mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (527) hide show
  1. mteb/__init__.py +6 -0
  2. mteb/_create_dataloaders.py +22 -20
  3. mteb/_evaluators/any_sts_evaluator.py +23 -14
  4. mteb/_evaluators/classification_metrics.py +54 -0
  5. mteb/_evaluators/clustering_evaluator.py +3 -3
  6. mteb/_evaluators/evaluator.py +4 -2
  7. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
  8. mteb/_evaluators/pair_classification_evaluator.py +34 -40
  9. mteb/_evaluators/retrieval_evaluator.py +2 -2
  10. mteb/_evaluators/retrieval_metrics.py +18 -17
  11. mteb/_evaluators/sklearn_evaluator.py +25 -37
  12. mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
  13. mteb/_evaluators/text/summarization_evaluator.py +27 -20
  14. mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
  15. mteb/abstasks/_data_filter/__init__.py +0 -0
  16. mteb/abstasks/_data_filter/filters.py +125 -0
  17. mteb/abstasks/_data_filter/task_pipelines.py +105 -0
  18. mteb/abstasks/_statistics_calculation.py +23 -11
  19. mteb/abstasks/_stratification.py +18 -18
  20. mteb/abstasks/abstask.py +35 -28
  21. mteb/abstasks/aggregate_task_metadata.py +1 -9
  22. mteb/abstasks/aggregated_task.py +10 -29
  23. mteb/abstasks/classification.py +15 -12
  24. mteb/abstasks/clustering.py +20 -16
  25. mteb/abstasks/clustering_legacy.py +13 -10
  26. mteb/abstasks/image/image_text_pair_classification.py +7 -4
  27. mteb/abstasks/multilabel_classification.py +33 -22
  28. mteb/abstasks/pair_classification.py +27 -11
  29. mteb/abstasks/regression.py +4 -4
  30. mteb/abstasks/retrieval.py +28 -24
  31. mteb/abstasks/retrieval_dataset_loaders.py +2 -2
  32. mteb/abstasks/sts.py +14 -4
  33. mteb/abstasks/task_metadata.py +32 -33
  34. mteb/abstasks/text/bitext_mining.py +39 -28
  35. mteb/abstasks/text/reranking.py +8 -6
  36. mteb/abstasks/text/summarization.py +10 -5
  37. mteb/abstasks/zeroshot_classification.py +8 -4
  38. mteb/benchmarks/_create_table.py +84 -37
  39. mteb/benchmarks/benchmark.py +77 -16
  40. mteb/benchmarks/benchmarks/__init__.py +12 -0
  41. mteb/benchmarks/benchmarks/benchmarks.py +361 -16
  42. mteb/benchmarks/get_benchmark.py +14 -53
  43. mteb/cache.py +227 -37
  44. mteb/cli/_display_tasks.py +2 -2
  45. mteb/cli/build_cli.py +110 -14
  46. mteb/cli/generate_model_card.py +43 -23
  47. mteb/deprecated_evaluator.py +71 -62
  48. mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
  49. mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
  50. mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
  51. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
  52. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
  53. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
  54. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
  55. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
  56. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
  57. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
  58. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
  59. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
  60. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
  61. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
  62. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
  63. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
  64. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
  65. mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
  66. mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
  67. mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
  68. mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
  69. mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
  70. mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
  71. mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
  72. mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
  73. mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
  74. mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
  75. mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
  76. mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
  77. mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
  78. mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
  79. mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
  80. mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
  81. mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
  82. mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
  83. mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
  84. mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
  85. mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
  86. mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
  87. mteb/evaluate.py +106 -75
  88. mteb/filter_tasks.py +25 -26
  89. mteb/get_tasks.py +29 -30
  90. mteb/languages/language_scripts.py +5 -3
  91. mteb/leaderboard/app.py +414 -151
  92. mteb/leaderboard/benchmark_selector.py +14 -5
  93. mteb/leaderboard/figures.py +13 -15
  94. mteb/leaderboard/table.py +82 -17
  95. mteb/load_results.py +12 -12
  96. mteb/models/__init__.py +4 -1
  97. mteb/models/abs_encoder.py +31 -23
  98. mteb/models/cache_wrappers/__init__.py +2 -1
  99. mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
  100. mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
  101. mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
  102. mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
  103. mteb/models/cache_wrappers/cache_wrapper.py +3 -3
  104. mteb/models/get_model_meta.py +25 -118
  105. mteb/models/instruct_wrapper.py +33 -9
  106. mteb/models/model_implementations/align_models.py +8 -1
  107. mteb/models/model_implementations/amazon_models.py +1 -0
  108. mteb/models/model_implementations/andersborges.py +65 -0
  109. mteb/models/model_implementations/ara_models.py +9 -1
  110. mteb/models/model_implementations/arctic_models.py +16 -8
  111. mteb/models/model_implementations/b1ade_models.py +2 -1
  112. mteb/models/model_implementations/bedrock_models.py +4 -0
  113. mteb/models/model_implementations/bge_models.py +101 -17
  114. mteb/models/model_implementations/bica_model.py +35 -0
  115. mteb/models/model_implementations/blip2_models.py +13 -2
  116. mteb/models/model_implementations/blip_models.py +43 -16
  117. mteb/models/model_implementations/bm25.py +5 -4
