mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -1,8 +1,9 @@
|
|
|
1
1
|
from typing import Any
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
|
-
from
|
|
4
|
+
from packaging.version import Version
|
|
5
5
|
from torch.utils.data import DataLoader
|
|
6
|
+
from transformers import __version__ as transformers_version
|
|
6
7
|
|
|
7
8
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
8
9
|
from mteb.models.abs_encoder import AbsEncoder
|
|
@@ -31,6 +32,14 @@ class LlamaNemoretrieverColembed(AbsEncoder):
|
|
|
31
32
|
attn_implementation="flash_attention_2",
|
|
32
33
|
**kwargs,
|
|
33
34
|
):
|
|
35
|
+
required_transformers_version = "4.49.0"
|
|
36
|
+
|
|
37
|
+
if Version(transformers_version) != Version(required_transformers_version):
|
|
38
|
+
raise RuntimeError(
|
|
39
|
+
f"transformers version {transformers_version} is not match with required "
|
|
40
|
+
f"install version {required_transformers_version} to run `nvidia/llama-nemoretriever-colembed`"
|
|
41
|
+
)
|
|
42
|
+
|
|
34
43
|
from transformers import AutoModel
|
|
35
44
|
|
|
36
45
|
self.model = AutoModel.from_pretrained(
|
|
@@ -53,6 +62,7 @@ class LlamaNemoretrieverColembed(AbsEncoder):
|
|
|
53
62
|
**kwargs,
|
|
54
63
|
):
|
|
55
64
|
import torchvision.transforms.functional as F
|
|
65
|
+
from PIL import Image
|
|
56
66
|
|
|
57
67
|
all_images = []
|
|
58
68
|
if isinstance(images, DataLoader):
|
|
@@ -61,14 +71,16 @@ class LlamaNemoretrieverColembed(AbsEncoder):
|
|
|
61
71
|
iterator = DataLoader(images, batch_size=batch_size)
|
|
62
72
|
|
|
63
73
|
for batch in iterator:
|
|
64
|
-
for
|
|
74
|
+
for image in batch["image"]:
|
|
65
75
|
pil_img = (
|
|
66
|
-
|
|
76
|
+
image
|
|
77
|
+
if isinstance(image, Image.Image)
|
|
78
|
+
else F.to_pil_image(image.to("cpu"))
|
|
67
79
|
)
|
|
68
80
|
all_images.append(pil_img)
|
|
69
81
|
|
|
70
82
|
batch_size = 1
|
|
71
|
-
return self.model.
|
|
83
|
+
return self.model.forward_images(all_images, batch_size=batch_size)
|
|
72
84
|
|
|
73
85
|
def calculate_probs(self, text_embeddings, image_embeddings):
|
|
74
86
|
scores = self.similarity(text_embeddings, image_embeddings)
|
|
@@ -117,19 +129,18 @@ class LlamaNemoretrieverColembed(AbsEncoder):
|
|
|
117
129
|
|
|
118
130
|
TRAINING_DATA = {
|
|
119
131
|
# from https://huggingface.co/datasets/vidore/colpali_train_set
|
|
120
|
-
"
|
|
121
|
-
"
|
|
122
|
-
"
|
|
123
|
-
"
|
|
124
|
-
"
|
|
125
|
-
"
|
|
132
|
+
"VidoreDocVQARetrieval",
|
|
133
|
+
"VidoreInfoVQARetrieval",
|
|
134
|
+
"VidoreTatdqaRetrieval",
|
|
135
|
+
"VidoreArxivQARetrieval",
|
|
136
|
+
"HotpotQA",
|
|
137
|
+
"MIRACLRetrieval",
|
|
126
138
|
"NQ",
|
|
127
|
-
"
|
|
139
|
+
"StackExchangeClustering",
|
|
128
140
|
"SQuAD",
|
|
129
141
|
"WebInstructSub",
|
|
130
142
|
"docmatix-ir",
|
|
131
|
-
"
|
|
132
|
-
"colpali_train_set", # as it contains PDFs
|
|
143
|
+
"VDRMultilingualRetrieval",
|
|
133
144
|
"VisRAG-Ret-Train-Synthetic-data",
|
|
134
145
|
"VisRAG-Ret-Train-In-domain-data",
|
|
135
146
|
"wiki-ss-nq",
|
|
@@ -141,19 +152,20 @@ llama_nemoretriever_colembed_1b_v1 = ModelMeta(
|
|
|
141
152
|
trust_remote_code=True,
|
|
142
153
|
),
|
|
143
154
|
name="nvidia/llama-nemoretriever-colembed-1b-v1",
|
|
155
|
+
model_type=["late-interaction"],
|
|
144
156
|
languages=["eng-Latn"],
|
|
145
|
-
revision="
|
|
157
|
+
revision="6eade800103413033f260bb55b49fe039fd28a6e",
|
|
146
158
|
release_date="2025-06-27",
|
