mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
mteb/cli/generate_model_card.py
CHANGED
|
@@ -1,10 +1,12 @@
|
|
|
1
1
|
import logging
|
|
2
|
+
import warnings
|
|
3
|
+
from collections.abc import Sequence
|
|
2
4
|
from pathlib import Path
|
|
3
5
|
|
|
4
6
|
from huggingface_hub import ModelCard, ModelCardData, repo_exists
|
|
5
7
|
|
|
6
|
-
from mteb import BenchmarkResults
|
|
7
8
|
from mteb.abstasks.abstask import AbsTask
|
|
9
|
+
from mteb.benchmarks.benchmark import Benchmark
|
|
8
10
|
from mteb.cache import ResultCache
|
|
9
11
|
|
|
10
12
|
logger = logging.getLogger(__name__)
|
|
@@ -12,12 +14,13 @@ logger = logging.getLogger(__name__)
|
|
|
12
14
|
|
|
13
15
|
def generate_model_card(
|
|
14
16
|
model_name: str,
|
|
15
|
-
tasks:
|
|
17
|
+
tasks: Sequence[AbsTask] | None = None,
|
|
18
|
+
benchmarks: Sequence[Benchmark] | None = None,
|
|
16
19
|
existing_model_card_id_or_path: str | Path | None = None,
|
|
17
20
|
results_cache: ResultCache = ResultCache(),
|
|
18
21
|
output_path: Path = Path("model_card.md"),
|
|
19
22
|
add_table_to_model_card: bool = False,
|
|
20
|
-
models_to_compare:
|
|
23
|
+
models_to_compare: Sequence[str] | None = None,
|
|
21
24
|
token: str | None = None,
|
|
22
25
|
push_to_hub: bool = False,
|
|
23
26
|
) -> None:
|
|
@@ -26,6 +29,7 @@ def generate_model_card(
|
|
|
26
29
|
Args:
|
|
27
30
|
model_name: Name of the model.
|
|
28
31
|
tasks: List of tasks to generate results for.
|
|
32
|
+
benchmarks: A Benchmark or list of benchmarks to generate results for.
|
|
29
33
|
existing_model_card_id_or_path: Path or ID of an existing model card to update.
|
|
30
34
|
results_cache: Instance of ResultCache to load results from.
|
|
31
35
|
output_path: Path to save the generated model card.
|
|
@@ -39,16 +43,24 @@ def generate_model_card(
|
|
|
39
43
|
if existing_model_card_id_or_path:
|
|
40
44
|
existing_model_card = ModelCard.load(existing_model_card_id_or_path)
|
|
41
45
|
|
|
46
|
+
all_tasks: list[AbsTask] = []
|
|
47
|
+
if tasks is not None:
|
|
48
|
+
all_tasks.extend(tasks)
|
|
49
|
+
|
|
50
|
+
if benchmarks is not None:
|
|
51
|
+
for b in benchmarks:
|
|
52
|
+
all_tasks.extend(b.tasks)
|
|
53
|
+
|
|
42
54
|
benchmark_results = results_cache.load_results(
|
|
43
|
-
[model_name],
|
|
55
|
+
[model_name], all_tasks if all_tasks else None, only_main_score=True
|
|
44
56
|
)
|
|
45
57
|
eval_results = []
|
|
46
58
|
for models_results in benchmark_results.model_results:
|
|
47
59
|
for task_result in models_results.task_results:
|
|
48
60
|
eval_results.extend(task_result.get_hf_eval_results())
|
|
49
61
|
|
|
50
|
-
existing_model_card_data = (
|
|
51
|
-
existing_model_card.data if existing_model_card else ModelCardData()
|
|
62
|
+
existing_model_card_data: ModelCardData = (
|
|
63
|
+
existing_model_card.data if existing_model_card else ModelCardData() # type: ignore[assignment]
|
|
52
64
|
)
|
|
53
65
|
|
|
54
66
|
if existing_model_card_data.eval_results is None:
|
|
@@ -78,35 +90,43 @@ def generate_model_card(
|
|
|
78
90
|
card_data=existing_model_card_data
|
|
79
91
|
)
|
|
80
92
|
|
|
81
|
-
if models_to_compare:
|
|
82
|
-
benchmark_results = results_cache.load_results(
|
|
83
|
-
[model_name, *models_to_compare], tasks, only_main_score=True
|
|
84
|
-
)
|
|
85
|
-
|
|
86
93
|
if add_table_to_model_card:
|
|
87
94
|
existing_model_card = _add_table_to_model_card(
|
|
88
|
-
|
|
95
|
+
results_cache,
|
|
96
|
+
existing_model_card,
|
|
97
|
+
(model_name, *models_to_compare) if models_to_compare else (model_name,),
|
|
98
|
+
benchmarks or [],
|
|
89
99
|
)
|
|
90
100
|
|
|
91
|
-
if push_to_hub:
|
|
101
|
+
if push_to_hub and existing_model_card_id_or_path:
|
|
102
|
+
existing_model_card_id_or_path = str(existing_model_card_id_or_path)
|
|
92
103
|
if repo_exists(existing_model_card_id_or_path):
|
|
93
104
|
existing_model_card.push_to_hub(existing_model_card_id_or_path, token=token)
|
|
94
105
|
else:
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
)
|
|
106
|
+
msg = f"Repository {existing_model_card_id_or_path} does not exist on the Hub. Skipping push to hub."
