spark-nlp 4.2.6__py2.py3-none-any.whl → 6.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (221) hide show
  1. com/johnsnowlabs/ml/__init__.py +0 -0
  2. com/johnsnowlabs/ml/ai/__init__.py +10 -0
  3. spark_nlp-6.2.1.dist-info/METADATA +362 -0
  4. spark_nlp-6.2.1.dist-info/RECORD +292 -0
  5. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/WHEEL +1 -1
  6. sparknlp/__init__.py +81 -28
  7. sparknlp/annotation.py +3 -2
  8. sparknlp/annotator/__init__.py +6 -0
  9. sparknlp/annotator/audio/__init__.py +2 -0
  10. sparknlp/annotator/audio/hubert_for_ctc.py +188 -0
  11. sparknlp/annotator/audio/wav2vec2_for_ctc.py +14 -14
  12. sparknlp/annotator/audio/whisper_for_ctc.py +251 -0
  13. sparknlp/{base → annotator}/chunk2_doc.py +4 -7
  14. sparknlp/annotator/chunker.py +1 -2
  15. sparknlp/annotator/classifier_dl/__init__.py +17 -0
  16. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  17. sparknlp/annotator/classifier_dl/albert_for_question_answering.py +3 -15
  18. sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py +4 -18
  19. sparknlp/annotator/classifier_dl/albert_for_token_classification.py +3 -17
  20. sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
  21. sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
  22. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
  23. sparknlp/annotator/classifier_dl/bert_for_question_answering.py +6 -20
  24. sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py +3 -17
  25. sparknlp/annotator/classifier_dl/bert_for_token_classification.py +3 -17
  26. sparknlp/annotator/classifier_dl/bert_for_zero_shot_classification.py +212 -0
  27. sparknlp/annotator/classifier_dl/camembert_for_question_answering.py +168 -0
  28. sparknlp/annotator/classifier_dl/camembert_for_sequence_classification.py +5 -19
  29. sparknlp/annotator/classifier_dl/camembert_for_token_classification.py +5 -19
  30. sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
  31. sparknlp/annotator/classifier_dl/classifier_dl.py +4 -4
  32. sparknlp/annotator/classifier_dl/deberta_for_question_answering.py +3 -17
  33. sparknlp/annotator/classifier_dl/deberta_for_sequence_classification.py +4 -19
  34. sparknlp/annotator/classifier_dl/deberta_for_token_classification.py +5 -21
  35. sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +193 -0
  36. sparknlp/annotator/classifier_dl/distil_bert_for_question_answering.py +3 -17
  37. sparknlp/annotator/classifier_dl/distil_bert_for_sequence_classification.py +4 -18
  38. sparknlp/annotator/classifier_dl/distil_bert_for_token_classification.py +3 -17
  39. sparknlp/annotator/classifier_dl/distil_bert_for_zero_shot_classification.py +211 -0
  40. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  41. sparknlp/annotator/classifier_dl/longformer_for_question_answering.py +3 -17
  42. sparknlp/annotator/classifier_dl/longformer_for_sequence_classification.py +4 -18
  43. sparknlp/annotator/classifier_dl/longformer_for_token_classification.py +3 -17
  44. sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py +148 -0
  45. sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py +188 -0
  46. sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py +173 -0
  47. sparknlp/annotator/classifier_dl/multi_classifier_dl.py +3 -3
  48. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  49. sparknlp/annotator/classifier_dl/roberta_for_question_answering.py +3 -17
  50. sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py +4 -18
  51. sparknlp/annotator/classifier_dl/roberta_for_token_classification.py +1 -1
  52. sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
  53. sparknlp/annotator/classifier_dl/sentiment_dl.py +4 -4
  54. sparknlp/annotator/classifier_dl/tapas_for_question_answering.py +2 -2
  55. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  56. sparknlp/annotator/classifier_dl/xlm_roberta_for_question_answering.py +3 -17
  57. sparknlp/annotator/classifier_dl/xlm_roberta_for_sequence_classification.py +4 -18
  58. sparknlp/annotator/classifier_dl/xlm_roberta_for_token_classification.py +6 -20
  59. sparknlp/annotator/classifier_dl/xlm_roberta_for_zero_shot_classification.py +225 -0
  60. sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py +4 -18
  61. sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py +3 -17
  62. sparknlp/annotator/cleaners/__init__.py +15 -0
  63. sparknlp/annotator/cleaners/cleaner.py +202 -0
  64. sparknlp/annotator/cleaners/extractor.py +191 -0
  65. sparknlp/annotator/coref/spanbert_coref.py +4 -18
  66. sparknlp/annotator/cv/__init__.py +15 -0