  118. mteb/models/model_implementations/bmretriever_models.py +10 -4
  119. mteb/models/model_implementations/cadet_models.py +10 -1
  120. mteb/models/model_implementations/cde_models.py +25 -4
  121. mteb/models/model_implementations/clip_models.py +9 -6
  122. mteb/models/model_implementations/clips_models.py +100 -0
  123. mteb/models/model_implementations/codefuse_models.py +165 -3
  124. mteb/models/model_implementations/codesage_models.py +18 -3
  125. mteb/models/model_implementations/cohere_models.py +13 -6
  126. mteb/models/model_implementations/cohere_v.py +7 -2
  127. mteb/models/model_implementations/colpali_models.py +17 -9
  128. mteb/models/model_implementations/colqwen_models.py +275 -5
  129. mteb/models/model_implementations/colsmol_models.py +4 -2
  130. mteb/models/model_implementations/conan_models.py +2 -1
  131. mteb/models/model_implementations/dino_models.py +194 -23
  132. mteb/models/model_implementations/e5_instruct.py +27 -4
  133. mteb/models/model_implementations/e5_models.py +21 -110
  134. mteb/models/model_implementations/e5_v.py +7 -6
  135. mteb/models/model_implementations/eagerworks_models.py +164 -0
  136. mteb/models/model_implementations/emillykkejensen_models.py +91 -0
  137. mteb/models/model_implementations/en_code_retriever.py +2 -1
  138. mteb/models/model_implementations/euler_models.py +32 -0
  139. mteb/models/model_implementations/evaclip_models.py +4 -0
  140. mteb/models/model_implementations/fa_models.py +67 -9
  141. mteb/models/model_implementations/facebookai.py +205 -0
  142. mteb/models/model_implementations/geogpt_models.py +2 -1
  143. mteb/models/model_implementations/gme_v_models.py +17 -10
  144. mteb/models/model_implementations/google_models.py +17 -6
  145. mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
  146. mteb/models/model_implementations/gritlm_models.py +4 -2
  147. mteb/models/model_implementations/gte_models.py +99 -9
  148. mteb/models/model_implementations/hinvec_models.py +2 -1
  149. mteb/models/model_implementations/human.py +1 -0
  150. mteb/models/model_implementations/ibm_granite_models.py +36 -6
  151. mteb/models/model_implementations/inf_models.py +4 -2
  152. mteb/models/model_implementations/jasper_models.py +256 -3
  153. mteb/models/model_implementations/jina_clip.py +49 -10
  154. mteb/models/model_implementations/jina_models.py +222 -11
  155. mteb/models/model_implementations/kalm_models.py +203 -25
  156. mteb/models/model_implementations/kblab.py +37 -0
  157. mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
  158. mteb/models/model_implementations/kfst.py +25 -0
  159. mteb/models/model_implementations/kowshik24_models.py +32 -0
  160. mteb/models/model_implementations/lens_models.py +2 -0
  161. mteb/models/model_implementations/lgai_embedding_models.py +2 -1
  162. mteb/models/model_implementations/linq_models.py +4 -3
  163. mteb/models/model_implementations/listconranker.py +2 -2
  164. mteb/models/model_implementations/llm2clip_models.py +9 -6
  165. mteb/models/model_implementations/llm2vec_models.py +16 -8
  166. mteb/models/model_implementations/mcinext_models.py +7 -1
  167. mteb/models/model_implementations/mdbr_models.py +19 -3
  168. mteb/models/model_implementations/misc_models.py +422 -60
  169. mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
  170. mteb/models/model_implementations/mme5_models.py +2 -1
  171. mteb/models/model_implementations/moco_models.py +15 -4
  172. mteb/models/model_implementations/mod_models.py +191 -0
  173. mteb/models/model_implementations/model2vec_models.py +27 -14
  174. mteb/models/model_implementations/moka_models.py +4 -1
  175. mteb/models/model_implementations/nbailab.py +70 -0
  176. mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
  177. mteb/models/model_implementations/nomic_models.py +173 -6
  178. mteb/models/model_implementations/nomic_models_vision.py +8 -3
  179. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
  180. mteb/models/model_implementations/nvidia_models.py +155 -20
  181. mteb/models/model_implementations/octen_models.py +254 -0
  182. mteb/models/model_implementations/openai_models.py +20 -16
  183. mteb/models/model_implementations/openclip_models.py +37 -13
  184. mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
  185. mteb/models/model_implementations/ops_moa_models.py +5 -3
  186. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
  187. mteb/models/model_implementations/pawan_models.py +39 -0
  188. mteb/models/model_implementations/piccolo_models.py +9 -1
  189. mteb/models/model_implementations/pixie_models.py +56 -0
  190. mteb/models/model_implementations/promptriever_models.py +12 -8
  191. mteb/models/model_implementations/pylate_models.py +46 -12
  192. mteb/models/model_implementations/qodo_models.py +4 -2
  193. mteb/models/model_implementations/qtack_models.py +2 -1
  194. mteb/models/model_implementations/qwen3_models.py +9 -6
  195. mteb/models/model_implementations/qzhou_models.py +5 -3
  196. mteb/models/model_implementations/random_baseline.py +19 -24
  197. mteb/models/model_implementations/rasgaard_models.py +34 -0
  198. mteb/models/model_implementations/reasonir_model.py +2 -1
  199. mteb/models/model_implementations/repllama_models.py +5 -3
  200. mteb/models/model_implementations/rerankers_custom.py +15 -9
  201. mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
  202. mteb/models/model_implementations/richinfoai_models.py +2 -1
  203. mteb/models/model_implementations/ru_sentence_models.py +71 -20
  204. mteb/models/model_implementations/ruri_models.py +322 -0
  205. mteb/models/model_implementations/salesforce_models.py +6 -3
  206. mteb/models/model_implementations/samilpwc_models.py +2 -1
  207. mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
  208. mteb/models/model_implementations/searchmap_models.py +2 -1
  209. mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
  210. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
  211. mteb/models/model_implementations/seed_models.py +1 -0
  212. mteb/models/model_implementations/sentence_transformers_models.py +177 -18
  213. mteb/models/model_implementations/shuu_model.py +32 -31
  214. mteb/models/model_implementations/siglip_models.py +30 -20
  215. mteb/models/model_implementations/slm_models.py +416 -0
  216. mteb/models/model_implementations/sonar_models.py +1 -0