|
|
107
|
+
logger.warning(msg)
|
|
108
|
+
warnings.warn(msg)
|
|
98
109
|
existing_model_card.save(output_path)
|
|
99
110
|
|
|
100
111
|
|
|
101
112
|
def _add_table_to_model_card(
|
|
102
|
-
|
|
113
|
+
results_cache: ResultCache,
|
|
114
|
+
model_card: ModelCard,
|
|
115
|
+
models: Sequence[str],
|
|
116
|
+
benchmarks: Sequence[Benchmark],
|
|
103
117
|
) -> ModelCard:
|
|
104
118
|
original_content = model_card.content
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
119
|
+
mteb_content = "# MTEB Results\n\n"
|
|
120
|
+
|
|
121
|
+
for benchmark in benchmarks:
|
|
122
|
+
mteb_content += f"## Benchmark: {benchmark.name}\n\n"
|
|
123
|
+
benchmark_results = results_cache.load_results(
|
|
124
|
+
tasks=benchmark,
|
|
125
|
+
models=models,
|
|
126
|
+
only_main_score=True,
|
|
127
|
+
)
|
|
128
|
+
df_results = benchmark_results.get_benchmark_result()
|
|
129
|
+
mteb_content += df_results.to_markdown(index=True) + "\n\n"
|
|
130
|
+
|
|
111
131
|
model_card.content = original_content + "\n\n" + mteb_content
|
|
112
132
|
return model_card
|
mteb/deprecated_evaluator.py
CHANGED
|
@@ -5,39 +5,35 @@ import logging
|
|
|
5
5
|
import os
|
|
6
6
|
import sys
|
|
7
7
|
import traceback
|
|
8
|
-
|
|
8
|
+
import warnings
|
|
9
|
+
from collections.abc import Iterable, Sequence
|
|
9
10
|
from copy import deepcopy
|
|
10
11
|
from datetime import datetime
|
|
11
12
|
from itertools import chain
|
|
12
13
|
from pathlib import Path
|
|
13
14
|
from time import time
|
|
14
|
-
from typing import TYPE_CHECKING, Any
|
|
15
|
-
|
|
16
|
-
from mteb.abstasks.task_metadata import TaskCategory, TaskType
|
|
17
|
-
from mteb.models.get_model_meta import (
|
|
18
|
-
_model_meta_from_cross_encoder,
|
|
19
|
-
_model_meta_from_sentence_transformers,
|
|
20
|
-
)
|
|
21
|
-
|
|
22
|
-
if sys.version_info >= (3, 13):
|
|
23
|
-
from warnings import deprecated
|
|
24
|
-
else:
|
|
25
|
-
from typing_extensions import deprecated
|
|
15
|
+
from typing import TYPE_CHECKING, Any, cast
|
|
26
16
|
|
|
27
17
|
import datasets
|
|
28
18
|
|
|
29
19
|
import mteb
|
|
30
20
|
from mteb.abstasks import AbsTask
|
|
21
|
+
from mteb.abstasks.aggregated_task import AbsTaskAggregate
|
|
22
|
+
from mteb.abstasks.task_metadata import TaskCategory, TaskType
|
|
31
23
|
from mteb.benchmarks import Benchmark
|
|
32
24
|
from mteb.models import (
|
|
33
25
|
CrossEncoderWrapper,
|
|
34
|
-
EncoderProtocol,
|
|
35
26
|
ModelMeta,
|
|
36
27
|
MTEBModels,
|
|
37
28
|
SentenceTransformerEncoderWrapper,
|
|
38
29
|
)
|
|
39
30
|
from mteb.results import TaskResult
|
|
40
|
-
from mteb.types import ScoresDict
|
|
31
|
+
from mteb.types import EncodeKwargs, ScoresDict
|
|
32
|
+
|
|
33
|
+
if sys.version_info >= (3, 13):
|
|
34
|
+
from warnings import deprecated
|
|
35
|
+
else:
|
|
36
|
+
from typing_extensions import deprecated
|
|
41
37
|
|
|
42
38
|
if TYPE_CHECKING:
|
|
43
39
|
from sentence_transformers import CrossEncoder, SentenceTransformer
|
|
@@ -57,7 +53,7 @@ class MTEB:
|
|
|
57
53
|
)
|
|
58
54
|
def __init__(
|
|
59