  67. sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
  68. sparknlp/annotator/cv/clip_for_zero_shot_classification.py +193 -0
  69. sparknlp/annotator/cv/convnext_for_image_classification.py +269 -0
  70. sparknlp/annotator/cv/florence2_transformer.py +180 -0
  71. sparknlp/annotator/cv/gemma3_for_multimodal.py +346 -0
  72. sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
  73. sparknlp/annotator/cv/janus_for_multimodal.py +351 -0
  74. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  75. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  76. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  77. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  78. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  79. sparknlp/annotator/cv/smolvlm_transformer.py +426 -0
  80. sparknlp/annotator/cv/swin_for_image_classification.py +242 -0
  81. sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py +240 -0
  82. sparknlp/annotator/cv/vit_for_image_classification.py +36 -4
  83. sparknlp/annotator/dataframe_optimizer.py +216 -0
  84. sparknlp/annotator/date2_chunk.py +88 -0
  85. sparknlp/annotator/dependency/dependency_parser.py +2 -3
  86. sparknlp/annotator/dependency/typed_dependency_parser.py +3 -4
  87. sparknlp/annotator/document_character_text_splitter.py +228 -0
  88. sparknlp/annotator/document_normalizer.py +37 -1
  89. sparknlp/annotator/document_token_splitter.py +175 -0
  90. sparknlp/annotator/document_token_splitter_test.py +85 -0
  91. sparknlp/annotator/embeddings/__init__.py +11 -0
  92. sparknlp/annotator/embeddings/albert_embeddings.py +4 -18
  93. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +539 -0
  94. sparknlp/annotator/embeddings/bert_embeddings.py +9 -22
  95. sparknlp/annotator/embeddings/bert_sentence_embeddings.py +12 -24
  96. sparknlp/annotator/embeddings/bge_embeddings.py +199 -0
  97. sparknlp/annotator/embeddings/camembert_embeddings.py +4 -20
  98. sparknlp/annotator/embeddings/chunk_embeddings.py +1 -2
  99. sparknlp/annotator/embeddings/deberta_embeddings.py +2 -16
  100. sparknlp/annotator/embeddings/distil_bert_embeddings.py +5 -19
  101. sparknlp/annotator/embeddings/doc2vec.py +7 -1
  102. sparknlp/annotator/embeddings/e5_embeddings.py +195 -0
  103. sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
  104. sparknlp/annotator/embeddings/elmo_embeddings.py +2 -2
  105. sparknlp/annotator/embeddings/instructor_embeddings.py +204 -0
  106. sparknlp/annotator/embeddings/longformer_embeddings.py +3 -17
  107. sparknlp/annotator/embeddings/minilm_embeddings.py +189 -0
  108. sparknlp/annotator/embeddings/mpnet_embeddings.py +192 -0
  109. sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
  110. sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
  111. sparknlp/annotator/embeddings/roberta_embeddings.py +9 -21
  112. sparknlp/annotator/embeddings/roberta_sentence_embeddings.py +7 -21
  113. sparknlp/annotator/embeddings/sentence_embeddings.py +2 -3
  114. sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
  115. sparknlp/annotator/embeddings/uae_embeddings.py +211 -0
  116. sparknlp/annotator/embeddings/universal_sentence_encoder.py +3 -3
  117. sparknlp/annotator/embeddings/word2vec.py +7 -1
  118. sparknlp/annotator/embeddings/word_embeddings.py +4 -5
  119. sparknlp/annotator/embeddings/xlm_roberta_embeddings.py +9 -21
  120. sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py +7 -21
  121. sparknlp/annotator/embeddings/xlnet_embeddings.py +4 -18
  122. sparknlp/annotator/er/entity_ruler.py +37 -23
  123. sparknlp/annotator/keyword_extraction/yake_keyword_extraction.py +2 -3
  124. sparknlp/annotator/ld_dl/language_detector_dl.py +2 -2
  125. sparknlp/annotator/lemmatizer.py +3 -4
  126. sparknlp/annotator/matcher/date_matcher.py +35 -3
  127. sparknlp/annotator/matcher/multi_date_matcher.py +1 -2
  128. sparknlp/annotator/matcher/regex_matcher.py +3 -3
  129. sparknlp/annotator/matcher/text_matcher.py +2 -3
  130. sparknlp/annotator/n_gram_generator.py +1 -2
  131. sparknlp/annotator/ner/__init__.py +3 -1
  132. sparknlp/annotator/ner/ner_converter.py +18 -0
  133. sparknlp/annotator/ner/ner_crf.py +4 -5
  134. sparknlp/annotator/ner/ner_dl.py +10 -5
  135. sparknlp/annotator/ner/ner_dl_graph_checker.py +293 -0
  136. sparknlp/annotator/ner/ner_overwriter.py +2 -2
  137. sparknlp/annotator/ner/zero_shot_ner_model.py +173 -0
  138. sparknlp/annotator/normalizer.py +2 -2
  139. sparknlp/annotator/openai/__init__.py +16 -0
  140. sparknlp/annotator/openai/openai_completion.py +349 -0
  141. sparknlp/annotator/openai/openai_embeddings.py +106 -0
