mteb 2.1.4__py3-none-any.whl → 2.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +6 -0
- mteb/_create_dataloaders.py +22 -20
- mteb/_evaluators/any_sts_evaluator.py +23 -14
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +3 -3
- mteb/_evaluators/evaluator.py +4 -2
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +18 -11
- mteb/_evaluators/pair_classification_evaluator.py +34 -40
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/retrieval_metrics.py +18 -17
- mteb/_evaluators/sklearn_evaluator.py +25 -37
- mteb/_evaluators/text/bitext_mining_evaluator.py +31 -19
- mteb/_evaluators/text/summarization_evaluator.py +27 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +7 -5
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +105 -0
- mteb/abstasks/_statistics_calculation.py +23 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +35 -28
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +10 -29
- mteb/abstasks/classification.py +15 -12
- mteb/abstasks/clustering.py +20 -16
- mteb/abstasks/clustering_legacy.py +13 -10
- mteb/abstasks/image/image_text_pair_classification.py +7 -4
- mteb/abstasks/multilabel_classification.py +33 -22
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +4 -4
- mteb/abstasks/retrieval.py +28 -24
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/sts.py +14 -4
- mteb/abstasks/task_metadata.py +32 -33
- mteb/abstasks/text/bitext_mining.py +39 -28
- mteb/abstasks/text/reranking.py +8 -6
- mteb/abstasks/text/summarization.py +10 -5
- mteb/abstasks/zeroshot_classification.py +8 -4
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +77 -16
- mteb/benchmarks/benchmarks/__init__.py +12 -0
- mteb/benchmarks/benchmarks/benchmarks.py +361 -16
- mteb/benchmarks/get_benchmark.py +14 -53
- mteb/cache.py +227 -37
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +110 -14
- mteb/cli/generate_model_card.py +43 -23
- mteb/deprecated_evaluator.py +71 -62
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +106 -75
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +29 -30
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +414 -151
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/load_results.py +12 -12
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +31 -23
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +7 -6
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +3 -3
- mteb/models/get_model_meta.py +25 -118
- mteb/models/instruct_wrapper.py +33 -9
- mteb/models/model_implementations/align_models.py +8 -1
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +9 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +101 -17
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +13 -2
- mteb/models/model_implementations/blip_models.py +43 -16
- mteb/models/model_implementations/bm25.py +5 -4
- mteb/models/model_implementations/bmretriever_models.py +10 -4
- mteb/models/model_implementations/cadet_models.py +10 -1
- mteb/models/model_implementations/cde_models.py +25 -4
- mteb/models/model_implementations/clip_models.py +9 -6
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +165 -3
- mteb/models/model_implementations/codesage_models.py +18 -3
- mteb/models/model_implementations/cohere_models.py +13 -6
- mteb/models/model_implementations/cohere_v.py +7 -2
- mteb/models/model_implementations/colpali_models.py +17 -9
- mteb/models/model_implementations/colqwen_models.py +275 -5
- mteb/models/model_implementations/colsmol_models.py +4 -2
- mteb/models/model_implementations/conan_models.py +2 -1
- mteb/models/model_implementations/dino_models.py +194 -23
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +21 -110
- mteb/models/model_implementations/e5_v.py +7 -6
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +67 -9
- mteb/models/model_implementations/facebookai.py +205 -0
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +17 -10
- mteb/models/model_implementations/google_models.py +17 -6
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -3
- mteb/models/model_implementations/gritlm_models.py +4 -2
- mteb/models/model_implementations/gte_models.py +99 -9
- mteb/models/model_implementations/hinvec_models.py +2 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +256 -3
- mteb/models/model_implementations/jina_clip.py +49 -10
- mteb/models/model_implementations/jina_models.py +222 -11
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +37 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +4 -3
- mteb/models/model_implementations/listconranker.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +9 -6
- mteb/models/model_implementations/llm2vec_models.py +16 -8
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +422 -60
- mteb/models/model_implementations/mixedbread_ai_models.py +332 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +15 -4
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +27 -14
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +3 -2
- mteb/models/model_implementations/nomic_models.py +173 -6
- mteb/models/model_implementations/nomic_models_vision.py +8 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +32 -19