  217. mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
  218. mteb/models/model_implementations/stella_models.py +23 -4
  219. mteb/models/model_implementations/tarka_models.py +376 -0
  220. mteb/models/model_implementations/text2vec_models.py +9 -3
  221. mteb/models/model_implementations/ua_sentence_models.py +11 -1
  222. mteb/models/model_implementations/uae_models.py +8 -1
  223. mteb/models/model_implementations/vdr_models.py +3 -1
  224. mteb/models/model_implementations/vi_vn_models.py +45 -6
  225. mteb/models/model_implementations/vista_models.py +2 -0
  226. mteb/models/model_implementations/vlm2vec_models.py +5 -3
  227. mteb/models/model_implementations/voyage_models.py +99 -0
  228. mteb/models/model_implementations/voyage_v.py +17 -9
  229. mteb/models/model_implementations/xyz_models.py +1 -0
  230. mteb/models/model_implementations/youtu_models.py +2 -1
  231. mteb/models/model_implementations/yuan_models.py +34 -0
  232. mteb/models/model_implementations/yuan_models_en.py +58 -0
  233. mteb/models/model_meta.py +498 -29
  234. mteb/models/models_protocols.py +22 -6
  235. mteb/models/search_encoder_index/__init__.py +7 -0
  236. mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
  237. mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
  238. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
  239. mteb/models/search_wrappers.py +197 -65
  240. mteb/models/sentence_transformer_wrapper.py +52 -32
  241. mteb/models/vllm_wrapper.py +327 -0
  242. mteb/py.typed +0 -0
  243. mteb/results/benchmark_results.py +114 -65
  244. mteb/results/model_result.py +63 -26
  245. mteb/results/task_result.py +117 -77
  246. mteb/similarity_functions.py +60 -7
  247. mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
  248. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
  249. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
  250. mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
  251. mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
  252. mteb/tasks/classification/ara/ajgt.py +1 -2
  253. mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
  254. mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
  255. mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
  256. mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
  257. mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
  258. mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
  259. mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
  260. mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
  261. mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
  262. mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
  263. mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
  264. mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
  265. mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
  266. mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
  267. mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
  268. mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
  269. mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
  270. mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
  271. mteb/tasks/classification/eng/arxiv_classification.py +1 -2
  272. mteb/tasks/classification/eng/banking77_classification.py +1 -2
  273. mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
  274. mteb/tasks/classification/eng/emotion_classification.py +1 -2
  275. mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
  276. mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
  277. mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
  278. mteb/tasks/classification/eng/imdb_classification.py +1 -2
  279. mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
  280. mteb/tasks/classification/eng/news_classification.py +1 -2
  281. mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
  282. mteb/tasks/classification/eng/patent_classification.py +1 -2
  283. mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
  284. mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
  285. mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
  286. mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
  287. mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
  288. mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
  289. mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
  290. mteb/tasks/classification/eng/ucf101_classification.py +1 -5
  291. mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
  292. mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
  293. mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
  294. mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
  295. mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
  296. mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
  297. mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
  298. mteb/tasks/classification/est/estonian_valence.py +2 -3
  299. mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
  300. mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
  301. mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
  302. mteb/tasks/classification/fra/french_book_reviews.py +1 -2
  303. mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
  304. mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
  305. mteb/tasks/classification/heb/__init__.py +6 -1
  306. mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
  307. mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
  308. mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
  309. mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
  310. mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
  311. mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
  312. mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
  313. mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
  314. mteb/tasks/classification/jpn/wrime_classification.py +1 -2
  315. mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
  316. mteb/tasks/classification/kor/klue_tc.py +1 -2
  317. mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
  318. mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
  319. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
  320. mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
  321. mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