  142. sparknlp/annotator/pos/perceptron.py +6 -7
  143. sparknlp/annotator/sentence/sentence_detector.py +2 -2
  144. sparknlp/annotator/sentence/sentence_detector_dl.py +3 -3
  145. sparknlp/annotator/sentiment/sentiment_detector.py +4 -5
  146. sparknlp/annotator/sentiment/vivekn_sentiment.py +4 -5
  147. sparknlp/annotator/seq2seq/__init__.py +17 -0
  148. sparknlp/annotator/seq2seq/auto_gguf_model.py +304 -0
  149. sparknlp/annotator/seq2seq/auto_gguf_reranker.py +334 -0
  150. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +336 -0
  151. sparknlp/annotator/seq2seq/bart_transformer.py +420 -0
  152. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  153. sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
  154. sparknlp/annotator/seq2seq/gpt2_transformer.py +1 -1
  155. sparknlp/annotator/seq2seq/llama2_transformer.py +343 -0
  156. sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
  157. sparknlp/annotator/seq2seq/m2m100_transformer.py +392 -0
  158. sparknlp/annotator/seq2seq/marian_transformer.py +124 -3
  159. sparknlp/annotator/seq2seq/mistral_transformer.py +348 -0
  160. sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
  161. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  162. sparknlp/annotator/seq2seq/phi2_transformer.py +326 -0
  163. sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
  164. sparknlp/annotator/seq2seq/phi4_transformer.py +387 -0
  165. sparknlp/annotator/seq2seq/qwen_transformer.py +340 -0
  166. sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
  167. sparknlp/annotator/seq2seq/t5_transformer.py +54 -4
  168. sparknlp/annotator/similarity/__init__.py +0 -0
  169. sparknlp/annotator/similarity/document_similarity_ranker.py +379 -0
  170. sparknlp/annotator/spell_check/context_spell_checker.py +116 -17
  171. sparknlp/annotator/spell_check/norvig_sweeting.py +3 -6
  172. sparknlp/annotator/spell_check/symmetric_delete.py +1 -1
  173. sparknlp/annotator/stemmer.py +2 -3
  174. sparknlp/annotator/stop_words_cleaner.py +3 -4
  175. sparknlp/annotator/tf_ner_dl_graph_builder.py +1 -1
  176. sparknlp/annotator/token/__init__.py +0 -1
  177. sparknlp/annotator/token/recursive_tokenizer.py +2 -3
  178. sparknlp/annotator/token/tokenizer.py +2 -3
  179. sparknlp/annotator/ws/word_segmenter.py +35 -10
  180. sparknlp/base/__init__.py +2 -3
  181. sparknlp/base/doc2_chunk.py +0 -3
  182. sparknlp/base/document_assembler.py +5 -5
  183. sparknlp/base/embeddings_finisher.py +14 -2
  184. sparknlp/base/finisher.py +15 -4
  185. sparknlp/base/gguf_ranking_finisher.py +234 -0
  186. sparknlp/base/image_assembler.py +69 -0
  187. sparknlp/base/light_pipeline.py +53 -21
  188. sparknlp/base/multi_document_assembler.py +9 -13
  189. sparknlp/base/prompt_assembler.py +207 -0
  190. sparknlp/base/token_assembler.py +1 -2
  191. sparknlp/common/__init__.py +2 -0
  192. sparknlp/common/annotator_type.py +1 -0
  193. sparknlp/common/completion_post_processing.py +37 -0
  194. sparknlp/common/match_strategy.py +33 -0
  195. sparknlp/common/properties.py +914 -9
  196. sparknlp/internal/__init__.py +841 -116
  197. sparknlp/internal/annotator_java_ml.py +1 -1
  198. sparknlp/internal/annotator_transformer.py +3 -0
  199. sparknlp/logging/comet.py +2 -2
  200. sparknlp/partition/__init__.py +16 -0
  201. sparknlp/partition/partition.py +244 -0
  202. sparknlp/partition/partition_properties.py +902 -0
  203. sparknlp/partition/partition_transformer.py +200 -0
  204. sparknlp/pretrained/pretrained_pipeline.py +1 -1
  205. sparknlp/pretrained/resource_downloader.py +126 -2
  206. sparknlp/reader/__init__.py +15 -0
  207. sparknlp/reader/enums.py +19 -0
  208. sparknlp/reader/pdf_to_text.py +190 -0
  209. sparknlp/reader/reader2doc.py +124 -0
  210. sparknlp/reader/reader2image.py +136 -0
  211. sparknlp/reader/reader2table.py +44 -0
  212. sparknlp/reader/reader_assembler.py +159 -0
  213. sparknlp/reader/sparknlp_reader.py +461 -0
  214. sparknlp/training/__init__.py +1 -0
  215. sparknlp/training/conll.py +8 -2
  216. sparknlp/training/spacy_to_annotation.py +57 -0
  217. sparknlp/util.py +26 -0
  218. spark_nlp-4.2.6.dist-info/METADATA +0 -1256
  219. spark_nlp-4.2.6.dist-info/RECORD +0 -196
  220. {spark_nlp-4.2.6.dist-info → spark_nlp-6.2.1.dist-info}/top_level.txt +0 -0
  221. /sparknlp/annotator/{token/token2_chunk.py → token2_chunk.py} +0 -0
@@ -25,8 +25,8 @@ class SentenceEmbeddings(AnnotatorModel, HasEmbeddingsProperties, HasStorageRef)
25
25
  This can be configured with :meth:`.setPoolingStrategy`, which either be
26
26
  ``"AVERAGE"`` or ``"SUM"``.
27
27
 