- mteb/models/model_implementations/nvidia_models.py +155 -20
- mteb/models/model_implementations/octen_models.py +254 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +37 -13
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +10 -5
- mteb/models/model_implementations/ops_moa_models.py +5 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +9 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +12 -8
- mteb/models/model_implementations/pylate_models.py +46 -12
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +9 -6
- mteb/models/model_implementations/qzhou_models.py +5 -3
- mteb/models/model_implementations/random_baseline.py +19 -24
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +2 -1
- mteb/models/model_implementations/repllama_models.py +5 -3
- mteb/models/model_implementations/rerankers_custom.py +15 -9
- mteb/models/model_implementations/rerankers_monot5_based.py +31 -31
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +71 -20
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +6 -3
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +625 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +177 -18
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +30 -20
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +11 -1
- mteb/models/model_implementations/uae_models.py +8 -1
- mteb/models/model_implementations/vdr_models.py +3 -1
- mteb/models/model_implementations/vi_vn_models.py +45 -6
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +5 -3
- mteb/models/model_implementations/voyage_models.py +99 -0
- mteb/models/model_implementations/voyage_v.py +17 -9
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +498 -29
- mteb/models/models_protocols.py +22 -6
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +160 -0
- mteb/models/search_wrappers.py +197 -65
- mteb/models/sentence_transformer_wrapper.py +52 -32
- mteb/models/vllm_wrapper.py +327 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +114 -65
- mteb/results/model_result.py +63 -26
- mteb/results/task_result.py +117 -77
- mteb/similarity_functions.py +60 -7
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -3
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -3
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +3 -4
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +2 -3
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +16 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +24 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +389 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +40 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +40 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +49 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +40 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +19 -2
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/METADATA +25 -8
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/RECORD +525 -438
- mteb/models/model_implementations/mxbai_models.py +0 -102
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.7.2.dist-info}/top_level.txt +0 -0
|
@@ -19,6 +19,7 @@ from mteb.types import (
|
|
|
19
19
|
Array,
|
|
20
20
|
BatchedInput,
|
|
21
21
|
CorpusDatasetType,
|
|
22
|
+
EncodeKwargs,
|
|
22
23
|
PromptType,
|
|
23
24
|
QueryDatasetType,
|
|
24
25
|
RetrievalOutputType,
|
|
@@ -29,7 +30,7 @@ logger = logging.getLogger(__name__)
|
|
|
29
30
|
|
|
30
31
|
|
|
31
32
|
class PylateSearchEncoder:
|
|
32
|
-
"""Mixin class to add PyLate-based indexing and search to an encoder. Implements
|
|
33
|
+
"""Mixin class to add PyLate-based indexing and search to an encoder. Implements [SearchProtocol][mteb.models.SearchProtocol]"""
|
|
33
34
|
|
|
34
35
|
base_index_dir: Path | None = None
|
|
35
36
|
_index_dir: Path | None = None
|
|
@@ -45,7 +46,7 @@ class PylateSearchEncoder:
|
|
|
45
46
|
task_metadata: TaskMetadata,
|
|
46
47
|
hf_split: str,
|
|
47
48
|
hf_subset: str,
|
|
48
|
-
encode_kwargs:
|
|
49
|
+
encode_kwargs: EncodeKwargs,
|
|
49
50
|
) -> None:
|
|
50
51
|
"""Index the corpus for retrieval.
|
|
51
52
|
|
|
@@ -78,7 +79,7 @@ class PylateSearchEncoder:
|
|
|
78
79
|
hf_split: str,
|
|
79
80
|
hf_subset: str,
|
|
80
81
|
top_k: int,
|
|
81
|
-
encode_kwargs:
|
|
82
|
+
encode_kwargs: EncodeKwargs,
|
|
82
83
|
top_ranked: TopRankedDocumentsType | None = None,
|
|
83
84
|
) -> RetrievalOutputType:
|
|
84
85
|
queries_dataloader = create_dataloader(
|
|
@@ -136,7 +137,7 @@ class PylateSearchEncoder:
|
|
|
136
137
|
hf_subset: str,
|
|
137
138
|
hf_split: str,
|
|
138
139
|
top_k: int,
|
|
139
|
-
encode_kwargs:
|
|
140
|
+
encode_kwargs: EncodeKwargs,
|
|
140
141
|
) -> dict[str, list[tuple[float, str]]]:
|
|
141
142
|
from pylate import indexes, retrieve
|
|
142
143
|
|
|
@@ -200,7 +201,7 @@ class PylateSearchEncoder:
|
|
|
200
201
|
task_metadata: TaskMetadata,
|
|
201
202
|
hf_subset: str,
|
|
202
203
|
hf_split: str,
|
|
203
|
-
encode_kwargs:
|
|
204
|
+
encode_kwargs: EncodeKwargs,
|
|
204
205
|
) -> dict[str, list[tuple[float, str]]]:
|
|
205
206
|
"""Rerank with PyLate's rank.rerank using per-query candidates.