55
|
self,
|
|
60
|
-
tasks: Iterable[AbsTask | Benchmark],
|
|
56
|
+
tasks: Iterable[AbsTask] | Iterable[Benchmark],
|
|
61
57
|
*,
|
|
62
58
|
err_logs_path: str = "error_logs.txt",
|
|
63
59
|
) -> None:
|
|
@@ -68,15 +64,14 @@ class MTEB:
|
|
|
68
64
|
`mteb.get_tasks(["task1","task2"]) or `mteb.get_benchmark("MTEB(eng, classic)").
|
|
69
65
|
err_logs_path: Path to save error logs.
|
|
70
66
|
"""
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
self.tasks = list(tasks)
|
|
74
|
-
if len(self.tasks) > 0 and isinstance(self.tasks[0], Benchmark):
|
|
67
|
+
if isinstance(next(iter(tasks)), Benchmark):
|
|
75
68
|
self.benchmarks = tasks
|
|
76
|
-
self.tasks = list(chain.from_iterable(
|
|
69
|
+
self.tasks = list(chain.from_iterable(cast(Iterable[Benchmark], tasks)))
|
|
70
|
+
elif isinstance(next(iter(tasks)), AbsTask):
|
|
71
|
+
self.tasks = list(cast(Iterable[AbsTask], tasks))
|
|
77
72
|
|
|
78
73
|
self.err_logs_path = Path(err_logs_path)
|
|
79
|
-
self.
|
|
74
|
+
self._last_evaluated_splits: dict[str, list[str]] = {}
|
|
80
75
|
|
|
81
76
|
@property
|
|
82
77
|
def available_tasks(self) -> list[str]:
|
|
@@ -89,7 +84,7 @@ class MTEB:
|
|
|
89
84
|
return sorted({x.metadata.type for x in self.tasks})
|
|
90
85
|
|
|
91
86
|
@property
|
|
92
|
-
def available_task_categories(self) -> set[TaskCategory]:
|
|
87
|
+
def available_task_categories(self) -> set[TaskCategory | None]:
|
|
93
88
|
"""Set of available task categories."""
|
|
94
89
|
return {x.metadata.category for x in self.tasks}
|
|
95
90
|
|
|
@@ -179,7 +174,7 @@ class MTEB:
|
|
|
179
174
|
split: str,
|
|
180
175
|
subsets_to_run: list[str] | None = None,
|
|
181
176
|
*,
|
|
182
|
-
encode_kwargs:
|
|
177
|
+
encode_kwargs: EncodeKwargs,
|
|
183
178
|
**kwargs: Any,
|
|
184
179
|
):
|
|
185
180
|
tick = time()
|
|
@@ -236,13 +231,14 @@ class MTEB:
|
|
|
236
231
|
merged_kg_co2_emissions = None
|
|
237
232
|
if existing_kg_co2_emissions and new_kg_co2_emissions:
|
|
238
233
|
merged_kg_co2_emissions = existing_kg_co2_emissions + new_kg_co2_emissions
|
|
234
|
+
existing_evaluation_time = existing_results.evaluation_time or 0
|
|
235
|
+
new_evaluation_time = new_results.evaluation_time or 0
|
|
239
236
|
merged_results = TaskResult(
|
|
240
237
|
dataset_revision=new_results.dataset_revision,
|
|
241
238
|
task_name=new_results.task_name,
|
|
242
239
|
mteb_version=new_results.mteb_version,
|
|
243
240
|
scores=merged_scores,
|
|
244
|
-
evaluation_time=
|
|
245
|
-
+ new_results.evaluation_time,
|
|
241
|
+
evaluation_time=existing_evaluation_time + new_evaluation_time,
|
|
246
242
|
kg_co2_emissions=merged_kg_co2_emissions,
|
|
247
243
|
)
|
|
248
244
|
|
|
@@ -267,7 +263,7 @@ class MTEB:
|
|
|
267
263
|
overwrite_results: bool = False,
|
|
268
264
|
raise_error: bool = True,
|
|
269
265
|
co2_tracker: bool = False,
|
|
270
|
-
encode_kwargs:
|
|
266
|
+
encode_kwargs: EncodeKwargs | None = None,
|
|
271
267
|
**kwargs,
|
|
272
268
|
) -> list[TaskResult]:
|
|
273
269
|
"""Run the evaluation pipeline on the selected tasks.