|
147
159
|
modalities=["image", "text"],
|
|
148
160
|
n_parameters=2_418_000_000,
|
|
149
|
-
memory_usage_mb=
|
|
161
|
+
memory_usage_mb=4610,
|
|
150
162
|
max_tokens=8192,
|
|
151
163
|
embed_dim=2048,
|
|
152
164
|
license="https://huggingface.co/nvidia/llama-nemoretriever-colembed-1b-v1/blob/main/LICENSE",
|
|
153
165
|
open_weights=True,
|
|
154
166
|
public_training_code="Proprietary Code",
|
|
155
167
|
public_training_data="https://huggingface.co/nvidia/llama-nemoretriever-colembed-1b-v1#training-dataset",
|
|
156
|
-
framework=["PyTorch"],
|
|
168
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
157
169
|
reference="https://huggingface.co/nvidia/llama-nemoretriever-colembed-1b-v1",
|
|
158
170
|
similarity_fn_name="MaxSim",
|
|
159
171
|
use_instructions=True,
|
|
@@ -167,19 +179,20 @@ llama_nemoretriever_colembed_3b_v1 = ModelMeta(
|
|
|
167
179
|
trust_remote_code=True,
|
|
168
180
|
),
|
|
169
181
|
name="nvidia/llama-nemoretriever-colembed-3b-v1",
|
|
182
|
+
model_type=["late-interaction"],
|
|
170
183
|
languages=["eng-Latn"],
|
|
171
|
-
revision="
|
|
184
|
+
revision="4194bdd2cd2871f220ddba6273ce173ef1217a1e",
|
|
172
185
|
release_date="2025-06-27",
|
|
173
186
|
modalities=["image", "text"],
|
|
174
187
|
n_parameters=4_407_000_000,
|
|
175
|
-
memory_usage_mb=
|
|
188
|
+
memory_usage_mb=8403,
|
|
176
189
|
max_tokens=8192,
|
|
177
190
|
embed_dim=3072,
|
|
178
191
|
license="https://huggingface.co/nvidia/llama-nemoretriever-colembed-1b-v1/blob/main/LICENSE",
|
|
179
192
|
open_weights=True,
|
|
180
193
|
public_training_code="Proprietary Code",
|
|
181
194
|
public_training_data="https://huggingface.co/nvidia/llama-nemoretriever-colembed-1b-v1#training-dataset",
|
|
182
|
-
framework=["PyTorch"],
|
|
195
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
183
196
|
reference="https://huggingface.co/nvidia/llama-nemoretriever-colembed-3b-v1",
|
|
184
197
|
similarity_fn_name="MaxSim",
|
|
185
198
|
use_instructions=True,
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
import logging
|
|
2
|
+
from collections.abc import Callable
|
|
2
3
|
from typing import Any
|
|
3
4
|
|
|
4
5
|
import torch
|
|
@@ -9,8 +10,9 @@ from tqdm import tqdm
|
|
|
9
10
|
from transformers import AutoModel, AutoTokenizer
|
|
10
11
|
from transformers import __version__ as transformers_version
|
|
11
12
|
|
|
12
|
-
from mteb import TaskMetadata
|
|
13
13
|
from mteb._requires_package import requires_package
|
|
14
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
15
|
+
from mteb.models import CrossEncoderWrapper
|
|
14
16
|
from mteb.models.abs_encoder import AbsEncoder
|
|
15
17
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
16
18
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
@@ -18,18 +20,28 @@ from mteb.types import Array, BatchedInput, PromptType
|
|
|
18
20
|
|
|
19
21
|
logger = logging.getLogger(__name__)
|
|
20
22
|
|
|
21
|
-
NV_RETRIEVER_CITATION = """@misc{
|
|
22
|
-
title={NV-
|
|
23
|
-
author={
|
|
23
|
+
NV_RETRIEVER_CITATION = """@misc{lee2025nvembedimprovedtechniquestraining,
|
|
24
|
+
title={NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models},
|
|
25
|
+
author={Chankyu Lee and Rajarshi Roy and Mengyao Xu and Jonathan Raiman and Mohammad Shoeybi and Bryan Catanzaro and Wei Ping},
|
|
24
26
|
year={2025},
|
|
25
|
-
eprint={
|
|
27
|
+
eprint={2405.17428},
|
|
26
28
|
archivePrefix={arXiv},
|
|
27
|
-
primaryClass={cs.