|
|
206
207
|
|
|
@@ -328,18 +329,16 @@ class MultiVectorModel(AbsEncoder, PylateSearchEncoder):
|
|
|
328
329
|
inputs,
|
|
329
330
|
prompt_name=prompt_name,
|
|
330
331
|
is_query=prompt_type == PromptType.query,
|
|
331
|
-
convert_to_tensor=True,
|
|
332
332
|
**kwargs,
|
|
333
333
|
)
|
|
334
334
|
|
|
335
|
-
|
|
336
|
-
pred = torch.nn.utils.rnn.pad_sequence(pred, batch_first=True, padding_value=0)
|
|
337
|
-
return pred.cpu().numpy()
|
|
335
|
+
return pred
|
|
338
336
|
|
|
339
337
|
|
|
340
338
|
colbert_v2 = ModelMeta(
|
|
341
339
|
loader=MultiVectorModel,
|
|
342
340
|
name="colbert-ir/colbertv2.0",
|
|
341
|
+
model_type=["late-interaction"],
|
|
343
342
|
languages=["eng-Latn"],
|
|
344
343
|
open_weights=True,
|
|
345
344
|
revision="c1e84128e85ef755c096a95bdb06b47793b13acf",
|
|
@@ -352,7 +351,7 @@ colbert_v2 = ModelMeta(
|
|
|
352
351
|
embed_dim=None,
|
|
353
352
|
license="mit",
|
|
354
353
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
355
|
-
framework=["PyLate", "ColBERT"],
|
|
354
|
+
framework=["PyLate", "ColBERT", "Transformers", "ONNX", "safetensors"],
|
|
356
355
|
reference="https://huggingface.co/colbert-ir/colbertv2.0",
|
|
357
356
|
use_instructions=False,
|
|
358
357
|
adapted_from=None,
|
|
@@ -372,6 +371,7 @@ jina_colbert_v2 = ModelMeta(
|
|
|
372
371
|
trust_remote_code=True,
|
|
373
372
|
),
|
|
374
373
|
name="jinaai/jina-colbert-v2",
|
|
374
|
+
model_type=["late-interaction"],
|
|
375
375
|
languages=[
|
|
376
376
|
"ara-Arab",
|
|
377
377
|
"ben-Beng",
|
|
@@ -407,7 +407,7 @@ jina_colbert_v2 = ModelMeta(
|
|
|
407
407
|
embed_dim=None,
|
|
408
408
|
license="cc-by-nc-4.0",
|
|
409
409
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
410
|
-
framework=["PyLate", "ColBERT"],
|
|
410
|
+
framework=["PyLate", "ColBERT", "ONNX", "safetensors"],
|
|
411
411
|
reference="https://huggingface.co/jinaai/jina-colbert-v2",
|
|
412
412
|
use_instructions=False,
|
|
413
413
|
adapted_from=None,
|
|
@@ -418,12 +418,37 @@ jina_colbert_v2 = ModelMeta(
|
|
|
418
418
|
"DuRetrieval",
|
|
419
419
|
"MIRACL",
|
|
420
420
|
},
|
|
421
|
+
citation="""@inproceedings{xiao-etal-2024-jina,
|
|
422
|
+
title = "{J}ina-{C}ol{BERT}-v2: A General-Purpose Multilingual Late Interaction Retriever",
|
|
423
|
+
author = {Jha, Rohan and
|
|
424
|
+
Wang, Bo and
|
|
425
|
+
G{\"u}nther, Michael and
|
|
426
|
+
Mastrapas, Georgios and
|
|
427
|
+
Sturua, Saba and
|
|
428
|
+
Mohr, Isabelle and
|
|
429
|
+
Koukounas, Andreas and
|
|
430
|
+
Wang, Mohammad Kalim and
|
|
431
|
+
Wang, Nan and
|
|
432
|
+
Xiao, Han},
|
|
433
|
+
editor = {S{\"a}lev{\"a}, Jonne and
|
|
434
|
+
Owodunni, Abraham},
|
|
435
|
+
booktitle = "Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)",
|
|
436
|
+
month = nov,
|
|
437
|
+
year = "2024",
|
|
438
|
+
address = "Miami, Florida, USA",
|
|
439
|
+
publisher = "Association for Computational Linguistics",
|
|
440
|
+
url = "https://aclanthology.org/2024.mrl-1.11/",
|
|
441
|
+
doi = "10.18653/v1/2024.mrl-1.11",
|
|
442
|
+
pages = "159--166",
|
|
443
|
+
abstract = "Multi-vector dense models, such as ColBERT, have proven highly effective in information retrieval. ColBERT`s late interaction scoring approximates the joint query-document attention seen in cross-encoders while maintaining inference efficiency closer to traditional dense retrieval models, thanks to its bi-encoder architecture and recent optimizations in indexing and search. In this paper, we introduce a novel architecture and a training framework to support long context window and multilingual retrieval. Leveraging Matryoshka Representation Loss, we further demonstrate that the reducing the embedding dimensionality from 128 to 64 has insignificant impact on the model`s retrieval performance and cut storage requirements by up to 50{\\%}. Our new model, Jina-ColBERT-v2, demonstrates strong performance across a range of English and multilingual retrieval tasks,"