|
|
@@ -311,13 +307,16 @@ class MTEB:
|
|
|
311
307
|
elif verbosity == 3:
|
|
312
308
|
datasets.logging.set_verbosity(logging.DEBUG)
|
|
313
309
|
|
|
314
|
-
|
|
315
|
-
output_path = self._create_output_folder(meta, output_folder)
|
|
316
|
-
|
|
310
|
+
mteb_model: MTEBModels
|
|
317
311
|
if isinstance(model, SentenceTransformer):
|
|
318
|
-
|
|
312
|
+
mteb_model = SentenceTransformerEncoderWrapper(model)
|
|
319
313
|
elif isinstance(model, CrossEncoder):
|
|
320
|
-
|
|
314
|
+
mteb_model = CrossEncoderWrapper(model)
|
|
315
|
+
else:
|
|
316
|
+
mteb_model = cast(MTEBModels, model)
|
|
317
|
+
|
|
318
|
+
meta = self.create_model_meta(mteb_model)
|
|
319
|
+
output_path = self._create_output_folder(meta, output_folder)
|
|
321
320
|
|
|
322
321
|
# Disable co2_tracker for API models
|
|
323
322
|
if "API" in meta.framework:
|
|
@@ -338,7 +337,7 @@ class MTEB:
|
|
|
338
337
|
) # save them in case we re-use the object (e.g. for reranking)
|
|
339
338
|
|
|
340
339
|
# To evaluate missing splits, we keep track of the task name and the corresponding splits.
|
|
341
|
-
self.
|
|
340
|
+
self._last_evaluated_splits = {}
|
|
342
341
|
|
|
343
342
|
while len(self.tasks) > 0:
|
|
344
343
|
task = self.tasks[0]
|
|
@@ -347,9 +346,10 @@ class MTEB:
|
|
|
347
346
|
)
|
|
348
347
|
|
|
349
348
|
if task.is_aggregate:
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
349
|
+
aggregated_task = cast(AbsTaskAggregate, task)
|
|
350
|
+
self_ = MTEB(tasks=aggregated_task.metadata.tasks)
|
|
351
|
+
aggregated_task_results = self_.run(
|
|
352
|
+
mteb_model,
|
|
353
353
|
verbosity=verbosity - 1,
|
|
354
354
|
output_folder=output_folder,
|
|
355
355
|
eval_splits=eval_splits,
|
|
@@ -360,12 +360,15 @@ class MTEB:
|
|
|
360
360
|
encode_kwargs=encode_kwargs,
|
|
361
361
|
**kwargs,
|
|
362
362
|
)
|
|
363
|
-
new_results =
|
|
363
|
+
new_results = aggregated_task.combine_task_results(
|
|
364
|
+
aggregated_task_results
|
|
365
|
+
)
|
|
364
366
|
evaluation_results.append(new_results)
|
|
365
367
|
|
|
366
368
|
if output_path:
|
|
367
|
-
|
|
368
|
-
|
|
369
|
+
new_results.to_disk(
|
|
370
|
+
output_path / f"{aggregated_task.metadata.name}.json"
|
|
371
|
+
)
|
|
369
372
|
del self.tasks[0]
|
|
370
373
|
continue
|
|
371
374
|
|
|
@@ -387,7 +390,7 @@ class MTEB:
|
|
|
387
390
|
task_subsets = task.hf_subsets
|
|
388
391
|
|
|
389
392
|
existing_results = None
|
|
390
|
-
save_path = None
|
|
393
|
+
save_path: Path | None = None
|
|
391
394
|
final_splits_to_run = task_eval_splits
|
|
392
395
|
missing_evaluations = self._get_missing_evaluations(
|
|
393
396
|
existing_results,
|
|
@@ -437,7 +440,7 @@ class MTEB:
|
|
|
437
440
|
logger.info(
|
|
438
441
|
f"No splits to evaluate for {task.metadata.name}. Skipping evaluation."
