|
204
|
+
|
|
205
|
+
Returns
|
|
206
|
+
-------
|
|
207
|
+
UAEEmbeddings
|
|
208
|
+
The restored model
|
|
209
|
+
"""
|
|
210
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
211
|
+
return ResourceDownloader.downloadModel(UAEEmbeddings, name, lang, remote_loc)
|
|
@@ -35,10 +35,10 @@ class UniversalSentenceEncoder(AnnotatorModel,
|
|
|
35
35
|
|
|
36
36
|
The default model is ``"tfhub_use"``, if no name is provided. For available
|
|
37
37
|
pretrained models please see the `Models Hub
|
|
38
|
-
<https://
|
|
38
|
+
<https://sparknlp.org/models?task=Embeddings>`__.
|
|
39
39
|
|
|
40
|
-
For extended examples of usage, see the `
|
|
41
|
-
<https://github.com/JohnSnowLabs/spark-nlp
|
|
40
|
+
For extended examples of usage, see the `Examples
|
|
41
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/ClassifierDL_Train_multi_class_news_category_classifier.ipynb>`__.
|
|
42
42
|
|
|
43
43
|
====================== =======================
|
|
44
44
|
Input Annotation types Output Annotation type
|
|
@@ -32,7 +32,7 @@ class Word2VecApproach(AnnotatorApproach, HasStorageRef, HasEnableCachingPropert
|
|
|
32
32
|
|
|
33
33
|
For instantiated/pretrained models, see :class:`.Word2VecModel`.
|
|
34
34
|
|
|
35
|
-
For available pretrained models please see the `Models Hub <https://
|
|
35
|
+
For available pretrained models please see the `Models Hub <https://sparknlp.org/models>`__.
|
|
36
36
|
|
|
37
37
|
====================== =======================
|
|
38
38
|
Input Annotation types Output Annotation type
|
|
@@ -345,3 +345,9 @@ class Word2VecModel(AnnotatorModel, HasStorageRef, HasEmbeddingsProperties):
|
|
|
345
345
|
from sparknlp.pretrained import ResourceDownloader
|
|
346
346
|
return ResourceDownloader.downloadModel(Word2VecModel, name, lang, remote_loc)
|
|
347
347
|
|
|
348
|
+
def getVectors(self):
|
|
349
|
+
"""
|
|
350
|
+
Returns the vector representation of the words as a dataframe
|
|
351
|
+
with two fields, word and vector.
|
|
352
|
+
"""
|
|
353
|
+
return self._call_java("getVectors")
|
|
@@ -41,8 +41,8 @@ class WordEmbeddings(AnnotatorApproach, HasEmbeddingsProperties, HasStorage):
|
|
|
41
41
|
:meth:`WordEmbeddingsModel.overallCoverage()
|
|
42
42
|
<sparknlp.annotator.WordEmbeddingsModel.overallCoverage>`.
|
|
43
43
|
|
|
44
|
-
For extended examples of usage, see the `
|
|
45
|
-
<https://github.com/JohnSnowLabs/spark-nlp
|
|
44
|
+
For extended examples of usage, see the `Examples
|
|
45
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/scala/training/NerDL/win/customNerDlPipeline/CustomForNerDLPipeline.java>`__.
|
|
46
46
|
|
|
47
47
|
====================== ======================
|
|
48
48
|
Input Annotation types Output Annotation type
|
|
@@ -177,9 +177,9 @@ class WordEmbeddingsModel(AnnotatorModel, HasEmbeddingsProperties, HasStorageMod
|
|
|
177
177
|
|
|
178
178
|
The default model is ``"glove_100d"``, if no name is provided. For available
|
|
179
179
|
pretrained models please see the `Models Hub
|
|
180
|
-
<https://
|
|
180
|
+
<https://sparknlp.org/models?task=Embeddings>`__.
|
|
181
181
|
|
|
182
|
-
For extended examples of usage, see the `
|
|
182
|
+
For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_offline.ipynb>`__.
|
|
183
183
|
|
|
184
184
|
====================== ======================
|
|
185
185
|
Input Annotation types Output Annotation type
|
|
@@ -383,4 +383,3 @@ class WordEmbeddingsModel(AnnotatorModel, HasEmbeddingsProperties, HasStorageMod
|
|
|
383
383
|
Identifiers for the model parameters
|
|
384
384
|
"""
|
|
385
385
|
HasStorageModel.loadStorages(path, spark, storage_ref, WordEmbeddingsModel.databases)
|
|
386
|
-
|
|
@@ -21,7 +21,8 @@ class XlmRoBertaEmbeddings(AnnotatorModel,
|
|
|
21
21
|
HasCaseSensitiveProperties,
|
|
22
22
|
HasStorageRef,
|
|
23
23
|
HasBatchedAnnotate,
|
|
24
|
-
HasEngine
|
|
24
|
+
HasEngine,
|
|
25
|
+
HasMaxSentenceLengthLimit):
|
|
25
26
|
"""The XLM-RoBERTa model was proposed in `Unsupervised Cross-lingual
|
|
26
27
|
Representation Learning at Scale` by Alexis Conneau, Kartikay Khandelwal,
|
|
27
28
|
Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzman, Edouard
|
|
@@ -40,10 +41,10 @@ class XlmRoBertaEmbeddings(AnnotatorModel,
|
|
|
40
41
|
The default model is ``"xlm_roberta_base"``, default language is ``"xx"``
|
|
41
42
|
(meaning multi-lingual), if no values are provided. For available pretrained
|
|
42
43
|
models please see the `Models Hub
|
|
43
|
-
<https://
|
|
44
|
+
<https://sparknlp.org/models?task=Embeddings>`__.