|
|
444
|
+
}""",
|
|
421
445
|
)
|
|
422
446
|
|
|
423
447
|
|
|
424
448
|
lightonai__gte_moderncolbert_v1 = ModelMeta(
|
|
425
449
|
loader=MultiVectorModel,
|
|
426
450
|
name="lightonai/GTE-ModernColBERT-v1",
|
|
451
|
+
model_type=["late-interaction"],
|
|
427
452
|
languages=[
|
|
428
453
|
"eng-Latn",
|
|
429
454
|
],
|
|
@@ -438,7 +463,7 @@ lightonai__gte_moderncolbert_v1 = ModelMeta(
|
|
|
438
463
|
embed_dim=None,
|
|
439
464
|
license="apache-2.0",
|
|
440
465
|
similarity_fn_name="MaxSim",
|
|
441
|
-
framework=["PyLate", "ColBERT"],
|
|
466
|
+
framework=["PyLate", "ColBERT", "safetensors", "Sentence Transformers"],
|
|
442
467
|
reference="https://huggingface.co/lightonai/GTE-ModernColBERT-v1",
|
|
443
468
|
use_instructions=False,
|
|
444
469
|
adapted_from="Alibaba-NLP/gte-modernbert-base",
|
|
@@ -447,4 +472,13 @@ lightonai__gte_moderncolbert_v1 = ModelMeta(
|
|
|
447
472
|
"MSMARCO",
|
|
448
473
|
"mMARCO-NL",
|
|
449
474
|
},
|
|
475
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
476
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
477
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
478
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
479
|
+
month = "11",
|
|
480
|
+
year = "2019",
|
|
481
|
+
publisher = "Association for Computational Linguistics",
|
|
482
|
+
url = "https://arxiv.org/abs/1908.10084"
|
|
483
|
+
}""",
|
|
450
484
|
)
|
|
@@ -30,6 +30,7 @@ qodo_languages = [
|
|
|
30
30
|
Qodo_Embed_1_1_5B = ModelMeta(
|
|
31
31
|
loader=sentence_transformers_loader,
|
|
32
32
|
name="Qodo/Qodo-Embed-1-1.5B",
|
|
33
|
+
model_type=["dense"],
|
|
33
34
|
languages=qodo_languages,
|
|
34
35
|
open_weights=True,
|
|
35
36
|
revision="84bbef079b32e8823ec226d4e9e92902706b0eb6",
|
|
@@ -41,7 +42,7 @@ Qodo_Embed_1_1_5B = ModelMeta(
|
|
|
41
42
|
max_tokens=32768,
|
|
42
43
|
reference="https://huggingface.co/Qodo/Qodo-Embed-1-1.5B",
|
|
43
44
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
44
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
45
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
45
46
|
use_instructions=False,
|
|
46
47
|
public_training_code=None,
|
|
47
48
|
public_training_data=None,
|
|
@@ -52,6 +53,7 @@ Qodo_Embed_1_1_5B = ModelMeta(
|
|
|
52
53
|
Qodo_Embed_1_7B = ModelMeta(
|
|
53
54
|
loader=sentence_transformers_loader,
|
|
54
55
|
name="Qodo/Qodo-Embed-1-7B",
|
|
56
|
+
model_type=["dense"],
|
|
55
57
|
languages=qodo_languages,
|
|
56
58
|
open_weights=True,
|
|
57
59
|
revision="f9edd9bf7f687c0e832424058e265120f603cd81",
|
|
@@ -63,7 +65,7 @@ Qodo_Embed_1_7B = ModelMeta(
|
|
|
63
65
|
max_tokens=32768,
|
|
64
66
|
reference="https://huggingface.co/Qodo/Qodo-Embed-1-7B",
|
|
65
67
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
66
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
68
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
67
69
|
use_instructions=False,
|
|
68
70
|
public_training_code=None,
|
|
69
71
|
public_training_data=None,
|
|
@@ -25,6 +25,7 @@ mini_gte_datasets = {
|
|
|
25
25
|
mini_gte = ModelMeta(
|
|
26
26
|
loader=sentence_transformers_loader,
|
|
27
27
|
name="prdev/mini-gte",
|
|
28
|
+
model_type=["dense"],
|
|
28
29
|
languages=["eng-Latn"],
|
|
29
30
|
open_weights=True,
|
|
30
31
|
revision="7fbe6f9b4cc42615e0747299f837ad7769025492",
|
|
@@ -36,7 +37,7 @@ mini_gte = ModelMeta(
|
|
|
36
37
|
max_tokens=512,
|
|
37
38
|
reference="https://huggingface.co/prdev/mini-gte",
|
|
38
39
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
39
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
40
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
40
41
|
use_instructions=False,
|
|
41
42
|
public_training_code=None,
|
|
42
43
|