  322. mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
  323. mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
  324. mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
  325. mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
  326. mteb/tasks/classification/multilingual/scala_classification.py +2 -3
  327. mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
  328. mteb/tasks/classification/mya/myanmar_news.py +1 -2
  329. mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
  330. mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
  331. mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
  332. mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
  333. mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
  334. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
  335. mteb/tasks/classification/nld/iconclass_classification.py +3 -0
  336. mteb/tasks/classification/nld/open_tender_classification.py +3 -0
  337. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
  338. mteb/tasks/classification/nob/no_rec_classification.py +1 -2
  339. mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
  340. mteb/tasks/classification/ory/odia_news_classification.py +1 -2
  341. mteb/tasks/classification/pol/polish_classification.py +3 -6
  342. mteb/tasks/classification/ron/moroco.py +1 -2
  343. mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
  344. mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
  345. mteb/tasks/classification/rus/georeview_classification.py +1 -2
  346. mteb/tasks/classification/rus/headline_classification.py +1 -2
  347. mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
  348. mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
  349. mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
  350. mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
  351. mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
  352. mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
  353. mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
  354. mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
  355. mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
  356. mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
  357. mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
  358. mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
  359. mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
  360. mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
  361. mteb/tasks/classification/swe/dalaj_classification.py +1 -2
  362. mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
  363. mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
  364. mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
  365. mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
  366. mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
  367. mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
  368. mteb/tasks/classification/tur/__init__.py +4 -0
  369. mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
  370. mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
  371. mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
  372. mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
  373. mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
  374. mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
  375. mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
  376. mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
  377. mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
  378. mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
  379. mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
  380. mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
  381. mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
  382. mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
  383. mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
  384. mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
  385. mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
  386. mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
  387. mteb/tasks/classification/zho/cmteb_classification.py +5 -10
  388. mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
  389. mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
  390. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  391. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  392. mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
  393. mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
  394. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
  395. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
  396. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
  397. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
  398. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
  399. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
  400. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
  401. mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
  402. mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
  403. mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
  404. mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
  405. mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
  406. mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
  407. mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
  408. mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
  409. mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
  410. mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
  411. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
  412. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
  413. mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
  414. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
  415. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
  416. mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
  417. mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
  418. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
  419. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
  420. mteb/tasks/pair_classification/rus/__init__.py +2 -2
  421. mteb/tasks/pair_classification/rus/terra.py +51 -25
  422. mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
  423. mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