|
|
44
45
|
|
|
45
|
-
For extended examples of usage, see the `
|
|
46
|
-
<https://github.com/JohnSnowLabs/spark-nlp
|
|
46
|
+
For extended examples of usage, see the `Examples
|
|
47
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/transformers/HuggingFace%20in%20Spark%20NLP%20-%20XLM-RoBERTa.ipynb>`__.
|
|
47
48
|
To see which models are compatible and how to import them see
|
|
48
49
|
`Import Transformers into Spark NLP 🚀
|
|
49
50
|
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
@@ -151,11 +152,6 @@ class XlmRoBertaEmbeddings(AnnotatorModel,
|
|
|
151
152
|
|
|
152
153
|
outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS
|
|
153
154
|
|
|
154
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
155
|
-
"maxSentenceLength",
|
|
156
|
-
"Max sentence length to process",
|
|
157
|
-
typeConverter=TypeConverters.toInt)
|
|
158
|
-
|
|
159
155
|
configProtoBytes = Param(Params._dummy(),
|
|
160
156
|
"configProtoBytes",
|
|
161
157
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -171,16 +167,6 @@ class XlmRoBertaEmbeddings(AnnotatorModel,
|
|
|
171
167
|
"""
|
|
172
168
|
return self._set(configProtoBytes=b)
|
|
173
169
|
|
|
174
|
-
def setMaxSentenceLength(self, value):
|
|
175
|
-
"""Sets max sentence length to process.
|
|
176
|
-
|
|
177
|
-
Parameters
|
|
178
|
-
----------
|
|
179
|
-
value : int
|
|
180
|
-
Max sentence length to process
|
|
181
|
-
"""
|
|
182
|
-
return self._set(maxSentenceLength=value)
|
|
183
|
-
|
|
184
170
|
@keyword_only
|
|
185
171
|
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.XlmRoBertaEmbeddings", java_model=None):
|
|
186
172
|
super(XlmRoBertaEmbeddings, self).__init__(
|
|
@@ -195,7 +181,7 @@ class XlmRoBertaEmbeddings(AnnotatorModel,
|
|
|
195
181
|
)
|
|
196
182
|
|
|
197
183
|
@staticmethod
|
|
198
|
-
def loadSavedModel(folder, spark_session):
|
|
184
|
+
def loadSavedModel(folder, spark_session, use_openvino=False):
|
|
199
185
|
"""Loads a locally saved model.
|
|
200
186
|
|
|
201
187
|
Parameters
|
|
@@ -204,6 +190,8 @@ class XlmRoBertaEmbeddings(AnnotatorModel,
|
|
|
204
190
|
Folder of the saved model
|
|
205
191
|
spark_session : pyspark.sql.SparkSession
|
|
206
192
|
The current SparkSession
|
|
193
|
+
use_openvino: bool
|
|
194
|
+
Use OpenVINO backend
|
|
207
195
|
|
|
208
196
|
Returns
|
|
209
197
|
-------
|
|
@@ -211,7 +199,7 @@ class XlmRoBertaEmbeddings(AnnotatorModel,
|
|
|
211
199
|
The restored model
|
|
212
200
|
"""
|
|
213
201
|
from sparknlp.internal import _XlmRoBertaLoader
|
|
214
|
-
jModel = _XlmRoBertaLoader(folder, spark_session._jsparkSession)._java_obj
|
|
202
|
+
jModel = _XlmRoBertaLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
|
|
215
203
|
return XlmRoBertaEmbeddings(java_model=jModel)
|
|
216
204
|
|
|
217
205
|
@staticmethod
|
|
@@ -17,11 +17,12 @@ from sparknlp.common import *
|
|
|
17
17
|
|
|
18
18
|
|
|
19
19
|
class XlmRoBertaSentenceEmbeddings(AnnotatorModel,
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasCaseSensitiveProperties,
|
|
22
|
+
HasStorageRef,
|
|
23
|
+
HasBatchedAnnotate,
|
|
24
|
+
HasEngine,
|
|
25
|
+
HasMaxSentenceLengthLimit):
|
|
25
26
|
"""Sentence-level embeddings using XLM-RoBERTa. The XLM-RoBERTa model was proposed in Unsupervised Cross-lingual
|
|
26
27
|
Representation Learning at Scale by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary,
|
|
27
28
|
Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based
|
|
@@ -39,7 +40,7 @@ class XlmRoBertaSentenceEmbeddings(AnnotatorModel,
|
|
|
39
40
|
The default model is ``"sent_xlm_roberta_base"``, if no name is provided.