public_training_data=None,
|
|
@@ -134,18 +134,19 @@ def q3e_instruct_loader(
|
|
|
134
134
|
Qwen3_Embedding_0B6 = ModelMeta(
|
|
135
135
|
loader=q3e_instruct_loader,
|
|
136
136
|
name="Qwen/Qwen3-Embedding-0.6B",
|
|
137
|
+
model_type=["dense"],
|
|
137
138
|
languages=multilingual_langs,
|
|
138
139
|
open_weights=True,
|
|
139
140
|
revision="b22da495047858cce924d27d76261e96be6febc0", # Commit of @tomaarsen
|
|
140
141
|
release_date="2025-06-05",
|
|
141
142
|
n_parameters=595776512,
|
|
142
|
-
memory_usage_mb=
|
|
143
|
+
memory_usage_mb=1136,
|
|
143
144
|
embed_dim=1024,
|
|
144
145
|
max_tokens=32768,
|
|
145
146
|
license="apache-2.0",
|
|
146
147
|
reference="https://huggingface.co/Qwen/Qwen3-Embedding-0.6B",
|
|
147
148
|
similarity_fn_name="cosine",
|
|
148
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
149
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
149
150
|
use_instructions=True,
|
|
150
151
|
public_training_code=None,
|
|
151
152
|
public_training_data=None,
|
|
@@ -156,18 +157,19 @@ Qwen3_Embedding_0B6 = ModelMeta(
|
|
|
156
157
|
Qwen3_Embedding_4B = ModelMeta(
|
|
157
158
|
loader=q3e_instruct_loader,
|
|
158
159
|
name="Qwen/Qwen3-Embedding-4B",
|
|
160
|
+
model_type=["dense"],
|
|
159
161
|
languages=multilingual_langs,
|
|
160
162
|
open_weights=True,
|
|
161
163
|
revision="636cd9bf47d976946cdbb2b0c3ca0cb2f8eea5ff", # Commit of @tomaarsen
|
|
162
164
|
release_date="2025-06-05",
|
|
163
165
|
n_parameters=4021774336,
|
|
164
|
-
memory_usage_mb=
|
|
166
|
+
memory_usage_mb=7671,
|
|
165
167
|
embed_dim=2560,
|
|
166
168
|
max_tokens=32768,
|
|
167
169
|
license="apache-2.0",
|
|
168
170
|
reference="https://huggingface.co/Qwen/Qwen3-Embedding-4B",
|
|
169
171
|
similarity_fn_name="cosine",
|
|
170
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
172
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
171
173
|
use_instructions=True,
|
|
172
174
|
public_training_code=None,
|
|
173
175
|
public_training_data=None,
|
|
@@ -178,18 +180,19 @@ Qwen3_Embedding_4B = ModelMeta(
|
|
|
178
180
|
Qwen3_Embedding_8B = ModelMeta(
|
|
179
181
|
loader=q3e_instruct_loader,
|
|
180
182
|
name="Qwen/Qwen3-Embedding-8B",
|
|
183
|
+
model_type=["dense"],
|
|
181
184
|
languages=multilingual_langs,
|
|
182
185
|
open_weights=True,
|
|
183
186
|
revision="4e423935c619ae4df87b646a3ce949610c66241c", # Commit of @tomaarsen
|
|
184
187
|
release_date="2025-06-05",
|
|
185
188
|
n_parameters=7567295488,
|
|
186
|
-
memory_usage_mb=
|
|
189
|
+
memory_usage_mb=14433,
|
|
187
190
|
embed_dim=4096,
|
|
188
191
|
max_tokens=32768,
|
|
189
192
|
license="apache-2.0",
|
|
190
193
|
reference="https://huggingface.co/Qwen/Qwen3-Embedding-8B",
|
|
191
194
|
similarity_fn_name="cosine",
|
|
192
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
195
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
193
196
|
use_instructions=True,
|
|
194
197
|
public_training_code=None,
|
|
195
198
|
public_training_data=None,
|
|
@@ -58,18 +58,19 @@ QZhou_Embedding = ModelMeta(
|
|
|
58
58
|
apply_instruction_to_passages=False,
|
|
59
59
|
),
|
|
60
60
|
name="Kingsoft-LLM/QZhou-Embedding",
|
|
61
|
+
model_type=["dense"],
|
|
61
62
|
languages=["eng-Latn", "zho-Hans"],
|
|
62
63
|
open_weights=True,
|
|
63
64
|
revision="f1e6c03ee3882e7b9fa5cec91217715272e433b8",
|
|
64
65
|
release_date="2025-08-24",
|
|
65
66
|
n_parameters=7_070_619_136,
|
|
66
|
-
memory_usage_mb=
|
|
67
|
+
memory_usage_mb=14436,
|
|
67
68
|
embed_dim=3584,
|
|
68
69
|
license="apache-2.0",
|
|
69
70
|
max_tokens=8192,
|
|
70
71
|
reference="https://huggingface.co/Kingsoft-LLM/QZhou-Embedding",
|
|
71
72
|
similarity_fn_name="cosine",
|
|
72
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
73
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
73
74
|
use_instructions=True,
|