|
|
439
442
|
)
|
|
440
|
-
self.
|
|
443
|
+
self._last_evaluated_splits[task.metadata.name] = []
|
|
441
444
|
del self.tasks[0]
|
|
442
445
|
continue
|
|
443
446
|
|
|
@@ -445,11 +448,11 @@ class MTEB:
|
|
|
445
448
|
task.check_if_dataset_is_superseded()
|
|
446
449
|
task.load_data()
|
|
447
450
|
|
|
448
|
-
task_results = {}
|
|
451
|
+
task_results: dict[str, dict[str, dict[str, Any]]] = {}
|
|
449
452
|
evaluation_time = 0
|
|
450
453
|
kg_co2_emissions: int | None = 0 if co2_tracker else None
|
|
451
454
|
|
|
452
|
-
self.
|
|
455
|
+
self._last_evaluated_splits[task.metadata.name] = []
|
|
453
456
|
|
|
454
457
|
for split in final_splits_to_run:
|
|
455
458
|
info = missing_evaluations[split]
|
|
@@ -470,14 +473,16 @@ class MTEB:
|
|
|
470
473
|
|
|
471
474
|
if co2_tracker:
|
|
472
475
|
try:
|
|
473
|
-
from codecarbon import
|
|
476
|
+
from codecarbon import ( # type: ignore[import-not-found,import-untyped]
|
|
477
|
+
EmissionsTracker,
|
|
478
|
+
)
|
|
474
479
|
except ImportError:
|
|
475
480
|
raise ImportError(
|
|
476
481
|
"codecarbon is not installed. Please install it using `pip install 'mteb[codecarbon]'` to track CO₂ emissions."
|
|
477
482
|
)
|
|
478
|
-
|
|
479
|
-
|
|
480
|
-
)
|
|
483
|
+
msg = "Evaluating multiple MTEB runs simultaneously will produce incorrect CO₂ results"
|
|
484
|
+
logger.warning(msg)
|
|
485
|
+
warnings.warn(msg)
|
|
481
486
|
with EmissionsTracker(
|
|
482
487
|
save_to_file=False,
|
|
483
488
|
save_to_api=False,
|
|
@@ -486,7 +491,7 @@ class MTEB:
|
|
|
486
491
|
) as tracker:
|
|
487
492
|
results, tick, tock = self._run_eval(
|
|
488
493
|
task,
|
|
489
|
-
|
|
494
|
+
mteb_model,
|
|
490
495
|
split,
|
|
491
496
|
encode_kwargs=encode_kwargs,
|
|
492
497
|
subsets_to_run=subsets_to_run,
|
|
@@ -499,7 +504,7 @@ class MTEB:
|
|
|
499
504
|
else:
|
|
500
505
|
results, tick, tock = self._run_eval(
|
|
501
506
|
task,
|
|
502
|
-
|
|
507
|
+
mteb_model,
|
|
503
508
|
split,
|
|
504
509
|
subsets_to_run=subsets_to_run,
|
|
505
510
|
encode_kwargs=encode_kwargs,
|
|
@@ -515,25 +520,25 @@ class MTEB:
|
|
|
515
520
|
if verbosity >= 1:
|
|
516
521
|
logger.info(f"Scores: {task_results[split]}")
|
|
517
522
|
|
|
518
|
-
self.
|
|
523
|
+
self._last_evaluated_splits[task.metadata.name].append(split)
|
|
519
524
|
|
|
520
525
|
# Create new TaskResult
|
|
521
526
|
new_results = TaskResult.from_task_results(
|
|
522
527
|
task,
|
|
523
|
-
task_results,
|
|
528
|
+
task_results, # type: ignore[arg-type]
|
|
524
529
|
evaluation_time=evaluation_time,
|
|
525
530
|
kg_co2_emissions=kg_co2_emissions,
|
|
526
531
|
)
|
|
527
532
|
|
|
528
533
|
# Merge with existing if needed
|
|
529
|
-
if output_path and save_path.exists():
|
|
534
|
+
if output_path and save_path and save_path.exists():
|
|
530
535
|
existing_results = TaskResult.from_disk(save_path)
|
|
531
536
|
if existing_results:
|
|
532
537
|
merged_results = self._merge_results(existing_results, new_results)
|
|
533
538
|
else:
|
|
534
539
|
merged_results = new_results
|
|
535
540
|
|
|
536
|
-
if output_path:
|
|
541
|
+
if output_path and save_path:
|
|
537
542
|
merged_results.to_disk(save_path)
|
|
538
543
|
|
|
539
544
|
evaluation_results.append(merged_results)
|
|
@@ -560,7 +565,7 @@ class MTEB:
|
|
|
560
565
|
def create_model_meta(model: MTEBModels) -> ModelMeta:
|
|
561
566
|
"""Create a ModelMeta object for the given model."""