|
|
40
41
|
|
|
41
42
|
For available pretrained models please see the
|
|
42
|
-
`Models Hub <https://
|
|
43
|
+
`Models Hub <https://sparknlp.org/models?task=Embeddings>`__.
|
|
43
44
|
|
|
44
45
|
====================== =======================
|
|
45
46
|
Input Annotation types Output Annotation type
|
|
@@ -122,11 +123,6 @@ class XlmRoBertaSentenceEmbeddings(AnnotatorModel,
|
|
|
122
123
|
|
|
123
124
|
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
124
125
|
|
|
125
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
126
|
-
"maxSentenceLength",
|
|
127
|
-
"Max sentence length to process",
|
|
128
|
-
typeConverter=TypeConverters.toInt)
|
|
129
|
-
|
|
130
126
|
configProtoBytes = Param(Params._dummy(),
|
|
131
127
|
"configProtoBytes",
|
|
132
128
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
@@ -142,16 +138,6 @@ class XlmRoBertaSentenceEmbeddings(AnnotatorModel,
|
|
|
142
138
|
"""
|
|
143
139
|
return self._set(configProtoBytes=b)
|
|
144
140
|
|
|
145
|
-
def setMaxSentenceLength(self, value):
|
|
146
|
-
"""Sets max sentence length to process.
|
|
147
|
-
|
|
148
|
-
Parameters
|
|
149
|
-
----------
|
|
150
|
-
value : int
|
|
151
|
-
Max sentence length to process
|
|
152
|
-
"""
|
|
153
|
-
return self._set(maxSentenceLength=value)
|
|
154
|
-
|
|
155
141
|
@keyword_only
|
|
156
142
|
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.XlmRoBertaSentenceEmbeddings", java_model=None):
|
|
157
143
|
super(XlmRoBertaSentenceEmbeddings, self).__init__(
|
|
@@ -21,7 +21,8 @@ class XlnetEmbeddings(AnnotatorModel,
|
|
|
21
21
|
HasCaseSensitiveProperties,
|
|
22
22
|
HasStorageRef,
|
|
23
23
|
HasBatchedAnnotate,
|
|
24
|
-
HasEngine
|
|
24
|
+
HasEngine,
|
|
25
|
+
HasMaxSentenceLengthLimit):
|
|
25
26
|
"""XlnetEmbeddings (XLNet): Generalized Autoregressive Pretraining for
|
|
26
27
|
Language Understanding
|
|
27
28
|
|
|
@@ -53,8 +54,8 @@ class XlnetEmbeddings(AnnotatorModel,
|
|
|
53
54
|
|
|
54
55
|
The default model is ``"xlnet_base_cased"``, if no name is provided.
|
|
55
56
|
|
|
56
|
-
For extended examples of usage, see the `
|
|
57
|
-
<https://github.com/JohnSnowLabs/spark-nlp
|
|
57
|
+
For extended examples of usage, see the `Examples
|
|
58
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/dl-ner/ner_xlnet.ipynb>`__.
|
|
58
59
|
To see which models are compatible and how to import them see
|
|
59
60
|
`Import Transformers into Spark NLP 🚀
|
|
60
61
|
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
@@ -160,11 +161,6 @@ class XlnetEmbeddings(AnnotatorModel,
|
|
|
160
161
|
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
161
162
|
TypeConverters.toListInt)
|
|
162
163
|
|
|
163
|
-
maxSentenceLength = Param(Params._dummy(),
|
|
164
|
-
"maxSentenceLength",
|
|
165
|
-
"Max sentence length to process",
|
|
166
|
-
typeConverter=TypeConverters.toInt)
|
|
167
|
-
|
|
168
164
|
def setConfigProtoBytes(self, b):
|
|
169
165
|
"""Sets configProto from tensorflow, serialized into byte array.
|
|
170
166
|
|
|
@@ -175,16 +171,6 @@ class XlnetEmbeddings(AnnotatorModel,
|
|
|
175
171
|
"""
|
|
176
172
|
return self._set(configProtoBytes=b)
|
|
177
173
|
|
|
178
|
-
def setMaxSentenceLength(self, value):
|
|
179
|
-
"""Sets max sentence length to process.
|
|
180
|
-
|
|
181
|
-
Parameters
|
|
182
|
-
----------
|
|
183
|
-
value : int
|
|
184
|
-
Max sentence length to process
|
|
185
|
-
"""
|
|
186
|
-
return self._set(maxSentenceLength=value)
|
|
187
|
-
|
|
188
174
|
@keyword_only
|
|
189
175
|
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.XlnetEmbeddings", java_model=None):
|
|
190
176
|
super(XlnetEmbeddings, self).__init__(
|