28
- For more extended examples see the `Spark NLP Workshop
29
- <https://github.com/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Public/5.1_Text_classification_examples_in_SparkML_SparkNLP.ipynb>`__..
28
+ For more extended examples see the `Examples
29
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/text-similarity/Spark_NLP_Spark_ML_Text_Similarity.ipynb>`__..
30
30
 
31
31
  ============================= =======================
32
32
  Input Annotation types Output Annotation type
@@ -132,4 +132,3 @@ class SentenceEmbeddings(AnnotatorModel, HasEmbeddingsProperties, HasStorageRef)
132
132
  return self._set(poolingStrategy=strategy)
133
133
  else:
134
134
  return self._set(poolingStrategy="AVERAGE")
135
-
@@ -0,0 +1,202 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for SnowFlakeEmbeddings."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class SnowFlakeEmbeddings(AnnotatorModel,
20
+ HasEmbeddingsProperties,
21
+ HasCaseSensitiveProperties,
22
+ HasStorageRef,
23
+ HasBatchedAnnotate,
24
+ HasMaxSentenceLengthLimit):
25
+ """Sentence embeddings using SnowFlake.
26
+
27
+ snowflake-arctic-embed is a suite of text embedding models that focuses on creating
28
+ high-quality retrieval models optimized for performance.
29
+
30
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
31
+ object:
32
+
33
+ >>> embeddings = SnowFlakeEmbeddings.pretrained() \\
34
+ ... .setInputCols(["document"]) \\
35
+ ... .setOutputCol("SnowFlake_embeddings")
36
+
37
+
38
+ The default model is ``"snowflake_artic_m"``, if no name is provided.
39
+
40
+ For available pretrained models please see the
41
+ `Models Hub <https://sparknlp.org/models?q=SnowFlake>`__.
42
+
43
+
44
+ ====================== ======================
45
+ Input Annotation types Output Annotation type
46
+ ====================== ======================
47
+ ``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
48
+ ====================== ======================
49
+
50
+ **References**
51
+
52
+ `Arctic-Embed: Scalable, Efficient, and Accurate Text Embedding Models <https://arxiv.org/abs/2405.05374>`__
53
+ `Snowflake Arctic-Embed Models <https://github.com/Snowflake-Labs/arctic-embed>`__
54
+
55
+ **Paper abstract**
56
+
57
+ *The models are trained by leveraging existing open-source text representation models, such
58
+ as bert-base-uncased, and are trained in a multi-stage pipeline to optimize their retrieval
59
+ performance. First, the models are trained with large batches of query-document pairs where
60
+ negatives are derived in-batch—pretraining leverages about 400m samples of a mix of public
61
+ datasets and proprietary web search data. Following pretraining models are further optimized
62
+ with long training on a smaller dataset (about 1m samples) of triplets of query, positive
63
+ document, and negative document derived from hard harmful mining. Mining of the negatives and
64
+ data curation is crucial to retrieval accuracy. A detailed technical report will be available
65
+ shortly. *
66
+
67
+ Parameters
68
+ ----------
69
+ batchSize
70
+ Size of every batch , by default 8
71
+ dimension
72
+ Number of embedding dimensions, by default 768
73
+ caseSensitive
74
+ Whether to ignore case in tokens for embeddings matching, by default False
75
+ maxSentenceLength
76
+ Max sentence length to process, by default 512
77
+ configProtoBytes
78
+ ConfigProto from tensorflow, serialized into byte array.
79
+
80
+
81
+ Examples
82
+ --------
83
+ >>> import sparknlp
84
+ >>> from sparknlp.base import *
85
+ >>> from sparknlp.annotator import *
86
+ >>> from pyspark.ml import Pipeline
87
+ >>> documentAssembler = DocumentAssembler() \\
88
+ ... .setInputCol("text") \\
89
+ ... .setOutputCol("document")
90
+ >>> embeddings = SnowFlakeEmbeddings.pretrained() \\
91
+ ... .setInputCols(["document"]) \\
92
+ ... .setOutputCol("embeddings")
93
+ >>> embeddingsFinisher = EmbeddingsFinisher() \\
94
+ ... .setInputCols("embeddings") \\
95
+ ... .setOutputCols("finished_embeddings") \\
96
+ ... .setOutputAsVector(True)
97
+ >>> pipeline = Pipeline().setStages([
98
+ ... documentAssembler,
99
+ ... embeddings,
100
+ ... embeddingsFinisher
101
+ ... ])
102
+ >>> data = spark.createDataFrame([["hello world", "hello moon"]]).toDF("text")
103
+ >>> result = pipeline.fit(data).transform(data)
104
+ >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
105
+ +--------------------------------------------------------------------------------+
106
+ | result|
107
+ +--------------------------------------------------------------------------------+
108
+ |[0.50387806, 0.5861606, 0.35129607, -0.76046336, -0.32446072, -0.117674336, 0...|
109
+ |[0.6660665, 0.961762, 0.24854276, -0.1018044, -0.6569202, 0.027635604, 0.1915...|
110
+ +--------------------------------------------------------------------------------+
111
+ """
112
+
113
+ name = "SnowFlakeEmbeddings"
114
+
115
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
116
+
117
+ outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
118
+ poolingStrategy = Param(Params._dummy(),
119
+ "poolingStrategy",
120
+ "Pooling strategy to use for sentence embeddings",
121
+ TypeConverters.toString)
122
+
123
+ def setPoolingStrategy(self, value):
124
+ """Pooling strategy to use for sentence embeddings.
125
+
126
+ Available pooling strategies for sentence embeddings are:
127
+ - `"cls"`: leading `[CLS]` token
128
+ - `"cls_avg"`: leading `[CLS]` token + mean of all other tokens
129
+ - `"last"`: embeddings of the last token in the sequence
130
+ - `"avg"`: mean of all tokens
131
+ - `"max"`: max of all embedding features of the entire token sequence
132
+ - `"int"`: An integer number, which represents the index of the token to use as the
133
+ embedding
134
+
135
+ Parameters
136
+ ----------
137
+ value : str
138
+ Pooling strategy to use for sentence embeddings
139
+ """
140
+
141
+ valid_strategies = {"cls", "cls_avg", "last", "avg", "max"}
142
+ if value in valid_strategies or value.isdigit():
143
+ return self._set(poolingStrategy=value)
144
+ else:
145
+ raise ValueError(f"Invalid pooling strategy: {value}. "
146
+ f"Valid strategies are: {', '.join(self.valid_strategies)} or an integer.")
147
+
148
+ @keyword_only
149
+ def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.SnowFlakeEmbeddings", java_model=None):
150
+ super(SnowFlakeEmbeddings, self).__init__(
151
+ classname=classname,
152
+ java_model=java_model
153
+ )
154
+ self._setDefault(
155
+ dimension=1024,
156
+ batchSize=8,
157
+ maxSentenceLength=512,
158
+ caseSensitive=False,
159
+ poolingStrategy="cls"
160
+ )
161
+
162
+ @staticmethod
163
+ def loadSavedModel(folder, spark_session):
164
+ """Loads a locally saved model.
165
+
166
+ Parameters
167
+ ----------
168
+ folder : str
169
+ Folder of the saved model
170
+ spark_session : pyspark.sql.SparkSession
171
+ The current SparkSession
172
+
173
+ Returns
174
+ -------
175
+ SnowFlakeEmbeddings
176
+ The restored model
177
+ """
178
+ from sparknlp.internal import _SnowFlakeEmbeddingsLoader
179
+ jModel = _SnowFlakeEmbeddingsLoader(folder, spark_session._jsparkSession)._java_obj
180
+ return SnowFlakeEmbeddings(java_model=jModel)
181
+
182
+ @staticmethod
183
+ def pretrained(name="snowflake_artic_m", lang="en", remote_loc=None):
184
+ """Downloads and loads a pretrained model.
185
+
186
+ Parameters
187
+ ----------
188
+ name : str, optional
189
+ Name of the pretrained model, by default "snowflake_artic_m"
190
+ lang : str, optional
191
+ Language of the pretrained model, by default "en"
192
+ remote_loc : str, optional
193
+ Optional remote address of the resource, by default None. Will use
194
+ Spark NLPs repositories otherwise.
195
+
196
+ Returns
197
+ -------
198
+ SnowFlakeEmbeddings
199
+ The restored model
200
+ """
201
+ from sparknlp.pretrained import ResourceDownloader
202
+ return ResourceDownloader.downloadModel(SnowFlakeEmbeddings, name, lang, remote_loc)
@@ -0,0 +1,211 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for UAEEmbeddings."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class UAEEmbeddings(AnnotatorModel,
20
+ HasEmbeddingsProperties,
21
+ HasCaseSensitiveProperties,
22
+ HasStorageRef,
23
+ HasBatchedAnnotate,
24
+ HasMaxSentenceLengthLimit):
25
+ """Sentence embeddings using Universal AnglE Embedding (UAE).
26
+
27
+ UAE is a novel angle-optimized text embedding model, designed to improve semantic textual
28
+ similarity tasks, which are crucial for Large Language Model (LLM) applications. By
29
+ introducing angle optimization in a complex space, AnglE effectively mitigates saturation of
30
+ the cosine similarity function.
31
+
32
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
33
+ object:
34
+
35
+ >>> embeddings = UAEEmbeddings.pretrained() \\
36
+ ... .setInputCols(["document"]) \\
37
+ ... .setOutputCol("UAE_embeddings")
38
+
39
+
40
+ The default model is ``"uae_large_v1"``, if no name is provided.
41
+
42
+ For available pretrained models please see the
43
+ `Models Hub <https://sparknlp.org/models?q=UAE>`__.
44
+
45
+
46
+ ====================== ======================
47
+ Input Annotation types Output Annotation type
48
+ ====================== ======================
49
+ ``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
50
+ ====================== ======================
51
+
52
+ Parameters
53
+ ----------
54
+ batchSize
55
+ Size of every batch , by default 8
56
+ dimension
57
+ Number of embedding dimensions, by default 768
58
+ caseSensitive
59
+ Whether to ignore case in tokens for embeddings matching, by default False
60
+ maxSentenceLength
61
+ Max sentence length to process, by default 512
62
+ configProtoBytes
63
+ ConfigProto from tensorflow, serialized into byte array.
64
+
65
+ References
66
+ ----------
67
+
68
+ `AnglE-optimized Text Embeddings <https://arxiv.org/abs/2309.12871>`__
69
+ `UAE Github Repository <https://github.com/baochi0212/uae-embedding>`__
70
+
71
+ **Paper abstract**
72
+
73
+ *High-quality text embedding is pivotal in improving semantic textual similarity (STS) tasks,
74
+ which are crucial components in Large Language Model (LLM) applications. However, a common
75
+ challenge existing text embedding models face is the problem of vanishing gradients, primarily
76
+ due to their reliance on the cosine function in the optimization objective, which has
77
+ saturation zones. To address this issue, this paper proposes a novel angle-optimized text
78
+ embedding model called AnglE. The core idea of AnglE is to introduce angle optimization in a
79
+ complex space. This novel approach effectively mitigates the adverse effects of the saturation
80
+ zone in the cosine function, which can impede gradient and hinder optimization processes. To
81
+ set up a comprehensive STS evaluation, we experimented on existing short-text STS datasets and
82
+ a newly collected long-text STS dataset from GitHub Issues. Furthermore, we examine
83
+ domain-specific STS scenarios with limited labeled data and explore how AnglE works with
84
+ LLM-annotated data. Extensive experiments were conducted on various tasks including short-text
85
+ STS, long-text STS, and domain-specific STS tasks. The results show that AnglE outperforms the
86
+ state-of-the-art (SOTA) STS models that ignore the cosine saturation zone. These findings
87
+ demonstrate the ability of AnglE to generate high-quality text embeddings and the usefulness
88
+ of angle optimization in STS.*
89
+
90
+ Examples
91
+ --------
92
+ >>> import sparknlp
93
+ >>> from sparknlp.base import *
94
+ >>> from sparknlp.annotator import *
95
+ >>> from pyspark.ml import Pipeline
96
+ >>> documentAssembler = DocumentAssembler() \\
97
+ ... .setInputCol("text") \\
98
+ ... .setOutputCol("document")
99
+ >>> embeddings = UAEEmbeddings.pretrained() \\
100
+ ... .setInputCols(["document"]) \\
101
+ ... .setOutputCol("embeddings")
102
+ >>> embeddingsFinisher = EmbeddingsFinisher() \\
103
+ ... .setInputCols("embeddings") \\
104
+ ... .setOutputCols("finished_embeddings") \\
105
+ ... .setOutputAsVector(True)
106
+ >>> pipeline = Pipeline().setStages([
107
+ ... documentAssembler,
108
+ ... embeddings,
109
+ ... embeddingsFinisher
110
+ ... ])
111
+ >>> data = spark.createDataFrame([["hello world", "hello moon"]]).toDF("text")
112
+ >>> result = pipeline.fit(data).transform(data)
113
+ >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
114
+ +--------------------------------------------------------------------------------+
115
+ | result|
116
+ +--------------------------------------------------------------------------------+
117
+ |[0.50387806, 0.5861606, 0.35129607, -0.76046336, -0.32446072, -0.117674336, 0...|
118
+ |[0.6660665, 0.961762, 0.24854276, -0.1018044, -0.6569202, 0.027635604, 0.1915...|
119
+ +--------------------------------------------------------------------------------+
120
+ """
121
+
122
+ name = "UAEEmbeddings"
123
+
124
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
125
+
126
+ outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
127
+ poolingStrategy = Param(Params._dummy(),
128
+ "poolingStrategy",
129
+ "Pooling strategy to use for sentence embeddings",
130
+ TypeConverters.toString)
131
+
132
+ def setPoolingStrategy(self, value):
133
+ """Pooling strategy to use for sentence embeddings.
134
+
135
+ Available pooling strategies for sentence embeddings are:
136
+ - `"cls"`: leading `[CLS]` token
137
+ - `"cls_avg"`: leading `[CLS]` token + mean of all other tokens
138
+ - `"last"`: embeddings of the last token in the sequence
139
+ - `"avg"`: mean of all tokens
140
+ - `"max"`: max of all embedding features of the entire token sequence
141
+ - `"int"`: An integer number, which represents the index of the token to use as the
142
+ embedding
143
+
144
+ Parameters
145
+ ----------
146
+ value : str
147
+ Pooling strategy to use for sentence embeddings
148
+ """
149
+
150
+ valid_strategies = {"cls", "cls_avg", "last", "avg", "max"}
151
+ if value in valid_strategies or value.isdigit():
152
+ return self._set(poolingStrategy=value)
153
+ else:
154
+ raise ValueError(f"Invalid pooling strategy: {value}. "
155
+ f"Valid strategies are: {', '.join(self.valid_strategies)} or an integer.")
156
+
157
+ @keyword_only
158
+ def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.UAEEmbeddings", java_model=None):
159
+ super(UAEEmbeddings, self).__init__(
160
+ classname=classname,
161
+ java_model=java_model
162
+ )
163
+ self._setDefault(
164
+ dimension=1024,
165
+ batchSize=8,
166
+ maxSentenceLength=512,
167
+ caseSensitive=False,
168
+ poolingStrategy="cls"
169
+ )
170
+
171
+ @staticmethod
172
+ def loadSavedModel(folder, spark_session):
173
+ """Loads a locally saved model.
174
+
175
+ Parameters
176
+ ----------
177
+ folder : str
178
+ Folder of the saved model
179
+ spark_session : pyspark.sql.SparkSession
180
+ The current SparkSession
181
+
182
+ Returns
183
+ -------
184
+ UAEEmbeddings
185
+ The restored model
186
+ """
187
+ from sparknlp.internal import _UAEEmbeddingsLoader
188
+ jModel = _UAEEmbeddingsLoader(folder, spark_session._jsparkSession)._java_obj
189
+ return UAEEmbeddings(java_model=jModel)
190
+
191
+ @staticmethod
192
+ def pretrained(name="uae_large_v1", lang="en", remote_loc=None):
193
+ """Downloads and loads a pretrained model.
194
+
195
+ Parameters
196
+ ----------
197
+ name : str, optional
198
+ Name of the pretrained model, by default "UAE_small"
199
+ lang : str, optional
200
+ Language of the pretrained model, by default "en"
201
+ remote_loc : str, optional
202
+ Optional remote address of the resource, by default None. Will use
203
+ Spark NLPs repositories otherwise.
204
+
205
+ Returns
206
+ -------
207
+ UAEEmbeddings
208
+ The restored model
209
+ """
210
+ from sparknlp.pretrained import ResourceDownloader
211
+ return ResourceDownloader.downloadModel(UAEEmbeddings, name, lang, remote_loc)
@@ -35,10 +35,10 @@ class UniversalSentenceEncoder(AnnotatorModel,
35
35
 
36
36
  The default model is ``"tfhub_use"``, if no name is provided. For available
37
37
  pretrained models please see the `Models Hub
38
- <https://nlp.johnsnowlabs.com/models?task=Embeddings>`__.
38
+ <https://sparknlp.org/models?task=Embeddings>`__.
39
39
 
40
- For extended examples of usage, see the `Spark NLP Workshop
41
- <https://github.com/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Public/3.SparkNLP_Pretrained_Models.ipynb>`__.
40
+ For extended examples of usage, see the `Examples
41
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/ClassifierDL_Train_multi_class_news_category_classifier.ipynb>`__.
42
42
 
43
43
  ====================== =======================
44
44
  Input Annotation types Output Annotation type
@@ -32,7 +32,7 @@ class Word2VecApproach(AnnotatorApproach, HasStorageRef, HasEnableCachingPropert
32
32
 
33
33
  For instantiated/pretrained models, see :class:`.Word2VecModel`.
34
34
 
35
- For available pretrained models please see the `Models Hub <https://nlp.johnsnowlabs.com/models>`__.
35
+ For available pretrained models please see the `Models Hub <https://sparknlp.org/models>`__.
36
36
 
37
37
  ====================== =======================
38
38
  Input Annotation types Output Annotation type
@@ -345,3 +345,9 @@ class Word2VecModel(AnnotatorModel, HasStorageRef, HasEmbeddingsProperties):
345
345
  from sparknlp.pretrained import ResourceDownloader
346
346
  return ResourceDownloader.downloadModel(Word2VecModel, name, lang, remote_loc)
347
347
 
348
+ def getVectors(self):
349
+ """
350
+ Returns the vector representation of the words as a dataframe
351
+ with two fields, word and vector.
352
+ """
353
+ return self._call_java("getVectors")
@@ -41,8 +41,8 @@ class WordEmbeddings(AnnotatorApproach, HasEmbeddingsProperties, HasStorage):
41
41
  :meth:`WordEmbeddingsModel.overallCoverage()
42
42
  <sparknlp.annotator.WordEmbeddingsModel.overallCoverage>`.
43
43
 
44
- For extended examples of usage, see the `Spark NLP Workshop
45
- <https://github.com/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Public/3.SparkNLP_Pretrained_Models.ipynb>`__.
44
+ For extended examples of usage, see the `Examples
45
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/scala/training/NerDL/win/customNerDlPipeline/CustomForNerDLPipeline.java>`__.
46
46
 
47
47
  ====================== ======================
48
48
  Input Annotation types Output Annotation type
@@ -177,9 +177,9 @@ class WordEmbeddingsModel(AnnotatorModel, HasEmbeddingsProperties, HasStorageMod
177
177
 
178
178
  The default model is ``"glove_100d"``, if no name is provided. For available
179
179
  pretrained models please see the `Models Hub
180
- <https://nlp.johnsnowlabs.com/models?task=Embeddings>`__.
180
+ <https://sparknlp.org/models?task=Embeddings>`__.
181
181
 
182
- For extended examples of usage, see the `Spark NLP Workshop <https://github.com/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Public/3.SparkNLP_Pretrained_Models.ipynb>`__.
182
+ For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_offline.ipynb>`__.
183
183
 
184
184
  ====================== ======================
185
185
  Input Annotation types Output Annotation type
@@ -383,4 +383,3 @@ class WordEmbeddingsModel(AnnotatorModel, HasEmbeddingsProperties, HasStorageMod
383
383
  Identifiers for the model parameters
384
384
  """
385
385
  HasStorageModel.loadStorages(path, spark, storage_ref, WordEmbeddingsModel.databases)
386
-
@@ -21,7 +21,8 @@ class XlmRoBertaEmbeddings(AnnotatorModel,
21
21
  HasCaseSensitiveProperties,
22
22
  HasStorageRef,
23
23
  HasBatchedAnnotate,
24
- HasEngine):
24
+ HasEngine,
25
+ HasMaxSentenceLengthLimit):
25
26
  """The XLM-RoBERTa model was proposed in `Unsupervised Cross-lingual
26
27
  Representation Learning at Scale` by Alexis Conneau, Kartikay Khandelwal,
27
28
  Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzman, Edouard
@@ -40,10 +41,10 @@ class XlmRoBertaEmbeddings(AnnotatorModel,
40
41
  The default model is ``"xlm_roberta_base"``, default language is ``"xx"``
41
42
  (meaning multi-lingual), if no values are provided. For available pretrained
42
43
  models please see the `Models Hub
43
- <https://nlp.johnsnowlabs.com/models?task=Embeddings>`__.
44
+ <https://sparknlp.org/models?task=Embeddings>`__.
44
45
 
45
- For extended examples of usage, see the `Spark NLP Workshop
46
- <https://github.com/JohnSnowLabs/spark-nlp-workshop/blob/master/jupyter/transformers/HuggingFace%20in%20Spark%20NLP%20-%20XLM-RoBERTa.ipynb>`__.
46
+ For extended examples of usage, see the `Examples
47
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/transformers/HuggingFace%20in%20Spark%20NLP%20-%20XLM-RoBERTa.ipynb>`__.
47
48
  To see which models are compatible and how to import them see
48
49
  `Import Transformers into Spark NLP 🚀
49
50
  <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
@@ -151,11 +152,6 @@ class XlmRoBertaEmbeddings(AnnotatorModel,
151
152
 
152
153
  outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS
153
154
 
154
- maxSentenceLength = Param(Params._dummy(),
155
- "maxSentenceLength",
156
- "Max sentence length to process",
157
- typeConverter=TypeConverters.toInt)
158
-
159
155
  configProtoBytes = Param(Params._dummy(),
160
156
  "configProtoBytes",
161
157
  "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
@@ -171,16 +167,6 @@ class XlmRoBertaEmbeddings(AnnotatorModel,
171
167
  """
172
168
  return self._set(configProtoBytes=b)
173
169
 
174
- def setMaxSentenceLength(self, value):
175
- """Sets max sentence length to process.
176
-
177
- Parameters
178
- ----------
179
- value : int
180
- Max sentence length to process
181
- """
182
- return self._set(maxSentenceLength=value)
183
-
184
170
  @keyword_only
185
171
  def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.XlmRoBertaEmbeddings", java_model=None):
186
172
  super(XlmRoBertaEmbeddings, self).__init__(
@@ -195,7 +181,7 @@ class XlmRoBertaEmbeddings(AnnotatorModel,
195
181
  )
196
182
 
197
183
  @staticmethod
198
- def loadSavedModel(folder, spark_session):
184
+ def loadSavedModel(folder, spark_session, use_openvino=False):
199
185
  """Loads a locally saved model.
200
186
 
201
187
  Parameters
@@ -204,6 +190,8 @@ class XlmRoBertaEmbeddings(AnnotatorModel,
204
190
  Folder of the saved model
205
191
  spark_session : pyspark.sql.SparkSession
206
192
  The current SparkSession
193
+ use_openvino: bool
194
+ Use OpenVINO backend
207
195
 
208
196
  Returns
209
197
  -------
@@ -211,7 +199,7 @@ class XlmRoBertaEmbeddings(AnnotatorModel,
211
199
  The restored model
212
200
  """
213
201
  from sparknlp.internal import _XlmRoBertaLoader
214
- jModel = _XlmRoBertaLoader(folder, spark_session._jsparkSession)._java_obj
202
+ jModel = _XlmRoBertaLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
215
203
  return XlmRoBertaEmbeddings(java_model=jModel)
216
204
 
217
205
  @staticmethod
@@ -17,11 +17,12 @@ from sparknlp.common import *
17
17
 
18
18
 
19
19
  class XlmRoBertaSentenceEmbeddings(AnnotatorModel,
20
- HasEmbeddingsProperties,
21
- HasCaseSensitiveProperties,
22
- HasStorageRef,
23
- HasBatchedAnnotate,
24
- HasEngine):
20
+ HasEmbeddingsProperties,
21
+ HasCaseSensitiveProperties,
22
+ HasStorageRef,
23
+ HasBatchedAnnotate,
24
+ HasEngine,
25
+ HasMaxSentenceLengthLimit):
25
26
  """Sentence-level embeddings using XLM-RoBERTa. The XLM-RoBERTa model was proposed in Unsupervised Cross-lingual
26
27
  Representation Learning at Scale by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary,
27
28
  Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based
@@ -39,7 +40,7 @@ class XlmRoBertaSentenceEmbeddings(AnnotatorModel,
39
40
  The default model is ``"sent_xlm_roberta_base"``, if no name is provided.
40
41
 
41
42
  For available pretrained models please see the
42
- `Models Hub <https://nlp.johnsnowlabs.com/models?task=Embeddings>`__.
43
+ `Models Hub <https://sparknlp.org/models?task=Embeddings>`__.
43
44
 
44
45
  ====================== =======================
45
46
  Input Annotation types Output Annotation type
@@ -122,11 +123,6 @@ class XlmRoBertaSentenceEmbeddings(AnnotatorModel,
122
123
 
123
124
  outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
124
125
 
125
- maxSentenceLength = Param(Params._dummy(),
126
- "maxSentenceLength",
127
- "Max sentence length to process",
128
- typeConverter=TypeConverters.toInt)
129
-
130
126
  configProtoBytes = Param(Params._dummy(),
131
127
  "configProtoBytes",
132
128
  "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
@@ -142,16 +138,6 @@ class XlmRoBertaSentenceEmbeddings(AnnotatorModel,
142
138
  """
143
139
  return self._set(configProtoBytes=b)
144
140
 
145
- def setMaxSentenceLength(self, value):
146
- """Sets max sentence length to process.
147
-
148
- Parameters
149
- ----------
150
- value : int
151
- Max sentence length to process
152
- """
153
- return self._set(maxSentenceLength=value)
154
-
155
141
  @keyword_only
156
142
  def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.XlmRoBertaSentenceEmbeddings", java_model=None):
157
143
  super(XlmRoBertaSentenceEmbeddings, self).__init__(
@@ -21,7 +21,8 @@ class XlnetEmbeddings(AnnotatorModel,
21
21
  HasCaseSensitiveProperties,
22
22
  HasStorageRef,
23
23
  HasBatchedAnnotate,
24
- HasEngine):
24
+ HasEngine,
25
+ HasMaxSentenceLengthLimit):
25
26
  """XlnetEmbeddings (XLNet): Generalized Autoregressive Pretraining for
26
27
  Language Understanding
27
28
 
@@ -53,8 +54,8 @@ class XlnetEmbeddings(AnnotatorModel,
53
54
 
54
55
  The default model is ``"xlnet_base_cased"``, if no name is provided.
55
56
 
56
- For extended examples of usage, see the `Spark NLP Workshop
57
- <https://github.com/JohnSnowLabs/spark-nlp-workshop/blob/master/jupyter/training/english/dl-ner/ner_xlnet.ipynb>`__.
57
+ For extended examples of usage, see the `Examples
58
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/dl-ner/ner_xlnet.ipynb>`__.
58
59
  To see which models are compatible and how to import them see
59
60
  `Import Transformers into Spark NLP 🚀
60
61
  <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
@@ -160,11 +161,6 @@ class XlnetEmbeddings(AnnotatorModel,
160
161
  "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
161
162
  TypeConverters.toListInt)
162
163
 
163
- maxSentenceLength = Param(Params._dummy(),
164
- "maxSentenceLength",
165
- "Max sentence length to process",
166
- typeConverter=TypeConverters.toInt)
167
-
168
164
  def setConfigProtoBytes(self, b):
169
165
  """Sets configProto from tensorflow, serialized into byte array.
170
166
 
@@ -175,16 +171,6 @@ class XlnetEmbeddings(AnnotatorModel,
175
171
  """
176
172
  return self._set(configProtoBytes=b)
177
173
 
178
- def setMaxSentenceLength(self, value):
179
- """Sets max sentence length to process.
180
-
181
- Parameters
182
- ----------
183
- value : int
184
- Max sentence length to process
185
- """
186
- return self._set(maxSentenceLength=value)
187
-
188
174
  @keyword_only
189
175
  def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.XlnetEmbeddings", java_model=None):
190
176
  super(XlnetEmbeddings, self).__init__(