  424. mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
  425. mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
  426. mteb/tasks/reranking/jpn/__init__.py +9 -1
  427. mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
  428. mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
  429. mteb/tasks/reranking/multilingual/__init__.py +2 -0
  430. mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
  431. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  432. mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
  433. mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
  434. mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
  435. mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
  436. mteb/tasks/retrieval/code/code_rag.py +12 -12
  437. mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
  438. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  439. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  440. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  441. mteb/tasks/retrieval/eng/__init__.py +2 -0
  442. mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
  443. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  444. mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
  445. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
  446. mteb/tasks/retrieval/jpn/__init__.py +8 -0
  447. mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
  448. mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
  449. mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
  450. mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
  451. mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
  452. mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
  453. mteb/tasks/retrieval/kor/__init__.py +16 -1
  454. mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
  455. mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
  456. mteb/tasks/retrieval/multilingual/__init__.py +24 -0
  457. mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
  458. mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
  459. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
  460. mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
  461. mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
  462. mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
  463. mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
  464. mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
  465. mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
  466. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
  467. mteb/tasks/retrieval/nld/__init__.py +8 -4
  468. mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
  469. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
  470. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
  471. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
  472. mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
  473. mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
  474. mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
  475. mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
  476. mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
  477. mteb/tasks/retrieval/nob/norquad.py +2 -2
  478. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  479. mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
  480. mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
  481. mteb/tasks/retrieval/vie/__init__.py +14 -6
  482. mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
  483. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
  484. mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
  485. mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
  486. mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
  487. mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
  488. mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
  489. mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
  490. mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
  491. mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
  492. mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
  493. mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
  494. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
  495. mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
  496. mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
  497. mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
  498. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
  499. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
  500. mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
  501. mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
  502. mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
  503. mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
  504. mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
  505. mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
  506. mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
  507. mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
  508. mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
  509. mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
  510. mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
  511. mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
  512. mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
  513. mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
  514. mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
  515. mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
  516. mteb/types/__init__.py +2 -0
  517. mteb/types/_encoder_io.py +19 -2
  518. mteb/types/_result.py +2 -1
  519. mteb/types/statistics.py +9 -3
  520. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
  521. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
  522. mteb/models/model_implementations/mxbai_models.py +0 -102
  523. mteb/models/model_implementations/nb_sbert.py +0 -25
  524. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
  525. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
  526. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
  527. {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,466 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 33489,
4
+ "number_of_characters": 478879013,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 478570118,
7