|
|
562
567
|
if hasattr(model, "mteb_model_meta") and model.mteb_model_meta is not None:
|
|
563
|
-
meta = model.mteb_model_meta
|
|
568
|
+
meta = model.mteb_model_meta
|
|
564
569
|
else:
|
|
565
570
|
meta = MTEB._get_model_meta(model)
|
|
566
571
|
|
|
@@ -586,7 +591,11 @@ class MTEB:
|
|
|
586
591
|
if output_folder is None:
|
|
587
592
|
return None
|
|
588
593
|
|
|
589
|
-
model_revision: str =
|
|
594
|
+
model_revision: str = (
|
|
595
|
+
model_meta.revision
|
|
596
|
+
if model_meta.revision is not None
|
|
597
|
+
else "no_revision_available"
|
|
598
|
+
)
|
|
590
599
|
model_path_name = model_meta.model_name_as_path()
|
|
591
600
|
|
|
592
601
|
output_path = Path(output_folder) / model_path_name / model_revision
|
|
@@ -608,15 +617,15 @@ class MTEB:
|
|
|
608
617
|
Tasks with empty lists indicate that results already existed and no splits were evaluated.
|
|
609
618
|
"""
|
|
610
619
|
return deepcopy(
|
|
611
|
-
{task: list(splits) for task, splits in self.
|
|
620
|
+
{task: list(splits) for task, splits in self._last_evaluated_splits.items()}
|
|
612
621
|
)
|
|
613
622
|
|
|
614
623
|
@staticmethod
|
|
615
624
|
def _get_missing_evaluations(
|
|
616
625
|
existing_results: TaskResult | None,
|
|
617
|
-
task_eval_splits:
|
|
618
|
-
task_eval_langs:
|
|
619
|
-
eval_subsets:
|
|
626
|
+
task_eval_splits: Sequence[str],
|
|
627
|
+
task_eval_langs: Sequence[str],
|
|
628
|
+
eval_subsets: Sequence[str] | None,
|
|
620
629
|
) -> dict[str, dict[str, Any]]:
|
|
621
630
|
"""Return a dictionary for each split, indicating if the whole split is missing and which subsets are missing."""
|
|
622
631
|
missing_evaluations = {
|
|
@@ -665,13 +674,13 @@ class MTEB:
|
|
|
665
674
|
return missing_evaluations
|
|
666
675
|
|
|
667
676
|
@staticmethod
|
|
668
|
-
def _get_model_meta(model:
|
|
677
|
+
def _get_model_meta(model: MTEBModels) -> ModelMeta:
|
|
669
678
|
from sentence_transformers import CrossEncoder, SentenceTransformer
|
|
670
679
|
|
|
671
680
|
if isinstance(model, CrossEncoder):
|
|
672
|
-
meta =
|
|
681
|
+
meta = ModelMeta.from_cross_encoder(model)
|
|
673
682
|
elif isinstance(model, SentenceTransformer):
|
|
674
|
-
meta =
|
|
683
|
+
meta = ModelMeta.from_sentence_transformer_model(model)
|
|
675
684
|
else:
|
|
676
685
|
meta = ModelMeta(
|
|
677
686
|
loader=None,
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 19928,
|
|
4
|
+
"number_of_characters": 35466331,
|
|
5
|
+
"unique_pairs": 19928,
|
|
6
|
+
"sentence1_statistics": {
|
|
7
|
+
"total_text_length": 17733346,
|
|
8
|
+
"min_text_length": 103,
|
|
9
|
+
"average_text_length": 889.8708350060217,
|
|
10
|
+
"max_text_length": 11576,
|
|
11
|
+
"unique_texts": 19928
|
|
12
|
+
},
|
|
13
|
+
"sentence2_statistics": {
|
|
14
|
+
"total_text_length": 17732985,
|
|
15
|
+
"min_text_length": 103,
|
|
16
|
+