|
|
28
|
-
url={https://arxiv.org/abs/
|
|
29
|
+
primaryClass={cs.CL},
|
|
30
|
+
url={https://arxiv.org/abs/2405.17428},
|
|
31
|
+
}"""
|
|
32
|
+
|
|
33
|
+
LlamaEmbedNemotron_CITATION = """@misc{babakhin2025llamaembednemotron8buniversaltextembedding,
|
|
34
|
+
title={Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks},
|
|
35
|
+
author={Yauhen Babakhin and Radek Osmulski and Ronay Ak and Gabriel Moreira and Mengyao Xu and Benedikt Schifferer and Bo Liu and Even Oldridge},
|
|
36
|
+
year={2025},
|
|
37
|
+
eprint={2511.07025},
|
|
38
|
+
archivePrefix={arXiv},
|
|
39
|
+
primaryClass={cs.CL},
|
|
40
|
+
url={https://arxiv.org/abs/2511.07025},
|
|
29
41
|
}"""
|
|
30
42
|
|
|
31
43
|
|
|
32
|
-
def
|
|
44
|
+
def _instruction_template(
|
|
33
45
|
instruction: str, prompt_type: PromptType | None = None
|
|
34
46
|
) -> str:
|
|
35
47
|
return f"Instruct: {instruction}\nQuery: " if instruction else ""
|
|
@@ -100,10 +112,77 @@ nvidia_training_datasets = {
|
|
|
100
112
|
"MrTidyRetrieval",
|
|
101
113
|
}
|
|
102
114
|
|
|
115
|
+
|
|
116
|
+
class _NVEmbedWrapper(InstructSentenceTransformerModel):
|
|
117
|
+
"""Inherited, because nvembed requires `sbert==2`, but it doesn't have tokenizers kwargs"""
|
|
118
|
+
|
|
119
|
+
def __init__(
|
|
120
|
+
self,
|
|
121
|
+
model_name: str,
|
|
122
|
+
revision: str,
|
|
123
|
+
instruction_template: str
|
|
124
|
+
| Callable[[str, PromptType | None], str]
|
|
125
|
+
| None = None,
|
|
126
|
+
max_seq_length: int | None = None,
|
|
127
|
+
apply_instruction_to_passages: bool = True,
|
|
128
|
+
padding_side: str | None = None,
|
|
129
|
+
add_eos_token: bool = False,
|
|
130
|
+
prompts_dict: dict[str, str] | None = None,
|
|
131
|
+
**kwargs: Any,
|
|
132
|
+
):
|
|
133
|
+
from sentence_transformers import __version__ as sbert_version
|
|
134
|
+
|
|
135
|
+
required_transformers_version = "4.42.4"
|
|
136
|
+
required_sbert_version = "2.7.0"
|
|
137
|
+
|
|
138
|
+
if Version(transformers_version) != Version(required_transformers_version):
|
|
139
|
+
raise RuntimeError(
|
|
140
|
+
f"transformers version {transformers_version} is not match with required "
|
|
141
|
+
f"install version {required_transformers_version} to run `nvidia/NV-Embed-v2`"
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
if Version(sbert_version) != Version(required_sbert_version):
|
|
145
|
+
raise RuntimeError(
|
|
146
|
+
f"sbert version {sbert_version} is not match with required "
|
|
147
|
+
f"install version {required_sbert_version} to run `nvidia/NV-Embed-v2`"
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
requires_package(
|
|
151
|
+
self, "flash_attn", model_name, "pip install 'mteb[flash_attention]'"
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
from sentence_transformers import SentenceTransformer
|
|
155
|
+
|
|
156
|
+
if (
|
|
157
|
+
isinstance(instruction_template, str)
|
|
158
|
+
and "{instruction}" not in instruction_template
|
|
159
|
+
):
|
|
160
|
+
raise ValueError(
|
|
161
|
+
"Instruction template must contain the string '{instruction}'."
|
|
162
|
+
)
|
|
163
|
+
if instruction_template is None:
|
|
164
|
+
logger.warning(
|
|
165
|
+
"No instruction template provided. Instructions will be used as-is."
|
|
166
|
+
)
|
|
167
|
+
|
|
168
|
+
self.instruction_template = instruction_template
|
|
169
|
+
|
|
170
|
+
self.model_name = model_name
|
|
171
|
+
self.model = SentenceTransformer(model_name, revision=revision, **kwargs)
|
|
172
|
+
self.model.tokenizer.padding_side = padding_side
|
|
173
|
+
self.model.tokenizer.add_eos_token = add_eos_token
|
|
174
|
+
|
|
175
|
+
if max_seq_length:
|
|
176
|
+
# https://github.com/huggingface/sentence-transformers/issues/3575
|
|
177
|
+
self.model.max_seq_length = max_seq_length
|
|
178
|
+
self.apply_instruction_to_passages = apply_instruction_to_passages
|
|
179
|
+
self.prompts_dict = prompts_dict
|
|
180
|
+
|
|
181
|
+
|
|
103
182
|
NV_embed_v2 = ModelMeta(
|
|
104
|
-
loader=
|
|
183
|
+
loader=_NVEmbedWrapper,
|
|
105
184
|
loader_kwargs=dict(
|
|
106
|
-
instruction_template=
|
|
185
|
+
instruction_template=_instruction_template,
|
|
107
186
|
trust_remote_code=True,
|
|
108
187
|
max_seq_length=32768,
|
|
109
188
|
padding_side="right",
|
|
@@ -111,6 +190,7 @@ NV_embed_v2 = ModelMeta(
|
|
|
111
190
|
add_eos_token=True,
|
|
112
191
|
),
|
|
113
192
|
name="nvidia/NV-Embed-v2",
|
|
193
|
+
model_type=["dense"],
|
|
114
194
|
languages=["eng-Latn"],
|
|
115
195
|
open_weights=True,
|
|
116
196
|
revision="7604d305b621f14095a1aa23d351674c2859553a",
|
|
@@ -122,7 +202,7 @@ NV_embed_v2 = ModelMeta(
|
|
|
122
202
|
max_tokens=32768,
|
|
123
203
|
reference="https://huggingface.co/nvidia/NV-Embed-v2",
|
|
124
204
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
125
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
205
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
126
206
|
use_instructions=True,
|
|
127
207
|
training_datasets=nvidia_training_datasets,
|
|
128
208
|
public_training_code=None,
|
|
@@ -131,9 +211,9 @@ NV_embed_v2 = ModelMeta(
|
|
|
131
211
|
)
|
|
132
212
|
|
|
133
213
|
NV_embed_v1 = ModelMeta(
|
|
134
|
-
loader=
|
|
214
|
+
loader=_NVEmbedWrapper,
|
|
135
215
|
loader_kwargs=dict(
|
|
136
|
-
instruction_template=
|
|
216
|
+
instruction_template=_instruction_template,
|
|
137
217
|
trust_remote_code=True,
|
|
138
218
|
max_seq_length=32768,
|
|
139
219
|
padding_side="right",
|
|
@@ -141,18 +221,19 @@ NV_embed_v1 = ModelMeta(
|
|
|
141
221
|
add_eos_token=True,
|
|
142
222
|
),
|
|
143
223
|
name="nvidia/NV-Embed-v1",
|
|
224
|
+
model_type=["dense"],
|
|
144
225
|
languages=["eng-Latn"],
|
|
145
226
|
open_weights=True,
|
|
146
227
|
revision="570834afd5fef5bf3a3c2311a2b6e0a66f6f4f2c",
|
|
147
228
|
release_date="2024-09-13", # initial commit of hf model.
|
|
148
229
|
n_parameters=7_850_000_000,
|
|
149
|
-
memory_usage_mb=
|
|
230
|
+
memory_usage_mb=14975,
|
|
150
231
|
embed_dim=4096,
|
|
151
232
|
license="cc-by-nc-4.0",
|
|
152
233
|
max_tokens=32768,
|
|
153
234
|
reference="https://huggingface.co/nvidia/NV-Embed-v1",
|
|
154
235
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
155
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
236
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
156
237
|
use_instructions=True,
|
|
157
238
|
training_datasets=nvidia_training_datasets,
|
|
158
239
|
public_training_code=None,
|
|
@@ -335,6 +416,7 @@ class LlamaEmbedNemotron(AbsEncoder):
|
|
|
335
416
|
self,
|
|
336
417
|
model_name: str,
|
|
337
418
|
revision: str,
|
|
419
|
+
device: str | None = None,
|
|
338
420
|
) -> None:
|
|
339
421
|
required_transformers_version = "4.51.0"
|
|
340
422
|
if Version(transformers_version) != Version(required_transformers_version):
|
|
@@ -353,7 +435,7 @@ class LlamaEmbedNemotron(AbsEncoder):
|
|
|
353
435
|
self.attn_implementation = (
|
|
354
436
|
"flash_attention_2" if torch.cuda.is_available() else "eager"
|
|
355
437
|
)
|
|
356
|
-
self.device =
|
|
438
|
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
|
357
439
|
self.task_prompts = TASK_PROMPTS
|
|
358
440
|
self.instruction_template = self._instruction_template
|
|
359
441
|
|
|
@@ -528,6 +610,7 @@ class LlamaEmbedNemotron(AbsEncoder):
|
|
|
528
610
|
llama_embed_nemotron_8b = ModelMeta(
|
|
529
611
|
loader=LlamaEmbedNemotron,
|
|
530
612
|
name="nvidia/llama-embed-nemotron-8b",
|
|
613
|
+
model_type=["dense"],
|
|
531
614
|
languages=llama_embed_nemotron_evaluated_languages,
|
|
532
615
|
open_weights=True,
|
|
533
616
|
revision="84a375593d27d3528beb4e104822515659e093b4",
|
|
@@ -539,11 +622,63 @@ llama_embed_nemotron_8b = ModelMeta(
|
|
|
539
622
|
max_tokens=32768,
|
|
540
623
|
reference="https://huggingface.co/nvidia/llama-embed-nemotron-8b",
|
|
541
624
|
similarity_fn_name="cosine",
|
|
542
|
-
framework=["PyTorch"],
|
|
625
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
543
626
|
use_instructions=True,
|
|
544
627
|
training_datasets=llama_embed_nemotron_training_datasets,
|
|
545
|
-
public_training_code=
|
|
546
|
-
public_training_data=
|
|
628
|
+
public_training_code="https://github.com/NVIDIA-NeMo/Automodel/tree/main/examples/biencoder/llama_embed_nemotron_8b",
|
|
629
|
+
public_training_data="https://huggingface.co/datasets/nvidia/embed-nemotron-dataset-v1",
|
|
547
630
|
contacts=["ybabakhin"],
|
|
548
|
-
citation=
|
|
631
|
+
citation=LlamaEmbedNemotron_CITATION,
|
|
632
|
+
)
|
|
633
|
+
|
|
634
|
+
|
|
635
|
+
def _nemotron_rerank_model(model: str, revision: str, **kwargs) -> CrossEncoderWrapper:
|
|
636
|
+
required_transformers_version = "4.47.1"
|
|
637
|
+
|
|
638
|
+
if Version(transformers_version) != Version(required_transformers_version):
|
|
639
|
+
raise RuntimeError(
|
|
640
|
+
f"transformers version {transformers_version} is not match with required "
|
|
641
|
+
f"install version {required_transformers_version} to run `nvidia/llama-nemotron-rerank-1b-v2`"
|
|
642
|
+
)
|
|
643
|
+
|
|
644
|
+
return CrossEncoderWrapper(
|
|
645
|
+
model=model,
|
|
646
|
+
revision=revision,
|
|
647
|
+
**kwargs,
|
|
648
|
+
)
|
|
649
|
+
|
|
650
|
+
|
|
651
|
+
nemotron_rerank_1b_v2 = ModelMeta(
|
|
652
|
+
loader=_nemotron_rerank_model,
|
|
653
|
+
loader_kwargs=dict(
|
|
654
|
+
trust_remote_code=True,
|
|
655
|
+
query_prefix="question:",
|
|
656
|
+
passage_prefix=" \n \n passage:",
|
|
657
|
+
model_kwargs={"torch_dtype": torch.float32},
|
|
658
|
+
),
|
|
659
|
+
name="nvidia/llama-nemotron-rerank-1b-v2",
|
|
660
|
+
revision="78efcfdc23b53a753f6c73f2d78b18132a34ac4d",
|
|
661
|
+
release_date="2025-10-16",
|
|
662
|
+
languages=["eng-Latn"],
|
|
663
|
+
n_parameters=1235816448,
|
|
664
|
+
memory_usage_mb=2357.0,
|
|
665
|
+
max_tokens=4096,
|
|
666
|
+
embed_dim=2048,
|
|
667
|
+
license="https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/",
|
|
668
|
+
open_weights=True,
|
|
669
|
+
public_training_code=None,
|
|
670
|
+
public_training_data=None,
|
|
671
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
672
|
+
reference="https://huggingface.co/nvidia/llama-nemotron-rerank-1b-v2",
|
|
673
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
674
|
+
use_instructions=None,
|
|
675
|
+
training_datasets=set(
|
|
676
|
+
# private
|
|
677
|
+
),
|
|
678
|
+
adapted_from="meta-llama/Llama-3.2-1B",
|
|
679
|
+
superseded_by=None,
|
|
680
|
+
modalities=["text"],
|
|
681
|
+
model_type=["cross-encoder"],
|
|
682
|
+
citation=None,
|
|
683
|
+
contacts=None,
|
|
549
684
|
)
|
|
@@ -0,0 +1,254 @@
|
|
|
1
|
+
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
2
|
+
from mteb.models.model_meta import ModelMeta
|
|
3
|
+
from mteb.models.models_protocols import PromptType
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def instruction_template(
|
|
7
|
+
instruction: str, prompt_type: PromptType | None = None
|
|
8
|
+
) -> str:
|
|
9
|
+
if (
|
|
10
|
+
prompt_type == PromptType.document
|
|
11
|
+
): # to avoid this issue: https://huggingface.co/Qwen/Qwen3-Embedding-8B/discussions/21
|
|
12
|
+
return " "
|
|
13
|
+
if not instruction:
|
|
14
|
+
return ""
|
|
15
|
+
if isinstance(instruction, dict):
|
|
16
|
+
if prompt_type is None:
|
|
17
|
+
instruction = next(iter(instruction.values())) # TODO
|
|
18
|
+
else:
|
|
19
|
+
instruction = instruction[prompt_type]
|
|
20
|
+
return f"Instruct: {instruction}\nQuery:"
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
multilingual_langs = [
|
|
24
|
+
"afr-Latn",
|
|
25
|
+
"ara-Arab",
|
|
26
|
+
"aze-Latn",
|
|
27
|
+
"bel-Cyrl",
|
|
28
|
+
"bul-Cyrl",
|
|
29
|
+
"ben-Beng",
|
|
30
|
+
"cat-Latn",
|
|
31
|
+
"ceb-Latn",
|
|
32
|
+
"ces-Latn",
|
|
33
|
+
"cym-Latn",
|
|
34
|
+
"dan-Latn",
|
|
35
|
+
"deu-Latn",
|
|
36
|
+
"ell-Grek",
|
|
37
|
+
"eng-Latn",
|
|
38
|
+
"spa-Latn",
|
|
39
|
+
"est-Latn",
|
|
40
|
+
"eus-Latn",
|
|
41
|
+
"fas-Arab",
|
|
42
|
+
"fin-Latn",
|
|
43
|
+
"fra-Latn",
|
|
44
|
+
"glg-Latn",
|
|
45
|
+
"guj-Gujr",
|
|
46
|
+
"heb-Hebr",
|
|
47
|
+
"hin-Deva",
|
|
48
|
+
"hrv-Latn",
|
|
49
|
+
"hat-Latn",
|
|
50
|
+
"hun-Latn",
|
|
51
|
+
"hye-Armn",
|
|
52
|
+
"ind-Latn",
|
|
53
|
+
"isl-Latn",
|
|
54
|
+
"ita-Latn",
|
|
55
|
+
"jpn-Jpan",
|
|
56
|
+
"jav-Latn",
|
|
57
|
+
"kat-Geor",
|
|
58
|
+
"kaz-Cyrl",
|
|
59
|
+
"khm-Khmr",
|
|
60
|
+
"kan-Knda",
|
|
61
|
+
"kor-Hang",
|
|
62
|
+
"kir-Cyrl",
|
|
63
|
+
"lao-Laoo",
|
|
64
|
+
"lit-Latn",
|
|
65
|
+
"lav-Latn",
|
|
66
|
+
"mkd-Cyrl",
|
|
67
|
+
"mal-Mlym",
|
|
68
|
+
"mon-Cyrl",
|
|
69
|
+
"mar-Deva",
|
|
70
|
+
"msa-Latn",
|
|
71
|
+
"mya-Mymr",
|
|
72
|
+
"nep-Deva",
|
|
73
|
+
"nld-Latn",
|
|
74
|
+
"nor-Latn",
|
|
75
|
+
"nob-Latn",
|
|
76
|
+
"nno-Latn",
|
|
77
|
+
"pan-Guru",
|
|
78
|
+
"pol-Latn",
|
|
79
|
+
"por-Latn",
|
|
80
|
+
"que-Latn",
|
|
81
|
+
"ron-Latn",
|
|
82
|
+
"rus-Cyrl",
|
|
83
|
+
"sin-Sinh",
|
|
84
|
+
"slk-Latn",
|
|
85
|
+
"slv-Latn",
|
|
86
|
+
"swa-Latn",
|
|
87
|
+
"tam-Taml",
|
|
88
|
+
"tel-Telu",
|
|
89
|
+
"tha-Thai",
|
|
90
|
+
"tgl-Latn",
|
|
91
|
+
"tur-Latn",
|
|
92
|
+
"ukr-Cyrl",
|
|
93
|
+
"urd-Arab",
|
|
94
|
+
"vie-Latn",
|
|
95
|
+
"yor-Latn",
|
|
96
|
+
"zho-Hans",
|
|
97
|
+
]
|
|
98
|
+
|
|
99
|
+
OCTEN_CITATION = """@misc{octen-embedding-2025,
|
|
100
|
+
title={Octen-Embedding-8B: A Fine-tuned Multilingual Text Embedding Model},
|
|
101
|
+
author={Octen Team},
|
|
102
|
+
year={2025},
|
|
103
|
+
url={https://huggingface.co/bflhc/bflhc/Octen-Embedding-8B}
|
|
104
|
+
}"""
|
|
105
|
+
|
|
106
|
+
training_data = {
|
|
107
|
+
"T2Retrieval",
|
|
108
|
+
"DuRetrieval",
|
|
109
|
+
"MMarcoReranking",
|
|
110
|
+
"CMedQAv2-reranking",
|
|
111
|
+
"NQ",
|
|
112
|
+
"MSMARCO",
|
|
113
|
+
"HotpotQA",
|
|
114
|
+
"FEVER",
|
|
115
|
+
"MrTidyRetrieval",
|
|
116
|
+
"MIRACLRetrieval",
|
|
117
|
+
"CodeSearchNet",
|
|
118
|
+
}
|
|
119
|
+
|
|
120
|
+
# Predefined prompts for various RTEB tasks
|
|
121
|
+
_PREDEFINED_PROMPTS = {
|
|
122
|
+
# ========== Open Datasets ==========
|
|
123
|
+
# Legal domain
|
|
124
|
+
"AILACasedocs": "Given a legal case scenario, retrieve the most relevant case documents",
|
|
125
|
+
"AILAStatutes": "Given a legal scenario, retrieve the most relevant statute documents",
|
|
126
|
+
"LegalQuAD": "Given a legal question, retrieve relevant legal documents that answer the question",
|
|
127
|
+
"LegalSummarization": "Given a query, retrieve relevant legal documents for summarization",
|
|
128
|
+
# Code domain
|
|
129
|
+
"AppsRetrieval": "Given a query about mobile applications, retrieve relevant app information",
|
|
130
|
+
"HumanEvalRetrieval": "Given a code problem description, retrieve relevant code examples",
|
|
131
|
+
"MBPPRetrieval": "Given a programming problem description, retrieve relevant code solutions",
|
|
132
|
+
"DS1000Retrieval": "Given a data science problem, retrieve relevant code snippets",
|
|
133
|
+
"FreshStackRetrieval": "Given a programming question, retrieve relevant Stack Overflow posts",
|
|
134
|
+
# Finance domain
|
|
135
|
+
"FinQARetrieval": "Given a financial question, retrieve relevant financial documents",
|
|
136
|
+
"FinanceBenchRetrieval": "Given a financial query, retrieve relevant financial information",
|
|
137
|
+
"HC3FinanceRetrieval": "Given a finance-related query, retrieve relevant documents",
|
|
138
|
+
# Medical domain
|
|
139
|
+
"CUREv1": "Given a medical query, retrieve relevant clinical documents",
|
|
140
|
+
"ChatDoctorRetrieval": "Given a medical question, retrieve relevant medical information",
|
|
141
|
+
# SQL domain
|
|
142
|
+
"WikiSQLRetrieval": "Given a natural language query, retrieve relevant SQL examples",
|
|
143
|
+
# Multilingual
|
|
144
|
+
"MIRACLRetrievalHardNegatives": "Given a question, retrieve Wikipedia passages that answer the question",
|
|
145
|
+
# ========== Private/Closed Datasets ==========
|
|
146
|
+
# Code domain (Private)
|
|
147
|
+
"Code1Retrieval": "Given a code problem description, retrieve relevant code examples",
|
|
148
|
+
"JapaneseCode1Retrieval": "Given a code problem description, retrieve relevant code examples",
|
|
149
|
+
# Finance domain (Private)
|
|
150
|
+
"EnglishFinance1Retrieval": "Given a financial query, retrieve relevant financial documents",
|
|
151
|
+
"EnglishFinance2Retrieval": "Given a financial query, retrieve relevant financial documents",
|
|
152
|
+
"EnglishFinance3Retrieval": "Given a financial query, retrieve relevant financial documents",
|
|
153
|
+
"EnglishFinance4Retrieval": "Given a financial query, retrieve relevant financial documents",
|
|
154
|
+
# Healthcare domain (Private)
|
|
155
|
+
"EnglishHealthcare1Retrieval": "Given a medical question, retrieve relevant medical information",
|
|
156
|
+
"GermanHealthcare1Retrieval": "Given a medical question, retrieve relevant medical information",
|
|
157
|
+
# Legal domain (Private)
|
|
158
|
+
"FrenchLegal1Retrieval": "Given a legal query, retrieve relevant legal documents",
|
|
159
|
+
"GermanLegal1Retrieval": "Given a legal query, retrieve relevant legal documents",
|
|
160
|
+
"JapaneseLegal1Retrieval": "Given a legal query, retrieve relevant legal documents",
|
|
161
|
+
# General/Multilingual (Private)
|
|
162
|
+
"French1Retrieval": "Given a query, retrieve relevant passages",
|
|
163
|
+
"German1Retrieval": "Given a query, retrieve relevant passages",
|
|
164
|
+
}
|
|
165
|
+
|
|
166
|
+
Octen_Embedding_0B6 = ModelMeta(
|
|
167
|
+
loader=InstructSentenceTransformerModel,
|
|
168
|
+
loader_kwargs=dict(
|
|
169
|
+
instruction_template=instruction_template,
|
|
170
|
+
apply_instruction_to_passages=True,
|
|
171
|
+
prompts_dict=_PREDEFINED_PROMPTS,
|
|
172
|
+
max_seq_length=18480,
|
|
173
|
+
model_kwargs={"torch_dtype": "bfloat16"},
|
|
174
|
+
),
|
|
175
|
+
name="bflhc/Octen-Embedding-0.6B",
|
|
176
|
+
languages=multilingual_langs,
|
|
177
|
+
open_weights=True,
|
|
178
|
+
revision="1a00a4e837bd788f6f8d91bc43201a5e52cf8ef8",
|
|
179
|
+
release_date="2026-01-10",
|
|
180
|
+
n_parameters=595776512,
|
|
181
|
+
memory_usage_mb=1136,
|
|
182
|
+
embed_dim=1024,
|
|
183
|
+
max_tokens=32768,
|
|
184
|
+
license="apache-2.0",
|
|
185
|
+
reference="https://huggingface.co/bflhc/Octen-Embedding-0.6B",
|
|
186
|
+
similarity_fn_name="cosine",
|
|
187
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
188
|
+
use_instructions=True,
|
|
189
|
+
public_training_code=None,
|
|
190
|
+
public_training_data=None,
|
|
191
|
+
training_datasets=training_data,
|
|
192
|
+
citation=OCTEN_CITATION,
|
|
193
|
+
adapted_from="Qwen/Qwen3-Embedding-0.6B",
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
Octen_Embedding_4B = ModelMeta(
|
|
197
|
+
loader=InstructSentenceTransformerModel,
|
|
198
|
+
loader_kwargs=dict(
|
|
199
|
+
instruction_template=instruction_template,
|
|
200
|
+
apply_instruction_to_passages=True,
|
|
201
|
+
prompts_dict=_PREDEFINED_PROMPTS,
|
|
202
|
+
max_seq_length=18480,
|
|
203
|
+
model_kwargs={"torch_dtype": "bfloat16"},
|
|
204
|
+
),
|
|
205
|
+
name="bflhc/Octen-Embedding-4B",
|
|
206
|
+
languages=multilingual_langs,
|
|
207
|
+
open_weights=True,
|
|
208
|
+
revision="6e188e3b072c3e3678b235ad84e6e97bcbb71e8f",
|
|
209
|
+
release_date="2025-12-30",
|
|
210
|
+
n_parameters=4021774336,
|
|
211
|
+
memory_usage_mb=7671,
|
|
212
|
+
embed_dim=2560,
|
|
213
|
+
max_tokens=32768,
|
|
214
|
+
license="apache-2.0",
|
|
215
|
+
reference="https://huggingface.co/bflhc/Octen-Embedding-4B",
|
|
216
|
+
similarity_fn_name="cosine",
|
|
217
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
218
|
+
use_instructions=True,
|
|
219
|
+
public_training_code=None,
|
|
220
|
+
public_training_data=None,
|
|
221
|
+
training_datasets=training_data,
|
|
222
|
+
citation=OCTEN_CITATION,
|
|
223
|
+
adapted_from="Qwen/Qwen3-Embedding-4B",
|
|
224
|
+
)
|
|
225
|
+
|
|
226
|
+
Octen_Embedding_8B = ModelMeta(
|
|
227
|
+
loader=InstructSentenceTransformerModel,
|
|
228
|
+
loader_kwargs=dict(
|
|
229
|
+
instruction_template=instruction_template,
|
|
230
|
+
apply_instruction_to_passages=True,
|
|
231
|
+
prompts_dict=_PREDEFINED_PROMPTS,
|
|
232
|
+
max_seq_length=18480,
|
|
233
|
+
model_kwargs={"torch_dtype": "bfloat16"},
|
|
234
|
+
),
|
|
235
|
+
name="bflhc/Octen-Embedding-8B",
|
|
236
|
+
languages=multilingual_langs,
|
|
237
|
+
open_weights=True,
|
|
238
|
+
revision="f7db178d5a82fb841f606a6a67c423cead2fdbba",
|
|
239
|
+
release_date="2025-12-23",
|
|
240
|
+
n_parameters=7567295488,
|
|
241
|
+
memory_usage_mb=14433,
|
|
242
|
+
embed_dim=4096,
|
|
243
|
+
max_tokens=32768,
|
|
244
|
+
license="apache-2.0",
|
|
245
|
+
reference="https://huggingface.co/bflhc/Octen-Embedding-8B",
|
|
246
|
+
similarity_fn_name="cosine",
|
|
247
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
248
|
+
use_instructions=True,
|
|
249
|
+
public_training_code=None,
|
|
250
|
+
public_training_data=None,
|
|
251
|
+
training_datasets=training_data,
|
|
252
|
+
citation=OCTEN_CITATION,
|
|
253
|
+
adapted_from="Qwen/Qwen3-Embedding-8B",
|
|
254
|
+
)
|