+ "min_text_length": 37,
8
+ "average_text_length": 16119.442150291354,
9
+ "max_text_length": 287838,
10
+ "unique_texts": 29689
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 308895,
15
+ "min_text_length": 3,
16
+ "average_text_length": 81.28815789473684,
17
+ "max_text_length": 2589,
18
+ "unique_texts": 3800
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 3800,
23
+ "min_relevant_docs_per_query": 8,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 8,
26
+ "unique_relevant_docs": 29689
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 30400,
30
+ "min_top_ranked_per_query": 8,
31
+ "average_top_ranked_per_query": 8.0,
32
+ "max_top_ranked_per_query": 8
33
+ },
34
+ "hf_subset_descriptive_stats": {
35
+ "ar": {
36
+ "num_samples": 1759,
37
+ "number_of_characters": 17483509,
38
+ "documents_text_statistics": {
39
+ "total_text_length": 17468355,
40
+ "min_text_length": 2467,
41
+ "average_text_length": 11204.846055163567,
42
+ "max_text_length": 115382,
43
+ "unique_texts": 1559
44
+ },
45
+ "documents_image_statistics": null,
46
+ "queries_text_statistics": {
47
+ "total_text_length": 15154,
48
+ "min_text_length": 7,
49
+ "average_text_length": 75.77,
50
+ "max_text_length": 695,
51
+ "unique_texts": 200
52
+ },
53
+ "queries_image_statistics": null,
54
+ "relevant_docs_statistics": {
55
+ "num_relevant_docs": 200,
56
+ "min_relevant_docs_per_query": 8,
57
+ "average_relevant_docs_per_query": 1.0,
58
+ "max_relevant_docs_per_query": 8,
59
+ "unique_relevant_docs": 1559
60
+ },
61
+ "top_ranked_statistics": {
62
+ "num_top_ranked": 1600,
63
+ "min_top_ranked_per_query": 8,
64
+ "average_top_ranked_per_query": 8.0,
65
+ "max_top_ranked_per_query": 8
66
+ }
67
+ },
68
+ "de": {
69
+ "num_samples": 1800,
70
+ "number_of_characters": 9860028,
71
+ "documents_text_statistics": {
72
+ "total_text_length": 9835298,
73
+ "min_text_length": 107,
74
+ "average_text_length": 6147.06125,
75
+ "max_text_length": 92210,
76
+ "unique_texts": 1600
77
+ },
78
+ "documents_image_statistics": null,
79
+ "queries_text_statistics": {
80
+ "total_text_length": 24730,
81
+ "min_text_length": 10,
82
+ "average_text_length": 123.65,
83
+ "max_text_length": 957,
84
+ "unique_texts": 200
85
+ },
86
+ "queries_image_statistics": null,
87
+ "relevant_docs_statistics": {
88
+ "num_relevant_docs": 200,
89
+ "min_relevant_docs_per_query": 8,
90
+ "average_relevant_docs_per_query": 1.0,
91
+ "max_relevant_docs_per_query": 8,
92
+ "unique_relevant_docs": 1600
93
+ },
94
+ "top_ranked_statistics": {
95
+ "num_top_ranked": 1600,
96
+ "min_top_ranked_per_query": 8,
97
+ "average_top_ranked_per_query": 8.0,
98
+ "max_top_ranked_per_query": 8
99
+ }
100
+ },
101
+ "en": {
102
+ "num_samples": 6878,
103
+ "number_of_characters": 221164232,
104
+ "documents_text_statistics": {
105
+ "total_text_length": 221099168,
106
+ "min_text_length": 12147,
107
+ "average_text_length": 36376.96084238236,
108
+ "max_text_length": 287838,
109
+ "unique_texts": 6078
110
+ },
111
+ "documents_image_statistics": null,
112
+ "queries_text_statistics": {
113
+ "total_text_length": 65064,
114
+ "min_text_length": 18,
115
+ "average_text_length": 81.33,
116
+ "max_text_length": 255,
117
+ "unique_texts": 800
118
+ },
119
+ "queries_image_statistics": null,
120
+ "relevant_docs_statistics": {
121
+ "num_relevant_docs": 800,
122
+ "min_relevant_docs_per_query": 8,
123
+ "average_relevant_docs_per_query": 1.0,
124
+ "max_relevant_docs_per_query": 8,
125
+ "unique_relevant_docs": 6078
126
+ },
127
+ "top_ranked_statistics": {
128
+ "num_top_ranked": 6400,
129
+ "min_top_ranked_per_query": 8,
130
+ "average_top_ranked_per_query": 8.0,
131
+ "max_top_ranked_per_query": 8
132
+ }
133
+ },
134
+ "es": {
135
+ "num_samples": 1780,
136
+ "number_of_characters": 20852843,
137
+ "documents_text_statistics": {
138
+ "total_text_length": 20826446,
139
+ "min_text_length": 2657,
140
+ "average_text_length": 13181.29493670886,
141
+ "max_text_length": 270338,
142
+ "unique_texts": 1580
143
+ },
144
+ "documents_image_statistics": null,
145
+ "queries_text_statistics": {
146
+ "total_text_length": 26397,
147
+ "min_text_length": 40,
148
+ "average_text_length": 131.985,
149
+ "max_text_length": 480,
150
+ "unique_texts": 200
151
+ },
152
+ "queries_image_statistics": null,
153
+ "relevant_docs_statistics": {
154
+ "num_relevant_docs": 200,
155
+ "min_relevant_docs_per_query": 8,
156
+ "average_relevant_docs_per_query": 1.0,
157
+ "max_relevant_docs_per_query": 8,
158
+ "unique_relevant_docs": 1580
159
+ },
160
+ "top_ranked_statistics": {
161
+ "num_top_ranked": 1600,
162
+ "min_top_ranked_per_query": 8,
163
+ "average_top_ranked_per_query": 8.0,
164
+ "max_top_ranked_per_query": 8
165
+ }
166
+ },
167
+ "fr": {
168
+ "num_samples": 1762,
169
+ "number_of_characters": 17828712,
170
+ "documents_text_statistics": {
171
+ "total_text_length": 17798753,
172
+ "min_text_length": 2093,
173
+ "average_text_length": 11394.848271446863,
174
+ "max_text_length": 133854,
175
+ "unique_texts": 1562
176
+ },
177
+ "documents_image_statistics": null,
178
+ "queries_text_statistics": {
179
+ "total_text_length": 29959,
180
+ "min_text_length": 33,
181
+ "average_text_length": 149.795,
182
+ "max_text_length": 2589,
183
+ "unique_texts": 200
184
+ },
185
+ "queries_image_statistics": null,
186
+ "relevant_docs_statistics": {
187
+ "num_relevant_docs": 200,
188
+ "min_relevant_docs_per_query": 8,
189
+ "average_relevant_docs_per_query": 1.0,
190
+ "max_relevant_docs_per_query": 8,
191
+ "unique_relevant_docs": 1562
192
+ },
193
+ "top_ranked_statistics": {
194
+ "num_top_ranked": 1600,
195
+ "min_top_ranked_per_query": 8,
196
+ "average_top_ranked_per_query": 8.0,
197
+ "max_top_ranked_per_query": 8
198
+ }
199
+ },
200
+ "hi": {
201
+ "num_samples": 1715,
202
+ "number_of_characters": 18465376,
203
+ "documents_text_statistics": {
204
+ "total_text_length": 18444624,
205
+ "min_text_length": 2426,
206
+ "average_text_length": 12174.669306930693,
207
+ "max_text_length": 227264,
208
+ "unique_texts": 1515
209
+ },
210
+ "documents_image_statistics": null,
211
+ "queries_text_statistics": {
212
+ "total_text_length": 20752,
213
+ "min_text_length": 6,
214
+ "average_text_length": 103.76,
215
+ "max_text_length": 2022,
216
+ "unique_texts": 200
217
+ },
218
+ "queries_image_statistics": null,
219
+ "relevant_docs_statistics": {
220