|
74
75
|
public_training_code=None,
|
|
75
76
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
@@ -91,6 +92,7 @@ QZhou_Embedding_Zh = ModelMeta(
|
|
|
91
92
|
apply_instruction_to_passages=False,
|
|
92
93
|
),
|
|
93
94
|
name="Kingsoft-LLM/QZhou-Embedding-Zh",
|
|
95
|
+
model_type=["dense"],
|
|
94
96
|
languages=["zho-Hans"],
|
|
95
97
|
open_weights=True,
|
|
96
98
|
revision="0321ccb126413d1e49c5ce908e802b63d35f18e2",
|
|
@@ -102,7 +104,7 @@ QZhou_Embedding_Zh = ModelMeta(
|
|
|
102
104
|
max_tokens=8192,
|
|
103
105
|
reference="http://huggingface.co/Kingsoft-LLM/QZhou-Embedding-Zh",
|
|
104
106
|
similarity_fn_name="cosine",
|
|
105
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
107
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
106
108
|
use_instructions=True,
|
|
107
109
|
public_training_code=None,
|
|
108
110
|
public_training_data=None,
|
|
@@ -1,15 +1,23 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import hashlib
|
|
2
|
-
from typing import Any, Literal
|
|
4
|
+
from typing import TYPE_CHECKING, Any, Literal
|
|
3
5
|
|
|
4
6
|
import numpy as np
|
|
5
7
|
import torch
|
|
6
|
-
from PIL import Image
|
|
7
8
|
from torch.utils.data import DataLoader
|
|
8
9
|
|
|
9
10
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
10
11
|
from mteb.models.model_meta import ModelMeta
|
|
12
|
+
from mteb.similarity_functions import (
|
|
13
|
+
select_pairwise_similarity,
|
|
14
|
+
select_similarity,
|
|
15
|
+
)
|
|
11
16
|
from mteb.types._encoder_io import Array, BatchedInput, PromptType
|
|
12
17
|
|
|
18
|
+
if TYPE_CHECKING:
|
|
19
|
+
from PIL import Image
|
|
20
|
+
|
|
13
21
|
|
|
14
22
|
def _string_to_vector(text: str | None, size: int) -> np.ndarray:
|
|
15
23
|
"""Generate a deterministic random vector based on a string.
|
|
@@ -60,7 +68,7 @@ _common_mock_metadata = dict(
|
|
|
60
68
|
license="mit",
|
|
61
69
|
max_tokens=np.inf,
|
|
62
70
|
reference=None,
|
|
63
|
-
similarity_fn_name="cosine",
|
|
71
|
+
similarity_fn_name="cosine",
|
|
64
72
|
framework=[],
|
|
65
73
|
use_instructions=False,
|
|
66
74
|
public_training_code=None, # No training code, as this is a random baseline
|
|
@@ -155,15 +163,9 @@ class RandomEncoderBaseline:
|
|
|
155
163
|
Returns:
|
|
156
164
|
Cosine similarity matrix between the two sets of embeddings
|
|
157
165
|
"""
|
|
158
|
-
|
|
159
|
-
embeddings1
|
|
166
|
+
return select_similarity(
|
|
167
|
+
embeddings1, embeddings2, self.mteb_model_meta.similarity_fn_name
|
|
160
168
|
)
|
|
161
|
-
norm2 = np.linalg.norm(
|
|
162
|
-
embeddings2.reshape(-1, self.embedding_dim), axis=1, keepdims=True
|
|
163
|
-
)
|
|
164
|
-
normalized1 = embeddings1 / (norm1 + 1e-10)
|
|
165
|
-
normalized2 = embeddings2 / (norm2 + 1e-10)
|
|
166
|
-
return np.dot(normalized1, normalized2.T)
|
|
167
169
|
|
|
168
170
|
def similarity_pairwise(
|
|
169
171
|
self,
|
|
@@ -179,22 +181,15 @@ class RandomEncoderBaseline:
|
|
|
179
181
|
Returns:
|
|
180
182
|
Cosine similarity for each pair of embeddings
|
|
181
183
|
"""
|
|
182
|
-
|
|
183
|
-
embeddings1
|
|
184
|
-
)
|
|
185
|
-
norm2 = np.linalg.norm(
|
|
186
|
-
embeddings2.reshape(-1, self.embedding_dim), axis=1, keepdims=True
|
|
184
|
+
return select_pairwise_similarity(
|
|
185
|
+
embeddings1, embeddings2, self.mteb_model_meta.similarity_fn_name
|
|
187
186
|
)
|
|
188
|
-
normalized1 = embeddings1 / (norm1 + 1e-10)
|
|
189
|
-
normalized2 = embeddings2 / (norm2 + 1e-10)
|
|
190
|
-
normalized1 = np.asarray(normalized1)
|
|
191
|
-
normalized2 = np.asarray(normalized2)
|
|
192
|
-
return np.sum(normalized1 * normalized2, axis=1)
|
|
193
187
|
|
|
194
188
|
|
|
195
189
|
random_encoder_baseline = ModelMeta(
|
|
196
|
-
loader=RandomEncoderBaseline,
|
|
190
|
+
loader=RandomEncoderBaseline,
|
|
197
191
|
name="baseline/random-encoder-baseline",