"average_text_length": 889.8527197912485,
|
|
17
|
+
"max_text_length": 11576,
|
|
18
|
+
"unique_texts": 19928
|
|
19
|
+
},
|
|
20
|
+
"hf_subset_descriptive_stats": {
|
|
21
|
+
"ru-en": {
|
|
22
|
+
"num_samples": 9965,
|
|
23
|
+
"number_of_characters": 17734926,
|
|
24
|
+
"unique_pairs": 9965,
|
|
25
|
+
"sentence1_statistics": {
|
|
26
|
+
"total_text_length": 8685585,
|
|
27
|
+
"min_text_length": 103,
|
|
28
|
+
"average_text_length": 871.6091319618665,
|
|
29
|
+
"max_text_length": 5675,
|
|
30
|
+
"unique_texts": 9965
|
|
31
|
+
},
|
|
32
|
+
"sentence2_statistics": {
|
|
33
|
+
"total_text_length": 9049341,
|
|
34
|
+
"min_text_length": 106,
|
|
35
|
+
"average_text_length": 908.1124937280482,
|
|
36
|
+
"max_text_length": 11576,
|
|
37
|
+
"unique_texts": 9965
|
|
38
|
+
}
|
|
39
|
+
},
|
|
40
|
+
"en-ru": {
|
|
41
|
+
"num_samples": 9963,
|
|
42
|
+
"number_of_characters": 17731405,
|
|
43
|
+
"unique_pairs": 9963,
|
|
44
|
+
"sentence1_statistics": {
|
|
45
|
+
"total_text_length": 9047761,
|
|
46
|
+
"min_text_length": 106,
|
|
47
|
+
"average_text_length": 908.1362039546322,
|
|
48
|
+
"max_text_length": 11576,
|
|
49
|
+
"unique_texts": 9963
|
|
50
|
+
},
|
|
51
|
+
"sentence2_statistics": {
|
|
52
|
+
"total_text_length": 8683644,
|
|
53
|
+
"min_text_length": 103,
|
|
54
|
+
"average_text_length": 871.5892803372478,
|
|
55
|
+
"max_text_length": 5675,
|
|
56
|
+
"unique_texts": 9963
|
|
57
|
+
}
|
|
58
|
+
}
|
|
59
|
+
}
|
|
60
|
+
}
|
|
61
|
+
}
|
|
@@ -0,0 +1,60 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 1085,
|
|
4
|
+
"number_texts_intersect_with_train": 0,
|
|
5
|
+
"text_statistics": {
|
|
6
|
+
"total_text_length": 115359,
|
|
7
|
+
"min_text_length": 8,
|
|
8
|
+
"average_text_length": 106.32165898617511,
|
|
9
|
+
"max_text_length": 2722,
|
|
10
|
+
"unique_texts": 1085
|
|
11
|
+
},
|
|
12
|
+
"image_statistics": null,
|
|
13
|
+
"label_statistics": {
|
|
14
|
+
"min_labels_per_text": 1,
|
|
15
|
+
"average_label_per_text": 1.0,
|
|
16
|
+
"max_labels_per_text": 1,
|
|
17
|
+
"unique_labels": 3,
|
|
18
|
+
"labels": {
|
|
19
|
+
"0": {
|
|
20
|
+
"count": 868
|
|
21
|
+
},
|
|
22
|
+
"1": {
|
|
23
|
+
"count": 190
|
|
24
|
+
},
|
|
25
|
+
"2": {
|
|
26
|
+
"count": 27
|
|
27
|
+
}
|
|
28
|
+
}
|
|
29
|
+
}
|
|
30
|
+
},
|
|
31
|
+
"train": {
|
|
32
|
+
"num_samples": 7176,
|
|
33
|
+
"number_texts_intersect_with_train": null,
|
|
34
|
+
"text_statistics": {
|
|
35
|
+
"total_text_length": 830248,
|
|
36
|
+
"min_text_length": 5,
|
|
37
|
+
"average_text_length": 115.69788182831661,
|
|
38
|
+
"max_text_length": 4759,
|
|
39
|
+
"unique_texts": 7176
|
|
40
|
+
},
|
|
41
|
+
"image_statistics": null,
|
|
42
|
+
"label_statistics": {
|
|
43
|
+
"min_labels_per_text": 1,
|
|
44
|
+
"average_label_per_text": 1.0,
|
|
45
|
+
"max_labels_per_text": 1,
|
|
46
|
+
"unique_labels": 3,
|
|