+ "num_relevant_docs": 200,
221
+ "min_relevant_docs_per_query": 8,
222
+ "average_relevant_docs_per_query": 1.0,
223
+ "max_relevant_docs_per_query": 8,
224
+ "unique_relevant_docs": 1515
225
+ },
226
+ "top_ranked_statistics": {
227
+ "num_top_ranked": 1600,
228
+ "min_top_ranked_per_query": 8,
229
+ "average_top_ranked_per_query": 8.0,
230
+ "max_top_ranked_per_query": 8
231
+ }
232
+ },
233
+ "it": {
234
+ "num_samples": 1780,
235
+ "number_of_characters": 22616410,
236
+ "documents_text_statistics": {
237
+ "total_text_length": 22593491,
238
+ "min_text_length": 2518,
239
+ "average_text_length": 14299.677848101266,
240
+ "max_text_length": 117197,
241
+ "unique_texts": 1580
242
+ },
243
+ "documents_image_statistics": null,
244
+ "queries_text_statistics": {
245
+ "total_text_length": 22919,
246
+ "min_text_length": 12,
247
+ "average_text_length": 114.595,
248
+ "max_text_length": 1899,
249
+ "unique_texts": 200
250
+ },
251
+ "queries_image_statistics": null,
252
+ "relevant_docs_statistics": {
253
+ "num_relevant_docs": 200,
254
+ "min_relevant_docs_per_query": 8,
255
+ "average_relevant_docs_per_query": 1.0,
256
+ "max_relevant_docs_per_query": 8,
257
+ "unique_relevant_docs": 1580
258
+ },
259
+ "top_ranked_statistics": {
260
+ "num_top_ranked": 1600,
261
+ "min_top_ranked_per_query": 8,
262
+ "average_top_ranked_per_query": 8.0,
263
+ "max_top_ranked_per_query": 8
264
+ }
265
+ },
266
+ "ja": {
267
+ "num_samples": 1781,
268
+ "number_of_characters": 8562074,
269
+ "documents_text_statistics": {
270
+ "total_text_length": 8550928,
271
+ "min_text_length": 1244,
272
+ "average_text_length": 5408.556609740671,
273
+ "max_text_length": 97242,
274
+ "unique_texts": 1581
275
+ },
276
+ "documents_image_statistics": null,
277
+ "queries_text_statistics": {
278
+ "total_text_length": 11146,
279
+ "min_text_length": 6,
280
+ "average_text_length": 55.73,
281
+ "max_text_length": 416,
282
+ "unique_texts": 200
283
+ },
284
+ "queries_image_statistics": null,
285
+ "relevant_docs_statistics": {
286
+ "num_relevant_docs": 200,
287
+ "min_relevant_docs_per_query": 8,
288
+ "average_relevant_docs_per_query": 1.0,
289
+ "max_relevant_docs_per_query": 8,
290
+ "unique_relevant_docs": 1581
291
+ },
292
+ "top_ranked_statistics": {
293
+ "num_top_ranked": 1600,
294
+ "min_top_ranked_per_query": 8,
295
+ "average_top_ranked_per_query": 8.0,
296
+ "max_top_ranked_per_query": 8
297
+ }
298
+ },
299
+ "ko": {
300
+ "num_samples": 1770,
301
+ "number_of_characters": 9773349,
302
+ "documents_text_statistics": {
303
+ "total_text_length": 9761605,
304
+ "min_text_length": 1490,
305
+ "average_text_length": 6217.58280254777,
306
+ "max_text_length": 76949,
307
+ "unique_texts": 1570
308
+ },
309
+ "documents_image_statistics": null,
310
+ "queries_text_statistics": {
311
+ "total_text_length": 11744,
312
+ "min_text_length": 8,
313
+ "average_text_length": 58.72,
314
+ "max_text_length": 330,
315
+ "unique_texts": 200
316
+ },
317
+ "queries_image_statistics": null,
318
+ "relevant_docs_statistics": {
319
+ "num_relevant_docs": 200,
320
+ "min_relevant_docs_per_query": 8,
321
+ "average_relevant_docs_per_query": 1.0,
322
+ "max_relevant_docs_per_query": 8,
323
+ "unique_relevant_docs": 1570
324
+ },
325
+ "top_ranked_statistics": {
326
+ "num_top_ranked": 1600,
327
+ "min_top_ranked_per_query": 8,
328
+ "average_top_ranked_per_query": 8.0,
329
+ "max_top_ranked_per_query": 8
330
+ }
331
+ },
332
+ "pt": {
333
+ "num_samples": 1764,
334
+ "number_of_characters": 23152911,
335
+ "documents_text_statistics": {
336
+ "total_text_length": 23130220,
337
+ "min_text_length": 3473,
338
+ "average_text_length": 14789.143222506395,
339
+ "max_text_length": 108535,
340
+ "unique_texts": 1564
341
+ },
342
+ "documents_image_statistics": null,
343
+ "queries_text_statistics": {
344
+ "total_text_length": 22691,
345
+ "min_text_length": 4,
346
+ "average_text_length": 113.455,
347
+ "max_text_length": 511,
348
+ "unique_texts": 200
349
+ },
350
+ "queries_image_statistics": null,
351
+ "relevant_docs_statistics": {
352
+ "num_relevant_docs": 200,
353
+ "min_relevant_docs_per_query": 8,
354
+ "average_relevant_docs_per_query": 1.0,
355
+ "max_relevant_docs_per_query": 8,
356
+ "unique_relevant_docs": 1564
357
+ },
358
+ "top_ranked_statistics": {
359
+ "num_top_ranked": 1600,
360
+ "min_top_ranked_per_query": 8,
361
+ "average_top_ranked_per_query": 8.0,
362
+ "max_top_ranked_per_query": 8
363
+ }
364
+ },
365
+ "ru": {
366
+ "num_samples": 1779,
367
+ "number_of_characters": 22994826,
368
+ "documents_text_statistics": {
369
+ "total_text_length": 22975852,
370
+ "min_text_length": 2914,
371
+ "average_text_length": 14550.887903736542,
372
+ "max_text_length": 151133,
373
+ "unique_texts": 1579
374
+ },
375
+ "documents_image_statistics": null,
376
+ "queries_text_statistics": {
377
+ "total_text_length": 18974,
378
+ "min_text_length": 12,
379
+ "average_text_length": 94.87,
380
+ "max_text_length": 413,
381
+ "unique_texts": 200
382
+ },
383
+ "queries_image_statistics": null,
384
+ "relevant_docs_statistics": {
385
+ "num_relevant_docs": 200,
386
+ "min_relevant_docs_per_query": 8,
387
+ "average_relevant_docs_per_query": 1.0,
388
+ "max_relevant_docs_per_query": 8,
389
+ "unique_relevant_docs": 1579
390
+ },
391
+ "top_ranked_statistics": {
392
+ "num_top_ranked": 1600,
393
+ "min_top_ranked_per_query": 8,
394
+ "average_top_ranked_per_query": 8.0,
395
+ "max_top_ranked_per_query": 8
396
+ }
397
+ },
398
+ "th": {
399
+ "num_samples": 1800,
400
+ "number_of_characters": 8022609,
401
+ "documents_text_statistics": {
402
+ "total_text_length": 8003011,
403
+ "min_text_length": 37,
404
+ "average_text_length": 5001.881875,
405
+ "max_text_length": 44872,
406
+ "unique_texts": 1600
407
+ },
408
+ "documents_image_statistics": null,
409
+ "queries_text_statistics": {
410
+ "total_text_length": 19598,
411
+ "min_text_length": 11,
412
+ "average_text_length": 97.99,
413
+ "max_text_length": 309,
414
+ "unique_texts": 200
415
+ },
416
+ "queries_image_statistics": null,
417
+ "relevant_docs_statistics": {
418
+ "num_relevant_docs": 200,
419
+ "min_relevant_docs_per_query": 8,
420
+ "average_relevant_docs_per_query": 1.0,
421
+ "max_relevant_docs_per_query": 8,
422
+ "unique_relevant_docs": 1600
423
+ },
424
+ "top_ranked_statistics": {
425
+ "num_top_ranked": 1600,
426