|
|
192
|
+
model_type=["dense"],
|
|
198
193
|
modalities=["text", "image"],
|
|
199
194
|
**_common_mock_metadata,
|
|
200
195
|
)
|
|
@@ -237,9 +232,9 @@ class RandomCrossEncoderBaseline:
|
|
|
237
232
|
|
|
238
233
|
|
|
239
234
|
random_cross_encoder_baseline = ModelMeta(
|
|
240
|
-
loader=RandomCrossEncoderBaseline,
|
|
235
|
+
loader=RandomCrossEncoderBaseline,
|
|
241
236
|
name="baseline/random-cross-encoder-baseline",
|
|
237
|
+
model_type=["cross-encoder"],
|
|
242
238
|
modalities=["text", "image"],
|
|
243
|
-
is_cross_encoder=True,
|
|
244
239
|
**_common_mock_metadata,
|
|
245
240
|
)
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
from mteb.models.model_implementations.model2vec_models import Model2VecModel
|
|
4
|
+
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
5
|
+
|
|
6
|
+
potion_base_8m = ModelMeta(
|
|
7
|
+
loader=Model2VecModel,
|
|
8
|
+
name="rasgaard/m2v-dfm-large",
|
|
9
|
+
model_type=["dense"],
|
|
10
|
+
languages=["dan-Latn"],
|
|
11
|
+
open_weights=True,
|
|
12
|
+
revision="387897cfb09992e6d45ea9cd7b28b9fcf119e23a",
|
|
13
|
+
release_date="2025-10-08",
|
|
14
|
+
n_parameters=22893312,
|
|
15
|
+
memory_usage_mb=87,
|
|
16
|
+
max_tokens=np.inf,
|
|
17
|
+
embed_dim=256,
|
|
18
|
+
license="mit",
|
|
19
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
20
|
+
framework=["NumPy", "Sentence Transformers", "safetensors"],
|
|
21
|
+
reference="https://huggingface.co/rasgaard/m2v-dfm-large",
|
|
22
|
+
use_instructions=False,
|
|
23
|
+
adapted_from="KennethEnevoldsen/dfm-sentence-encoder-large",
|
|
24
|
+
superseded_by=None,
|
|
25
|
+
training_datasets=set(), # distilled
|
|
26
|
+
public_training_code="https://github.com/MinishLab/model2vec",
|
|
27
|
+
public_training_data="https://huggingface.co/datasets/HuggingFaceFW/fineweb-2", # distilled on this
|
|
28
|
+
citation="""@article{minishlab2024model2vec,
|
|
29
|
+
author = {Tulkens, Stephan and {van Dongen}, Thomas},
|
|
30
|
+
title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
|
|
31
|
+
year = {2024},
|
|
32
|
+
url = {https://github.com/MinishLab/model2vec}
|
|
33
|
+
}""",
|
|
34
|
+
)
|
|
@@ -44,6 +44,7 @@ ReasonIR_8B = ModelMeta(
|
|
|
44
44
|
trust_remote_code=True,
|
|
45
45
|
),
|
|
46
46
|
name="ReasonIR/ReasonIR-8B",
|
|
47
|
+
model_type=["dense"],
|
|
47
48
|
languages=["eng-Latn"],
|
|
48
49
|
open_weights=True,
|
|
49
50
|
revision="c3d0690370ff4a8c3d3882d8dfa85c43650034fa",
|
|
@@ -55,7 +56,7 @@ ReasonIR_8B = ModelMeta(
|
|
|
55
56
|
max_tokens=131072,
|
|
56
57
|
reference="https://huggingface.co/ReasonIR/ReasonIR-8B",
|
|
57
58
|
similarity_fn_name="cosine",
|
|
58
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
59
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
59
60
|
use_instructions=True,
|
|
60
61
|
training_datasets=REASONIR_TRAINING_DATA,
|
|
61
62
|
public_training_code="https://github.com/facebookresearch/ReasonIR/tree/main/training",
|
|
@@ -154,7 +154,7 @@ REPLLAMA_CITATION = """
|
|
|
154
154
|
"""
|
|
155
155
|
|
|
156
156
|
repllama_llama2_original = ModelMeta(
|
|
157
|
-
loader=RepLLaMAModel,
|
|
157
|
+
loader=RepLLaMAModel,
|
|
158
158
|
loader_kwargs=dict(
|
|
159
159
|
base_model_name_or_path="meta-llama/Llama-2-7b-hf",
|
|
160
160
|
device_map="auto",
|
|
@@ -162,6 +162,7 @@ repllama_llama2_original = ModelMeta(
|
|
|
162
162
|
model_prompts=model_prompts,
|
|
163
163
|
),
|
|
164
164
|
name="castorini/repllama-v1-7b-lora-passage",
|
|
165
|
+
model_type=["dense"],
|
|
165
166
|
languages=["eng-Latn"],
|
|
166
167
|
open_weights=True,
|
|
167
168
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9-6097554dfe6e7d93e92f55010b678bcca1e233a8", # base-peft revision
|
|
@@ -186,7 +187,7 @@ repllama_llama2_original = ModelMeta(
|
|
|
186
187
|
|
|
187
188
|
|
|
188
189
|
repllama_llama2_reproduced = ModelMeta(
|
|
189
|
-
loader=RepLLaMAModel,
|
|
190
|
+
loader=RepLLaMAModel,
|
|
190
191
|
loader_kwargs=dict(
|
|
191
192
|
base_model_name_or_path="meta-llama/Llama-2-7b-hf",
|
|
192
193
|
device_map="auto",
|
|
@@ -194,6 +195,7 @@ repllama_llama2_reproduced = ModelMeta(
|
|
|
194
195
|
model_prompts=model_prompts,
|
|
195
196
|
),
|
|
196
197
|
name="samaya-ai/RepLLaMA-reproduced",
|
|
198
|
+
model_type=["dense"],
|
|
197
199
|
languages=["eng-Latn"],
|
|
198
200
|
open_weights=True,
|
|
199
201
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9-ad5c1d0938a1e02954bcafb4d811ba2f34052e71", # base-peft revision
|
|
@@ -205,7 +207,7 @@ repllama_llama2_reproduced = ModelMeta(
|
|
|
205
207
|
license="apache-2.0",
|
|
206
208
|
reference="https://huggingface.co/samaya-ai/RepLLaMA-reproduced",
|
|
207
209
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
208
|
-
framework=["PyTorch", "Tevatron"],
|
|
210
|
+
framework=["PyTorch", "Tevatron", "safetensors"],
|
|
209
211
|
use_instructions=True,
|
|
210
212
|
citation=REPLLAMA_CITATION,
|
|
211
213
|
public_training_code=None,
|
|
@@ -214,11 +214,12 @@ class JinaReranker(RerankerWrapper):
|
|
|
214
214
|
|
|
215
215
|
|
|
216
216
|
monobert_large = ModelMeta(
|
|
217
|
-
loader=MonoBERTReranker,
|
|
217
|
+
loader=MonoBERTReranker,
|
|
218
218
|
loader_kwargs=dict(
|
|
219
219
|
fp_options="float16",
|
|
220
220
|
),
|
|
221
221
|
name="castorini/monobert-large-msmarco",
|
|
222
|
+
model_type=["cross-encoder"],
|
|
222
223
|
languages=["eng-Latn"],
|
|
223
224
|
open_weights=True,
|
|
224
225
|
revision="0a97706f3827389da43b83348d5d18c9d53876fa",
|
|
@@ -233,17 +234,17 @@ monobert_large = ModelMeta(
|
|
|
233
234
|
similarity_fn_name=None,
|
|
234
235
|
use_instructions=None,
|
|
235
236
|
training_datasets=None,
|
|
236
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
237
|
-
is_cross_encoder=True,
|
|
237
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
238
238
|
)
|
|
239
239
|
|
|
240
240
|
# languages unclear: https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual/discussions/28
|
|
241
241
|
jina_reranker_multilingual = ModelMeta(
|
|
242
|
-
loader=JinaReranker,
|
|
242
|
+
loader=JinaReranker,
|
|
243
243
|
loader_kwargs=dict(
|
|
244
244
|
fp_options="float16",
|
|
245
245
|
),
|
|
246
246
|
name="jinaai/jina-reranker-v2-base-multilingual",
|
|
247
|
+
model_type=["cross-encoder"],
|
|
247
248
|
languages=["eng-Latn"],
|
|
248
249
|
open_weights=True,
|
|
249
250
|
revision="126747772a932960028d9f4dc93bd5d9c4869be4",
|
|
@@ -258,16 +259,22 @@ jina_reranker_multilingual = ModelMeta(
|
|
|
258
259
|
similarity_fn_name=None,
|
|
259
260
|
use_instructions=None,
|
|
260
261
|
training_datasets=None,
|
|
261
|
-
framework=[
|
|
262
|
-
|
|
262
|
+
framework=[
|
|
263
|
+
"Sentence Transformers",
|
|
264
|
+
"PyTorch",
|
|
265
|
+
"Transformers",
|
|
266
|
+
"ONNX",
|
|
267
|
+
"safetensors",
|
|
268
|
+
],
|
|
263
269
|
)
|
|
264
270
|
|
|
265
271
|
bge_reranker_v2_m3 = ModelMeta(
|
|
266
|
-
loader=BGEReranker,
|
|
272
|
+
loader=BGEReranker,
|
|
267
273
|
loader_kwargs=dict(
|
|
268
274
|
fp_options="float16",
|
|
269
275
|
),
|
|
270
276
|
name="BAAI/bge-reranker-v2-m3",
|
|
277
|
+
model_type=["cross-encoder"],
|
|
271
278
|
languages=[
|
|
272
279
|
"eng-Latn",
|
|
273
280
|
"ara-Arab",
|
|
@@ -315,8 +322,7 @@ bge_reranker_v2_m3 = ModelMeta(
|
|
|
315
322
|
similarity_fn_name=None,
|
|
316
323
|
use_instructions=None,
|
|
317
324
|
training_datasets=bge_m3_training_data,
|
|
318
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
319
|
-
is_cross_encoder=True,
|
|
325
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
320
326
|
citation="""
|
|
321
327
|
@misc{li2023making,
|
|
322
328
|
title={Making Large Language Models A Better Foundation For Dense Retrieval},
|