47
|
+
"labels": {
|
|
48
|
+
"0": {
|
|
49
|
+
"count": 4933
|
|
50
|
+
},
|
|
51
|
+
"1": {
|
|
52
|
+
"count": 2047
|
|
53
|
+
},
|
|
54
|
+
"2": {
|
|
55
|
+
"count": 196
|
|
56
|
+
}
|
|
57
|
+
}
|
|
58
|
+
}
|
|
59
|
+
}
|
|
60
|
+
}
|
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 193,
|
|
4
|
+
"number_texts_intersect_with_train": 0,
|
|
5
|
+
"text_statistics": {
|
|
6
|
+
"total_text_length": 1543015,
|
|
7
|
+
"min_text_length": 492,
|
|
8
|
+
"average_text_length": 7994.896373056995,
|
|
9
|
+
"max_text_length": 49510,
|
|
10
|
+
"unique_texts": 193
|
|
11
|
+
},
|
|
12
|
+
"image_statistics": null,
|
|
13
|
+
"label_statistics": {
|
|
14
|
+
"min_labels_per_text": 1,
|
|
15
|
+
"average_label_per_text": 1.0,
|
|
16
|
+
"max_labels_per_text": 1,
|
|
17
|
+
"unique_labels": 2,
|
|
18
|
+
"labels": {
|
|
19
|
+
"1": {
|
|
20
|
+
"count": 177
|
|
21
|
+
},
|
|
22
|
+
"0": {
|
|
23
|
+
"count": 16
|
|
24
|
+
}
|
|
25
|
+
}
|
|
26
|
+
}
|
|
27
|
+
},
|
|
28
|
+
"train": {
|
|
29
|
+
"num_samples": 870,
|
|
30
|
+
"number_texts_intersect_with_train": null,
|
|
31
|
+
"text_statistics": {
|
|
32
|
+
"total_text_length": 6968132,
|
|
33
|
+
"min_text_length": 259,
|
|
34
|
+
"average_text_length": 8009.347126436782,
|
|
35
|
+
"max_text_length": 74490,
|
|
36
|
+
"unique_texts": 870
|
|
37
|
+
},
|
|
38
|
+
"image_statistics": null,
|
|
39
|
+
"label_statistics": {
|
|
40
|
+
"min_labels_per_text": 1,
|
|
41
|
+
"average_label_per_text": 1.0,
|
|
42
|
+
"max_labels_per_text": 1,
|
|
43
|
+
"unique_labels": 2,
|
|
44
|
+
"labels": {
|
|
45
|
+
"1": {
|
|
46
|
+
"count": 755
|
|
47
|
+
},
|
|
48
|
+
"0": {
|
|
49
|
+
"count": 115
|
|
50
|
+
}
|
|
51
|
+
}
|
|
52
|
+
}
|
|
53
|
+
}
|
|
54
|
+
}
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 1299,
|
|
4
|
+
"number_of_characters": 9254,
|
|
5
|
+
"documents_text_statistics": null,
|
|
6
|
+
"documents_image_statistics": {
|
|
7
|
+
"min_image_width": 2245,
|
|
8
|
+
"average_image_width": 2370.324347826087,
|
|
9
|
+
"max_image_width": 3508,
|
|
10
|
+
"min_image_height": 2481,
|
|
11
|
+
"average_image_height": 3289.8060869565215,
|
|
12
|
+
"max_image_height": 3580,
|
|
13
|
+
"unique_images": 1132
|
|
14
|
+
},
|
|
15
|
+
"queries_text_statistics": {
|
|
16
|
+
"total_text_length": 9254,
|
|
17
|
+
"min_text_length": 15,
|
|
18
|
+
"average_text_length": 62.10738255033557,
|
|
19
|
+
"max_text_length": 108,
|
|
20
|
+
"unique_texts": 149
|
|
21
|
+
},
|
|
22
|
+
"queries_image_statistics": null,
|
|
23
|
+
"relevant_docs_statistics": {
|
|
24
|
+
"num_relevant_docs": 409,
|
|
25
|
+
"min_relevant_docs_per_query": 1,
|
|
26
|
+
"average_relevant_docs_per_query": 2.7449664429530203,
|
|
27
|
+
"max_relevant_docs_per_query": 7,
|
|
28
|
+
"unique_relevant_docs": 316
|
|
29
|
+
},
|
|
30
|
+
"top_ranked_statistics": null
|
|
31
|
+
}
|
|
32
|
+
}
|