+ "min_top_ranked_per_query": 8,
427
+ "average_top_ranked_per_query": 8.0,
428
+ "max_top_ranked_per_query": 8
429
+ }
430
+ },
431
+ "zh": {
432
+ "num_samples": 7121,
433
+ "number_of_characters": 78102134,
434
+ "documents_text_statistics": {
435
+ "total_text_length": 78082367,
436
+ "min_text_length": 6268,
437
+ "average_text_length": 12352.850340136054,
438
+ "max_text_length": 278468,
439
+ "unique_texts": 6321
440
+ },
441
+ "documents_image_statistics": null,
442
+ "queries_text_statistics": {
443
+ "total_text_length": 19767,
444
+ "min_text_length": 3,
445
+ "average_text_length": 24.70875,
446
+ "max_text_length": 646,
447
+ "unique_texts": 800
448
+ },
449
+ "queries_image_statistics": null,
450
+ "relevant_docs_statistics": {
451
+ "num_relevant_docs": 800,
452
+ "min_relevant_docs_per_query": 8,
453
+ "average_relevant_docs_per_query": 1.0,
454
+ "max_relevant_docs_per_query": 8,
455
+ "unique_relevant_docs": 6321
456
+ },
457
+ "top_ranked_statistics": {
458
+ "num_top_ranked": 6400,
459
+ "min_top_ranked_per_query": 8,
460
+ "average_top_ranked_per_query": 8.0,
461
+ "max_top_ranked_per_query": 8
462
+ }
463
+ }
464
+ }
465
+ }
466
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 10080,
4
+ "number_of_characters": 11742019,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 9897099,
7
+ "min_text_length": 1,
8
+ "average_text_length": 1141.0074936592114,
9
+ "max_text_length": 7337,
10
+ "unique_texts": 8624
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 1844920,
15
+ "min_text_length": 252,
16
+ "average_text_length": 1312.176386913229,
17
+ "max_text_length": 6050,
18
+ "unique_texts": 1298
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 1406,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 1,
26
+ "unique_relevant_docs": 1406
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 74457,
4
+ "number_of_characters": 76109543,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 75549698,
7
+ "min_text_length": 121,
8
+ "average_text_length": 1087.7189916063176,
9
+ "max_text_length": 25438,
10
+ "unique_texts": 69150
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 559845,
15
+ "min_text_length": 57,
16
+ "average_text_length": 111.969,
17
+ "max_text_length": 224,
18
+ "unique_texts": 5000
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 5000,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 1,
26
+ "unique_relevant_docs": 5000
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,116 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 30300,
4
+ "number_of_characters": 17320243,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 17276572,
7
+ "min_text_length": 316,
8
+ "average_text_length": 575.8857333333333,
9
+ "max_text_length": 1008,
10
+ "unique_texts": 28361
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 43671,
15
+ "min_text_length": 67,
16
+ "average_text_length": 145.57,
17
+ "max_text_length": 345,
18
+ "unique_texts": 300
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 300,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 1,
26
+ "unique_relevant_docs": 300
27
+ },
28
+ "top_ranked_statistics": null,
29
+ "hf_subset_descriptive_stats": {
30
+ "en": {
31
+ "num_samples": 10100,
32
+ "number_of_characters": 5517678,
33
+ "documents_text_statistics": {
34
+ "total_text_length": 5503635,
35
+ "min_text_length": 316,
36
+ "average_text_length": 550.3635,
37
+ "max_text_length": 726,
38
+ "unique_texts": 9422
39
+ },
40
+ "documents_image_statistics": null,
41
+ "queries_text_statistics": {
42
+ "total_text_length": 14043,
43
+ "min_text_length": 68,
44
+ "average_text_length": 140.43,
45
+ "max_text_length": 305,
46
+ "unique_texts": 100
47
+ },
48
+ "queries_image_statistics": null,
49
+ "relevant_docs_statistics": {
50
+ "num_relevant_docs": 100,
51
+ "min_relevant_docs_per_query": 1,
52
+ "average_relevant_docs_per_query": 1.0,
53
+ "max_relevant_docs_per_query": 1,
54
+ "unique_relevant_docs": 100
55
+ },
56
+ "top_ranked_statistics": null
57
+ },
58
+ "fi": {
59
+ "num_samples": 10100,
60
+ "number_of_characters": 5953462,
61
+ "documents_text_statistics": {
62
+ "total_text_length": 5938809,
63
+ "min_text_length": 326,
64
+ "average_text_length": 593.8809,
65
+ "max_text_length": 1008,
66
+ "unique_texts": 9422
67
+ },
68
+ "documents_image_statistics": null,
69
+ "queries_text_statistics": {
70
+ "total_text_length": 14653,
71
+ "min_text_length": 67,
72
+ "average_text_length": 146.53,
73
+ "max_text_length": 345,
74
+ "unique_texts": 100
75
+ },
76
+ "queries_image_statistics": null,
77
+ "relevant_docs_statistics": {
78
+ "num_relevant_docs": 100,
79
+ "min_relevant_docs_per_query": 1,
80
+ "average_relevant_docs_per_query": 1.0,
81
+ "max_relevant_docs_per_query": 1,
82
+ "unique_relevant_docs": 100
83
+ },
84
+ "top_ranked_statistics": null
85
+ },
86
+ "pt": {
87
+ "num_samples": 10100,
88
+ "number_of_characters": 5849103,
89
+ "documents_text_statistics": {
90
+ "total_text_length": 5834128,
91
+ "min_text_length": 325,
92
+ "average_text_length": 583.4128,
93
+ "max_text_length": 774,
94
+ "unique_texts": 9517
95
+ },
96
+ "documents_image_statistics": null,
97
+ "queries_text_statistics": {
98
+ "total_text_length": 14975,
99
+ "min_text_length": 69,
100
+ "average_text_length": 149.75,
101
+ "max_text_length": 320,
102
+ "unique_texts": 100
103
+ },
104
+ "queries_image_statistics": null,
105
+ "relevant_docs_statistics": {
106
+ "num_relevant_docs": 100,
107
+ "min_relevant_docs_per_query": 1,
108
+ "average_relevant_docs_per_query": 1.0,
109
+ "max_relevant_docs_per_query": 1,
110
+ "unique_relevant_docs": 100
111
+ },
112
+ "top_ranked_statistics": null
113
+ }
114
+ }
115
+ }
116
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 306638,
4
+ "number_of_characters": 56607519,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 56466000,
7
+ "min_text_length": 142,
8
+ "average_text_length": 186.57934562084074,
9
+ "max_text_length": 252,
10
+ "unique_texts": 299096
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 141519,
15
+ "min_text_length": 9,
16
+ "average_text_length": 35.37975,
17
+ "max_text_length": 176,
18
+ "unique_texts": 3993
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 4000,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 1,
26
+ "unique_relevant_docs": 4000
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }